JP6405550B2 - Ground injection material and ground injection method using the same - Google Patents

Ground injection material and ground injection method using the same Download PDF

Info

Publication number
JP6405550B2
JP6405550B2 JP2015150770A JP2015150770A JP6405550B2 JP 6405550 B2 JP6405550 B2 JP 6405550B2 JP 2015150770 A JP2015150770 A JP 2015150770A JP 2015150770 A JP2015150770 A JP 2015150770A JP 6405550 B2 JP6405550 B2 JP 6405550B2
Authority
JP
Japan
Prior art keywords
ground
injection material
ground injection
aluminosilicate
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150770A
Other languages
Japanese (ja)
Other versions
JP2017031279A (en
Inventor
鉄次 金高
鉄次 金高
靖治 利田
靖治 利田
和成 岡田
和成 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toso Sangyo Co Ltd
Original Assignee
Toso Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toso Sangyo Co Ltd filed Critical Toso Sangyo Co Ltd
Priority to JP2015150770A priority Critical patent/JP6405550B2/en
Publication of JP2017031279A publication Critical patent/JP2017031279A/en
Application granted granted Critical
Publication of JP6405550B2 publication Critical patent/JP6405550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、地盤注入材、及び、この地盤注入材を利用した地盤注入工法に関するものである。   The present invention relates to a ground injection material and a ground injection method using the ground injection material.

一般的に、止水や地盤強化を目的とする地盤注入工法では、水ガラス系溶液型の地盤注入材が用いられており、地盤の砂粒子の間隙にゲルを充填することによって、透水性を低下させて止水効果を得ると共に、ゲル強度により地盤の粘着力及びせん断強さを増加させている。しかしながら、シリカ溶脱量が大きく、更に、シロキサン結合に伴う収縮が25%以上と大きいため、長期耐久性は期待できない。
一方、液状化対策を目的とする地盤注入工法では、コロイダルシリカ、珪酸ソーダ及び酸を混合してなる溶液型の地盤注入材が用いられており、砂粒子の間隙にゲルを充填することによって、間隙水圧の上昇を抑えて液状化を防ぐものである。このようなコロイダルシリカ、珪酸ソーダ及び酸を混合して得られる特殊シリカ系注入材は、シリカ溶脱量が少なく、更にシロキサン結合(重合)に伴うゲルの収縮量が8%程度と小さいことから、長期耐久性があると考えられ、液状化対策に用いられている(例えば、特許文献1参照)。
In general, in the ground injection method for the purpose of water stoppage and ground strengthening, a water glass-based solution-type ground injection material is used, and by filling the gap between the sand particles of the ground, water permeability is improved. While lowering to obtain a water-stopping effect, the adhesive strength and shear strength of the ground are increased by gel strength. However, since the silica leaching amount is large and the shrinkage associated with the siloxane bond is as large as 25% or more, long-term durability cannot be expected.
On the other hand, in the ground injection method for the purpose of liquefaction countermeasures, a solution type ground injection material formed by mixing colloidal silica, sodium silicate and acid is used, and by filling the gap between sand particles with gel, It suppresses the increase in pore water pressure and prevents liquefaction. Since the special silica-based injection material obtained by mixing such colloidal silica, sodium silicate and acid has a small amount of silica leaching, and further, the amount of gel shrinkage accompanying siloxane bonding (polymerization) is as small as about 8%. It is considered to have long-term durability and is used for liquefaction countermeasures (see, for example, Patent Document 1).

又、地盤強化や液状化対策を目的とする地盤注入工法において、改良対象地盤が礫質地盤や礫混じり砂地盤である場合、地盤注入材には、超微粒子セメント、スラグ微粉末、極超微粒子セメント、球状シリカ、ホワイトカーボン等を主材とした、比較的浸透性が良いとされる懸濁液型注入材が用いられている。超微粒子セメント及びスラグ微粉末を主材とする注入材は、粒子の平均粒径が4〜6μm程度、95%粒径G95が10μm程度であり、地盤の10%粒径D10とG95との比(グラウタビリティー比)D10/G95≧8が浸透可能な範囲とする既往の研究によると、細粒分含有率FC=10%程度のシルト混じり砂地盤が浸透限界である。極超微粒子セメントを主材とする注入材は、粒子の平均粒径が1.5μm程度、95%粒径G95が3μm程度であり、FC=20〜30%程度のシルト質砂地盤が浸透限界である。 In addition, in the ground injection method for the purpose of ground strengthening and liquefaction countermeasures, when the ground to be improved is gravelly ground or sandy ground mixed with gravel, the ground injecting material includes ultrafine cement, slag fine powder, and ultrafine particles. Suspension-type injection materials, which are mainly made of cement, spherical silica, white carbon and the like and have relatively good permeability, are used. The injection material mainly composed of ultrafine cement and slag fine powder has an average particle size of about 4 to 6 μm, a 95% particle size G 95 of about 10 μm, and a 10% particle size D 10 and G 95 of the ground. According to the previous research that the ratio of 10 to G 95 ≧ 8 is the permeable range, the sand mixed with silt with fine grain content F C = 10% is the permeation limit. . The injection material mainly composed of ultra-fine particle cement has an average particle size of about 1.5 μm, a 95% particle size G 95 of about 3 μm, and a silty sand ground with F C = 20 to 30%. Permeation limit.

一方、特許文献2に記載の注入材は、平均粒径1.0μm以下である超微粒子シリカ、カルシウム化合物、分散剤を混合して得られる注入材であり、超微粒子シリカの平均粒径が、超音波分散処理を行うことなく、レーザー回折式粒度分布計による測定値で1.0μm以下であるため、極超微粒子セメント注入材と同程度の浸透性を持つものである。又、例えば特許文献3に記載の注入材は、ホワイトカーボン、シリカ溶液及び酸性反応剤を混合して得られる注入材であり、粒径の粗い砂地盤への浸透性が良く、改良後地盤の密度を増加させることによって液状化し難い地盤を形成するものである。   On the other hand, the injection material described in Patent Document 2 is an injection material obtained by mixing ultrafine silica having a mean particle size of 1.0 μm or less, a calcium compound, and a dispersant. Since it is 1.0 μm or less as measured by a laser diffraction particle size distribution meter without performing ultrasonic dispersion treatment, it has a permeability comparable to that of an ultra-fine particle cement injection material. Further, for example, the injection material described in Patent Document 3 is an injection material obtained by mixing white carbon, a silica solution and an acidic reactant, and has good permeability to sandy ground having a large particle size. By increasing the density, a ground that is difficult to liquefy is formed.

特許第5640198号公報Japanese Patent No. 5640198 特開2011−26572号公報JP 2011-26572 A 特許第5531234号公報Japanese Patent No. 553234

しかしながら、上述した特殊シリカ系注入材は、地盤の間隙率が大きいと、ゲルの収縮量が小さくても大きな水みちが生じることになり、止水目的には用いることができない。更に、礫質地盤や礫混じり地盤においては、ホモゲル強度が低いことから注入固結地盤の剛性の増加は見込めず、地震時においては大きな変形量が生じることになる。
又、上述した懸濁液型注入材は、砂粒子の接点に懸濁粒子が付着して強固な骨格を形成することで高いせん断剛性が得られるが、既往の研究によれば、地盤の砂粒子の間隙内で懸濁粒子が沈降して間隙に残留することにより、改良後地盤の透水係数が、溶液型による改良後地盤と比較して10倍以上となるため、止水性能は溶液型に大きく劣ってしまう。更に、ホワイトカーボンを主剤とした注入材は、ホワイトカーボンの一次粒子径が55〜5nmであるが凝集粒子径が10μm以上となり、細粒土地盤においてはフィルトレーションが生じて浸透しないため、適用地盤は粗粒土地盤に限定されてしまう。又、ホワイトカーボンは多孔質で軽く硬化性が無いため、ホモゲル強度が低いことから改良後地盤のせん断剛性は水ガラス系溶液型と同等であり、すなわち、ホワイトカーボンを主剤とした注入材による改良土は、地震時には変形量が大きくなることが予測される。
一方で、水ガラス系溶液型や特殊シリカ系などの珪酸ソーダを混合してなる地盤注入材による注入固結地盤の強度は、地盤注入材中のSiO濃度の増加に対応して大きくなることから、SiO濃度を12wt%/vol以上に増やして高強度を得られる地盤注入材が開発されている。
しかしながら、SiO濃度が12wt%/vol以上の地盤注入材は、ゲル化に必要な酸性反応剤の添加量が増加し、例えば、酸性反応剤が硫酸の場合はゲル化物から硫酸イオンが溶出してコンクリートを腐食させる懸念が高まり、有機酸の場合は法令に定める水質基準に適合しないリスクが増すため、採用に当たっては入念な事前調査・検討が必要となることから、工期遅延や工事費増大が課題となる。
However, if the above-mentioned special silica-based injection material has a large porosity of the ground, a large water channel is generated even if the amount of gel shrinkage is small, and it cannot be used for water stop purposes. Furthermore, in the gravel ground and the ground mixed with gravel, since the homogel strength is low, the increase in the rigidity of the injected consolidated ground cannot be expected, and a large amount of deformation occurs during an earthquake.
In addition, the suspension-type injection material described above has a high shear rigidity because the suspended particles adhere to the contact points of the sand particles to form a strong skeleton. According to previous research, Since suspended particles settle in the gaps of the particles and remain in the gaps, the water permeability of the improved ground is more than 10 times that of the ground after the improvement by the solution type. It will be greatly inferior. Furthermore, the injection material based on white carbon has a primary particle diameter of white carbon of 55 to 5 nm, but the aggregated particle diameter is 10 μm or more, and filtration is generated in fine-grained ground. The ground is limited to coarse-grained ground. Also, white carbon is porous and light and not hardened, so the homogel strength is low, so the shear rigidity of the ground after improvement is equivalent to that of the water glass solution type, that is, the improvement by the injection material mainly containing white carbon It is predicted that the amount of deformation of soil will increase during an earthquake.
On the other hand, the strength of the injection-solidified ground by the ground injection material mixed with water glass-based solution type or special silica-based sodium silicate should increase corresponding to the increase of SiO 2 concentration in the ground injection material Therefore, a ground injection material that can increase the SiO 2 concentration to 12 wt% / vol or more to obtain high strength has been developed.
However, the ground injection material having a SiO 2 concentration of 12 wt% / vol or more increases the amount of the acidic reactant necessary for gelation. For example, when the acidic reactant is sulfuric acid, sulfate ions are eluted from the gelled product. Concerns about corroding concrete increase, and in the case of organic acids, there is an increased risk of not complying with the water quality standards stipulated in the law. It becomes a problem.

本発明は上記課題に鑑みてなされたものであり、その目的とするところは、粗粒土から細粒土までのあらゆる粒度組成の地盤を改良し、改良後地盤の止水性及びせん断剛性を高めることにある。   This invention is made | formed in view of the said subject, The place made into the objective improves the ground of all the particle size compositions from coarse-grained soil to fine-grained soil, and raises the water stop and shear rigidity of a ground after improvement. There is.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)アルミノ珪酸塩微粒子からなる粘土鉱物と、アルカリ性シリカ分散液と、酸性反応剤とにより構成された、非アルカリ性アルミノ珪酸塩微粒子懸濁液である地盤注入材。 (1) A ground injection material which is a non-alkaline aluminosilicate fine particle suspension composed of a clay mineral composed of aluminosilicate fine particles, an alkaline silica dispersion, and an acidic reactant .

本項に記載の地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物と、アルカリ性シリカ分散液と、酸性反応剤とにより構成された、非アルカリ性アルミノ珪酸塩微粒子懸濁液である。本地盤注入材では、まず初めに、本地盤注入材に含まれるアルカリ性シリカ分散液と酸性反応剤とが反応することで、アルカリ性シリカ分散液のSi−O−A(Aはアルカリ金属)がSi−O−Hになり、Si−O−Siのシロキサン結合を含むシリカゾルを形成する。ここで、アルミノ珪酸塩微粒子からなる粘土鉱物を含まないシリカゾルの場合、反応が進むにつれ、末端のSi−O−H同士が脱水縮合反応をするため、材料収縮により長期的安定性に欠ける。しかしながら、本項に記載の地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいるため、粘土鉱物からアルミ成分が徐々に溶け出し、シリカゾルの末端にあるSi−O−Hと反応してSi−O−Alとなることで、シリカゾルの結合が強固になり安定化する。従って、本地盤注入材が地盤に注入されると、上記のような反応によって地盤の間隙が強固に固結されるため、地盤のせん断剛性及び止水性が高められるものである。更に、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいない場合と比較して、材料の収縮が低減され、長期に渡って止水性及び固結強度が維持される。   The ground injection material described in this section is a non-alkaline aluminosilicate fine particle suspension composed of a clay mineral made of aluminosilicate fine particles, an alkaline silica dispersion, and an acidic reactant. In the ground injection material, first, the alkaline silica dispersion contained in the ground injection material reacts with the acidic reactant, so that Si—O—A (A is an alkali metal) of the alkaline silica dispersion is changed to Si. It becomes —O—H and forms a silica sol containing Si—O—Si siloxane bonds. Here, in the case of a silica sol composed of aluminosilicate fine particles and not containing a clay mineral, the terminal Si—O—H undergoes a dehydration condensation reaction as the reaction proceeds, so that long-term stability is lacking due to material shrinkage. However, since the ground injection material described in this section contains a clay mineral composed of aluminosilicate fine particles, the aluminum component gradually dissolves from the clay mineral and reacts with Si—O—H at the end of the silica sol. By becoming Si—O—Al, the silica sol bond becomes strong and stabilized. Therefore, when the ground injecting material is injected into the ground, the ground gap is firmly consolidated by the reaction as described above, so that the shear rigidity and water stoppage of the ground are improved. Furthermore, compared with the case where the clay mineral which consists of an aluminosilicate fine particle is not included, shrinkage | contraction of material is reduced and water-stopping and consolidation strength are maintained over a long period of time.

又、本項に記載の地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいることで、地盤に注入されると粘土鉱物が地盤に浸透する。これにより、地盤の細粒分のうち、特に粘土分が増加されることとなるため、地盤の10%粒径D10が低下する。この10%粒径D10の低下により、例えば、従来から透水係数の推定に用いられるHazenの式に基づくと、地盤の透水係数が低下することとなるため、上述したシリカゾルの結合による止水性の向上と相まって、地盤の止水性が更に向上するものである。 Moreover, since the ground injection material described in this section contains clay minerals made of aluminosilicate fine particles, the clay mineral penetrates into the ground when injected into the ground. Thus, among the fine fraction of the ground, particularly because so that the clay content is increased, it decreased 10% particle diameter D 10 of the ground. This reduction in 10% particle diameter D 10, for example, based on the expression of Hazen used to estimate the permeability conventionally, since the permeability of the ground is possible to decrease, the water cut by binding the silica sol described above Combined with the improvement, the water stoppage of the ground is further improved.

(2)上記(1)項において、前記アルミノ珪酸塩微粒子が、カオリナイト、ベントナイト、モンモリロナイト、イライト、及び、ゼオライトから、1種又は2種以上選ばれる地盤注入材。
本項に記載の地盤注入材は、アルミノ珪酸塩微粒子として、カオリナイト、ベントナイト、モンモリロナイト、イライト、及び、ゼオライトのうち、1種又は2種以上を含むものである。すなわち、工業的な入手の容易性や、地盤への浸透性等を考慮して、適切なアルミノ珪酸塩微粒子が選択されるものである。
(3)上記(1)項において、前記アルミノ珪酸塩微粒子が、カオリナイトであり、前記アルミノ珪酸塩微粒子が前記アルカリ性シリカ分散液で分散された溶液と、前記酸性反応剤とが混合されたものである地盤注入材(請求項1)。
本項に記載の地盤注入材は、工業的な入手の容易性と、砂質地盤への浸透性とが考慮され、アルミノ珪酸塩微粒子としてカオリナイトが用いられたものである。更に、アルミノ珪酸塩微粒子がアルカリ性シリカ分散液で分散された溶液と、酸性反応剤とが混合されることで、アルカリ性シリカ分散液中にアルミノ珪酸塩微粒子が均一に分散された状態で、酸性反応剤との混合が行われることになる。これにより、地盤注入材中においても、アルミノ珪酸塩微粒子の分散の均一化を図るものである。
(2) In the above item (1), the aluminosilicate fine particles are selected from one or more of kaolinite, bentonite, montmorillonite, illite, and zeolite .
The ground injecting material described in this section contains one or more of kaolinite, bentonite, montmorillonite, illite, and zeolite as aluminosilicate fine particles. That is, appropriate aluminosilicate fine particles are selected in consideration of industrial availability and permeability to the ground.
(3) In the above item (1), the aluminosilicate fine particles are kaolinite, and a solution in which the aluminosilicate fine particles are dispersed in the alkaline silica dispersion and the acidic reactant are mixed. A ground injection material (claim 1).
The ground injection material described in this section is one in which kaolinite is used as aluminosilicate fine particles in consideration of industrial availability and permeability to sandy ground. Furthermore, by mixing the solution in which the aluminosilicate fine particles are dispersed with the alkaline silica dispersion and the acidic reactant, the acidic reaction is performed in a state where the aluminosilicate fine particles are uniformly dispersed in the alkaline silica dispersion. Mixing with the agent will be performed. Thereby, even in the ground injection material, the dispersion of the aluminosilicate fine particles is made uniform.

)上記()項において、前記アルカリ性シリカ分散液及び前記酸性反応剤との混合状態における、前記アルミノ珪酸塩微粒子の90%粒子径が、レーザー回析・散乱法による測定値で、25μm以下である地盤注入材(請求項)。
本項に記載の地盤注入材は、アルカリ性シリカ分散液及び酸性反応剤との混合状態における、アルミノ珪酸塩微粒子の90%粒子径を、レーザー回析・散乱法による測定値で、25μm以下としたものである。すなわち、アルミノ珪酸塩微粒子は、アルカリ性シリカ分散液及び酸性反応剤と混合されると、膨潤して粒子径が増大するが、この膨潤状態におけるアルミノ珪酸塩微粒子の90%粒子径を25μm以下とすることで、地盤への浸透性を高めるものである。これにより、特に細粒土に対しても注入材粒子のフィルトレーションを生じることなく、粗粒土から細粒土までのあらゆる粒土組成の地盤を、均質に改良するものである。
( 4 ) In the above item ( 3 ), the 90% particle diameter of the aluminosilicate fine particles in the mixed state of the alkaline silica dispersion and the acidic reactant is 25 μm as measured by a laser diffraction / scattering method. The ground injection material which is the following (Claim 2 ).
In the ground injection material described in this section, the 90% particle diameter of the aluminosilicate fine particles in a mixed state with the alkaline silica dispersion and the acidic reactant is 25 μm or less as measured by the laser diffraction / scattering method. Is. That is, when the aluminosilicate fine particles are mixed with the alkaline silica dispersion and the acidic reactant, the particle diameter increases by swelling, and the 90% particle diameter of the aluminosilicate fine particles in this swollen state is 25 μm or less. In this way, it increases the permeability to the ground. As a result, the ground of any grain soil composition from coarse grained soil to fine grained soil is homogeneously improved without causing the filtration of the injection material particles even with respect to the fine grained soil.

)上記()項において、前記アルミノ珪酸塩微粒子の前記90%粒子径が、レーザー回析・散乱法による測定値で、15μm以下である地盤注入材。
本項に記載の地盤注入材は、アルカリ性シリカ分散液及び酸性反応剤との混合状態における、アルミノ珪酸塩微粒子の90%粒子径を15μm以下とすることで、地盤への浸透性を更に高めるものである。
( 5 ) The ground injection material according to ( 4 ), wherein the 90% particle diameter of the aluminosilicate fine particles is 15 μm or less as measured by a laser diffraction / scattering method.
The ground injection material described in this section further enhances the permeability to the ground by setting the 90% particle diameter of the aluminosilicate fine particles in a mixed state with an alkaline silica dispersion and an acidic reactant to 15 μm or less. It is.

)上記()から()項において、Aをアルカリ金属、nをモル数として、前記アルカリ性シリカ分散液をAO・nSiOで表したとき、該アルカリ性シリカ分散液のモル比SiO/AOが、1〜4である地盤注入材(請求項)。
本項に記載の地盤注入材は、水溶液としての安定性を考慮して、アルカリ性シリカ分散液のモル比SiO/AOを1〜4とするものである。
( 6 ) In the above items ( 3 ) to ( 5 ), when A is an alkali metal, n is the number of moles, and the alkaline silica dispersion is represented by A 2 O · nSiO 2 , the molar ratio of the alkaline silica dispersion soil injection material SiO 2 / a 2 O is 1-4 (claim 3).
The ground injection material described in this section takes the molar ratio SiO 2 / A 2 O of the alkaline silica dispersion from 1 to 4 in consideration of the stability as an aqueous solution.

)上記()項において、前記アルカリ性シリカ分散液のモル比SiO/AOが、3〜4である地盤注入材。
本項に記載の地盤注入材は、アルカリ性シリカ分散液のモル比SiO/AOを3〜4とすることで、酸性反応剤の使用量を抑制するものである。
(7) (6) above in the section, the molar ratio SiO 2 / A 2 O in the alkaline silica dispersions, soil injection material is 3-4.
The ground injection material described in this section suppresses the usage amount of the acidic reactant by setting the molar ratio SiO 2 / A 2 O of the alkaline silica dispersion to 3 to 4.

)上記()項において、前記アルカリ性シリカ分散液のモル比SiO/AOが、3〜3.8である地盤注入材。
本項に記載の地盤注入材は、アルカリ性シリカ分散液のモル比SiO/AOを3〜3.8とすることで、アルカリ性シリカ分散液の粘性を抑制し、当該地盤注入材の製造時等の作業性を高めるものである。
(8) In the above (7) section, the molar ratio SiO 2 / A 2 O in the alkaline silica dispersions, soil injection material is from 3 to 3.8.
The ground injection material described in this section suppresses the viscosity of the alkaline silica dispersion by setting the molar ratio SiO 2 / A 2 O of the alkaline silica dispersion to 3 to 3.8, and manufacture of the ground injection material It improves workability such as time.

)上記()から()項において、pHが非アルカリ領域である地盤注入材(請求項)。
本項に記載の地盤注入材は、pHが非アルカリ領域であることで、シリカゾル構造を破壊して改良地盤を劣化させる要因となるアルカリイオンが除去されているため、改良地盤の長期安定性が確保されることとなる。
(9) described above in (3) (8) section, soil injection material p H is non-alkaline region (claim 4).
Soil injection material according to the above, that p H is a non-alkaline region, because the alkali ions of a factor to deteriorate the ground improved by destroying the silica sol structure is removed, long-term stability of the improved ground Will be secured.

10)上記()から()項において、当該地盤注入材400ミリリットル当たりの前記アルミノ珪酸塩が1.5〜160gであり、当該地盤注入材中のSiO濃度が1〜12wt%/volであり、当該地盤注入材のpHが1〜8である地盤注入材(請求項)。
本項に記載の地盤注入材は、当該地盤注入材400ミリリットル当たりのアルミノ珪酸塩が1.5〜160gである。すなわち、地盤注入材400ミリリットル当たりのアルミノ珪酸塩が1.5gより少ないと、アルミ濃度が不十分であるため材料収縮を抑制することができず、アルミノ珪酸塩が160gより多いと、砂地盤への浸透性が確保できない。このため、これらの範囲を除外して、アルミノ珪酸塩の分量が設定されたものである。更に、当該地盤注入材中のSiO濃度が1〜12wt%/volであることで、地盤注入材の粘性を抑えて浸透性を確保しながら、改良地盤の必要強度を保つものである。なお、本項に記載の地盤注入材は、上述した成分の分量の都合上、pHが1〜8のものを含んでいる。
( 10 ) In the above ( 3 ) to ( 8 ), the aluminosilicate per 400 ml of the ground injection material is 1.5 to 160 g, and the SiO 2 concentration in the ground injection material is 1 to 12 wt% / The ground injection material which is vol and the pH of the said ground injection material is 1-8 (Claim 5 ).
The ground injecting material described in this section is 1.5 to 160 g of aluminosilicate per 400 ml of the ground injecting material. That is, if the amount of aluminosilicate per 400 ml of ground injection material is less than 1.5 g, the material shrinkage cannot be suppressed because the aluminum concentration is insufficient, and if the amount of aluminosilicate is more than 160 g, the sand ground Cannot be ensured. For this reason, the amount of aluminosilicate is set excluding these ranges. Further, since SiO 2 concentration of the soil injection material in is 1~12wt% / vol, while ensuring the permeability by suppressing the viscosity of the ground grout, is intended to maintain the necessary strength of the improved ground. In addition, the ground injecting material described in this section includes those having a pH of 1 to 8 for the convenience of the amount of the components described above.

11)上記(10)項において、当該地盤注入材400ミリリットル当たりの前記アルミノ珪酸塩が3〜100gである地盤注入材。
本項に記載の地盤注入材は、当該地盤注入材400ミリリットル当たりのアルミノ珪酸塩が3〜100gであることで、細粒分を含む砂地盤への浸透性を確保しながら、シリカゾルの結合を十分に強化するものである。
( 11 ) In the above item ( 10 ), the ground injection material in which the aluminosilicate per 400 ml of the ground injection material is 3 to 100 g.
The ground injecting material described in this section is 3 to 100 g of aluminosilicate per 400 ml of the ground injecting material, so that the silica sol can be bonded while ensuring the permeability to the sand ground containing fine particles. It will be fully strengthened.

12)上記(11)項において、当該地盤注入材400ミリリットル当たりの前記アルミノ珪酸塩が6〜60gである地盤注入材。
本項に記載の地盤注入材は、当該地盤注入材400ミリリットル当たりのアルミノ珪酸塩が6〜60gであることで、シルトを含む地盤への浸透性を確保しながら、改良地盤のせん断剛性を十分に高めるものである。
( 12 ) The ground injection material in which the aluminosilicate per 400 ml of the ground injection material is 6 to 60 g in the item ( 11 ).
The ground injection material described in this section is 6-60 g of aluminosilicate per 400 ml of the ground injection material, so that the shear rigidity of the improved ground is sufficient while ensuring permeability to the ground containing silt. It is something that enhances.

13)上記()〜(12)項の地盤注入材を地盤に注入し、改良地盤を形成することを特徴とする地盤注入工法(請求項)。
本項に記載の地盤注入工法は、上述したような地盤注入材を用いて地盤を改良することで、改良地盤の止水性とせん断剛性との双方を、より確実に高めるものである。
( 13 ) A ground injecting method characterized in that the ground injecting material of the above ( 3 ) to ( 12 ) is injected into the ground to form an improved ground (claim 6 ).
The ground injection method described in this section improves both the waterstop and shear rigidity of the improved ground more reliably by improving the ground using the ground injection material as described above.

14)上記(13)項において、前記改良地盤の透水係数を1×10−4cm/sec以下にする地盤注入工法(請求項)。
本項に記載の地盤注入工法は、改良地盤の透水係数が、止水性を評価する上での1つの目標値とされている1×10−4cm/sec以下になるように、改良対象地盤を改良することで、例えば、地震が発生した場合でも止水性が維持されるような、必要十分な止水性を確保するものである。
( 14 ) In the above ( 13 ), a ground injection method for making the water permeability of the improved ground 1 × 10 −4 cm / sec or less (claim 7 ).
In the ground injection method described in this section, the improvement target ground is such that the water permeability coefficient of the improved ground is 1 × 10 −4 cm / sec or less, which is one target value for evaluating the water stoppage. By improving the above, for example, a necessary and sufficient water-stopping property is ensured such that the water-stopping property is maintained even when an earthquake occurs.

15)上記(13)(14)項において、前記改良地盤のせん断剛性を、改良前の地盤の1.1倍以上に高める地盤注入工法(請求項)。
本項に記載の地盤注入工法は、改良地盤のせん断剛性が、改良前の地盤の1.1倍以上に高められるように、改良対象地盤を改良するものである。これにより、例えば、地震が発生した場合でも地盤の変形量が抑制されるような、必要十分なせん断剛性を確保するものである。
( 15 ) In the above ( 13 ) and ( 14 ) items, the ground injection method for increasing the shear rigidity of the improved ground to 1.1 times or more of the ground before the improvement (claim 8 ).
The ground injection method described in this section improves the ground to be improved so that the shear rigidity of the improved ground is increased to 1.1 times or more of the ground before the improvement. Thus, for example, necessary and sufficient shear rigidity is ensured so that the deformation amount of the ground is suppressed even when an earthquake occurs.

本発明は上記のような構成であるため、粗粒土から細粒土までのあらゆる粒度組成の地盤を改良し、改良後地盤の止水性及びせん断剛性を高めることが可能となる。   Since this invention is the above structures, it becomes possible to improve the ground of all the particle size compositions from coarse-grained soil to fine-grained soil, and to improve the water-stopping property and shear rigidity of the ground after the improvement.

本発明の実施の形態に係る地盤注入材により2種の試料を改良して形成した、各改良土の特性を示す図表である。It is a graph which shows the characteristic of each improvement soil formed by improving two types of samples with the ground injection material which concerns on embodiment of this invention. 図1で透水係数が1×10−4cm/sec以下を示した条件の改良土の、改良前後の粒径加積曲線のうち代表例を示したグラフであり、(a)は試料が珪砂6号のもの、(b)は試料が珪砂7号のものである。It is the graph which showed the representative example among the grain size accumulation curves before and behind improvement of the improved soil of the conditions which showed the water permeability coefficient below 1 * 10 < -4 > cm / sec in FIG. Sample No. 6 and (b) are samples of silica sand No. 7. 本発明の実施の形態に係る地盤注入材を試料に注入して形成した改良土の、繰り返し三軸試験の結果を示す図表である。It is a graph which shows the result of the repeated triaxial test of the improved soil formed by inject | pouring the ground injection material which concerns on embodiment of this invention into a sample. 図3に示した一部の条件の改良土の、せん断力に対するせん断剛性の変化を示したグラフであり、(a)は片振幅せん断ひずみに対する等価せん断剛性率の変化、(b)は片振幅せん断ひずみに対する等価せん断剛性率比の変化を示している。It is the graph which showed the change of the shear rigidity with respect to the shear force of the improvement soil of the one part condition shown in FIG. 3, (a) is the change of the equivalent shear rigidity with respect to a half amplitude shear strain, (b) is the half amplitude. The change of the equivalent shear modulus ratio with respect to the shear strain is shown. 本発明の実施の形態に係る地盤注入材の浸透試験の結果を、比較例と共に示す図表である。It is a graph which shows the result of the penetration test of the ground injection material which concerns on embodiment of this invention with a comparative example. 図5と同様の浸透試験の結果を示すグラフである。It is a graph which shows the result of the penetration test similar to FIG. 本発明の実施の形態に係る地盤注入材の図5と異なる浸透試験の結果を、比較例と共に示す図表である。It is a graph which shows the result of the penetration test different from FIG. 5 of the ground injection material which concerns on embodiment of this invention with a comparative example. 本発明の実施の形態に係る地盤注入材の図5及び図7と異なる浸透試験の結果を、比較例と共に示す図表である。It is a graph which shows the result of the penetration test different from FIG.5 and FIG.7 of the ground injection material which concerns on embodiment of this invention with a comparative example. 図8と同様の浸透試験の結果を示すグラフである。It is a graph which shows the result of the penetration test similar to FIG. 本発明の実施の形態に係る地盤注入材により試料を改良して形成した改良土の、一軸圧縮強度試験の結果を比較例と共に示す図表である。It is a graph which shows the result of the uniaxial compressive strength test of the improvement soil formed by improving the sample with the ground injection material which concerns on embodiment of this invention with a comparative example. 本発明の実施の形態に係る地盤注入材の材料収縮試験の結果を、比較例と共に示す図表である。It is a graph which shows the result of the material shrinkage | contraction test of the ground injection material which concerns on embodiment of this invention with a comparative example.

以下、本発明を実施するための形態を、添付図面に基づき説明する。
まず、本発明の実施の形態に係る地盤注入材の構成について説明すると、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物と、アルカリ性シリカ分散液と、酸性反応剤とにより構成された、非アルカリ性アルミノ珪酸塩微粒子懸濁液である。本地盤注入材で用いるアルミノ珪酸塩微粒子からなる粘土鉱物は、例えば、カオリナイト、ベントナイト、モンモリロナイト、イライト、ゼオライト等が挙げられ、特に限定されるものではないが、工業的な入手の容易性等から、カオリナイト、ベントナイトが好ましい。特に、砂質地盤へ均等に浸透させることを考慮すると、微粒子のカオリナイトを用いることが更に好ましい。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
First, the structure of the ground injection material according to the embodiment of the present invention will be described. The ground injection material according to the embodiment of the present invention includes a clay mineral composed of aluminosilicate fine particles, an alkaline silica dispersion, and an acidic reaction. It is a non-alkaline aluminosilicate fine particle suspension composed of an agent. Examples of the clay mineral composed of aluminosilicate fine particles used in the ground injection material include kaolinite, bentonite, montmorillonite, illite, zeolite, and the like, although not particularly limited, industrial availability, etc. Therefore, kaolinite and bentonite are preferable. In particular, it is more preferable to use fine kaolinite in consideration of evenly penetrating into the sandy ground.

ここで、アルミノ珪酸塩微粒子の粒子径は、アルミノ珪酸塩微粒子がアルカリ性シリカ分散液及び酸性反応剤と混合された後の、レーザー回析・散乱法による測定値で、90%粒子径が25μm以下であることが好ましく、15μm以下であることが更に好ましい。これは、混合前のアルミノ珪酸塩微粒子自体の粒子径が小さくても、アルカリ性シリカ分散液及び酸性反応剤と混合されて膨潤した状態で、90%粒子径が25μm以上になってしまうと、砂地盤への浸透が阻害されるためである。   Here, the particle size of the aluminosilicate fine particles is a value measured by a laser diffraction / scattering method after the aluminosilicate fine particles are mixed with the alkaline silica dispersion and the acidic reactant, and the 90% particle size is 25 μm or less. It is preferable that it is 15 micrometers or less. Even if the particle size of the aluminosilicate fine particles before mixing is small, the 90% particle size becomes 25 μm or more in the swollen state mixed with the alkaline silica dispersion and the acidic reactant. This is because penetration into the ground is hindered.

又、本地盤注入材で用いるアルカリ性分散液は、Aをアルカリ金属、nをモル数としたとき、AO・nSiOで表される水ガラスが好ましい。アルカリ金属としては、ナトリウム、リチウム、カリウムが例示でき、工業的入手の容易性や価格の観点から、好ましくはナトリウムである。ここで、水ガラスのモル比(SiO/AO)は、珪素の酸化物換算(SiO)と、アルカリの酸化物換算(AO)との比として定義される。このモル比は、水溶液の安定性から1〜4の範囲が好ましく、モル比が低くなると酸性反応剤の使用量が増えるため、3〜4の範囲が更に好ましい。又、モル比が3.8以上になると溶液の粘性が上がるため、モル比の範囲は、作業性の観点から3〜3.8が最も好ましい。 The alkaline dispersion used in the ground injection material is preferably water glass represented by A 2 O · nSiO 2 where A is an alkali metal and n is the number of moles. Examples of the alkali metal include sodium, lithium, and potassium, and sodium is preferred from the viewpoint of industrial availability and price. Here, the molar ratio of water glass (SiO 2 / A 2 O) is defined as the ratio of silicon oxide equivalent (SiO 2 ) to alkali oxide equivalent (A 2 O). This molar ratio is preferably in the range of 1 to 4 in view of the stability of the aqueous solution, and the lower the molar ratio, the more the amount of acidic reactant used, the more preferably in the range of 3 to 4. Further, since the viscosity of the solution increases when the molar ratio is 3.8 or more, the range of the molar ratio is most preferably 3 to 3.8 from the viewpoint of workability.

一方、本地盤注入材で使用する酸性反応剤は、硫酸、硝酸、塩酸、リン酸等の無機酸、クエン酸、グリオキザール酸等の有機酸が例示でき、特に限定されるものではないが、工業的入手の容易性、価格、現場での取り扱い易さ等の観点から、硫酸が好ましい。   On the other hand, the acidic reactant used in the ground injection material can be exemplified by inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid, and organic acids such as citric acid and glyoxalic acid. From the viewpoints of easy availability, cost, ease of handling at the site, etc., sulfuric acid is preferred.

又、本発明の実施の形態に係る地盤注入材の、アルミノ珪酸塩微粒子からなる粘土鉱物の添加量は、地盤への浸透性と固化物の材料収縮を考慮すると、注入材400ml当たり1.5〜160gが好ましい。1.5gより少ない場合、地盤への浸透性に関しては問題ないが、アルミ濃度が十分ではないため、固化物の材料収縮を抑えられず、又、160gより多くなると、砂地盤への浸透性が確保できない。更に、強度面及び細粒分を含む地盤への浸透性を考慮した場合、3〜100gであることが好ましい。3gより少ない場合、浸透性及び材料収縮に関しては問題ないが、固結物に対する強度増加が小さく、又、100gより多いと、細粒分を含む砂地盤への浸透性が悪くなる。更に、改良地盤のせん断剛性や、シルト交じりの地盤への浸透性を考慮した場合、6〜60gが最も好ましい。6gより少ない場合、改良地盤のせん断剛性が現地盤の1.1倍以上にならず、液状化対策として十分とは言えない。又、60gより多い場合、シルトを含む地盤への浸透が阻害される。   In addition, the amount of the clay mineral consisting of aluminosilicate fine particles in the ground injection material according to the embodiment of the present invention is 1.5 per 400 ml of the injection material, considering the permeability to the ground and the material shrinkage of the solidified material. ~ 160g is preferred. When the amount is less than 1.5 g, there is no problem with respect to the permeability to the ground, but since the aluminum concentration is not sufficient, the material shrinkage of the solidified product cannot be suppressed, and when the amount exceeds 160 g, the permeability to the sand ground is high. It cannot be secured. Furthermore, when considering the permeability to the ground including the strength surface and fine particles, it is preferably 3 to 100 g. When the amount is less than 3 g, there is no problem with respect to permeability and material shrinkage, but the increase in strength against the solidified material is small. When the amount is more than 100 g, the permeability to the sand ground containing fine particles is deteriorated. Furthermore, when considering the shear rigidity of the improved ground and the permeability of the silt mixed into the ground, 6 to 60 g is most preferable. If it is less than 6 g, the shear rigidity of the improved ground will not exceed 1.1 times that of the local board, which is not sufficient as a countermeasure for liquefaction. Moreover, when more than 60g, the penetration | infiltration to the ground containing silt is inhibited.

又、アルミノ珪酸塩微粒子からなる粘土鉱物の添加方法は、特に限定されるものではないが、アルカリ性シリカ分散液に分散後、酸性反応剤と合わせてもよく、酸性反応剤に分散後、アルカリ性シリカ分散液と混合してもよい。更に、アルカリ性シリカ分散液と酸性反応剤とを混合後、この混合液にアルミノ珪酸塩微粒子からなる粘土鉱物を混ぜてもよい。本発明の実施の形態に係る地盤注入材は、どのような混合方法を用いても、地盤への浸透性や固化物の材料収縮及び強度に対して、影響を受けるものではない。   The method for adding the clay mineral composed of aluminosilicate fine particles is not particularly limited, but it may be combined with the acidic reactant after being dispersed in the alkaline silica dispersion, or after being dispersed in the acidic reactant, You may mix with a dispersion liquid. Further, after mixing the alkaline silica dispersion and the acidic reactant, a clay mineral composed of aluminosilicate fine particles may be mixed into this mixed solution. The ground injection material according to the embodiment of the present invention is not affected by the permeability to the ground and the material shrinkage and strength of the solidified material, regardless of the mixing method.

次に、本発明の実施の形態に係る地盤注入材により、改良地盤の止水性が向上することについて説明する。
地盤注入工法における止水性評価の指標には、透水係数が広く用いられており、透水係数k=1×10−4cm/sec以下を改良目標値とするのが一般的である。透水係数kは、地盤の粘土分が多いほど小さくなり、例えば、下記の〔数1〕に示すHazenの式を用いれば、地盤の10%粒径D10から透水係数kを推定することができる。
[数1]
=C(0.7+0.03T)D10
ここで、kは透水係数(cm/sec)、Cは下記に別途示す係数、Tは温度(℃)、D10は地盤の10%粒径(cm)を示している。又、係数Cは、地盤の砂の状態が、均等な粒子の場合(極大値)でC=150、細砂の緩く締まった状態でC=116、細砂のよく締まった状態でC=70、大小粒子混合の場合(極小値)でC=60、非常に汚れているときでC=46である。
Next, it will be described that the water stoppage of the improved ground is improved by the ground injection material according to the embodiment of the present invention.
A water permeability coefficient is widely used as an index for water-stopping evaluation in the ground injection method, and a water permeability coefficient k = 1 × 10 −4 cm / sec or less is generally set as an improved target value. Permeability k is smaller the more clay fraction of soil, for example, using the equation of Hazen shown in equation (1) below, it is possible to estimate the permeability k of 10% particle diameter D 10 of the ground .
[Equation 1]
k H = C (0.7 + 0.03T) D 10 2
Here, k H is a water permeability coefficient (cm / sec), C is a coefficient separately shown below, T is a temperature (° C.), and D 10 is a 10% particle size (cm) of the ground. The coefficient C is C = 150 when the sand condition of the ground is uniform (maximum value), C = 116 when the fine sand is loosely tightened, and C = 70 when the fine sand is well tightened. In the case of mixing large and small particles (minimum value), C = 60, and when very dirty, C = 46.

又、地盤注入工法を用いて低透水性地盤を形成する場合、地盤注入材を地盤の間隙に注入して固結させる以外にも、地盤の10%粒径D10を低下させることによっても、低透水性地盤が形成される。すなわち、固結に加えて、地盤のD10を低下させることができれば、より止水性能が担保されることになる。そこで、本発明の実施の形態に係る地盤注入材を、2種類の試料(珪砂6号及び7号)に注入し、形成された改良土の10%粒径D10を調べ、D10からHazen式による透水係数kを推定すると共に、室内透水試験を実施した。その結果をまとめた図表を、図1に示している。なお、図1における改良材とは、アルカリ性シリカ分散液及び酸性反応剤との混合状態における90%粒子径が25μm以下のアルミノ珪酸塩微粒子である。
図1の図表から、改良材の添加量を増加させると、改良土のD10が低下し、Hazen式による透水係数kも低下することが分かる。又、JIS A 1218に準拠して実施した室内透水試験による透水係数kは、試料が珪砂6号・7号の場合の双方で、改良材の添加量1.5〜160g/400mlの範囲において、1×10−4cm/sec以下になる。更に、改良材の添加量が増加するにつれて、透水係数kの低下(止水性の向上)が図れており、Hazen式による透水係数kHの傾向と対応している。加えて、改良地盤の密度が改良前と比べて増加しており、副次的に地盤密度の増大を図れることが分かる。
Further, when forming a low-permeability soil using soil grouting, even the ground grout in addition to consolidation by injecting into the gap of the ground, by reducing the 10% particle size D 10 of the ground, A low permeability ground is formed. That is, in addition to consolidation, if it is possible to reduce the D 10 of the ground, so that more water stopping performance is secured. Therefore, the ground injection material according to the embodiment of the present invention, was injected into two samples (silica sand No. 6 and No. 7), examine the 10% particle size D 10 of the formed improved soil, the D 10 Hazen together to estimate the permeability k H according to equation was carried indoor permeability test. A chart summarizing the results is shown in FIG. 1 is aluminosilicate fine particles having a 90% particle diameter of 25 μm or less in a mixed state with an alkaline silica dispersion and an acidic reactant.
From the table of FIG. 1, increasing the amount of the modifying material, reduces the D 10 of the modified soil, permeability k H also seen to decrease by Hazen equation. Moreover, the water permeability coefficient k L by the indoor water permeability test carried out in accordance with JIS A 1218 is in the range of 1.5 to 160 g / 400 ml of the additive of the improved material in both cases where the sample is silica sand No. 6 and No. 7. 1 × 10 −4 cm / sec or less. Further, as the addition amount of the modifying material is increased, and Hakare decrease in permeability k L (improvement of water stopping) corresponds with the tendency of the permeability k H by Hazen equation. In addition, it can be seen that the density of the improved ground has increased compared to that before the improvement, and that the secondary density can be increased as a secondary matter.

図2には、図1の図表で透水係数kが1×10−4cm/sec以下となった条件の改良土の、改良前後の粒径加積曲線のうち代表例を示している。図2のグラフから、改良土の細粒分のうち、特に粘土分が増加していることが分かる。この粘土分の増加によりD10が低下しているが、20%粒径D20はほとんど変化していない。 FIG. 2 shows a representative example of the particle size accumulation curves before and after the improvement of the improved soil under the condition that the hydraulic conductivity k is 1 × 10 −4 cm / sec or less in the chart of FIG. From the graph of FIG. 2, it can be seen that, among the fine particles of the improved soil, especially the clay content is increased. Although D 10 of is reduced by an increase in the clay content of 20% particle diameter D 20 is hardly changed.

続いて、本発明の実施の形態に係る地盤注入材により、改良地盤のせん断剛性が増加されることで、繰り返し載荷時の変形が抑制されることについて説明する。
従来の溶液型地盤注入材による改良地盤のせん断剛性は、未改良土に対して同等若しくは1.1倍程度であるため、地震によるせん断力が大きい場合や、繰り返し回数が多い地震時には、大きなせん断変形が生じてしまう。そこで、本発明の実施の形態に係る地盤注入材を用いた場合のせん断剛性を調べるために、本地盤注入材を珪砂7号に注入し、改良土の繰返し三軸試験を実施した。試験では、改良土及び未改良土を拘束圧100kPaで等方圧密した後、一軸圧縮強さの1/2に相当する初期せん断荷重を載荷し、非排水条件で繰り返し載荷を与えた。この試験結果を、図3の図表に示している。なお、初期せん断剛性は、所謂H−Dモデル(Hardin−Drnevichモデル)により求めた、γ=0.0001%のときのせん断剛性である。図3の図表から、改良材の添加量が6g/400ml以下の場合、初期せん断剛性は、未改良と比較して1.1〜1.2倍程度であり、従来の溶液型地盤注入材による改良地盤のせん断剛性と同程度以上であった。一方、改良材の添加量が20g/400ml以上になると、未改良と比較して2倍以上の初期せん断剛性が得られる結果となった。
Then, it demonstrates that the deformation | transformation at the time of repeated loading is suppressed by the shear rigidity of improved ground being increased by the ground injection material which concerns on embodiment of this invention.
The shear strength of the improved ground with the conventional solution-type ground injection material is equivalent to or about 1.1 times that of the unmodified soil. Therefore, when the shear force due to the earthquake is large or the earthquake is frequent, Deformation will occur. Therefore, in order to examine the shear rigidity when the ground injection material according to the embodiment of the present invention is used, this ground injection material was injected into silica sand No. 7, and repeated triaxial tests of improved soil were performed. In the test, the improved soil and the unmodified soil were isotropically consolidated at a constraint pressure of 100 kPa, and then an initial shear load corresponding to ½ of the uniaxial compressive strength was loaded, and repeated loading was performed under undrained conditions. The test results are shown in the chart of FIG. The initial shear stiffness is a shear stiffness obtained by a so-called HD model (Hardin-Drnevic model) when γ = 0.0001%. From the chart of FIG. 3, when the addition amount of the improved material is 6 g / 400 ml or less, the initial shear rigidity is about 1.1 to 1.2 times that of the unmodified material, which depends on the conventional solution-type ground injection material. The shear rigidity of the improved ground was about the same or higher. On the other hand, when the amount of the improved material added was 20 g / 400 ml or more, an initial shear stiffness of 2 times or more was obtained as compared with the unmodified product.

又、図4には、図3で未改良の場合から2倍以上の初期せん断剛性を示した条件の改良土の、せん断力に対するせん断剛性の変化を示しており、図4(a)は等価せん断剛性率Geqと片振幅せん断ひずみγSAとの関係のグラフ、図4(b)は等価せん断剛性率Geqを初期値Geq0で正規化したGeq/Geq0と片振幅せん断ひずみγSAとの関係を示している。なお、図4(a)(b)の何れも、繰り返し回数10回目における結果である。図4のグラフから、改良土のGeq/Geq0は、未改良と比較して、ひずみレベルが大きくなっても高い剛性を維持している。これにより、地震によるせん断力が大きい場合や、繰り返し回数が多い地震時において、本発明の実施の形態に係る地盤注入材による改良土は、せん断変形が抑制され、又、ひずみレベルが大きくなっても高い剛性を維持していることが分かる。 FIG. 4 shows the change in shear stiffness with respect to the shear force of the improved soil under the condition that showed an initial shear stiffness of 2 times or more from the case of the unmodified case in FIG. 3, and FIG. FIG. 4B is a graph showing the relationship between the shear rigidity G eq and the half amplitude shear strain γ SA, and FIG. 4B shows G eq / G eq0 obtained by normalizing the equivalent shear rigidity G eq with the initial value G eq0 and the half amplitude shear strain γ. The relationship with SA is shown. 4 (a) and 4 (b) are the results at the 10th repetition. From the graph of FIG. 4, G eq / G eq0 of the improved soil maintains high rigidity even when the strain level increases, as compared with the unmodified case. As a result, when the shear force due to the earthquake is large or the earthquake has a large number of repetitions, the improved soil by the ground injection material according to the embodiment of the present invention suppresses the shear deformation and increases the strain level. It can be seen that the high rigidity is maintained.

次に、本発明の実施の形態に係る地盤注入材について、実施例を挙げてより具体的に説明する。しかしながら、本発明の実施の形態に係る地盤注入材は、以下に示す実施例の内容に限定されるものではない。なお、以下の実施例では、HORIBAのLA−920(レーザー回折/散乱式粒度分布測定装置)を用いて粒子径の測定を行っている。
まず、本発明の実施の形態に係る地盤注入材の浸透性を調査するために実施した浸透試験について、模擬地盤(1)〜(3)を用いた3つの浸透試験に分けて説明する。
Next, the ground injection material according to the embodiment of the present invention will be described more specifically with reference to examples. However, the ground injection material which concerns on embodiment of this invention is not limited to the content of the Example shown below. In the following examples, the particle size is measured using HORIBA LA-920 (laser diffraction / scattering particle size distribution measuring device).
First, the penetration test conducted for investigating the permeability of the ground injection material according to the embodiment of the present invention will be described by dividing it into three penetration tests using simulated ground (1) to (3).

模擬地盤(1)を用いた浸透試験では、砂が抜けないように底にメッシュの網を取り付けた、内径3cmの塩ビ管に対して、東北珪砂6号を相対密度60%になるように高さ30cmまで詰めて、模擬地盤(1)を作製した。そして、以下に示す条件で作液した、比較例1〜3及び実施例1〜2として示す各混合液を、模擬地盤(1)上部より静かに注ぎ、砂上部より混合液の高さが5cmを維持するようにしながら自然浸透させ、浸透時間と浸透距離とを測定した。   In the penetration test using the simulated ground (1), Tohoku Silica Sand No. 6 has a high relative density of 60% with respect to a PVC pipe with an inner diameter of 3 cm with a mesh net attached to the bottom so that the sand does not come off. A simulated ground (1) was prepared by packing up to 30 cm. And each liquid mixture shown as Comparative Examples 1 to 3 and Examples 1 and 2 which were made under the conditions shown below was poured gently from the top of the simulated ground (1), and the height of the liquid mixture was 5 cm from the top of the sand. The sample was allowed to infiltrate naturally while maintaining the temperature, and the infiltration time and infiltration distance were measured.

比較例1:珪酸ソーダ(比重1.4、NaO;9.1%、SiO;27.7%、モル比SiO/NaO;3.1、以下では単に珪酸ソーダAとする)60mlと水道水140mlとを混合しA液を作製した。次に75%希硫酸11.5mlと水道水188.5mlとを混合しB液を作製した。A液とB液とを混合し混合液Aを作製した。混合液のpHは1.8でSiO濃度は5.8wt%/volであった。
比較例2:珪酸ソーダA60mlと水137.3mlとを混合し、そこに50%粒子径が5.3μmで90%粒子径が36.4μmのカオリン(カオリナイト)を6g加えA液とした。B液は比較例1と同様な配合で作液し、A液とB液とを混合して混合液Bを作製した。混合液Bは、pHが1.8、SiO濃度が5.8wt%/vol、カオリンの90%粒子径が30.6μmであった。同様に、カオリン量を18gにした混合液B−2も作製した。混合液B−2中のカオリンの90%粒子径は49.9μmであった。
Comparative Example 1: Sodium silicate (specific gravity 1.4, Na 2 O; 9.1%, SiO 2 ; 27.7%, molar ratio SiO 2 / Na 2 O; 3.1, hereinafter, simply referred to as sodium silicate A ) 60ml and 140ml of tap water were mixed to prepare liquid A. Next, 11.5 ml of 75% dilute sulfuric acid and 188.5 ml of tap water were mixed to prepare solution B. A liquid and B liquid were mixed and the liquid mixture A was produced. The pH of the mixed solution was 1.8 and the SiO 2 concentration was 5.8 wt% / vol.
Comparative Example 2 60 ml of sodium silicate A and 137.3 ml of water were mixed, and 6 g of kaolin (kaolinite) having a 50% particle size of 5.3 μm and a 90% particle size of 36.4 μm was added thereto to prepare a solution A. Liquid B was prepared with the same composition as Comparative Example 1, and liquid A was mixed with liquid A to prepare liquid mixture B. The mixed solution B had a pH of 1.8, a SiO 2 concentration of 5.8 wt% / vol, and a 90% particle size of kaolin of 30.6 μm. Similarly, a mixed solution B-2 having a kaolin amount of 18 g was also prepared. The 90% particle diameter of kaolin in the mixed solution B-2 was 49.9 μm.

比較例3:珪酸ソーダA60mlと水137.3mlとを混合し、50%粒子径が2.5μmで90%粒子径が6.0μmのシリカフュームを6g加えA液とした。B液は比較例1と同様な配合で作液し、A液とB液とを混合して混合液Cを作製した。混合液Cは、pHが1.8、SiO濃度が5.8wt%/vol、シリカフュームの90%粒子径が50.3μmであった。
実施例1:珪酸ソーダA60mlと水130.9mlとを混合し、そこに平均粒子径が3.8μmで90%粒子径が12.7μmのカオリンを20g加えA液とした。B液は比較例1と同様な配合で作液し、A液とB液とを混合して混合液Dを作製した。混合液Dは、pHが1.8、SiO濃度が5.8wt%/vol、カオリンの90%粒子径が12.6μmであった。同様に、カオリン量を60gに増やした混合液D−2も作製した。混合液D−2中のカオリンの90%粒子径は19.9μmであった。
Comparative Example 3 60 ml of sodium silicate A and 137.3 ml of water were mixed, and 6 g of silica fume having a 50% particle diameter of 2.5 μm and a 90% particle diameter of 6.0 μm was added to prepare Liquid A. Liquid B was prepared with the same composition as in Comparative Example 1, and liquid A was mixed with liquid A to prepare liquid mixture C. The mixed solution C had a pH of 1.8, a SiO 2 concentration of 5.8 wt% / vol, and a 90% particle size of silica fume of 50.3 μm.
Example 1 60 ml of sodium silicate A and 130.9 ml of water were mixed, and 20 g of kaolin having an average particle size of 3.8 μm and a 90% particle size of 12.7 μm was added thereto to prepare a solution A. Liquid B was prepared with the same composition as Comparative Example 1, and liquid A was mixed with liquid A to prepare liquid mixture D. The mixed solution D had a pH of 1.8, a SiO 2 concentration of 5.8 wt% / vol, and a kaolin 90% particle size of 12.6 μm. Similarly, a mixed solution D-2 in which the amount of kaolin was increased to 60 g was also produced. The 90% particle diameter of kaolin in the mixed solution D-2 was 19.9 μm.

実施例2:珪酸ソーダA60mlと水112.7mlとを混合し、そこに50%粒子径が2.9μmで90粒子径が6.2μmのカオリンを60g加えA液とした。B液は比較例1と同様な配合で作液し、A液とB液とを混合して混合液Eを作製した。混合液Eは、pHが1.8、SiO濃度が5.8wt%/vol、カオリンの90%粒子径が5.8μmであった。同様に、カオリン量を100gに増やした混合液E−2も作製した。混合液E−2中の90%粒子径は6.9μmであった。
上記の比較例1〜3及び実施例1〜2の夫々の試験結果を、図5の図表及び図6のグラフに示す。
Example 2 60 ml of sodium silicate A and 112.7 ml of water were mixed, and 60 g of kaolin having a 50% particle size of 2.9 μm and a 90 particle size of 6.2 μm was added thereto to prepare a solution A. Liquid B was prepared with the same composition as Comparative Example 1, and liquid A was mixed with liquid A to prepare liquid mixture E. The mixed solution E had a pH of 1.8, a SiO 2 concentration of 5.8 wt% / vol, and a kaolin 90% particle size of 5.8 μm. Similarly, a mixed solution E-2 in which the amount of kaolin was increased to 100 g was also produced. The 90% particle size in the mixed solution E-2 was 6.9 μm.
The test results of Comparative Examples 1 to 3 and Examples 1 and 2 are shown in the chart of FIG. 5 and the graph of FIG.

図5の図表に示したように、カオリンやシリカフュームを混合していない比較例1の混合液Aと比較すると、混合液中の90%粒子径が30μm以上のカオリンを添加した比較例2の混合液B及びB−2や、混合液の90%粒子径が50μm以上のシリカフュームを添加した比較例3の混合液Cは、途中で浸透が止まってしまう。すなわち、粒子自体の50%粒子径や90%粒子径が10μm以下の微粒子であっても、混合液となった際に大粒子になると、浸透性が阻害されることが確認された。一方、実施例1の混合液D及びD−2や、実施例2の混合液Eのように、混合液の状態で20μm以下の粒子径を維持するカオリンを用いた場合には、浸透が阻害されることなく、全量浸透することが確認された。なお、実施例2の混合液E−2は、模擬地盤(1)の状態に対して、混合液へのカオリンの添加量が多過ぎたため、浸透が阻害されたものと考えられる。   As shown in the chart of FIG. 5, when compared with the mixed solution A of Comparative Example 1 in which no kaolin or silica fume is mixed, the mixing of Comparative Example 2 in which kaolin having a 90% particle size of 30 μm or more in the mixed solution is added. The penetration of liquid B and B-2 and mixed liquid C of Comparative Example 3 to which silica fume having a 90% particle diameter of 50 μm or more of the mixed liquid was stopped midway. That is, it was confirmed that even if the particles themselves are fine particles having a 50% particle size or 90% particle size of 10 μm or less, the permeability is inhibited when the particles become large particles when they are mixed. On the other hand, in the case of using kaolin that maintains a particle size of 20 μm or less in the state of the mixed liquid, such as the mixed liquids D and D-2 of Example 1 and the mixed liquid E of Example 2, the penetration is inhibited. It was confirmed that the whole amount penetrated without being done. In addition, it is thought that the liquid mixture E-2 of Example 2 was inhibited from penetrating because the amount of kaolin added to the liquid mixture was too large with respect to the state of the simulated ground (1).

次に、模擬地盤(2)を用いた浸透試験では、砂が抜けないように底にメッシュの網を取り付けた、内径3cmの塩ビ管に対して、三河珪砂5号を相対密度60%になるように高さ30cmまで詰めて、模擬地盤(2)を作製した。そして、以下に示す条件で作液した、比較例4及び実施例3として示す各混合液を、模擬地盤(2)の上部より静かに注ぎ、砂上部より混合液の高さが5cmを維持するようにしながら自然浸透させ、浸透時間と浸透距離とを測定した。   Next, in the penetration test using the simulated ground (2), the Mikawa Silica Sand No. 5 has a relative density of 60% with respect to a PVC pipe having an inner diameter of 3 cm with a mesh net attached to the bottom so that the sand does not come off. Thus, the simulated ground (2) was produced by packing up to a height of 30 cm. And each liquid mixture shown as Comparative Example 4 and Example 3 which was made on the conditions shown below is poured gently from the upper part of the simulated ground (2), and the height of the liquid mixture is maintained at 5 cm from the sand upper part. The sample was allowed to infiltrate naturally, and the infiltration time and infiltration distance were measured.

比較例4:比較例1で使用したものと同様の混合液Aを作製した。
実施例3:珪酸ソーダA60mlと水67.3mlとを混合し、更に比較例1と同様な配合で作液したB液と混合して混合液Fを作製した。そこに、実施例2で使用した50%粒子径が2.9μmで90粒子径が6.2μmのカオリン160gを加えて混合し、混合液F−1を作製した。
上記の比較例4及び実施例3の夫々の試験結果を、図7の図表に示す。この結果から、珪酸ソーダAと75%希硫酸とを先に混合し、後からカオリンを添加した場合でも、浸透性に影響がないことが確認された。又、模擬地盤(2)に対しては、実施例3の混合液F−1へのカオリンの添加量でも、浸透性が阻害されないことが確認された。
Comparative Example 4: A liquid mixture A similar to that used in Comparative Example 1 was prepared.
Example 3 60 ml of sodium silicate A and 67.3 ml of water were mixed, and further mixed with the liquid B prepared with the same composition as in Comparative Example 1 to prepare a mixed solution F. Thereto, 160 g of kaolin having a 50% particle size of 2.9 μm and a 90 particle size of 6.2 μm used in Example 2 was added and mixed to prepare a mixed solution F-1.
The test results of Comparative Example 4 and Example 3 are shown in the chart of FIG. From this result, it was confirmed that even when sodium silicate A and 75% dilute sulfuric acid were mixed first and kaolin was added later, there was no effect on permeability. Further, it was confirmed that the permeability of the simulated ground (2) was not inhibited even by the amount of kaolin added to the mixed solution F-1 of Example 3.

続いて、模擬地盤(3)を用いた浸透試験では、砂が抜けないように底にメッシュの網を取り付けた、内径3cmの塩ビ管に対して、東北珪砂7号を相対密度60%になるように高さ30cmまで詰めて、模擬地盤(3)を作製した。そして、以下に示す条件で作液した、比較例5〜7及び実施例4、5として示す各混合液を、模擬地盤(3)の上部より静かに注ぎ、砂上部より混合液の高さが5cmを維持するようにしながら自然浸透させ、浸透時間と浸透距離とを測定した。   Subsequently, in the penetration test using the simulated ground (3), the Tohoku Silica Sand No. 7 has a relative density of 60% with respect to a PVC pipe having an inner diameter of 3 cm and a mesh net attached to the bottom so that the sand does not come off. Thus, a simulated ground (3) was produced by packing up to a height of 30 cm. And each liquid mixture shown as Comparative Examples 5-7 and Examples 4 and 5 which were made under the conditions shown below is poured gently from the upper part of the simulated ground (3), and the height of the liquid mixture is from the upper part of the sand. The sample was allowed to infiltrate naturally while maintaining 5 cm, and the infiltration time and the infiltration distance were measured.

比較例5:比較例1で使用したものと同様の混合液Aを作製した。
比較例6:比較例2で使用したものと同様の混合液Bを作製した。
比較例7:比較例3で使用したものと同様の混合液Cを作製した。
実施例4:実施例1で使用したものと同様の混合液Dを作製した。
実施例5:実施例2で使用したものと同様の混合液Eを作製した。
Comparative Example 5: A liquid mixture A similar to that used in Comparative Example 1 was prepared.
Comparative Example 6: A mixed liquid B similar to that used in Comparative Example 2 was prepared.
Comparative Example 7: A mixed liquid C similar to that used in Comparative Example 3 was prepared.
Example 4: A liquid mixture D similar to that used in Example 1 was prepared.
Example 5: A mixed liquid E similar to that used in Example 2 was prepared.

上記の比較例5〜7及び実施例4、5の夫々の試験結果を、図8の図表及び図9のグラフに示す。これらの結果から、模擬地盤(1)と同様に、模擬地盤(3)においても、混合液中の90%粒子径が30μm以上のカオリンを添加した比較例6の混合液Bや、混合液の90%粒子径が50μm以上のシリカフュームを添加した比較例7の混合液Cは、途中で浸透が止まってしまい、混合液中で大粒子になってしまうカオリンやシリカフュームを添加した場合には、浸透性が阻害されることが再度確認された。又、実施例4の混合液Dや、実施例5の混合液Eのように、混合液の状態で20μm以下の粒子径を維持するカオリンを用いた場合には、浸透性が阻害されないことが再度確認された。   The test results of the above Comparative Examples 5 to 7 and Examples 4 and 5 are shown in the chart of FIG. 8 and the graph of FIG. From these results, in the simulated ground (3) as well as in the simulated ground (1), the mixed liquid B of Comparative Example 6 in which kaolin having a 90% particle diameter of 30 μm or more in the mixed liquid was added, and the mixed liquid The liquid mixture C of Comparative Example 7 to which silica fume having a 90% particle size of 50 μm or more was added was infiltrated when kaolin or silica fume that stopped to penetrate and became large particles in the liquid mixture was added. It was again confirmed that sex was inhibited. In addition, when kaolin that maintains a particle size of 20 μm or less in the state of the mixed solution, such as the mixed solution D of Example 4 or the mixed solution E of Example 5, may not inhibit the permeability. It was confirmed again.

次に、本発明の実施の形態に係る地盤注入材を用いて形成する、改良地盤の強度を調査するために実施した一軸圧縮強度試験について説明する。この試験では、まず、直径5cm×高さ10cmの塩ビモールドを、高さが13cmになるようにテープで覆い、そこに、以下に示す条件で作液した比較例8〜11及び実施例6〜10として示す各混合液を、100ml入れた。そして、塩ビモールドを叩きながら東北7号珪砂を350g加えて供試体を作製し、乾燥しないようにビニール袋に入れた状態で20℃で28日間養生した。養生後、高さ10cmになるように成型し、一軸圧縮試験機により強度測定を行った。   Next, a uniaxial compressive strength test carried out for investigating the strength of the improved ground formed using the ground injection material according to the embodiment of the present invention will be described. In this test, first, a vinyl mold having a diameter of 5 cm and a height of 10 cm was covered with a tape so as to have a height of 13 cm, and then liquids were prepared under the following conditions, and Comparative Examples 8 to 11 and Examples 6 to 100 ml of each mixture indicated as 10 was added. Then, 350 g of Tohoku No. 7 silica sand was added while hitting the PVC mold to prepare a specimen, which was cured for 28 days at 20 ° C. in a plastic bag so as not to be dried. After curing, it was molded to a height of 10 cm and the strength was measured with a uniaxial compression tester.

比較例8:比較例1で使用したものと同様の混合液Aを作製した。
比較例9:比較例3で使用したものと同様の混合液Cを作製した。
比較例10:比較例3で使用したシリカフュームを6gから20gに増量させた混合液C−1を作製した。
比較例11:比較例3で使用したシリカフュームを6gから60gに増量させた混合液C−2を作製した。
Comparative Example 8: A liquid mixture A similar to that used in Comparative Example 1 was prepared.
Comparative Example 9: A mixed liquid C similar to that used in Comparative Example 3 was prepared.
Comparative Example 10: A mixed liquid C-1 in which the amount of silica fume used in Comparative Example 3 was increased from 6 g to 20 g was produced.
Comparative Example 11: A mixed liquid C-2 in which the amount of silica fume used in Comparative Example 3 was increased from 6 g to 60 g was produced.

実施例6:実施例1で使用したものと同様の混合液Dを作製した。
実施例7:実施例1で使用したカオリンを20gから3gに減量させた混合液D−1を作製した。
実施例8:実施例1で使用したカオリンを20gから6gに減量させた混合液D−3を作製した。
実施例9:実施例1で使用したものと同様の混合液D−2を作製した。
実施例10:実施例1で使用したカオリンを20gから1.5gに減量させた混合液D−4を作製した。
Example 6: A mixture D similar to that used in Example 1 was prepared.
Example 7: A mixed solution D-1 in which the amount of kaolin used in Example 1 was reduced from 20 g to 3 g was prepared.
Example 8: A mixed solution D-3 in which the amount of kaolin used in Example 1 was reduced from 20 g to 6 g was prepared.
Example 9: A mixed liquid D-2 similar to that used in Example 1 was prepared.
Example 10: A mixed solution D-4 in which the amount of kaolin used in Example 1 was reduced from 20 g to 1.5 g was prepared.

上記の比較例8〜11及び実施例6〜10の夫々の試験結果を、図10の図表に示す。図10の図表から、シリカヒュームを添加した場合、シリカヒュームを20g加えても(比較例10)、無添加(比較例8)と同強度しか得られず、シリカヒュームを60g加えたもの(比較例11)でないと、強度増加が確認できなかった。これに対し、カオリンを添加した場合は、添加量が3g(実施例7)でも無添加(比較例8)と比較して強度が増加しており、更に、添加量に応じて強度が増加していく(実施例8、6.9)ことが確認された。なお、カオリンを1.5g添加した場合(実施例10)は、特に強度の増加が確認できなかった。   The test results of the above Comparative Examples 8 to 11 and Examples 6 to 10 are shown in the chart of FIG. From the chart of FIG. 10, when silica fume was added, even when 20 g of silica fume was added (Comparative Example 10), only the same strength as that of no addition (Comparative Example 8) was obtained, and 60 g of silica fume was added (Comparison) Without Example 11), an increase in strength could not be confirmed. On the other hand, when kaolin was added, the strength increased compared to the additive-free (Comparative Example 8) even when the amount added was 3 g (Example 7), and the strength increased according to the amount added. (Examples 8, 6.9) were confirmed. When 1.5 g of kaolin was added (Example 10), no increase in strength could be confirmed.

続いて、本発明の実施の形態に係る地盤注入材の材料収縮を調査するために実施した、離しょう水測定試験について説明する。この試験では、以下に示す条件で作液した比較例12〜14及び実施例11〜14として示す各混合液を、60mlの容器に50ml入れ、乾燥しないように密閉した状態で20℃で養生した。そして、28日経過後、発生した離しょう水量を測定した。
比較例12:比較例1で使用したものと同様の混合液Aを作製した。
比較例13:比較例3で使用したものと同様の混合液Cを作製した。
比較例14:比較例11で使用したものと同様の混合液C−2を作製した。
実施例11:実施例10で使用したものと同様の混合液D−4を作製した。
実施例12:実施例7で使用したものと同様の混合液D−1を作製した。
実施例13:実施例1で使用したものと同様の混合液Dを作製した。
実施例14:実施例1で使用したものと同様の混合液D−2を作製した。
Subsequently, the test water measurement test conducted for investigating the material shrinkage of the ground injection material according to the embodiment of the present invention will be described. In this test, 50 ml of each of the mixed solutions shown as Comparative Examples 12 to 14 and Examples 11 to 14 prepared under the conditions shown below was put in a 60 ml container and cured at 20 ° C. in a sealed state so as not to be dried. . Then, after 28 days, the amount of generated water was measured.
Comparative Example 12: A liquid mixture A similar to that used in Comparative Example 1 was prepared.
Comparative Example 13: A mixed liquid C similar to that used in Comparative Example 3 was prepared.
Comparative Example 14: A mixed liquid C-2 similar to that used in Comparative Example 11 was produced.
Example 11: A mixed liquid D-4 similar to that used in Example 10 was produced.
Example 12: A mixed liquid D-1 similar to that used in Example 7 was produced.
Example 13: A mixture D similar to that used in Example 1 was prepared.
Example 14: A mixed liquid D-2 similar to that used in Example 1 was prepared.

上記の比較例12〜14及び実施例11〜14の夫々の試験結果を、図11の図表に示す。図11の図表から、シリカヒュームを添加した比較例13、14は、無添加の比較例12と比べて、離しょう水の量が増加していることが確認できる。一方、カオリンを添加した実施例11〜14は、何れも、無添加の比較例12と比べて、離しょう水の量が減少していることが確認できる。すなわち、実施例11〜14は、固結する過程で発生する離しょう水の量が減少しているため、材料収縮が低減されることが分かる。更に、上述した一軸圧縮強度試験において、特に強度の増加が確認できなかった実施例10と同様の、混合液D−4を用いた実施例11は、最も離しょう水の量が減少している。このことから、カオリンの添加量が少ない場合には、無添加の場合と同等の強度発現性を維持しながら、材料収縮を低減することが分かる。   The test results of the above Comparative Examples 12 to 14 and Examples 11 to 14 are shown in the chart of FIG. From the chart of FIG. 11, it can be confirmed that Comparative Examples 13 and 14 to which silica fume was added increased the amount of isolated water compared to Comparative Example 12 without addition. On the other hand, it can be confirmed that in Examples 11 to 14 to which kaolin was added, the amount of the separation water was reduced as compared with Comparative Example 12 to which no kaolin was added. That is, in Examples 11 to 14, it can be seen that the shrinkage of the material is reduced because the amount of the separating water generated in the process of consolidation is reduced. Further, in the above-described uniaxial compressive strength test, in Example 11 using the mixed liquid D-4, which is similar to Example 10 in which the increase in strength was not particularly confirmed, the amount of the separation water was the smallest. . From this, it can be seen that when the added amount of kaolin is small, the material shrinkage is reduced while maintaining the same strength development as in the case of no addition.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物と、アルカリ性シリカ分散液と、酸性反応剤とにより構成された、非アルカリ性アルミノ珪酸塩微粒子懸濁液である。本地盤注入材では、まず初めに、本地盤注入材に含まれるアルカリ性シリカ分散液と酸性反応剤とが反応することで、アルカリ性シリカ分散液のSi−O−A(Aはアルカリ金属)がSi−O−Hになり、Si−O−Siのシロキサン結合を含むシリカゾルを形成する。ここで、アルミノ珪酸塩微粒子からなる粘土鉱物を含まないシリカゾルの場合、反応が進むにつれ、末端のSi−O−H同士が脱水縮合反応をするため、材料収縮により長期的安定性に欠ける。   Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, the ground injection material according to the embodiment of the present invention is a non-alkaline aluminosilicate fine particle suspension composed of a clay mineral composed of aluminosilicate fine particles, an alkaline silica dispersion, and an acidic reactant. is there. In the ground injection material, first, the alkaline silica dispersion contained in the ground injection material reacts with the acidic reactant, so that Si—O—A (A is an alkali metal) of the alkaline silica dispersion is changed to Si. It becomes —O—H and forms a silica sol containing Si—O—Si siloxane bonds. Here, in the case of a silica sol composed of aluminosilicate fine particles and not containing a clay mineral, the terminal Si—O—H undergoes a dehydration condensation reaction as the reaction proceeds, so that long-term stability is lacking due to material shrinkage.

しかしながら、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいるため、粘土鉱物からアルミ成分が徐々に溶け出し、シリカゾルの末端にあるSi−O−Hと反応してSi−O−Alとなることで、シリカゾルの結合が強固になり安定化する。従って、本地盤注入材が地盤に注入されると、上記のような反応によって地盤の間隙を強固に固結することができ、地盤のせん断剛性及び止水性を高めることができる。更に、図11で確認できるように、本発明の実施の形態に係る地盤注入材(実施例11〜14)は、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいない場合(比較例12〜14)と比較して、材料の収縮を低減することができ、長期に渡って止水性及び固結強度を維持することが可能となる。   However, since the ground injection material according to the embodiment of the present invention includes the clay mineral composed of aluminosilicate fine particles, the aluminum component gradually melts from the clay mineral, and Si—O—H at the end of the silica sol. By reacting with Si to O—Al, the silica sol bond is strengthened and stabilized. Therefore, when the ground injection material is injected into the ground, the ground gap can be firmly consolidated by the reaction as described above, and the shear rigidity and water stoppage of the ground can be increased. Furthermore, as can be confirmed in FIG. 11, the ground injection material (Examples 11 to 14) according to the embodiment of the present invention does not include clay minerals composed of aluminosilicate fine particles (Comparative Examples 12 to 14). Compared with, the shrinkage of the material can be reduced, and the water-stopping property and the consolidation strength can be maintained over a long period of time.

更に、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子からなる粘土鉱物を含んでいることで、地盤に注入されると粘土鉱物が地盤に浸透する。これにより、図2で確認できるように、地盤の細粒分のうち、特に粘土分が増加されることとなるため、地盤の10%粒径D10が低下する。この10%粒径D10の低下により、例えば、〔数1〕として示したHazenの式に基づくと、図1で確認できるように、地盤の透水係数kが低下することとなるため、上述したシリカゾルの結合による止水性の向上と相まって、地盤の止水性を更に向上させることが可能となる。 Furthermore, the ground injecting material according to the embodiment of the present invention includes a clay mineral composed of aluminosilicate fine particles, so that when injected into the ground, the clay mineral penetrates into the ground. Thereby, as can be confirmed in FIG. 2, the clay content is particularly increased in the fine ground portion of the ground, so that the 10% particle diameter D 10 of the ground is lowered. This reduction in 10% particle diameter D 10, for example, based on the expression of Hazen shown as equation (1), as can be seen in Figure 1, since the permeability k H of the ground is to be reduced, above It is possible to further improve the water-stopping property of the ground in combination with the improvement of the water-stopping property due to the bonded silica sol.

又、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子として、カオリナイト、ベントナイト、モンモリロナイト、イライト、及び、ゼオライトのうち、1種又は2種以上を含むものである。すなわち、工業的な入手の容易性や、地盤への浸透性等を考慮して、適切なアルミノ珪酸塩微粒子を選択することができる。   Moreover, the ground injection material which concerns on embodiment of this invention contains 1 type, or 2 or more types among kaolinite, bentonite, montmorillonite, illite, and zeolite as aluminosilicate fine particles. That is, appropriate aluminosilicate fine particles can be selected in consideration of industrial availability, permeability to the ground, and the like.

又、本発明の実施の形態に係る地盤注入材は、アルカリ性シリカ分散液及び酸性反応剤との混合状態における、アルミノ珪酸塩微粒子の90%粒子径が、レーザー回析・散乱法による測定値で、25μm以下のものである。すなわち、アルミノ珪酸塩微粒子は、アルカリ性シリカ分散液及び酸性反応剤と混合されると、膨潤して粒子径が増大するが、この膨潤状態におけるアルミノ珪酸塩微粒子の90%粒子径が25μm以下であることで、特に図5及び図6に示した実施例1及び実施例2と比較例2とを比較すると明らかなように、地盤への浸透性を高めることができる。これにより、特に細粒土に対しても注入材粒子のフィルトレーションを生じることなく、粗粒土から細粒土までのあらゆる粒度組成の地盤を、均質に改良することが可能となる。更に、アルカリ性シリカ分散液及び酸性反応剤との混合状態における、アルミノ珪酸塩微粒子の90%粒子径が15μm以下であるとすれば、地盤への浸透性を更に高めることができる。   In addition, the ground injection material according to the embodiment of the present invention has a 90% particle diameter of aluminosilicate fine particles in a mixed state of an alkaline silica dispersion and an acidic reactant as measured by a laser diffraction / scattering method. 25 μm or less. That is, when the aluminosilicate fine particles are mixed with an alkaline silica dispersion and an acidic reactant, the particle diameter increases by swelling, but the 90% particle diameter of the aluminosilicate fine particles in this swollen state is 25 μm or less. Thus, as is apparent when comparing Example 1 and Example 2 shown in FIGS. 5 and 6 with Comparative Example 2, it is possible to increase the permeability to the ground. Thereby, it becomes possible to improve uniformly the ground of any particle size composition from coarse-grained soil to fine-grained soil without causing the filtration of the injection material particles even for the fine-grained soil. Furthermore, if the 90% particle diameter of the aluminosilicate fine particles in the mixed state of the alkaline silica dispersion and the acidic reactant is 15 μm or less, the permeability to the ground can be further enhanced.

又、本発明の実施の形態に係る地盤注入材は、水溶液としての安定性を考慮して、アルカリ性シリカ分散液のモル比SiO/AOを1〜4とするものである。更に、このモル比SiO/AOを3〜4とすれば、酸性反応剤の使用量を抑制することができる。より限定して、モル比SiO/AOを3〜3.8とすれば、アルカリ性シリカ分散液の粘性を抑制することができるため、本地盤注入材の製造時等の作業性を高めることができる。 Also, soil injection material according to the embodiment of the present invention, in consideration of the stability as an aqueous solution, it is an 1-4 the molar ratio SiO 2 / A 2 O in the alkaline silica dispersion. In addition, the molar ratio SiO 2 / A 2 O if 3-4, it is possible to suppress the amount of the acidic reactant. More specifically, if the molar ratio SiO 2 / A 2 O is 3 to 3.8, the viscosity of the alkaline silica dispersion liquid can be suppressed, so that the workability during the production of the ground injection material is improved. be able to.

更に、本発明の実施の形態に係る地盤注入材は、アルミノ珪酸塩微粒子がアルカリ性シリカ分散液で分散された溶液と、酸性反応剤とが混合されて製造されることとすれば、アルカリ性シリカ分散液中にアルミノ珪酸塩微粒子が均一に分散された状態で、酸性反応剤との混合が行われることになる。これにより、地盤注入材中においても、アルミノ珪酸塩微粒子の分散の均一化を図ることができる。更に、上記のように製造した地盤注入材のpHが非アルカリ領域であることで、シリカゾル構造を破壊して改良地盤を劣化させる要因となるアルカリイオンが除去されているため、改良地盤の長期安定性を確保することができる。   Furthermore, if the ground injection material according to the embodiment of the present invention is manufactured by mixing a solution in which aluminosilicate fine particles are dispersed in an alkaline silica dispersion and an acidic reactant, the alkaline silica dispersion In the state where the aluminosilicate fine particles are uniformly dispersed in the liquid, mixing with the acidic reactant is performed. Thereby, even in the ground injection material, the dispersion of the aluminosilicate fine particles can be made uniform. Furthermore, since the pH of the ground injection material manufactured as described above is in a non-alkaline region, alkali ions that cause the silica sol structure to be destroyed and deteriorate the improved ground are removed, so that the long-term stability of the improved ground is improved. Sex can be secured.

又、本発明の実施の形態に係る地盤注入材は、当該地盤注入材400ミリリットル当たりのアルミノ珪酸塩が1.5〜160gである(実施例1〜14参照)。すなわち、地盤注入材400ミリリットル当たりのアルミノ珪酸塩が1.5gより少ないと、アルミ濃度が不十分であるため材料収縮を抑制することができず、アルミノ珪酸塩が160gより多いと、砂地盤への浸透性が確保できない。このため、これらの範囲を除外して、アルミノ珪酸塩の分量を設定すればよい。この際、地盤注入材400ミリリットル当たりのアルミノ珪酸塩を3〜100gとすれば(実施例1、2、4〜9、12〜14参照)、細粒分を含む砂地盤への浸透性を確保しながら、シリカゾルの結合を十分に強化することができ、更に、アルミノ珪酸塩を6〜60gとすれば(実施例1、2、4〜6、8、9、13、14参照)、シルトを含む地盤への浸透性を確保しながら、改良地盤のせん断剛性を十分に高めることができる。又、本地盤注入材は、当該地盤注入材中のSiO濃度が1〜12wt%/volであることで、地盤注入材の粘性を抑えて浸透性を確保することができると共に、改良地盤の必要強度を保つことができる。 Moreover, the ground injection material which concerns on embodiment of this invention is 1.5-160g of aluminosilicate per the said ground injection material 400ml (refer Examples 1-14). That is, if the amount of aluminosilicate per 400 ml of ground injection material is less than 1.5 g, the material shrinkage cannot be suppressed because the aluminum concentration is insufficient, and if the amount of aluminosilicate is more than 160 g, the sand ground Cannot be ensured. For this reason, what is necessary is just to set the quantity of aluminosilicate except these ranges. At this time, if the amount of aluminosilicate per 400 ml of ground injection material is 3 to 100 g (see Examples 1, 2, 4 to 9, 12 to 14), the permeability to the sand ground including fine particles is ensured. However, the silica sol bond can be sufficiently strengthened, and if the aluminosilicate is 6 to 60 g (see Examples 1, 2, 4 to 6, 8, 9, 13, and 14), The shear rigidity of the improved ground can be sufficiently increased while ensuring the permeability to the ground. Moreover, the present ground injecting material has a SiO 2 concentration of 1 to 12 wt% / vol in the ground injecting material, thereby suppressing the viscosity of the ground injecting material and ensuring permeability, The required strength can be maintained.

一方、本発明の実施の形態に係る地盤注入工法は、上述したような地盤注入材を用いて地盤を改良することで、改良地盤の止水性とせん断剛性との双方を、より確実に高めることができる。更に、改良地盤の透水係数kを、止水性を評価する上での1つの目標値とされている1×10−4cm/sec以下になるように、改良対象地盤を改良することで、例えば、地震が発生した場合でも止水性が維持されるような、必要十分な止水性を確保することができる。又、改良地盤のせん断剛性が、改良前の地盤の1.1倍以上に高められるように、改良対象地盤を改良することとすれば、例えば、地震が発生した場合でも地盤の変形量が抑制されるような、必要十分なせん断剛性を確保することが可能となる。
On the other hand, the ground injection method according to the embodiment of the present invention improves both the waterstop and shear rigidity of the improved ground more reliably by improving the ground using the ground injection material as described above. Can do. Furthermore, by improving the ground to be improved so that the water permeability coefficient k of the improved ground is 1 × 10 −4 cm / sec or less, which is one target value for evaluating the water stoppage, for example, The necessary and sufficient water stoppage can be ensured so that the waterstop is maintained even when an earthquake occurs. In addition, if the improvement target ground is improved so that the shear rigidity of the improved ground is increased to 1.1 times or more of the ground before the improvement, for example, even if an earthquake occurs, the deformation amount of the ground is suppressed. It is possible to ensure the necessary and sufficient shear rigidity.

Claims (8)

アルミノ珪酸塩微粒子からなる粘土鉱物と、アルカリ性シリカ分散液と、酸性反応剤とにより構成された、非アルカリ性アルミノ珪酸塩微粒子懸濁液であり、
前記アルミノ珪酸塩微粒子が、カオリナイトであり、
前記アルミノ珪酸塩微粒子が前記アルカリ性シリカ分散液で分散された溶液と、前記酸性反応剤とが混合されたものであることを特徴とする地盤注入材。
A clay mineral consisting of aluminosilicate particles, and an alkaline silica dispersion, constituted by an acidic reactant, Ri non-alkaline aluminosilicate particle suspension der,
The aluminosilicate fine particles are kaolinite;
A ground injection material characterized in that a solution in which the aluminosilicate fine particles are dispersed in the alkaline silica dispersion and the acidic reactant are mixed .
前記アルカリ性シリカ分散液及び前記酸性反応剤との混合状態における、前記アルミノ珪酸塩微粒子の90%粒子径が、レーザー回析・散乱法による測定値で、25μm以下であることを特徴とする請求項記載の地盤注入材。 The 90% particle diameter of the aluminosilicate fine particles in a mixed state of the alkaline silica dispersion and the acidic reactant is 25 μm or less as measured by a laser diffraction / scattering method. The ground injection material according to 1 . Aをアルカリ金属、nをモル数として、前記アルカリ性シリカ分散液をAO・nSiOで表したとき、該アルカリ性シリカ分散液のモル比SiO/AOが、1〜4であることを特徴とする請求項1又は2記載の地盤注入材。 When A is an alkali metal, n is the number of moles, and the alkaline silica dispersion is represented by A 2 O · nSiO 2 , the molar ratio SiO 2 / A 2 O of the alkaline silica dispersion is 1 to 4. The ground injection material according to claim 1 or 2 . Hが非アルカリ領域であることを特徴とする請求項1〜のいずれか1項記載の地盤注入材。 Ground grout according to any one of claims 1-3, wherein the p H is a non-alkaline range. 当該地盤注入材400ミリリットル当たりの前記アルミノ珪酸塩が1.5〜160gであり、当該地盤注入材中のSiO濃度が1〜12wt%/volであり、当該地盤注入材のpHが1〜8であることを特徴とする請求項1〜のいずれか1項記載の地盤注入材。 The aluminosilicate per 400 ml of the ground injection material is 1.5 to 160 g, the SiO 2 concentration in the ground injection material is 1 to 12 wt% / vol, and the pH of the ground injection material is 1 to 8 The ground injection material according to any one of claims 1 to 3 , wherein 請求項1〜のいずれか1項記載の地盤注入材を地盤に注入し、改良地盤を形成することを特徴とする地盤注入工法。 A ground injection construction method, wherein the ground injection material according to any one of claims 1 to 5 is injected into the ground to form an improved ground. 前記改良地盤の透水係数を1×10−4cm/sec以下にすることを特徴とする請求項記載の地盤注入工法。 The ground injection method according to claim 6, wherein the water permeability coefficient of the improved ground is 1 x 10-4 cm / sec or less. 前記改良地盤のせん断剛性を、改良前の地盤の1.1倍以上に高めることを特徴とする請求項又は記載の地盤注入工法。 The ground injection method according to claim 6 or 7, wherein the shear rigidity of the improved ground is increased to 1.1 times or more that of the ground before the improvement.
JP2015150770A 2015-07-30 2015-07-30 Ground injection material and ground injection method using the same Active JP6405550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150770A JP6405550B2 (en) 2015-07-30 2015-07-30 Ground injection material and ground injection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150770A JP6405550B2 (en) 2015-07-30 2015-07-30 Ground injection material and ground injection method using the same

Publications (2)

Publication Number Publication Date
JP2017031279A JP2017031279A (en) 2017-02-09
JP6405550B2 true JP6405550B2 (en) 2018-10-17

Family

ID=57987661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150770A Active JP6405550B2 (en) 2015-07-30 2015-07-30 Ground injection material and ground injection method using the same

Country Status (1)

Country Link
JP (1) JP6405550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108036985B (en) * 2017-12-27 2023-08-11 刘睿洋 Device and method for manufacturing split grouting slurry vein and detecting permeability coefficient

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830353B2 (en) * 1973-09-04 1983-06-28 渉 中西 Ground improvement injection method
JPS5554390A (en) * 1978-10-14 1980-04-21 Kyokado Eng Co Ltd Grouting
JPS55142087A (en) * 1979-04-20 1980-11-06 Kyokado Eng Co Ltd Ground impregnation method
JPS5794084A (en) * 1981-09-30 1982-06-11 Kyokado Eng Co Ltd Grouting technique
JP2853772B2 (en) * 1990-07-20 1999-02-03 日本化学工業株式会社 Ground injection agent
JP2008285597A (en) * 2007-05-18 2008-11-27 Taiheiyo Material Kk Compatibilizer for high pressure jetting stirring construction
JP5531234B1 (en) * 2013-02-08 2014-06-25 強化土株式会社 Ground injection material and ground injection method

Also Published As

Publication number Publication date
JP2017031279A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
Kazemian et al. Effect of aggressive pH media on peat treated by cement and sodium silicate grout
JP6466615B2 (en) Solidification material for ground injection
CN102492404A (en) Anti-blowby cement slurry
JP2013100638A (en) Soil improvement method
JP2518836B2 (en) Sealant for soil sealing
JP6405550B2 (en) Ground injection material and ground injection method using the same
Sadrjamali et al. Modifying soil shear strength parameters using additives in laboratory condition
JP2005536429A (en) Grout injection
KR101497220B1 (en) Composition for silica sols grouting comprising admixture for gelation time control
CN103193454A (en) Grouting material applicable to reinforcement of sand layer and grouting method
JP2018070803A (en) Soil injection material and soil improvement method
JP6998025B1 (en) Silica grout and ground injection method using it
KR102116182B1 (en) Silica Grout Composition
JP6504587B1 (en) Ground injection material and ground injection method
JP5531234B1 (en) Ground injection material and ground injection method
JP5398096B1 (en) Permeable fine grain grout material
JP3150380B2 (en) Ground injection agent and its injection method
JP2020060072A (en) Hardening material for grouting and manufacturing method for the same
JP6233818B2 (en) Method for producing consolidated material for ground injection
JP2003119465A (en) Liquefaction-preventing grouting chemical liquid
KR102591539B1 (en) Chemical grout composition with enhanced durability and its applications
JP6023934B2 (en) Solidification material for ground injection and manufacturing method thereof
JP4948661B2 (en) Ground improvement method
JP2017036659A (en) Grouting method inhibiting sulfuric acid ion from being eluted into ground
Reddy et al. Improvement in swelling, strength and deformation characteristics of expansive soil using lime and brick dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6405550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250