JP6405747B2 - Inorganic fiber manufacturing method - Google Patents

Inorganic fiber manufacturing method Download PDF

Info

Publication number
JP6405747B2
JP6405747B2 JP2014133973A JP2014133973A JP6405747B2 JP 6405747 B2 JP6405747 B2 JP 6405747B2 JP 2014133973 A JP2014133973 A JP 2014133973A JP 2014133973 A JP2014133973 A JP 2014133973A JP 6405747 B2 JP6405747 B2 JP 6405747B2
Authority
JP
Japan
Prior art keywords
fiber
inorganic fiber
inorganic
aggregate
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014133973A
Other languages
Japanese (ja)
Other versions
JP2016011479A (en
Inventor
雄作 秦
雄作 秦
小林 友幸
友幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014133973A priority Critical patent/JP6405747B2/en
Publication of JP2016011479A publication Critical patent/JP2016011479A/en
Application granted granted Critical
Publication of JP6405747B2 publication Critical patent/JP6405747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、高アルミナ組成の無機繊維、無機繊維集合体及び無機繊維成型体に係り、特に加熱炉や溶鉱炉、還元雰囲気炉、アルミ溶解炉等における炉壁や天井の断熱部材や繊維強化金属部材の補強材として用いるのに好適な無機繊維、無機繊維集合体及び無機繊維成型体に関する。   The present invention relates to inorganic fibers, inorganic fiber aggregates, and inorganic fiber molded bodies having a high alumina composition, and in particular, heat insulating members and fiber reinforced metal members for furnace walls and ceilings in heating furnaces, blast furnaces, reducing atmosphere furnaces, aluminum melting furnaces, and the like. The present invention relates to an inorganic fiber, an inorganic fiber aggregate, and an inorganic fiber molded body suitable for use as a reinforcing material.

従来の高アルミナ組成の無機繊維、無機繊維集合体及び無機繊維成型体は、その優れた耐熱性、耐還元性、低SiO及び高硬度等の優れた特性を活かし、加熱炉、溶鉱炉、還元雰囲気炉及びアルミ溶解炉等に断熱部材や繊維強化金属部材の補強材として用いられている。 Conventional inorganic fibers, inorganic fiber aggregates, and inorganic fiber molded bodies with a high alumina composition make use of their excellent heat resistance, reduction resistance, low SiO 2 and high hardness, etc., heating furnace, blast furnace, reduction furnace It is used as a reinforcing material for heat insulating members and fiber reinforced metal members in atmosphere furnaces and aluminum melting furnaces.

特許文献1には、金属化合物と有機珪素化合物を含有する液状組成物から、無機繊維を紡糸し、アルミナ相をより低温化で生成する方法が記載されている。   Patent Document 1 describes a method of spinning an inorganic fiber from a liquid composition containing a metal compound and an organosilicon compound to produce an alumina phase at a lower temperature.

特許文献2には、無機繊維集合体の引張強さを改良するため、無機繊維の配向方法をそろえ捕集する方法が記載されている。   Patent Document 2 describes a method for collecting and collecting inorganic fiber alignment methods in order to improve the tensile strength of the inorganic fiber aggregate.

特開昭49−132200号公報JP 49-132200 A 特開昭61−296122号公報JP 61-296122 A

特許文献1、2に記載の方法で製造した無機繊維は、燃焼後、繊維に黄色みがつくという問題点があった。これは無機繊維の製造過程で繊維内部に塩素が残渣として存在しているためである。   The inorganic fibers produced by the methods described in Patent Documents 1 and 2 have a problem that the fibers are yellowish after combustion. This is because chlorine is present as a residue inside the fiber during the manufacturing process of the inorganic fiber.

このことは、断熱材として加熱炉内で使用した場合、輻射率が下がり、断熱効率が悪くなる。その結果、操業上のランニングコストの増加や、炉壁の温度が上がるためといった操業上の問題点がある。   This means that when used in a heating furnace as a heat insulating material, the emissivity is lowered and the heat insulating efficiency is deteriorated. As a result, there are operational problems such as an increase in operational running costs and an increase in the temperature of the furnace wall.

特に水溶性珪素化合物を原料にした場合は、従来原料として使用されているシリカゾル等に比べて、繊維中の構成粒子がより細かく均一になる。このため、粒子の表面面積がシリカゾル等を使用した系と比べて大きくなるため、結晶開始温度が低くなる。より低い温度で結晶化が始まるということは、より低い温度でゲル中の気孔が閉じることを意味する。このため、燃焼時に不純物等が粒子内の気孔に閉じ込められ、残渣として残りやすい問題がある。特に水溶性シリコーンオイル等は、溶解の容易さと分散性の点から用いられることが多いが、水溶性シリコーンオイル中には燃焼物質である炭化水素や水溶性官能基含有有機物質を含んでいるため、該物質の残渣が残りやすいという問題点がある。また、ポリ塩化アルミニウム等の塩素系材料を併用した場合は、水溶性珪素化合物と塩素が強く結びつく傾向があるために、比較的低い温度では塩素等が抜けにくく、焼成後の繊維内部の塩素量が増えるという問題点がある。   In particular, when a water-soluble silicon compound is used as a raw material, the constituent particles in the fiber become finer and more uniform than silica sol or the like conventionally used as a raw material. For this reason, since the surface area of a particle becomes large compared with the system which uses silica sol etc., crystal start temperature becomes low. The onset of crystallization at lower temperatures means that the pores in the gel close at lower temperatures. For this reason, there is a problem that impurities and the like are trapped in the pores in the particles during combustion and remain as residues. In particular, water-soluble silicone oil and the like are often used from the viewpoint of ease of dissolution and dispersibility, but water-soluble silicone oil contains hydrocarbons that are combustion substances and water-soluble functional group-containing organic substances. There is a problem that the residue of the substance tends to remain. In addition, when a chlorine-based material such as polyaluminum chloride is used in combination, the water-soluble silicon compound and chlorine tend to be strongly bonded, so it is difficult for chlorine to escape at a relatively low temperature, and the amount of chlorine inside the fiber after firing. There is a problem that increases.

アルミ製造関係の断熱材や繊維強化金属の強化材に使用した場合は、繊維中に残留塩素が存在することは、コンタミの観点から問題となる。特に繊維強化金属の強化材として使用した場合、金属と塩素が反応し、繊維と金属の界面から腐食が発生する。このことにより、繊維強化金属の寿命を縮めるといった問題点がある。   When used as a heat insulating material for aluminum production or a reinforcing material for fiber reinforced metal, the presence of residual chlorine in the fiber is a problem from the viewpoint of contamination. In particular, when used as a reinforcing material for fiber reinforced metal, the metal and chlorine react to generate corrosion from the fiber / metal interface. This has the problem of shortening the life of the fiber reinforced metal.

また繊維内部に残渣塩素が存在すると、加熱炉内で長期間使用した際に徐々に塩素が抜け出てくる可能性がある。このことは、加熱炉内部の金属を腐食させ、設備の寿命を縮めるだけでなく、大気中へ塩素を放出するという問題がある。   If residual chlorine is present inside the fiber, chlorine may gradually escape when used for a long time in a heating furnace. This not only corrodes the metal inside the furnace and shortens the life of the equipment, but also releases chlorine into the atmosphere.

また、塩素が抜けださない場合も、断熱材の取替え工事等で、廃棄する場合も塩素が含まれていることは、環境上の問題がある。   In addition, even when chlorine does not come off, it is an environmental problem that chlorine is contained even when it is discarded due to replacement work of a heat insulating material or the like.

本発明は、繊維をより白色にすることを目的とする。詳しくは、繊維中の残留塩素濃度を下げることで上記の目的を達成するものである。   An object of this invention is to make a fiber whiter. Specifically, the above object is achieved by lowering the residual chlorine concentration in the fiber.

本発明者等は上記実情に鑑み、繊維をより白色にするために鋭意検討した結果、無機繊維中の塩素含有量を0.25重量%以下にすることにより、本発明の目的が達成されることを見出し、本発明を完成させた。   In view of the above circumstances, the present inventors have intensively studied to make the fiber whiter, and as a result, the object of the present invention is achieved by setting the chlorine content in the inorganic fiber to 0.25% by weight or less. As a result, the present invention has been completed.

即ち、本発明の要旨は、以下に存する。
[1]塩基性塩化アルミニウム及び珪素化合物を含有する紡糸液を紡糸して無機繊維前駆体を得た後に、該無機繊維前駆体を焼成することにより、Al 含有量が91〜99重量%及びSiO 含有量が1〜9重量%のアルミナ/シリカ系繊維にClを含む無機繊維であり、かつ該無機繊維中のClが2500ppm以下である無機繊維を製造する方法であって、該珪素化合物が水溶性珪素化合物であり、前記無機繊維前駆体を水蒸気を含んだ雰囲気中にて800℃以上で焼成することを特徴とする無機繊維の製造方法。
]前記水溶性珪素化合物が水溶性シリコーンオイルである、[]に記載の無機繊維の製造方法。
That is, the gist of the present invention is as follows.
[1 ] After spinning a spinning solution containing basic aluminum chloride and a silicon compound to obtain an inorganic fiber precursor, the inorganic fiber precursor is fired, so that the Al 2 O 3 content is 91 to 99 weights. % And an inorganic fiber containing Cl in an alumina / silica-based fiber having a SiO 2 content of 1 to 9% by weight, and the inorganic fiber having a Cl content of 2500 ppm or less, silicon compound soluble silicon compound der is, method of producing an inorganic fiber you and firing in the inorganic fiber precursor in an atmosphere containing steam 800 ° C. or higher.
[ 2 ] The method for producing inorganic fibers according to [ 1 ], wherein the water-soluble silicon compound is a water-soluble silicone oil.

本発明によって、繊維中の残留塩素が少なくなることで、黄色みが抑えられているため、輻射率の低下を防ぐことができる。また繊維強化金属の強化材として、好適な無機繊維を提供することができる。   According to the present invention, the residual chlorine in the fiber is reduced, so that yellowing is suppressed, so that a decrease in emissivity can be prevented. Moreover, a suitable inorganic fiber can be provided as a reinforcing material of a fiber reinforced metal.

<無機繊維>
本発明の無機繊維の組成は、Alが91〜99重量%及びSiOが1〜9重量%である。SiOの量が上記よりも少ない場合は、無機繊維を構成するアルミナがα‐アルミナになりやすく、しかもアルミナ粒子の粗大化により、繊維強度が著しく低くなり、無機繊維集合体としての形状を保持することが困難になるおそれがある。SiOが上記よりも多い場合は、還元雰囲気炉等での使用が難しいおそれがある。また、アルミナ比率が下がることによって硬度が低くなるため、繊維強化金属の強化材として使用することが難しいおそれがある。
<Inorganic fiber>
The composition of the inorganic fiber of the present invention is 91 to 99% by weight of Al 2 O 3 and 1 to 9% by weight of SiO 2 . When the amount of SiO 2 is less than the above, the alumina constituting the inorganic fiber is likely to be α-alumina, and the coarseness of the alumina particles significantly reduces the fiber strength and maintains the shape as an inorganic fiber aggregate. May be difficult to do. If SiO 2 is larger than the above, there is a difficult possibility used in a reducing atmosphere furnace. Further, since the hardness is lowered by decreasing the alumina ratio, it may be difficult to use as a reinforcing material for fiber reinforced metal.

本発明の無機繊維中のClが2500ppm以下であり、好ましくは、10〜2000ppmである。無機繊維中のClが2500ppmより高いと、上述した課題が問題となり、逆に無機繊維中のClが10ppmよりも低くする場合は、過度に繊維に熱を加え繊維の結晶を粗大化するか、過度に粉砕する等しないと達成困難となる。そのため繊維として集合体や成型体を形成することが難しくなる。   Cl in the inorganic fiber of the present invention is 2500 ppm or less, preferably 10 to 2000 ppm. When the Cl in the inorganic fiber is higher than 2500 ppm, the above-mentioned problem becomes a problem. Conversely, when the Cl in the inorganic fiber is lower than 10 ppm, the fiber is excessively heated to coarsen the crystal of the fiber, It will be difficult to achieve without excessive grinding. Therefore, it becomes difficult to form an aggregate or a molded body as a fiber.

無機繊維中の塩素濃度の測定方法は、無機繊維を酸素気流下で完全に燃焼することで、塩素を含むガスを生成し、水溶液中で塩素原子を含むガスを回収し、該水溶液をイオンクロマトグラフにより測定することで残留塩素濃度を測定する。   The method for measuring the chlorine concentration in inorganic fibers is to completely burn the inorganic fibers under an oxygen stream to generate a gas containing chlorine, collect the gas containing chlorine atoms in the aqueous solution, and use the aqueous solution for ion chromatography. The residual chlorine concentration is measured by measuring with a graph.

具体的には、無機繊維10mgに、酸素気流条件下で燃焼を行う。その際に、公知の装置(例えば、三菱化学株式会社製 AQF−2100N)を用いることができる。なお、燃焼時に、必要に応じて、助燃剤を含めてもよい。   Specifically, 10 mg of inorganic fibers are burned under oxygen stream conditions. In that case, a well-known apparatus (for example, AQF-2100N by Mitsubishi Chemical Corporation) can be used. In addition, you may include a combustor as needed at the time of combustion.

上記燃焼により生成した、塩素原子を含むガス全量を、2.7mM NaCO − 0.3mM NaHCO水溶液に吸収させる。該水溶液を公知のイオンクロマトグラフにより測定することで、無機繊維中に含まれる塩素元素の濃度を測定する。その際に、公知の装置(例えば、サーモフィッシャーサイエンティフィック株式会社製 DX−500)を使用することができる。 The total amount of gas containing chlorine atoms generated by the combustion is absorbed in a 2.7 mM Na 2 CO 3 -0.3 mM NaHCO 3 aqueous solution. The concentration of the chlorine element contained in the inorganic fiber is measured by measuring the aqueous solution with a known ion chromatograph. In that case, a well-known apparatus (For example, DX-500 by Thermo Fisher Scientific Co., Ltd.) can be used.

本発明の無機繊維の引張強度は、特段の制限はないが、通常200N/mm以上であり、好ましくは500N/mm以上、特に好ましくは750N/mm以上である。無機繊維の引張強度が200N/mm以上であることにより、無機繊維として、集合体や成型体にすることが容易になるため好ましい。上限には特段の制限はないが、2000N/mm以下であることが好ましい。 Tensile strength of the inorganic fibers of the present invention is not particular limitation, it is generally 200 N / mm 2 or more, preferably 500 N / mm 2 or more, particularly preferably 750 N / mm 2 or more. It is preferable that the inorganic fiber has a tensile strength of 200 N / mm 2 or more because it becomes easy to form an aggregate or a molded body as the inorganic fiber. The upper limit is not particularly limited, but is preferably 2000 N / mm 2 or less.

本発明の無機繊維の比表面積は、特段の制限はないが、通常100.0m/g以下であり、好ましくは1.0m/g以上、特に好ましくは0.3m/g以上である。無機繊維の比表面積が10m/g以下となることで、繊維に空隙が少なくなり、繊維が脆くなりにくくなる点で好ましい。また、繊維に空孔を持たせ、触媒等を担持させる場合は、30m/g以上ある方が良い。下限には特段の制限はないが、0.1m/g以上であることが好ましい。 The specific surface area of the inorganic fiber of the present invention is not particularly limited, but is usually 100.0 m 2 / g or less, preferably 1.0 m 2 / g or more, particularly preferably 0.3 m 2 / g or more. . When the specific surface area of the inorganic fiber is 10 m 2 / g or less, it is preferable in that the fiber has less voids and the fiber is less likely to become brittle. Further, in the case where the fiber has pores and supports a catalyst or the like, it is preferable that the fiber be 30 m 2 / g or more. There is no particular limitation on the lower limit, but it is preferably 0.1 m 2 / g or more.

本発明の無機繊維は、繊維径3μm以下の繊維を実質的に含まないことが好ましい。ここで繊維径3μm以下の繊維を実質的に含まないとは、繊維径3μm以下の繊維が全繊維重量の0.1質量%以下であることをさす。   It is preferable that the inorganic fiber of the present invention does not substantially contain a fiber having a fiber diameter of 3 μm or less. Here, “substantially free of fibers having a fiber diameter of 3 μm or less” means that the fibers having a fiber diameter of 3 μm or less is 0.1 mass% or less of the total fiber weight.

無機繊維の平均繊維径は5〜7μmであることが好ましい。平均繊維径が5μm以上であれば、空気中に浮遊する発塵量が少なくなり、また3μm以下の繊維が含まれる確率が実質低くなる。平均繊維径を7μm以下にすることで、繊維の反発力、靭性が向上するため、繊維の強度が上がり好ましい。   The average fiber diameter of the inorganic fibers is preferably 5 to 7 μm. If the average fiber diameter is 5 μm or more, the amount of dust that floats in the air is reduced, and the probability that fibers of 3 μm or less are included is substantially reduced. By making the average fiber diameter 7 μm or less, the repulsive force and toughness of the fiber are improved, and therefore the strength of the fiber is preferably increased.

上述の好適な平均繊維径を有し、かつ、繊維径3μm以下の繊維を実質的に含まない無機繊維集合体は、ゾルーゲル法による無機繊維集合体の製造において、紡糸液粘度の制御、紡糸ノズルに用いる空気流の制御、延伸糸の乾燥の制御により得ることができる。   The inorganic fiber aggregate having the above-mentioned preferred average fiber diameter and substantially free of fibers having a fiber diameter of 3 μm or less is used in the production of inorganic fiber aggregates by the sol-gel method, and the control of the spinning solution viscosity, the spinning nozzle It can be obtained by controlling the air flow used for the yarn and controlling the drying of the drawn yarn.

本発明の無機繊維のYI値は、特段の制限はないが、5.0以下が好ましく、2.0以下がより好ましく、特に好ましくは1.2以下である。本発明の無機繊維のYI値が5.0以下であることで、繊維中の残留塩素が少ないことを意味し、結果として繊維強化金属の強化材として、好適な無機繊維を提供することができる点で好ましい。
<無機繊維集合体>
本発明の無機繊維集合体は、特に制限はないが、本発明の無機繊維を紙漉やニードリング処理工程によって得ることができる。特にニードリング処理をすることで、無機繊維集合体の嵩密度、面密度、厚さを容易に調整でき、また反発力をもった無機繊維集合体を得ることができる。
The YI value of the inorganic fiber of the present invention is not particularly limited, but is preferably 5.0 or less, more preferably 2.0 or less, and particularly preferably 1.2 or less. When the YI value of the inorganic fiber of the present invention is 5.0 or less, it means that there is little residual chlorine in the fiber, and as a result, a suitable inorganic fiber can be provided as a reinforcing material for fiber-reinforced metal. This is preferable.
<Inorganic fiber assembly>
The inorganic fiber aggregate of the present invention is not particularly limited, but the inorganic fiber of the present invention can be obtained by a paper basket or a needling treatment process. In particular, by performing the needling treatment, it is possible to easily adjust the bulk density, surface density, and thickness of the inorganic fiber aggregate, and to obtain an inorganic fiber aggregate having a repulsive force.

このニードルリングを施した無機繊維集合体は、ゾル−ゲル法により無機繊維前駆体の集合体を得る工程と、得られた無機繊維前駆体の集合体に、ニードリング処理を施す工程と、ニードリング処理された無機繊維前駆体の集合体を焼成して無機繊維の集合体とする焼成工程とを経て製造される。   The inorganic fiber aggregate subjected to the needle ring includes a step of obtaining an aggregate of inorganic fiber precursors by a sol-gel method, a step of subjecting the obtained aggregate of inorganic fiber precursors to a needling treatment, It is manufactured through a firing step in which a ring-treated aggregate of inorganic fiber precursors is fired to form an aggregate of inorganic fibers.

本発明の無機繊維集合体の嵩密度は、0.05〜0.5g/cmであることが好ましく、0.06〜0.4g/cmであることがより好ましく、より好ましくは0.08〜0.20g/cmである。嵩密度が低すぎると脆弱な無機繊維成形体しか得られず、また、嵩密度が高すぎると無機繊維成形体の嵩密度が増大するとともに反発力が失われ、靭性の低い成形体となる。 The bulk density of the inorganic fiber aggregate of the present invention is preferably from 0.05 to 0.5 g / cm 3, more preferably 0.06~0.4g / cm 3, more preferably 0. It is 08-0.20 g / cm < 3 >. If the bulk density is too low, only a fragile inorganic fiber molded body can be obtained. If the bulk density is too high, the bulk density of the inorganic fiber molded body increases and the repulsive force is lost, resulting in a molded body with low toughness.

本発明の無機繊維集合体の面密度は、400〜5000g/m、特に600〜4000g/m、とりわけ800〜3500g/mであることが好ましい。この無機繊維集合体の面密度が小さ過ぎると、繊維量が少なく、極薄い成形体しか得られず、断熱用無機繊維成形体としての有用性が低くなり、面密度が大き過ぎると繊維量が多すぎることにより、ニードリング処理による厚み制御が困難となる。 The surface density of the inorganic fiber aggregate of the present invention is preferably 400 to 5000 g / m 2 , particularly 600 to 4000 g / m 2 , particularly 800 to 3500 g / m 2 . If the surface density of the inorganic fiber aggregate is too small, the amount of fibers is small, and only a very thin molded body can be obtained, and the usefulness as an inorganic fiber molded body for heat insulation is reduced. When the amount is too large, it becomes difficult to control the thickness by the needling process.

本発明の無機繊維集合体の厚さは、好ましくは2〜35mm程度である。   The thickness of the inorganic fiber aggregate of the present invention is preferably about 2 to 35 mm.

本発明の無機繊維集合体の引張強度は、特段の制限はないが、25mm幅のサンプルの引張強度を測定した場合、通常5kgf以上であり、好ましくは7kgf以上、特に好ましくは10kgf以上である。無機繊維の引張強度が5kgf以上であることにより、無機繊維集合体としての、使用する際のハンドリング強度がある点で好ましい。上限には特段の制限はないが、25kgf以下であることが好ましい。
本発明の無機繊維集合体の嵩密度0.4g/cmでの面圧は、特段の制限はないが、通常250Pa以上であり、好ましくは400Pa以上、特に好ましくは500Pa以上である。無機繊維の引張強度が250Pa以上であることにより、無機繊維集合体の反発力を利用した施工に適する点で好ましい。上限には特段の制限はないが、1000Pa以下であることが好ましい。
<無機繊維成形体>
本発明の無機繊維成形体には、特に制限はないが、本発明の無機繊維集合体を折りたたんだり、重ねたりし無機繊維成型体としてもよい。この場合には、PPバンドや金具等、所定の方法で結束させることができる。このことにより断熱材としての施工がしやすくなる点で好ましい。
The tensile strength of the inorganic fiber aggregate of the present invention is not particularly limited. However, when the tensile strength of a 25 mm wide sample is measured, it is usually 5 kgf or more, preferably 7 kgf or more, particularly preferably 10 kgf or more. It is preferable that the inorganic fiber has a tensile strength of 5 kgf or more in terms of handling strength when used as an inorganic fiber aggregate. The upper limit is not particularly limited but is preferably 25 kgf or less.
Surface pressure at a bulk density of 0.4 g / cm 3 of the inorganic fiber aggregate of the present invention is not particular limitation, is generally 250 k Pa or more, preferably 400 k Pa or more, particularly preferably 500 k Pa That's it. By the tensile strength of the inorganic fibers is not less than 250 k Pa, preferably in that the suitable construction utilizing the repulsive force of the inorganic fiber aggregate. Although there is no particular limitation on the upper limit is preferably not more than 1000 k Pa.
<Inorganic fiber molded body>
Although there is no restriction | limiting in particular in the inorganic fiber molded object of this invention, It is good also as an inorganic fiber molded object by folding the inorganic fiber aggregate | assembly of this invention or overlapping. In this case, it can be bound by a predetermined method such as a PP band or a metal fitting. This is preferable in that it can be easily constructed as a heat insulating material.

また、本発明の無機繊維や本発明の無機繊維集合体に有機バインダーや、無機バインダーを添加して、無機繊維成型体としてもよい。この場合には、無機繊維を解繊させて、バインダーや溶媒を混ぜてスラリー状にしても良く、また無機繊維集合体に直接バインダーを含浸させてもよい。これらの方法により、無機繊維成型に所定の固さ、可撓性、形状を持たせることができる。
<製造方法>
次に、本発明に関する無機繊維の製造方法について説明する。
[紡糸工程]
ゾル−ゲル法によりアルミナ/シリカ系繊維のマット状集合体を製造するには、まず、塩基性塩化アルミニウム、珪素化合物、増粘剤としての有機重合体及び水を含有する紡糸液をブローイング法で紡糸してアルミナ/シリカ繊維前駆体の集合体を得る。
[紡糸液の調整]
塩基性塩化アルミニウム;Al(OH)3−xClは、例えば、塩酸又は塩化アルミニウム水溶液に金属アルミニウムを溶解させることにより調製することができる。上記の化学式におけるxの値は、通常0.45〜0.54、好ましくは0.5〜0.53である
珪素化合物としては、シリカゾル、水ガラス、シリコーン化合物、アルコキシシラン類、シロキサン類、ケイ酸塩類等を適宜しようすることができるが、その中でも、水溶性珪素化合物であることが好ましく、水溶性シリコーンオイルが、焼成後の珪素を均一に分散させるため特に好ましい。
Moreover, it is good also as an inorganic fiber molded object by adding an organic binder and an inorganic binder to the inorganic fiber of this invention, or the inorganic fiber aggregate | assembly of this invention. In this case, the inorganic fibers may be defibrated and mixed with a binder or a solvent to form a slurry, or the inorganic fiber aggregate may be directly impregnated with the binder. By these methods, the inorganic fiber molding can have a predetermined hardness, flexibility, and shape.
<Manufacturing method>
Next, the manufacturing method of the inorganic fiber regarding this invention is demonstrated.
[Spinning process]
In order to produce a mat-like aggregate of alumina / silica fibers by the sol-gel method, first, a spinning solution containing basic aluminum chloride, a silicon compound, an organic polymer as a thickener, and water is blown. Spinning to obtain an aggregate of alumina / silica fiber precursors.
[Adjustment of spinning solution]
Basic aluminum chloride; Al (OH) 3-x Cl x , for example, can be prepared by dissolving aluminum metal in hydrochloric acid or aluminum chloride solution. The value of x in the above chemical formula is usually 0.45 to 0.54, preferably 0.5 to 0.53. As the silicon compound, silica sol, water glass, silicone compound, alkoxysilanes, siloxanes, silica Acid salts and the like can be used as appropriate. Among them, a water-soluble silicon compound is preferable, and a water-soluble silicone oil is particularly preferable because silicon after firing is uniformly dispersed.

増粘剤としては、ポリビニルアルコール、ポリエチレンオキシド−ポロプロピレンオキシド共重合体、ポリアクリルアミド、ポリビニルピロリドン、糖類、セルロース化合物等が挙げられる。ポリビニルアルコール、ポリエチレングリコール等の水溶性高分子化合物が好適に用いられる。   Examples of the thickener include polyvinyl alcohol, polyethylene oxide-polypropylene oxide copolymer, polyacrylamide, polyvinyl pyrrolidone, sugars, and cellulose compounds. Water-soluble polymer compounds such as polyvinyl alcohol and polyethylene glycol are preferably used.

紡糸液には、水の他、アルコール等の有機溶媒を含有していてもよい。有機溶媒としては、水溶性の有機溶媒が好ましく、具体的には、アルコール類、ケトン類、エーテル類、アミド化合物等が挙げられる。   The spinning solution may contain an organic solvent such as alcohol in addition to water. The organic solvent is preferably a water-soluble organic solvent, and specific examples include alcohols, ketones, ethers, amide compounds and the like.

紡糸液中のアルミニウムの濃度が160g/L未満の場合又は有機重合体の濃度が20g/L未満の場合は、何れも、紡糸液の適当な粘度が得られずに得られる無機繊維の繊維径が細くなる。すなわち、紡糸液中の遊離水が多すぎる結果、ブローイング法による紡糸の際の乾燥速度が遅く、延伸が過度に進み、紡糸された前駆体繊維の繊維径が変化し、所定の平均繊維径で且つ繊維径分布がシャープな短繊維が得られない。しかも、アルミニウムの濃度が160g/L未満の場合は、生産性が低下する。有機重合体とは、一般的に増粘材のことを、表し、シリコーン化合物類や、アルコキシシラン類等の珪素化合物は含まない。   When the concentration of aluminum in the spinning solution is less than 160 g / L or when the concentration of the organic polymer is less than 20 g / L, the fiber diameter of the inorganic fiber obtained without obtaining an appropriate viscosity of the spinning solution. Becomes thinner. That is, as a result of too much free water in the spinning solution, the drying speed during spinning by the blowing method is slow, the drawing progresses excessively, the fiber diameter of the spun precursor fiber changes, and at a predetermined average fiber diameter In addition, short fibers having a sharp fiber diameter distribution cannot be obtained. Moreover, when the aluminum concentration is less than 160 g / L, productivity is lowered. An organic polymer generally represents a thickener and does not include silicon compounds such as silicone compounds and alkoxysilanes.

一方、アルミニウムの濃度が210g/Lを超える場合又は有機重合体の濃度が50g/Lを超える場合は、何れも、粘度が高すぎて紡糸液にはならない。紡糸液中のアルミニウムの好ましい濃度は170〜200g/Lであり、有機重合体の好ましい濃度は20〜40g/Lである。   On the other hand, when the aluminum concentration exceeds 210 g / L or the organic polymer concentration exceeds 50 g / L, the viscosity is too high to be a spinning solution. The preferable concentration of aluminum in the spinning solution is 170 to 200 g / L, and the preferable concentration of the organic polymer is 20 to 40 g / L.

上記の紡糸液は、塩基性塩化アルミニウム水溶液に上記Al:SiO比となる量の硅素化合物と有機重合体を添加し、アルミニウム及び有機重合体の濃度が上記の範囲となるように濃縮することによって調製される。
[紡糸]
紡糸(紡糸液の繊維化)は、通常、高速の紡糸気流中に紡糸液を供給するブローイング法によって行われ、これにより、無機繊維前駆体が得られる。上記の紡糸の際に使用する紡糸ノズルの構造は、特に制限はないが、例えば、エアーノズルより吹き出される空気流と紡糸液供給ノズルより押し出される紡糸液流とは並行流となり、しかも、空気の並行流は充分に整流されて紡糸液と接触する構造のものが好ましい。具体的には、特許第2602460号公報に記載されている構造が挙げられる。
The above spinning solution is prepared by adding the silicon compound and the organic polymer in an amount corresponding to the Al 2 O 3 : SiO 2 ratio to the basic aluminum chloride aqueous solution so that the concentrations of the aluminum and the organic polymer are in the above range. Prepared by concentrating.
[spinning]
Spinning (spinning of the spinning solution) is usually performed by a blowing method in which the spinning solution is supplied into a high-speed spinning air stream, whereby an inorganic fiber precursor is obtained. The structure of the spinning nozzle used in the above spinning is not particularly limited. For example, the air flow blown out from the air nozzle and the spinning liquid flow pushed out from the spinning solution supply nozzle are parallel flows, and air It is preferable that the parallel flow be sufficiently rectified to come into contact with the spinning solution. Specifically, the structure described in Japanese Patent No. 2602460 is exemplified.

また、紡糸に際しては、先ず、水分の蒸発や紡糸液の分解が抑制された条件下において、紡糸液から充分に延伸された繊維が形成され、次いで、この繊維が速やかに乾燥されることが好ましい。そのためには、紡糸液から繊維が形成されて繊維捕集器に到達するまでの過程において、雰囲気を水分の蒸発を抑制する状態から水分の蒸発を促進する状態に変化させることが好ましい。   In spinning, it is preferable that a sufficiently stretched fiber is first formed from the spinning solution under conditions where evaporation of moisture and decomposition of the spinning solution are suppressed, and then the fiber is quickly dried. . For this purpose, it is preferable to change the atmosphere from a state in which the evaporation of moisture is promoted to a state in which the evaporation of moisture is promoted in the process from the formation of fibers from the spinning solution to the arrival of the fiber collector.

無機繊維前駆体の集合体は、紡糸気流に対して略直角となるように金網製の無端ベルトを設置し、無端ベルトを回転させつつ、これに無機系繊維前駆体を含む紡糸気流を衝突させる構造の集積装置により連続シート(薄層シート)として回収することができる。この薄層シートを積み重ねて、無機繊維前駆体の集合体を得ることができる。
[ニードリング処理工程]
紡糸により得られた無機系繊維前駆体の集合体は、次いでニードリング処理を施してもよい。ニードリング処理により、得られる無機繊維集合体を構成する無機繊維同士が絡んだ、強固な無機繊維集合体となるだけでなく、無機繊維集合体の厚みを調整することも可能となる。ニードル密度は適宜選択して決定すればよいが、中でも2〜200打/cm、更には2〜150打/cm、とりわけ2〜100打/cm、特に2〜50打/cmであることが好ましい。このニードル密度が低過ぎると、無機繊維成形体としての厚み均一性や耐熱衝撃性が低下する等の問題が生ずる恐れがある。逆に高過ぎても、繊維を傷め、焼成後に収縮し易くなる恐れや繊維が飛散しやすくなる恐れがある。
[焼成工程]
無機繊維前駆体の焼成は、必要に応じて乾燥処理を施した後、焼成される。焼成温度は、通常500℃以上、好ましくは700℃〜1400℃の温度で行う。500℃よりも低い場合は、結晶化や有機重合体の焼成除去が不十分なため、強度が低い脆弱な繊維しか得ることができない。焼成温度が1400℃を超えると、繊維中の結晶の粒子成長が進行して、強度の低い繊維しか得ることができない。
For the aggregate of inorganic fiber precursors, an endless belt made of wire mesh is installed so as to be substantially perpendicular to the spinning airflow, and the spinning airflow containing the inorganic fiber precursor collides with it while rotating the endless belt. It can be collected as a continuous sheet (thin layer sheet) by the stacking device of the structure. The thin layer sheets can be stacked to obtain an aggregate of inorganic fiber precursors.
[Needling process]
The aggregate of inorganic fiber precursors obtained by spinning may then be subjected to needling treatment. By the needling treatment, not only a strong inorganic fiber aggregate in which the inorganic fibers constituting the obtained inorganic fiber aggregate are entangled but also the thickness of the inorganic fiber aggregate can be adjusted. The needle density may be appropriately selected and determined. Among them, it is 2 to 200 strokes / cm 2 , more preferably 2 to 150 strokes / cm 2 , especially 2 to 100 strokes / cm 2 , especially 2 to 50 strokes / cm 2 . Preferably there is. If the needle density is too low, problems such as a decrease in thickness uniformity and thermal shock resistance as an inorganic fiber molded article may occur. On the other hand, if it is too high, the fiber may be damaged, and the fiber may be easily shrunk after firing or the fiber may be easily scattered.
[Baking process]
The inorganic fiber precursor is fired after being dried as necessary. The firing temperature is usually 500 ° C. or higher, preferably 700 ° C. to 1400 ° C. When the temperature is lower than 500 ° C., fragile fibers having low strength can be obtained because crystallization and firing removal of the organic polymer are insufficient. When the firing temperature exceeds 1400 ° C., crystal grain growth in the fibers proceeds, and only low-strength fibers can be obtained.

また、焼成中の雰囲気は、水蒸気を多く含んだ雰囲気にするほうが良い。水蒸気を焼成雰囲気に含ませることで、前駆体溶液中の塩化物を塩化水素として、効率良く除去することができる。また水蒸気を含んだ雰囲気にする好ましい温度は限定的であり、800℃以上が好ましく、800℃〜850℃が最も好ましい。800℃以下では、前駆体中でAl、Si原子等と強固に結合したClを除去することができず、850℃以上では、無機繊維中の細孔が閉気孔となるため、水蒸気を添加する効果が限定的になり、繊維内部の塩素原子を除去しにくくなる。   Further, the atmosphere during firing should be an atmosphere containing a lot of water vapor. By including water vapor in the firing atmosphere, the chloride in the precursor solution can be efficiently removed as hydrogen chloride. Moreover, the preferable temperature which makes it the atmosphere containing water vapor | steam is limited, 800 degreeC or more is preferable and 800 to 850 degreeC is the most preferable. At 800 ° C. or lower, Cl that is strongly bonded to Al, Si atoms, etc. in the precursor cannot be removed, and at 850 ° C. or higher, the pores in the inorganic fibers become closed pores, so water vapor is added. The effect is limited, and it becomes difficult to remove chlorine atoms inside the fiber.

たとえば、無機繊維もしくは、無機繊維集合体に酸化物前駆体含有液を含浸させた後に、乾燥及び/又は焼成させることで、無機繊維成型体としてもよい。この場合は、焼成後の酸化物添着量が含浸部無機繊維100質量部に対して2〜50質量部となるように調整することが望ましい。添着量が少ない場合は、所望の物性が得られない場合がある。逆に多すぎると、熱収縮率の悪化や耐熱衝撃性、耐機械衝撃性の低下が見られる場合がある。   For example, an inorganic fiber molded body may be obtained by impregnating an inorganic fiber or an inorganic fiber aggregate with an oxide precursor-containing liquid and then drying and / or firing. In this case, it is desirable to adjust so that the oxide adhesion amount after firing is 2 to 50 parts by mass with respect to 100 parts by mass of the impregnated inorganic fiber. When the amount of attachment is small, desired physical properties may not be obtained. On the other hand, if the amount is too large, deterioration of the thermal shrinkage rate, thermal shock resistance and mechanical shock resistance may be reduced.

この酸化物前駆体含有液の酸化物前駆体としては、焼成によりアルミナ、スピネル、ジルコニア、チタニア、カルシア及びマグネシアを生成する群から選ばれる1種又は2種以上を含むものが好ましく用いられる。またこれらは、水酸化物、塩化物、酢酸化物、乳酸化物、硝酸化物、ゾルを含む。   As the oxide precursor of the oxide precursor-containing liquid, those containing one or more selected from the group of producing alumina, spinel, zirconia, titania, calcia and magnesia by firing are preferably used. These also include hydroxides, chlorides, acetates, lactates, nitrates and sols.

特にカルシアやマグネシアの酸化物前駆体溶液を使用した場合は、無機繊維成形体の耐スケール性が向上し、チタニアの酸化物前駆体溶液を使用した場合は、無機繊維成形体の輻射率が向上する点で好ましい。   Especially when calcia or magnesia oxide precursor solution is used, the scale resistance of the inorganic fiber molded body is improved, and when titania oxide precursor solution is used, the emissivity of the inorganic fiber molded body is improved. This is preferable.

無機繊維もしくは、無機繊維集合体を解繊し、そこへ溶媒や各種バインダー等を添加してスラリー状にしてもよい。これらをスラリー状で使用しても良いし、脱水成形を施して、セラミックファーバーモジュールとしてもよい。   Inorganic fibers or inorganic fiber aggregates may be defibrated, and a solvent, various binders, or the like may be added thereto to form a slurry. These may be used in the form of a slurry, or may be dehydrated to form a ceramic fiber module.

無機繊維もしくは、無機繊維集合体に有機バインダーを含浸、もしくは添着させてもよい。また有機バインダーを用いることで、繊維の飛散を防ぐことができる。添着厚みや添着量を調整することで、厚み、可撓性、反発量等を調整することができる。   An inorganic binder or an inorganic fiber aggregate may be impregnated or attached with an organic binder. Moreover, scattering of a fiber can be prevented by using an organic binder. By adjusting the thickness and amount of attachment, the thickness, flexibility, amount of repulsion, and the like can be adjusted.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

なお、以下の実施例等において得られた無機繊維成形体の各種物性や特性の測定、評価方法は、以下の通りである。
[Cl濃度測定]
試料(無機繊維)10mgに燃焼装置(三菱化学株式会社製 AQF−2100N)を使用し酸素気流中で完全に燃焼し、発生したガスを2.7mM NaCO − 0.3mM NaHCO水溶液に吸収させ、分析装置(サーモフィッシャーサイエンティフィック株式会社製 DX−500)によりイオンクロマトグラフ分析を実施し、無機繊維中のCl残渣を測定した。
[単繊維 引張強度]
アルミナ/シリカ系繊維を、1mm各のダイヤモンド基板上に載せて、島津製作所製微小圧縮試験機 MCTM−500にて、直径50μmの平面圧子を用いて、破壊荷重を測定した。破壊荷重より引張強度を求め、5点の引張強度の平均値を算出して、繊維の引張強度とした。
[引張強度]=2×[破壊強度]/([円周率]×[繊維径]×[繊維長])
[YI値]
得られた無機繊維を以下の条件でYI値を測定した。YI値が2以下を合格とし、2より高い場合を不可とした。YI値は、得られた繊維を、すり鉢にて細かく粉砕した後、分光色分計(製品名:CM−700d コニカミノルタ製)にて、試験品の裏側に白色板を置き、JIS Z 8722に基づき試験品の、分光反射率および三刺激値 XYZxyを測定した。その後JIS K 7373に基づき試験品の黄色度 YI値を求めた。測定条件は、C光源、SCE(de:8°)、視野角2°とした。白色版単体の三刺激値は、X=83.26、Y=85.50、Z=97.87であった。
[繊維集合体 引張強度]
得られた無機繊維集合体を、25mm幅に切り取り、万能試験機にて、無機繊維集合体の両端を固定し、100mm/minのスピードで、破壊されるまで引っ張り、最大荷重を求め、3点の平均値を算出して、集合体の引張強度とした。
[繊維集合体 面圧]
得られた無機繊維集合体を、50mm角に切り取り、万能試験機にて1mm/minのスピードで所定の嵩密度になるまで圧縮した。嵩密度 0.2、0.3、0.4g/cmの部分の荷重を求め、試験片面積で割り、それぞれの嵩密度での面圧値とした。3点測定し、平均値を、集合体の面圧値とした。
[実施例1]
塩基性塩化アルミニウム(アルミニウム含有量70g/L、Al/Cl=1.8(原子比))水溶液に、水溶性シリコーンオイルを、最終的に得られるアルミナ繊維の組成がAl :SiO =95:5(質量比)となるように加え、更に、ポリビニルアルコールを加えた後、濃縮して、粘度40ポイズ、アルミナ・シリカ含量約30質量%の紡糸液を調製し、該紡糸液を用いてブローイング法で紡糸した。
これを集綿積層し、このマット状繊維集合体にニードル密度3打/cm 以上にてニードルパンチを実施しアルミナ/シリカ系繊維前駆体のマット状繊維集合体を得た。表1で示すように、電気炉にて、大気条件化で800℃まで60分かけて昇温し、その後、電気炉内へ流入する空気を水中に通過させることで、水蒸気を多く含んだ空気に切り替え、800℃で60分間保持し、アルミナ/シリカ系の繊維集合体を得た。
得られたアルミナ/シリカ系繊維中のAlとSiOの含有量は、表2で示すように、それぞれ95重量%と5重量%であった。得られた繊維集合体において、上記の測定項目の結果を表2に示す。
In addition, the measurement and evaluation method of various physical properties and characteristics of the inorganic fiber molded body obtained in the following examples and the like are as follows.
[Cl concentration measurement]
Using a combustor (AQF-2100N manufactured by Mitsubishi Chemical Corporation) on 10 mg of sample (inorganic fiber), the sample was completely burned in an oxygen stream, and the generated gas was converted to a 2.7 mM Na 2 CO 3 -0.3 mM NaHCO 3 aqueous solution. It was made to absorb and the ion chromatograph analysis was implemented with the analyzer (DX-500 by Thermo Fisher Scientific Co., Ltd.), and the Cl residue in an inorganic fiber was measured.
[Single fiber tensile strength]
Alumina / silica fiber was placed on each 1 mm diamond substrate, and the fracture load was measured using a flat indenter having a diameter of 50 μm with a micro compression tester MCTM-500 manufactured by Shimadzu Corporation. The tensile strength was calculated from the breaking load, and the average value of the five points of tensile strength was calculated to obtain the tensile strength of the fiber.
[Tensile strength] = 2 × [Fracture strength] / ([Circular ratio] × [Fiber diameter] × [Fiber length])
[YI value]
The YI value of the obtained inorganic fiber was measured under the following conditions. A YI value of 2 or less was accepted, and a case where the YI value was higher than 2 was regarded as impossible. The YI value was determined by finely crushing the obtained fiber in a mortar and then placing a white plate on the back side of the test product with a spectrocolorimeter (product name: CM-700d, manufactured by Konica Minolta). Based on this, the spectral reflectance and tristimulus value XYZxy of the test article were measured. Thereafter, the yellowness YI value of the test product was determined based on JIS K 7373. The measurement conditions were a C light source, SCE (de: 8 °), and a viewing angle of 2 °. The tristimulus values of the white plate alone were X = 83.26, Y = 85.50, and Z = 97.87.
[Fiber assembly tensile strength]
The obtained inorganic fiber aggregate is cut to a width of 25 mm, and both ends of the inorganic fiber aggregate are fixed with a universal testing machine, pulled at a speed of 100 mm / min until broken, and the maximum load is obtained. Was calculated as the aggregate tensile strength.
[Fiber assembly surface pressure]
The obtained inorganic fiber aggregate was cut into 50 mm squares and compressed with a universal testing machine at a speed of 1 mm / min until a predetermined bulk density was obtained. The load of the bulk density 0.2, 0.3, and 0.4 g / cm 3 part was calculated | required, it divided by the area of the test piece, and it was set as the surface pressure value in each bulk density. Three points were measured and the average value was defined as the contact pressure value of the aggregate.
[Example 1]
A water-soluble silicone oil is added to an aqueous solution of basic aluminum chloride (aluminum content 70 g / L, Al / Cl = 1.8 (atomic ratio)), and the composition of the alumina fiber finally obtained is Al 2 O 3 : SiO 2. = 95: 5 (mass ratio), and after adding polyvinyl alcohol, it is concentrated to prepare a spinning solution having a viscosity of 40 poise and an alumina / silica content of about 30% by mass. Used and spun by the blowing method.
This was collected and laminated, and this mat-like fiber assembly was subjected to needle punching at a needle density of 3 strokes / cm 2 or more to obtain an alumina / silica fiber precursor mat-like fiber assembly. As shown in Table 1, in an electric furnace, the temperature was increased to 800 ° C. over 60 minutes under atmospheric conditions, and then the air flowing into the electric furnace was allowed to pass through the water, so that the air contained a lot of water vapor. And kept at 800 ° C. for 60 minutes to obtain an alumina / silica fiber assembly.
As shown in Table 2, the contents of Al 2 O 3 and SiO 2 in the obtained alumina / silica fiber were 95% by weight and 5% by weight, respectively. In the obtained fiber assembly, the results of the above measurement items are shown in Table 2.

[実施例2及び比較例1−6]
実施例1と同様に得られた、アルミナ/シリカ系繊維前駆体のマット状繊維集合体を、表1で示す焼成条件で焼成し、アルミナ/シリカ系の無機繊維集合体を得た。得られた繊維集合体において、上記の測定項目の結果を表2に示す。
[Example 2 and Comparative Example 1-6]
The alumina / silica fiber precursor mat-like fiber aggregate obtained in the same manner as in Example 1 was fired under the firing conditions shown in Table 1 to obtain an alumina / silica inorganic fiber aggregate. In the obtained fiber assembly, the results of the above measurement items are shown in Table 2.

なお、比較例2〜4は昇温条件3の後は保持せずに室温に戻した。   In addition, Comparative Examples 2-4 returned to room temperature, without hold | maintaining after temperature rising condition 3. FIG.

Figure 0006405747
Figure 0006405747

Figure 0006405747
Figure 0006405747

Claims (2)

塩基性塩化アルミニウム及び珪素化合物を含有する紡糸液を紡糸して無機繊維前駆体を得た後に、該無機繊維前駆体を焼成することにより
Al 含有量が91〜99重量%及びSiO 含有量が1〜9重量%のアルミナ/シリカ系繊維にClを含む無機繊維であり、かつ該無機繊維中のClが2500ppm以下である無機繊維を製造する方法であって、
該珪素化合物が水溶性珪素化合物であり、
前記無機繊維前駆体を水蒸気を含んだ雰囲気中にて800℃以上で焼成することを特徴とする無機繊維の製造方法。
After spinning a spinning solution containing basic aluminum chloride and a silicon compound to obtain an inorganic fiber precursor, the inorganic fiber precursor is fired ,
It is an inorganic fiber containing Cl in an alumina / silica fiber having an Al 2 O 3 content of 91 to 99% by weight and an SiO 2 content of 1 to 9% by weight, and the Cl in the inorganic fiber is 2500 ppm or less. A method for producing inorganic fibers comprising:
該珪containing compound Ri-soluble silicon compound der,
Method of producing an inorganic fiber you and firing in the inorganic fiber precursor in an atmosphere containing steam 800 ° C. or higher.
前記水溶性珪素化合物が水溶性シリコーンオイルである、請求項に記載の無機繊維の製造方法。 The water-soluble silicon compound is water-soluble silicone oil, method of producing an inorganic fiber according to claim 1.
JP2014133973A 2014-06-30 2014-06-30 Inorganic fiber manufacturing method Active JP6405747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133973A JP6405747B2 (en) 2014-06-30 2014-06-30 Inorganic fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133973A JP6405747B2 (en) 2014-06-30 2014-06-30 Inorganic fiber manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018139358A Division JP6669205B2 (en) 2018-07-25 2018-07-25 High alumina composition inorganic fiber, inorganic fiber aggregate and inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JP2016011479A JP2016011479A (en) 2016-01-21
JP6405747B2 true JP6405747B2 (en) 2018-10-17

Family

ID=55228378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133973A Active JP6405747B2 (en) 2014-06-30 2014-06-30 Inorganic fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP6405747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943244B2 (en) * 2016-07-11 2021-09-29 三菱ケミカル株式会社 Alumina fiber aggregate and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445331A (en) * 1972-08-07 1976-08-11 Ici Ltd Liquid composition comprising metal and organic silicon compounds
JPS6183374A (en) * 1984-09-25 1986-04-26 東レ株式会社 Acrylic precursor fiber bundle
EP0206634A3 (en) * 1985-06-21 1987-08-19 Imperial Chemical Industries Plc Inorganic oxide fibres and their production
JPS62141122A (en) * 1985-12-13 1987-06-24 Toray Ind Inc Production of alumina yarn
JPS62184120A (en) * 1986-02-07 1987-08-12 Toray Ind Inc Production of high-strength polycrystalline alumina fiber
JPH0482961A (en) * 1990-07-26 1992-03-16 Miyoshi Oil & Fat Co Ltd Treating agent for producing nonwoven fabric
JP3228444B2 (en) * 1993-02-16 2001-11-12 電気化学工業株式会社 Method for suppressing dust generation of alumina fiber molded body and inorganic fiber molded body
TW591147B (en) * 2001-07-23 2004-06-11 Mitsubishi Kagaku Sanshi Corp Alumina fiber aggregate and its production method
JP4535101B2 (en) * 2001-07-23 2010-09-01 三菱樹脂株式会社 Alumina fiber assembly

Also Published As

Publication number Publication date
JP2016011479A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
EP2754647B1 (en) Molded inorganic-fiber object and process for producing same
JP6943244B2 (en) Alumina fiber aggregate and its manufacturing method
JP5983838B2 (en) Light-weight inorganic fiber molded body and manufacturing method thereof
EP2754747B1 (en) Molded inorganic-fiber object
JP6249956B2 (en) Alumina fiber assembly, its production method and use
JP5458915B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with the fiber bundle
JPWO2014115814A1 (en) Alumina fiber and alumina fiber aggregate
US11345641B2 (en) Alumina fibers, alumina fiber aggregate, and retaining material for use in exhaust gas purification device
JP6870788B1 (en) Inorganic fiber molded products, mats for exhaust gas purification equipment and exhaust gas purification equipment
JP2003183979A (en) Boron nitride-coated silicon carbide ceramic fiber, method for producing the same and ceramic composite material reinforced with the fiber
JP6669205B2 (en) High alumina composition inorganic fiber, inorganic fiber aggregate and inorganic fiber molded body
EP0305024A2 (en) Oxidation resistant alumina-silica articles containing silicon carbide and carbon
JP6405747B2 (en) Inorganic fiber manufacturing method
JPWO2013114808A1 (en) Inorganic fiber and method for producing the same
US20130029127A1 (en) Inorganic fiber for fiber bundles, process for producing the same, inorganic fiber bundle for composite material comprising the inorganic fiber for fiber bundles, and ceramic-based composite material reinforced with the fiber bundle
JP7006349B2 (en) Alumina fiber, alumina fiber aggregate and its manufacturing method
CN114477983A (en) Thermal insulation
JP7258458B2 (en) Alumina fiber, alumina fiber assembly and gripping material for exhaust gas purifier
JP5370084B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with this fiber bundle
RU2358954C1 (en) Method of producing fibered ceramic material
JP7245656B2 (en) Alumina fiber and gripping material for automotive exhaust gas purification equipment
Ishikawa et al. Defect Control of SiC Polycrystalline Fiber Aiming for Higher Strength
JP2002255663A (en) Sintering method for silicon carbide fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6405747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250