JP6405180B2 - Production method of porous electroforming - Google Patents

Production method of porous electroforming Download PDF

Info

Publication number
JP6405180B2
JP6405180B2 JP2014207736A JP2014207736A JP6405180B2 JP 6405180 B2 JP6405180 B2 JP 6405180B2 JP 2014207736 A JP2014207736 A JP 2014207736A JP 2014207736 A JP2014207736 A JP 2014207736A JP 6405180 B2 JP6405180 B2 JP 6405180B2
Authority
JP
Japan
Prior art keywords
plating
hole
matrix
holes
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207736A
Other languages
Japanese (ja)
Other versions
JP2016074964A (en
Inventor
實 北野
實 北野
Original Assignee
極東技研有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 極東技研有限会社 filed Critical 極東技研有限会社
Priority to JP2014207736A priority Critical patent/JP6405180B2/en
Publication of JP2016074964A publication Critical patent/JP2016074964A/en
Application granted granted Critical
Publication of JP6405180B2 publication Critical patent/JP6405180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空成形やブロー成形等の金型として好適に用いることのできる多孔性電鋳の製造方法に関する。   The present invention relates to a method for producing porous electroforming that can be suitably used as a mold for vacuum molding, blow molding, or the like.

電鋳金型は、母型の凹凸を精密に写し取ることができるため、例えば、皮革製品を模したシボ面等を再現するような、精密なプラスチック成型品に用いられている。電鋳金型の中でも電鋳の厚さ方向に貫通する多くの孔が開けられた多孔性電鋳金型は、成形加工時に成形用材料であるパリソンあるいは加熱したシートから発生するガスを抜いたり、型内の空気を抜いたりすることによって、金型表面を正確に転写することができるため、プラスチックのブロー成形、真空成形等の金型に好適に用いることができる。特に、成形品が急峻な凸部を有する場合、換言すれば、その成形品を製造する金型が深い凹部を有している場合には、吸引のための多数の貫通孔が必須となる。   An electroforming mold can accurately copy the irregularities of a mother mold, and is used, for example, in a precision plastic molded product that reproduces a textured surface imitating a leather product. Among electroforming dies, porous electroforming dies with many holes penetrating in the thickness direction of electroforming are used to remove gas generated from a parison or a heated sheet during molding, By extracting air from the inside, the surface of the mold can be accurately transferred, and therefore, it can be suitably used for molds such as plastic blow molding and vacuum molding. In particular, when the molded product has steep convex portions, in other words, when the mold for manufacturing the molded product has deep concave portions, a large number of through holes for suction are essential.

従来、多孔性電鋳の製造方法として、導電性被膜を形成した母型の表面にドリル等によって数多くの有底の孔を設けてから電鋳を行うという方法が開発されている(特許文献1)。この方法では、孔を設けることによって導電性被膜が削り取られるため、孔内においてめっき層が形成されない。また、孔周縁のめっき層に電流が集中し、めっき時に電着反応の副反応として水素ガスの気泡が発生し、この気泡が滞留することにより、めっき層が孔内に侵入することを防止することができる。その結果、母型側から反対側までに通ずる貫通孔を有する電鋳層が形成されることとなる。母型に設ける孔の位置や密度や孔径を制御することにより、電鋳層に形成される貫通孔の位置や密度や孔径を制御することができる。これによって、プラスチックのブロー成形や真空成形等の金型の用途に適した多孔性電鋳を製造することができる。   Conventionally, as a method for producing porous electroforming, a method has been developed in which electroforming is performed after a number of bottomed holes are provided by a drill or the like on the surface of a matrix on which a conductive film is formed (Patent Document 1). ). In this method, since the conductive coating is scraped off by providing the holes, no plating layer is formed in the holes. Also, current concentrates on the plating layer around the hole, hydrogen gas bubbles are generated as a side reaction of the electrodeposition reaction during plating, and the bubbles stay to prevent the plating layer from entering the hole. be able to. As a result, an electroformed layer having a through hole extending from the matrix side to the opposite side is formed. By controlling the position, density and hole diameter of the holes provided in the matrix, the position, density and hole diameter of the through holes formed in the electroformed layer can be controlled. Thereby, it is possible to manufacture a porous electroforming suitable for use in a mold such as plastic blow molding or vacuum molding.

また、他の多孔性電鋳の製造方法として、疎水性粉体を分散させた母型を作製し、この母型に対して、実質的に界面活性剤を含まないめっき液中でめっきを施すことにより、多孔性めっきとする方法がある(特許文献2)。   As another method for producing porous electroforming, a mother die in which hydrophobic powder is dispersed is prepared, and the mother die is plated in a plating solution that does not substantially contain a surfactant. Therefore, there is a method of making the porous plating (Patent Document 2).

特開平5−156486号公報JP-A-5-156486 特開2013−147695号公報JP2013-147695A

しかし、上記特許文献1に記載の多孔性電鋳の製造方法では、水素ガス気泡の孔からの脱離を防止するために界面活性剤を添加しないめっき液を用いることから、孔以外の所望しない位置にも水素ガスが滞留し、貫通孔が生じるという問題があった。例えば、図11に示すように、多孔性電鋳100の端部101はフランジとして金属製の枠体102と溶接されて、真空金型に仕上げられている。端部101はとくにめっき中に電流が集中し易く、水素ガスの発生が多くなる。また、母型を配置し易くする等の理由から、端部101はめっき液中で水平に置かれることが多く、このため、水素ガス気泡が滞留しやすい(垂直に配置された場合には、下方の水素ガス気泡が脱離する際に上方の水素ガス気泡と合体して供に脱離していくために水素ガス気泡が滞留し難い)。結果的に、端部101に貫通孔が多く発生し、枠体102との溶接の強度が不十分になるという問題があった。なお、多孔性電鋳型でない通常の電鋳型のめっきにおいては、めっき面に水素ガス気泡の滞留を防止するため、めっき液に界面活性剤を添加して、水素ガス気泡による貫通孔の発生を防止している。   However, in the method for producing porous electroforming described in Patent Document 1, since a plating solution to which a surfactant is not added is used in order to prevent desorption of hydrogen gas bubbles from the holes, other than holes are not desired. There was a problem that hydrogen gas stayed at the position and a through hole was formed. For example, as shown in FIG. 11, the end portion 101 of the porous electroforming 100 is welded to a metal frame 102 as a flange to be finished into a vacuum mold. In particular, the end portion 101 tends to concentrate current during plating, and the generation of hydrogen gas increases. In addition, the end 101 is often placed horizontally in the plating solution for reasons such as facilitating placement of the matrix, and thus hydrogen gas bubbles are likely to stay (when placed vertically, When the lower hydrogen gas bubbles are desorbed, they are combined with the upper hydrogen gas bubbles and desorbed together, making it difficult for the hydrogen gas bubbles to stay). As a result, a large number of through holes are generated in the end portion 101, and there is a problem that the strength of welding with the frame body 102 becomes insufficient. In addition, in the plating of ordinary electroforming molds that are not porous electroforming molds, in order to prevent hydrogen gas bubbles from staying on the plating surface, a surfactant is added to the plating solution to prevent the formation of through holes due to hydrogen gas bubbles. doing.

さらに、電鋳型の製造においては使用時の熱分布等を均一にするために電鋳層の厚さを均一にする必要がある。しかしながら、電鋳では電気めっき技術を用いるために、母型の角部や凸部にはめっきが厚くつき、凹部のめっきは薄くなるという根本的な問題点がある。この問題への対応策として、めっき途中で液から母型全体を引き上げてめっきの付きすぎた部分を研削するとともに、その部分にさらにめっきが付くのを防止するために粘着テープによるマスキングを行う作業が必須とされている。この作業後に再びめっきを行う場合に、孔を起点にして水素ガス気泡が滞留することによって生じた貫通孔に再び水素ガス気泡が滞留するとは限らないため、めっきの侵入によって貫通孔が塞がれる場合があり問題となっていた。   Furthermore, in the production of an electroforming mold, it is necessary to make the thickness of the electroformed layer uniform in order to make the heat distribution at the time of use uniform. However, since electroplating uses an electroplating technique, there is a fundamental problem that the corners and protrusions of the master mold are thick and the plating of the recesses is thin. As a countermeasure to this problem, the whole mold is pulled up from the solution during plating to grind the part with excessive plating, and masking with adhesive tape to prevent further plating on the part Is required. When the plating is performed again after this operation, the hydrogen gas bubbles do not always stay in the through holes generated by the hydrogen gas bubbles staying from the hole, so that the penetration holes are blocked by the penetration of the plating. There was a problem.

本発明はこのような現場における問題点に鑑みてなされたものであり、所望の位置に所望の密度及び孔径の貫通孔を設けることができるとともに、所望しない位置への貫通孔の生成を防止し、電鋳型に必要な強度を有する多孔性電鋳の製造方法を提供することを解決すべき課題としている。   The present invention has been made in view of such problems in the field, and it is possible to provide through holes having a desired density and hole diameter at a desired position and prevent the formation of through holes at undesired positions. It is an object to be solved to provide a method for producing porous electroforming having the strength required for an electroforming mold.

本発明では、上記課題を解決するため、次に示す3つの方策を採ることとした。すなわち、
(1)母型樹脂上の導電性被膜を貫き、母型樹脂に達する孔を設けることによって孔に水素ガスの気泡が付着・滞留し易くし、孔へのめっき被膜の侵入を防止する。
(2)従来の多孔性電鋳の製造においてはめっき液に添加されていなかった界面活性剤(ピット防止剤)を、あえて添加することによって、孔以外での水素ガスの気泡の付着を抑制し、所望しない位置に貫通孔が形成されるのを抑制する。
(3)母型樹脂に撥水性粉体を添加することによって、(1)で設けた孔内に撥水性粉体が剥き出しとなるようにし、孔に水素ガスの気泡が確実に滞留するようにする。
In the present invention, in order to solve the above problems, the following three measures are taken. That is,
(1) By providing a hole that penetrates the conductive film on the matrix resin and reaches the matrix resin, hydrogen gas bubbles easily adhere to and stay in the hole and prevent the plating film from entering the hole.
(2) In the manufacture of conventional porous electroforming, by deliberately adding a surfactant (a pit prevention agent) that was not added to the plating solution, adhesion of hydrogen gas bubbles other than the pores was suppressed. The formation of through holes at undesired positions is suppressed.
(3) By adding water-repellent powder to the matrix resin, the water-repellent powder is exposed in the holes provided in (1), and hydrogen gas bubbles are reliably retained in the holes. To do.

すなわち、本発明の多孔性電鋳の製造方法は、電気的に絶縁性を有する撥水性粉体が少なくとも表面付近に含有されている粉体含有母型を形成する母型形成工程と、該粉体含有母型の表面に導電性被膜を形成する導電性被膜形成工程と、該導電性被膜の表面から該粉体含有母型に達する複数の孔を形成する孔形成工程と、該孔が形成された導電性被膜付母型を界面活性剤が添加された電気めっき液中で電気めっきを行い多孔性めっき被膜を形成するめっき工程と、を備えることを特徴とする。   That is, the porous electroforming production method of the present invention includes a mother mold forming step of forming a powder-containing mother mold in which electrically insulating water-repellent powder is contained at least near the surface, and the powder. Forming a conductive film on the surface of the body-containing matrix, forming a plurality of holes reaching the powder-containing matrix from the surface of the conductive film, and forming the holes; And a plating step of forming a porous plating film by electroplating the prepared matrix with a conductive film in an electroplating solution to which a surfactant is added.

本発明の多孔性電鋳の製造方法では、まず母型形成工程として、電気的に絶縁性を有する撥水性粉体が少なくとも表面付近に含有されている粉体含有母型を形成する。ここで、「電気的に絶縁性を有する」とは、撥水性粉体自体が電気的絶縁性を有する材料からなる場合の他、撥水性粉体の表面のみが電気的に絶縁性を有するように処理されている場合も含む意味である。また、「撥水性粉体が少なくとも表面付近に含有されている」とは、母型の表面付近のみに撥水性粉体が存在している場合の他、母型の内部までは撥水性粉体が存在している場合も含む意味である。
撥水性粉体としては、少なくとも表面が電気的に絶縁性を有する撥水性粉体であって、めっき液に溶解したり、分解したりするものでなければ用いることができる。このような撥水性粉体としては、例えばポリエチレン粉体、PTFE等のフッ素樹脂粉体、シランカップリング剤等によって表面に疎水基が修飾された無機粉体(例えば疎水化シリカ、疎水化アルミナ等、疎水化チタニア等)等が挙げられる。
In the method for producing porous electroforming according to the present invention, first, as a mother die forming step, a powder-containing mother die in which a water-repellent powder having electrical insulation is contained at least near the surface is formed. Here, “electrically insulating” means that the surface of the water-repellent powder is electrically insulative in addition to the case where the water-repellent powder itself is made of a material having electrical insulating properties. It also includes the case where it is processed. In addition, “the water-repellent powder is contained at least near the surface” means that the water-repellent powder is present only in the vicinity of the surface of the matrix, This also includes the case where is present.
The water-repellent powder can be used as long as it is a water-repellent powder having at least an electrically insulating surface and does not dissolve or decompose in the plating solution. Examples of such water-repellent powder include inorganic powders (eg, hydrophobized silica, hydrophobized alumina, etc.) whose surface is modified with a polyethylene resin, a fluororesin powder such as PTFE, and a silane coupling agent. Hydrophobized titania, etc.).

そして、さらに導電性被膜形成工程において粉体含有母型の表面に導電性被膜が形成される。導電性被膜の形成には、例えば、銀イオンを還元性の薬剤で還元して銀薄膜を形成させる方法等を利用することができる。   Further, in the conductive film forming step, a conductive film is formed on the surface of the powder-containing matrix. For forming the conductive film, for example, a method of reducing silver ions with a reducing agent to form a silver thin film can be used.

こうして導電性被膜形成工程が行われた後、導電性被膜の表面から粉体含有母型に達する複数の孔を形成する(孔形成工程)。これにより、孔内は母型の素材及び母型に含まれている撥水性粉体が剥き出しの状態となる。孔の形成にはドリル加工やレーザ加工を用いることができる。   After the conductive film forming step is thus performed, a plurality of holes reaching the powder-containing matrix from the surface of the conductive film are formed (hole forming step). As a result, the matrix material and the water-repellent powder contained in the matrix are exposed in the hole. Drilling or laser processing can be used to form the holes.

最後にめっき工程として、孔が形成された導電性被膜付母型を界面活性剤が添加されためっき液中で電気めっきを行う。電気めっきの種類は特に限定されず、例えば、ニッケル、鉄、コバルト、ニッケル−コバルト合金等が挙げられる。めっき工程において、孔以外の部分は導電性被膜が存在するために、めっき被膜が形成されるが、孔には導電性被膜が存在しないため、めっき被膜が形成されない。さらに、孔周縁のめっき被膜上では、めっき反応の副反応である水の電気分解反応によって水素ガスが発生し、それが成長して気泡となり、孔内に剥き出しとなっている撥水性粉体に付着する(なぜならば、気泡は疎水性であるため、撥水性樹脂に付着し易いからである)。そしてこの付着した気泡及び気泡が集まったより大きな気泡のために、孔周縁のめっき被膜が孔内に侵入することが阻止される。この様な状態でめっきが行われることによって、孔上にめっき被膜を貫通する孔が確実に形成される。
したがって、本発明の多孔性電鋳の製造方法によれば、孔を形成させた箇所に確実に貫通孔を有する多孔性電鋳を製造することができる。
Finally, as a plating step, electroplating is performed in a plating solution to which a surfactant is added to a matrix with a conductive film in which holes are formed. The kind of electroplating is not specifically limited, For example, nickel, iron, cobalt, nickel-cobalt alloy etc. are mentioned. In the plating step, since a conductive film is present in portions other than the holes, a plated film is formed. However, since there is no conductive film in the holes, no plated film is formed. Furthermore, on the plating film around the hole, hydrogen gas is generated by the electrolysis reaction of water, which is a side reaction of the plating reaction, and it grows into bubbles, which becomes a water repellent powder that is exposed in the hole. Adhere (because the bubbles are hydrophobic and therefore easily adhere to the water-repellent resin). And since the adhering bubbles and the larger bubbles in which the bubbles are collected, the plating film around the hole is prevented from entering the hole. By performing plating in such a state, a hole penetrating the plating film is reliably formed on the hole.
Therefore, according to the method for manufacturing a porous electroforming of the present invention, it is possible to manufacture a porous electroforming having a through hole surely at a place where a hole is formed.

なお、電気めっき工程におけるめっき液に界面活性剤が添加されていることを要件としたのは次の理由による。
特許文献1における多孔性電鋳の製造方法では、めっき被膜の貫通孔が塞がるという上記問題点を解決するために、めっき液に界面活性剤をあえて加えないでめっきを行うこととしている。めっき液に界面活性剤を加えない場合、めっきの副反応として発生した水素ガスがめっき表面から脱離し難くなることから、図12に示すように、孔200周縁のめっき被膜201や導電性被膜202から発生した水素ガスが大きな気泡203に成長し、この気泡203によって孔200へのめっき被膜の侵入が防止されるからである
しかしながら、めっき液に界面活性剤を添加しない場合、水素ガスの気泡はめっき表面から脱離し難くなり、孔のみならず、めっき被膜全体に付着し易くなる。このため、孔を設けた位置だけでなく、それ以外のめっき被膜表面にも水素ガス気泡が付着し、結果として所望しない位置にも貫通孔が形成されてしまうおそれがある。
こうした二律背反の問題を解決するため、本発明の多孔性電鋳の製造方法では、電気めっき液には界面活性剤が添加されていることとしたのである。
すなわち、本発明では、電気めっき液に界面活性剤が添加されているが、孔内の表面には母型に混合した撥水性粒子が剥き出しにされているので、水素ガスは撥水性粒子に付着したまま脱離することはなく、孔へのめっき被膜の侵入は防止され、貫通孔が確実に形成される。(図7参照)また、導電性被膜上またはめっき被膜上の孔以外の位置で発生した水素ガスの気泡はめっき表面から脱離し易くなり、所望しない位置のめっき被膜に貫通孔の生じることを防止することができる。その結果、孔を設けた位置のみに選択的に貫通孔を生成させることができる。このため、多孔性電鋳を真空成形やブロー成形等の金型として利用する場合、貫通孔を設計通りに所望の個所に所望の密度で開けるということができ、より精密なプラスチック成型を行うことが可能となる。
The reason why the surfactant is added to the plating solution in the electroplating process is as follows.
In the manufacturing method of porous electroforming in Patent Document 1, in order to solve the above-mentioned problem that the through hole of the plating film is blocked, plating is performed without adding a surfactant to the plating solution. When a surfactant is not added to the plating solution, hydrogen gas generated as a side reaction of plating is difficult to desorb from the plating surface. Therefore, as shown in FIG. This is because the hydrogen gas generated from the gas grows into a large bubble 203, and this bubble 203 prevents the plating film from entering the hole 200. However, when the surfactant is not added to the plating solution, the hydrogen gas bubble It becomes difficult to detach from the plating surface and easily adheres not only to the holes but to the entire plating film. For this reason, hydrogen gas bubbles adhere not only to the positions where the holes are provided but also to the other plated film surface, and as a result, there is a possibility that through holes may be formed at undesired positions.
In order to solve such a trade-off problem, in the method for producing a porous electroforming according to the present invention, a surfactant is added to the electroplating solution.
That is, in the present invention, a surfactant is added to the electroplating solution, but the water-repellent particles mixed in the matrix are exposed on the surface in the pores, so that hydrogen gas adheres to the water-repellent particles. As a result, the plating film is not detached and the penetration of the plating film into the hole is prevented, and the through-hole is reliably formed. (Refer to Fig. 7) In addition, hydrogen gas bubbles generated at positions other than the holes on the conductive film or plating film are easily detached from the plating surface, preventing the formation of through holes in the plating film at undesired positions. can do. As a result, the through holes can be selectively generated only at the positions where the holes are provided. For this reason, when using porous electroforming as a mold for vacuum forming, blow molding, etc., it is possible to open through holes at desired locations at the desired density as designed, and to perform more precise plastic molding Is possible.

なお、本明細書において「界面活性剤が添加された」とは、界面活性剤の添加効果として、めっき被膜上に付着した水素ガスの気泡が脱離し易くなる効果を発揮できる程度の濃度で界面活性剤が添加された状態をいう。具体的には、界面活性剤が0.01g/L以上添加されていることが好ましく、さらに好ましくは0.05g/L以上、最も好ましいのは0.25g/L以上である。一方、界面活性剤の添加量の上限については、孔への水素ガス気泡の滞留を妨害しない範囲で添加することが許される。具体的には、10g/L以下が好ましくさらに好ましくは2g/L以下であり、最も好ましいのは1g/L以下である。   In the present specification, “surfactant is added” means that the surfactant is added at such a concentration that the hydrogen gas bubbles adhering to the plating film can be easily released. A state in which an activator is added. Specifically, the surfactant is preferably added in an amount of 0.01 g / L or more, more preferably 0.05 g / L or more, and most preferably 0.25 g / L or more. On the other hand, with respect to the upper limit of the addition amount of the surfactant, it is allowed to be added within a range that does not disturb the retention of hydrogen gas bubbles in the pores. Specifically, it is preferably 10 g / L or less, more preferably 2 g / L or less, and most preferably 1 g / L or less.

本発明の多孔性電鋳の製造方法における母型形成工程として、硬化剤により硬化可能なプレポリマーと、該硬化剤と、少なくとも表面が電気的に絶縁性を有する撥水性粉体と、を混合して粘性混合物とする混合工程と、該粘性混合物を成形固化させて母型を得る固化工程と、からなる方法を用いることができる。
この方法ではまず混合工程として、プレポリマーと、硬化剤と、撥水性粉体とを混合して粘性混合物とする。プレポリマーとしては、硬化剤により硬化可能であって撥水性粉体と混合可能な液体状のプレポリマーであれば特に限定はない。このようなプレポリマーとしては、エポキシ樹脂系プレポリマー、ウレタン樹脂系プレポリマー、シリコン樹脂系プレポリマー等が挙げられる。これらの中でも、エポキシ樹脂系プレポリマーは、硬化させたときの機械的強度に優れるため、めっき被膜から受ける応力による変形の度合いが少なく、好適である。
As a matrix forming step in the method for producing porous electroforming according to the present invention, a prepolymer curable with a curing agent, the curing agent, and a water-repellent powder having at least an electrically insulating surface are mixed. Thus, a method comprising a mixing step to obtain a viscous mixture and a solidification step in which the viscous mixture is molded and solidified to obtain a matrix can be used.
In this method, first, as a mixing step, a prepolymer, a curing agent, and a water-repellent powder are mixed to form a viscous mixture. The prepolymer is not particularly limited as long as it is a liquid prepolymer that can be cured by a curing agent and can be mixed with the water-repellent powder. Examples of such prepolymers include epoxy resin prepolymers, urethane resin prepolymers, and silicon resin prepolymers. Among these, the epoxy resin-based prepolymer is suitable because it is excellent in mechanical strength when cured, and therefore has a small degree of deformation due to stress received from the plating film.

混合工程において得られた粘性混合物は、シリコン樹脂等で形成された原型を基にし、そこに注がれ加熱や光照射等によって成形固化され、取り出されて母型とされる。こうして、母型の内部まで撥水性粉体が存在している粉体含有母型を形成することができる。   The viscous mixture obtained in the mixing step is based on a prototype formed of silicon resin or the like, poured into the mold, solidified by heating, light irradiation, or the like, and taken out to form a mother mold. In this way, a powder-containing matrix in which the water-repellent powder exists up to the inside of the matrix can be formed.

また、本発明の多孔性電鋳の製造方法における母型形成工程として、
母型形成工程は、硬化剤により硬化可能なプレポリマーと、該硬化剤と、少なくとも表面が電気的に絶縁性を有する撥水性粉体と、を混合して粘性混合物とする混合工程と、該粘性混合物を原型に塗布する塗布工程と、該原型に塗布された該粘性混合物を固化させて母型を得る固化工程と、からなる母型形成工程を採用することもできる。
こうであれば、母型の内部まで撥水性粉体が存在している粉体含有母型を形成することができる。
In addition, as a matrix forming step in the method for producing porous electroforming of the present invention,
The matrix forming step comprises mixing a prepolymer curable with a curing agent, the curing agent, and a water-repellent powder having at least a surface electrically insulating property to form a viscous mixture, It is also possible to adopt a mother die forming step comprising an application step of applying a viscous mixture to a master and a solidification step of solidifying the viscous mixture applied to the master to obtain a mother die.
By doing so, it is possible to form a powder-containing matrix in which the water-repellent powder exists up to the inside of the matrix.

本発明の多孔性電鋳の製造方法では、電気めっき液の表面張力を28mN/m以上65mN/m以下に制御することが好ましい。電気めっき液の表面張力が65mN/m以下であれば、めっき被膜上で発生した水素ガスの気泡はめっき表面から脱離し易くなり、所望しない位置のめっき被膜上に水素ガスの気泡が付着することを防止することができる。また、電気めっき液の表面張力が28mN/m以上であれば、孔内に剥き出し状態で存在する撥水性粉体に付着した水素ガスが付着状態で維持されやすくなる。このため、孔の位置でめっき被膜に確実に貫通孔を形成することができる一方、その他の所望しない位置での貫通孔の形成を防止することができ、ひいては、貫通孔を設計通りに所望の位置に所望の密度・孔径の貫通孔を形成するということがさらに確実に可能となる。さらに好ましいのは、電気めっき液の表面張力を30mN/m以上45mN/m以下に制御することである。   In the porous electroforming production method of the present invention, it is preferable to control the surface tension of the electroplating solution to 28 mN / m or more and 65 mN / m or less. When the surface tension of the electroplating solution is 65 mN / m or less, hydrogen gas bubbles generated on the plating film are easily detached from the plating surface, and hydrogen gas bubbles adhere to the plating film at an undesired position. Can be prevented. In addition, when the surface tension of the electroplating solution is 28 mN / m or more, hydrogen gas attached to the water-repellent powder that is exposed in the hole is easily maintained in the attached state. For this reason, while it is possible to reliably form a through-hole in the plating film at the position of the hole, it is possible to prevent the formation of a through-hole at other undesired positions. It is possible to more reliably form a through hole having a desired density and hole diameter at the position. More preferably, the surface tension of the electroplating solution is controlled to 30 mN / m or more and 45 mN / m or less.

本発明の多孔性電鋳の製造方法では、前記めっき工程の途中で母型をめっき液から取出し、前記孔上に形成された貫通孔の内壁面に非導電性且つ疎水性の物質を塗布するか又は該貫通孔内に非導電性且つ疎水性の物質を充填する塗布・充填工程を少なくとも1回行うこととしてもよい。
多孔性電鋳の製造におけるめっき工程では、母型上に均等の厚さでめっき被膜が形成されるのではなく、角部や凸部のめっき被膜は必要以上に厚くなる。このため、めっき工程の途中で母型をめっき液から取出し、めっき被膜が必要以上に厚くなった角部や凸部のめっき被膜を削って薄くする工程が必要となる。厚くなった部分のめっき被膜を削って薄くした後、再びめっき工程を行った場合、孔に付着していた水素ガスの気泡が取れてしまっているので、孔周縁に再び水素ガス気泡が滞留するとは限らず、めっき被膜が孔上に形成された電鋳層の貫通孔を塞いでしまうおそれがあった。
めっき工程の途中で母型をめっき液から取出し、前記孔上に形成された貫通孔の内壁面に非導電性且つ疎水性の物質(例えば、塗料)を塗布するか又は該貫通孔内に非導電性且つ疎水性の物質を塗布又は充填する塗布・充填工程を少なくとも1回行えば、母型をめっき液から取出した際に、孔上に形成された貫通孔内に付着していた水素ガスの気泡が消失しても、再度めっきを行う段階で電鋳層の貫通孔周縁のめっき被膜から発生した水素ガス気泡が非導電性且つ疎水性の物質に付着し、めっき被膜が電鋳層の貫通孔内に侵入して塞いでしまうのを防止することができる。
非導電性且つ疎水性の物質は、例えば粘着性のシリコン樹脂のような可塑性を有するものを用いることもできる。このような可塑性を有するもので電鋳層の貫通孔を充填すれば、厚くめっきが付いた部分を研削する場合にも研削クズが電着層の貫通孔内を埋めてしまうことがなくなるため、研削によってこぶ状になっためっき表面を平滑にすることが可能となり、さらなるめっきの電着を防止するための粘着テープによるマスキングが行い易くなるという利点がある。
In the method for producing porous electroforming according to the present invention, the mother die is taken out from the plating solution during the plating step, and a non-conductive and hydrophobic substance is applied to the inner wall surface of the through hole formed on the hole. Alternatively, the coating / filling step of filling the through hole with a non-conductive and hydrophobic substance may be performed at least once.
In the plating step in the production of porous electroforming, the plating film is not formed with a uniform thickness on the matrix, but the plating film at the corners and the protrusions becomes thicker than necessary. For this reason, a step of taking out the matrix from the plating solution in the middle of the plating process and scraping and thinning the plating film at the corners and convex portions where the plating film has become thicker than necessary is necessary. When the plating process is performed again after scraping and thinning the thickened plating film, hydrogen gas bubbles adhering to the hole have been removed, so if hydrogen gas bubbles stay again around the hole periphery However, there is a possibility that the plated film may block the through hole of the electroformed layer formed on the hole.
In the middle of the plating process, the matrix is taken out of the plating solution, and a non-conductive and hydrophobic substance (for example, paint) is applied to the inner wall surface of the through hole formed on the hole, or the non-filled hole is not applied to the through hole. If the application / filling process of applying or filling a conductive and hydrophobic substance is performed at least once, the hydrogen gas adhered to the through-hole formed on the hole when the mother die is taken out of the plating solution Even if the bubbles disappear, hydrogen gas bubbles generated from the plating film around the through-holes of the electroformed layer adhere to the non-conductive and hydrophobic substance at the stage of re-plating, and the plating film is formed on the electroformed layer. It can be prevented that the penetrating into the through hole is blocked.
As the non-conductive and hydrophobic substance, for example, a material having plasticity such as an adhesive silicone resin can be used. By filling the through hole of the electroformed layer with such plasticity, grinding scraps will not fill the through hole of the electrodeposition layer even when grinding a thickly plated part, There is an advantage that it is possible to smooth the plating surface which has been knurled by grinding, and it is easy to perform masking with an adhesive tape to prevent further electrodeposition of plating.

また、非導電性且つ疎水性の物質には撥水性粉体が分散されているとしてもよい。こうであれば、水素ガスの気泡はさらに非導電性且つ疎水性の物質を塗布あるいは充填した箇所に付着し易くなり、めっき被膜が貫通孔に侵入して塞いでしまうのをさらに確実に防止することができる。   Further, water repellent powder may be dispersed in the non-conductive and hydrophobic substance. If this is the case, the bubbles of hydrogen gas are more likely to adhere to portions where non-conductive and hydrophobic substances are applied or filled, and the plating film can be more reliably prevented from entering and closing the through holes. be able to.

実施例1の多孔性電鋳の製造方法の工程図である。FIG. 3 is a process diagram of a method for manufacturing porous electroforming of Example 1. シリコンゴム原型の作製工程を示す斜視図である。It is a perspective view which shows the production process of a silicon rubber original pattern. シリコンゴム原型の斜視図ある。It is a perspective view of a silicon rubber prototype. エポキシ母型の作製工程を示す斜視図である。It is a perspective view which shows the production process of an epoxy mother mold. エポキシ母型の斜視図である。It is a perspective view of an epoxy matrix. 実施例1の多孔性電鋳の製造工程を示した模式断面図である。3 is a schematic cross-sectional view showing a manufacturing process of porous electroforming of Example 1. FIG. めっき工程における孔9付近の模式断面図である。It is a schematic cross section near the hole 9 in the plating step. 実施例2の多孔性電鋳の製造方法の工程図である。6 is a process diagram of a method for manufacturing porous electroforming of Example 2. FIG. 実施例2の多孔性電鋳の製造工程を示した模式断面図である。5 is a schematic cross-sectional view showing a manufacturing process of porous electroforming of Example 2. FIG. 比較例1の多孔性電鋳の製造工程を示した模式断面図である。6 is a schematic cross-sectional view showing a manufacturing process of porous electroforming of Comparative Example 1. FIG. 電鋳殻に枠材や補強材を取り付けた状態を示した模式断面図である。It is the schematic cross section which showed the state which attached the frame material and the reinforcing material to the electrocast shell. 水素ガスの気泡によって孔へのめっき被膜の侵入が防止されることを示す、めっき中における孔部分の模式断面図である。It is a schematic cross section of the hole part in plating which shows that the penetration | invasion of the plating film to a hole is prevented by the bubble of hydrogen gas.

以下、本発明の実施例を工程図(図1)にしたがって説明する。
(実施例1)
・シリコンゴム原型の作製(原型形成工程S0)
図2に示すように、四角容器2の底にシボ面が上側にくるように皮革1を貼り付けた。そして、シリコンゴムプレポリマー3を注いでから、電気加熱器内で加熱を行った後、取り出して自然放冷し、硬化した板状のシリコンゴム原型4を取り出した(図3参照)。
Hereinafter, an embodiment of the present invention will be described with reference to the process diagram (FIG. 1).
Example 1
・ Manufacture of silicon rubber prototype (prototyping step S0)
As shown in FIG. 2, the leather 1 was affixed to the bottom of the square container 2 so that the embossed surface was on the upper side. And after pouring the silicon rubber prepolymer 3, after heating within an electric heater, it took out and allowed to cool naturally, and the hardened plate-like silicon rubber prototype 4 was taken out (see FIG. 3).

・エポキシ母型の作製(混合工程S1及び母型形成工程S2)
ポリテトラフルオロエチレン粉体(1〜30g)と硬化剤とエポキシプレポリマーとをよく混合したエポキシプレポリマー組成物6(300〜1000g)を調整する。そして、シリコンゴム原型4を、図4に示すように、転写されたシボ面が上側にくるようにして四角容器5の底に貼り付け、エポキシプレポリマー組成物6(300〜1000g)を流し込んだ。ここで、ポリテトラフルオロエチレン粉体が撥水性粉体である。
-Preparation of epoxy matrix (mixing step S1 and matrix forming step S2)
An epoxy prepolymer composition 6 (300 to 1000 g) in which polytetrafluoroethylene powder (1 to 30 g), a curing agent, and an epoxy prepolymer are mixed well is prepared. Then, as shown in FIG. 4, the silicon rubber pattern 4 was attached to the bottom of the square container 5 so that the transferred textured surface was on the upper side, and the epoxy prepolymer composition 6 (300 to 1000 g) was poured. . Here, the polytetrafluoroethylene powder is a water-repellent powder.

そして、電気加熱器内で加熱を行なった後、取り出して放冷してからシリコンゴム原型4を剥がすことにより、図6(a)に示すように、エポキシ基材7aに多くのポリテトラフルオロエチレン粉体7bが分散されたエポキシ母型7(図5参照)を得た。   Then, after heating in the electric heater, taking out and allowing to cool, the silicon rubber pattern 4 is peeled off, so that a large amount of polytetrafluoroethylene is formed on the epoxy base material 7a as shown in FIG. 6 (a). An epoxy matrix 7 (see FIG. 5) in which the powder 7b was dispersed was obtained.

・銀鏡反応による導電性被膜形成(導電性被膜形成工程S3)
さらに、上記のようにして得たエポキシ母型7の表面に銀鏡液及び還元液を同時にスプレーすることにより、図6(b)に示すように、銀鏡膜8を形成させた。ここで銀鏡膜8が導電性被膜である。
-Conductive film formation by silver mirror reaction (conductive film formation process S3)
Further, by simultaneously spraying a silver mirror solution and a reducing solution onto the surface of the epoxy matrix 7 obtained as described above, a silver mirror film 8 was formed as shown in FIG. Here, the silver mirror film 8 is a conductive film.

・孔形成工程S4
さらに、図6(c)に示すように、ドリルによって銀鏡膜8が施された面に直径0.05〜0.3mmφ、深さ0.5〜2mmの孔9を縦横0.3〜1cm間隔に均等に設けた。
-Hole forming step S4
Further, as shown in FIG. 6 (c), holes 9 having a diameter of 0.05 to 0.3 mmφ and a depth of 0.5 to 2 mm are formed on the surface provided with the silver mirror film 8 by a drill at intervals of 0.3 to 1 cm in length and width. Evenly provided.

・スルファミン酸浴による電鋳被膜の形成(めっき工程S5)
こうして孔9が形成された銀鏡膜8付エポキシ母型7に対し、めっき工程として下記スルファミン酸浴による多孔性ニッケルめっき被膜の形成を行った。電流密度は0.5〜2.0A/dm2で電解を行った。浴のPHは3.0〜4.0、浴温度は40〜50°Cとした。
スルファミン酸浴組成:
スルファミン酸ニッケル 300〜350g/L
塩化ニッケル 5〜10g/L
ホウ酸 30〜40g/L
界面活性剤 5.0mL/L
(界面活性剤として(株)ムラタ製のピット防止剤(10重量%の界面活
性剤含有)を使用した。)
めっき液の表面張力:34mN/m
なお、めっき液の表面張力は液滴法によって測定した。すなわち、ビュレットから一定体積の試料及び純水が滴下するときの滴数を数え,それらの滴数及び試料及び純水の比重から、次式によって試料の表面張力を求めた。

Figure 0006405180
-Formation of electroformed film in sulfamic acid bath (plating step S5)
A porous nickel plating film was formed by the following sulfamic acid bath as a plating step on the epoxy matrix 7 with the silver mirror film 8 in which the holes 9 were thus formed. Electrolysis was performed at a current density of 0.5 to 2.0 A / dm2. The pH of the bath was 3.0 to 4.0, and the bath temperature was 40 to 50 ° C.
Sulfamic acid bath composition:
Nickel sulfamate 300-350g / L
Nickel chloride 5-10g / L
Boric acid 30-40g / L
Surfactant 5.0mL / L
(A pit inhibitor made by Murata Co., Ltd. (containing 10% by weight of surfactant) was used as a surfactant.)
Surface tension of plating solution: 34mN / m
The surface tension of the plating solution was measured by a droplet method. That is, the number of drops when a sample of a certain volume and pure water was dropped from the burette was counted, and the surface tension of the sample was obtained from the following formula from the number of drops and the specific gravity of the sample and pure water.
Figure 0006405180

このめっき工程では、図7(a)に示すように、導電性を有する銀鏡膜8上でニッケルが析出し、時間とともにニッケルめっき被膜10が厚くなる。一方、孔9の表面は導電性を有しないためニッケルは析出しない。さらに、ニッケルめっき被膜10のうち孔9の周縁では電流密度が大きくなるため、副反応である水の電気分解によって水素ガスが発生し、それが成長して気泡11となる。気泡11は疎水性であるため、孔9内に剥き出しとなっている撥水性のポリテトラフルオロエチレン粒子7bに強固に付着して、時間の経過とともに大きくなり、孔9を封鎖する(図7(b)参照)。そして、この付着した気泡11のため、孔9周縁のめっき被膜10が、孔9内に侵入することが阻止され、孔9上に、めっき被膜10の母型側から反対面側に達する貫通孔12が確実に形成される。(図6(d)参照)   In this plating step, as shown in FIG. 7A, nickel is deposited on the conductive silver mirror film 8, and the nickel plating film 10 becomes thicker with time. On the other hand, since the surface of the hole 9 does not have conductivity, nickel does not precipitate. Furthermore, since the current density increases at the periphery of the hole 9 in the nickel plating film 10, hydrogen gas is generated by electrolysis of water, which is a side reaction, and grows into bubbles 11. Since the bubbles 11 are hydrophobic, they are firmly attached to the water-repellent polytetrafluoroethylene particles 7b exposed in the holes 9 and become larger as time passes to block the holes 9 (FIG. 7 ( b)). Due to the adhering bubbles 11, the plating film 10 around the hole 9 is prevented from entering the hole 9, and the through hole reaching the opposite surface side from the matrix side of the plating film 10 on the hole 9. 12 is reliably formed. (See Fig. 6 (d))

・電鋳層の取り出し(剥離工程S6)
めっき工程終了後、図6(d)に示す、貫通孔12を有するニッケルめっき被膜10が形成されたエポキシ母型7を引き上げ、水洗し、エポキシ母型7からニッケルめっき被膜10を剥がし、さらに水洗し、乾燥する。こうして、シボ面を有する目的の多孔性電鋳(図6(e)参照)を得た。この多孔性電鋳の一面側をLED光源で照らし、他面側から肉眼観察することにより、孔9に相当する部分から光が観測された。このことから、孔9に相当する部分には貫通孔12が形成されていることが分かった。以上のように、実施例1の多孔性電鋳の製造方法によれば、孔9を形成させた箇所に確実に貫通孔12が存在する多孔性電鋳を製造することができる。孔9はドリルやレーザ加工によって所望の位置に所望の径及び所望の密度で形成することができるため、ひいては、所望の位置に所望の径及び所望の密度で貫通孔12を形成することができる。
・ Removal of electroformed layer (peeling step S6)
After completion of the plating step, the epoxy mother mold 7 on which the nickel plating film 10 having the through holes 12 shown in FIG. 6D is pulled up, washed with water, the nickel plating film 10 is peeled off from the epoxy mother mold 7, and further washed with water. And dry. Thus, the intended porous electroforming having a textured surface (see FIG. 6E) was obtained. Light was observed from a portion corresponding to the hole 9 by illuminating one surface side of the porous electroforming with an LED light source and visually observing from the other surface side. From this, it was found that the through hole 12 was formed in the portion corresponding to the hole 9. As described above, according to the method for manufacturing porous electroforming of Example 1, it is possible to manufacture a porous electroforming in which the through holes 12 are reliably present at the positions where the holes 9 are formed. Since the hole 9 can be formed at a desired position with a desired diameter and a desired density by drilling or laser processing, by extension, the through hole 12 can be formed at a desired position with a desired diameter and a desired density. .

(実施例2)
実施例2では、図8に示すように、めっき工程S51終了後に、エポキシ母型をめっき液から引上げ、水洗し、乾燥後、孔の位置に生じた電鋳層の貫通孔12内に微細ノズルの付いた治具を用いてシリコーン粘着剤12aを充填した(充填工程S52、図9(b)参照)。この後、めっきの厚く付いた部分を規定厚さまで研削した(研削工程S53)。さらに、研削部及び規定めっき厚さまでめっきの着いた部分に粘着テープによるマスキングを行って(マスキング工程S54)、再度、めっき液中に入れてめっきを行った。以上の工程S51〜S54を5回繰り返した。その他の工程については実施例1と同様であり、同一の工程には同一の符号を付して説明を省略する。
(Example 2)
In Example 2, as shown in FIG. 8, after the plating step S51 is completed, the epoxy matrix is lifted from the plating solution, washed with water, dried, and then fine nozzles are formed in the through holes 12 of the electroformed layer formed at the positions of the holes. The silicone adhesive 12a was filled using a jig with (see filling step S52, FIG. 9B). Thereafter, the thick plating portion was ground to a specified thickness (grinding step S53). Furthermore, masking with an adhesive tape was performed on the ground portion and the portion where plating was applied to the specified plating thickness (masking step S54), and plating was performed again in the plating solution. The above steps S51 to S54 were repeated 5 times. Other steps are the same as those in the first embodiment, and the same steps are denoted by the same reference numerals and the description thereof is omitted.

(比較例1)
比較例1では、充填工程S52を行わず、その他については実施例2と同様にめっき途中でめっきを中断し、再びめっきを行った。
(Comparative Example 1)
In Comparative Example 1, the filling step S52 was not performed, and the others were interrupted during plating in the same manner as in Example 2 and then plated again.

実施例2では、めっき工程S5の途中でエポキシ母型上に形成されためっき被膜の厚い部分を削るため、多孔性電鋳の形状を金型として使用しやすいように整えることができる。また、ニッケルめっき被膜10の貫通孔12内にはシリコーン粘着剤12aが入っているためにめっき被膜が孔内を塞ぐということもない。さらには、ニッケル粉等の研削クズが孔内に入ることもない。また、めっきが中断されるにもかかわらず、再びめっきした時、図9(c)に示すように、電流が集中する貫通孔12周縁で水素ガスが発生し、気泡12bとなってシリコーン粘着剤12aに付着する。このため、ニッケルめっき被膜10の貫通孔12側への成長が阻止され、貫通孔12の径が狭くなるおそれもない(図9(d)参照)。   In Example 2, since the thick part of the plating film formed on the epoxy matrix in the middle of the plating step S5 is scraped, the shape of the porous electroforming can be adjusted so that it can be easily used as a mold. Further, since the silicone adhesive 12a is contained in the through hole 12 of the nickel plating film 10, the plating film does not block the hole. Furthermore, grinding dust such as nickel powder does not enter the hole. In addition, when plating is performed again even though the plating is interrupted, as shown in FIG. 9C, hydrogen gas is generated at the periphery of the through hole 12 where the current concentrates, and bubbles 12b are formed as a silicone adhesive. It adheres to 12a. For this reason, the growth to the through-hole 12 side of the nickel plating film 10 is blocked | prevented, and there is no possibility that the diameter of the through-hole 12 may become narrow (refer FIG.9 (d)).

これに対して、比較例1では、めっきを中断し、めっきを再開した時、図10(a)に示すように、めっきの副反応で発生した水素ガスは界面活性剤のためにめっき被膜に付着し難くない場合もあり、孔上のニッケルめっき被膜10から脱離した箇所では、図10bに示すように部分的に、ニッケルめっき被膜10が貫通孔12側へ成長し、貫通孔12の径が狭くなるった(図10(b)参照)。   On the other hand, in Comparative Example 1, when the plating is interrupted and the plating is restarted, as shown in FIG. 10A, the hydrogen gas generated by the side reaction of the plating is applied to the plating film due to the surfactant. In some cases, it is not difficult to adhere, and at the place where the nickel plating film 10 is detached from the hole, the nickel plating film 10 partially grows toward the through hole 12 as shown in FIG. Became narrower (see FIG. 10B).

実施例3-1〜3-4及び比較例2
電鋳めっき液へ界面活性剤を添加した場合の効果を調べるため、次の試験を行った。
エポキシ樹脂プレポリマーにフッ素樹脂粒子(旭硝子製、品番L169E)を10重量%添加して混合し、さらに硬化剤を添加して混合して、フッ素樹脂粒子含有のエポキシ塗料とした。このエポキシ塗料をエポキシ板からなる原型の表面に数ミリ厚さで塗布し、加熱硬化した(縦幅30cm×横幅18cm×厚さ2cm)。この試験片に銀鏡液及び還元液を同時にスプレーすることにより銀鏡被膜を形成した後、6×15cmの大きさに切断し、各試験片の銀鏡被膜面以外の面(すなわち、側面及び裏面)に被覆テープを貼着してマスキングした。さらに銀鏡被膜面に径0.18mmのドリルを用いて深さ約1mmの有底孔を約7mm間隔で均等に設けた。さらに、試験片の端部に7mm径の有底穴を1個あけ、プラスチックボルトとプラスチックナットで陰極端子を銀鏡面に圧着させて通電用の端子とした。
Examples 3-1 to 3-4 and Comparative Example 2
In order to investigate the effect of adding a surfactant to the electroforming plating solution, the following test was performed.
The epoxy resin prepolymer was mixed with 10% by weight of fluororesin particles (manufactured by Asahi Glass, product number L169E) and further mixed with a curing agent to obtain an epoxy paint containing fluororesin particles. This epoxy paint was applied to the surface of a prototype made of an epoxy plate with a thickness of several millimeters and cured by heating (length 30 cm × width 18 cm × thickness 2 cm). A silver mirror coating and a reducing solution are simultaneously sprayed on the test piece to form a silver mirror coating, and then cut into a size of 6 × 15 cm. On each test piece, a surface other than the silver mirror coating surface (that is, the side surface and the back surface). A masking tape was applied and masked. Further, a bottomed hole having a depth of about 1 mm was uniformly provided at intervals of about 7 mm using a drill having a diameter of 0.18 mm on the surface of the silver mirror coating. Further, one 7 mm diameter bottomed hole was made at the end of the test piece, and the cathode terminal was pressure-bonded to the silver mirror surface with a plastic bolt and a plastic nut to obtain a terminal for energization.

電鋳用のめっき液は、界面活性剤の濃度以外は実施例1で用いためっき液と同じ組成のものを用いた。界面活性剤としては(株)ムラタ製のピット防止剤を用い、めっき液に所定量(実施例3-1では2.5mL/L、実施例3-2では5.0mL/L、実施例3-3では7.5mL/L、実施例3-4では10.0mL/L)を添加し、試験用めっき槽(内寸16.5×29×液深さ12cm)に入れてめっきを行った。なお、比較例2では界面活性剤を添加せず、同様の操作を行った。また、めっき時の試験片の配置は、試験片の15cmの辺を下にしてめっき液中に垂直から30度傾斜させて(すなわち、水平から60度起こした角度として)設置し、試験片の両側にNi陽極を垂直に配置してめっきを行った。めっきは電流密度を0.5A/dmとし、試験片面積0.9dmに必要な電流0.45Aを流した。 The electroforming plating solution used had the same composition as the plating solution used in Example 1 except for the concentration of the surfactant. As a surfactant, a pit inhibitor made by Murata Co., Ltd. is used, and a predetermined amount of plating solution is used (2.5 mL / L in Example 3-1, 5.0 mL / L in Example 3-2, Example 3). 7.5 mL / L for Example-3 and 10.0 mL / L for Example 3-4) were added and plated in a test plating tank (inside dimensions 16.5 × 29 × liquid depth 12 cm). . In Comparative Example 2, the same operation was performed without adding the surfactant. In addition, the test piece is arranged at the time of plating by inclining 30 degrees from the vertical in the plating solution with the side of 15 cm of the test piece facing down (that is, as an angle raised by 60 degrees from the horizontal). Plating was performed with Ni anodes arranged vertically on both sides. Plating current density was 0.5A / dm 2, the current flows 0.45A necessary specimen area 0.9dm 2.

<評 価>
上記のようにして24時間めっきを行った後、めっき被膜をエポキシ樹脂から剥がし、当初母型に開けた「ドリル孔の孔数」と、「ドリル孔上にできためっき層の貫通孔数」と、「ドリル孔上以外の場所に発生しためっき層の貫通孔数」を計測した。その結果、表1に示すように、界面活性剤を添加した実施例3−1〜3-4では、母型の孔上以外で生じた貫通孔数が6個以下と極めて少なく、意図しない箇所での貫通孔の発生をほぼ防止できることが分かった。これに対して、界面活性剤をめっき液に添加していない比較例2では、母型の孔上以外で生じた貫通孔数が42個と多く、意図しない箇所での貫通孔がかなり発生していることが分かった。また、実施例3-1〜3-4での比較から、界面活性剤の添加量が多くなるほど、母型の孔上以外で生じた貫通孔数が少なくなるが、母型に開けたドリル孔上での貫通孔の再現率が低下することが分かった。
<Evaluation>
After performing plating for 24 hours as described above, the plating film was peeled off from the epoxy resin, and “the number of holes in the drill hole” and “the number of through holes in the plating layer formed on the drill hole” that were initially opened in the mother die And “the number of through-holes of the plating layer generated in a place other than the hole on the drill hole” was measured. As a result, as shown in Table 1, in Examples 3-1 to 3-4 to which a surfactant was added, the number of through holes generated other than on the mother die was as small as 6 or less, which was not intended. It was found that the generation of through-holes can be substantially prevented. On the other hand, in Comparative Example 2 in which the surfactant was not added to the plating solution, the number of through holes generated other than on the mother mold hole was as large as 42, and through holes at unintended locations were considerably generated. I found out. In addition, from the comparison in Examples 3-1 to 3-4, as the amount of the surfactant added increases, the number of through holes generated outside the hole in the mother die decreases, but the drill hole opened in the mother die It was found that the reproducibility of the through-hole in the above was lowered.

Figure 0006405180
Figure 0006405180

また、実施例3-1〜3-4及び比較例2で用いためっき液の界面張力を、液滴法により測定した。   Further, the interfacial tension of the plating solutions used in Examples 3-1 to 3-4 and Comparative Example 2 was measured by a droplet method.

結果を表2に示す。この表2と上記表1の結果から、母型に開けたドリル孔上での貫通孔の再現率が高く、しかも母型の孔上以外に生じる貫通孔(所望以外の貫通孔)の数を少なくするためには、めっき液の表面張力を28mN/m以上65mN/m以下となるように界面活性剤の濃度を調整することが好ましく、更に好ましいのは30mN/m以上45mN/m以下となるように調整することであることが分かった。
The results are shown in Table 2. From the results of Table 2 and Table 1 above, the reproducibility of the through holes on the drill holes drilled in the mother die is high, and the number of through holes (other than the desired through holes) generated other than on the mother die holes is calculated. In order to reduce the concentration, it is preferable to adjust the concentration of the surfactant so that the surface tension of the plating solution is 28 mN / m or more and 65 mN / m or less, and more preferably 30 mN / m or more and 45 mN / m or less. It turned out to be adjusted as follows.

Figure 0006405180
Figure 0006405180

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

1…皮革、2…四角容器、3…シリコンゴムプレポリマー、4…シリコンゴム原型、5…四角容器、6…エポキシプレポリマー組成物(粘性混合物)、7b…ポリテトラフルオロエチレン粉体(撥水性粉体)、7…エポキシ母型(粉体含有母型)、8…銀鏡膜(導電性被膜)、9…孔、10…多孔性めっき被膜、11…水素ガス気泡、12…貫通孔、12a…非導電性且つ疎水性の物質、100…多孔性電鋳、101…端部、102…枠体、200…孔、201…めっき被膜、202…導電性被膜、203…気泡
S0…原型形成工程、S1…混合工程、S2…母型形成工程、S3…導電性被膜形成工程、S4…孔形成工程、S5、S51…めっき工程、S52…充填工程(塗布・充填工程)、S53…研削工程、S54…マスキング工程、
S6…剥離工程
DESCRIPTION OF SYMBOLS 1 ... Leather, 2 ... Square container, 3 ... Silicon rubber prepolymer, 4 ... Silicon rubber prototype, 5 ... Square container, 6 ... Epoxy prepolymer composition (viscous mixture), 7b ... Polytetrafluoroethylene powder (water repellency) (Powder), 7 ... epoxy matrix (powder-containing matrix), 8 ... silver mirror film (conductive film), 9 ... hole, 10 ... porous plating film, 11 ... hydrogen gas bubble, 12 ... through hole, 12a ... Non-conductive and hydrophobic substance, 100 ... Porous electroforming, 101 ... End, 102 ... Frame, 200 ... Hole, 201 ... Plating coating, 202 ... Conductive coating, 203 ... Bubble S0 ... Prototype formation process , S1 ... mixing step, S2 ... matrix forming step, S3 ... conductive film forming step, S4 ... hole forming step, S5, S51 ... plating step, S52 ... filling step (coating / filling step), S53 ... grinding step, S54: Masking process,
S6 ... peeling process

Claims (6)

電気的に絶縁性を有する撥水性粉体が少なくとも表面付近に含有されている粉体含有母型を形成する母型形成工程と、
該粉体含有母型の表面に導電性被膜を形成する導電性被膜形成工程と、
該導電性被膜の表面から該粉体含有母型に達する複数の孔を形成することにより、該孔内に撥水性粉体が剥き出しとなるようにする孔形成工程と、
該孔が形成された導電性被膜付母型を界面活性剤が添加された電気めっき液中で電気めっきを行い多孔性めっき被膜を形成するめっき工程と、
を備えた多孔性電鋳の製造方法。
A matrix forming step of forming a powder-containing matrix in which electrically repellent water-repellent powder is contained at least near the surface;
A conductive film forming step of forming a conductive film on the surface of the powder-containing matrix;
Forming a plurality of holes reaching the powder-containing matrix from the surface of the conductive coating so that the water-repellent powder is exposed in the holes; and
A plating step of forming a porous plating film by electroplating the matrix with a conductive film in which the holes are formed in an electroplating solution to which a surfactant is added;
A method for producing porous electroforming comprising:
前記母型形成工程は、硬化剤により硬化可能なプレポリマーと、該硬化剤と、少なくとも表面が電気的に絶縁性を有する撥水性粉体と、を混合して粘性混合物とする混合工程と、該粘性混合物を成形固化させて母型を得る固化工程と、からなることを特徴とする請求項1に記載の多孔性電鋳の製造方法。   The matrix forming step is a mixing step in which a prepolymer curable by a curing agent, the curing agent, and a water-repellent powder having at least an electrically insulating surface are mixed to form a viscous mixture; The method for producing a porous electroforming according to claim 1, further comprising: a solidifying step in which the viscous mixture is molded and solidified to obtain a matrix. 前記母型形成工程は、硬化剤により硬化可能なプレポリマーと、該硬化剤と、少なくとも表面が電気的に絶縁性を有する撥水性粉体と、を混合して粘性混合物とする混合工程と、
該粘性混合物を原型に塗布する塗布工程と、
該原型に塗布された該粘性混合物を固化させて母型を得る固化工程と、からなることを特徴とする請求項1に記載の多孔性電鋳の製造方法。
The matrix forming step is a mixing step in which a prepolymer curable by a curing agent, the curing agent, and a water-repellent powder having at least an electrically insulating surface are mixed to form a viscous mixture;
An application step of applying the viscous mixture to a master;
The method for producing a porous electroforming according to claim 1, further comprising: a solidifying step of solidifying the viscous mixture applied to the original mold to obtain a mother mold.
前記電気めっき液の表面張力が28mN/m以上65mN/m以下となるように前記界面活性剤が添加されている請求項1乃至3のいずれか1項に記載の多孔性電鋳の製造方法。   The method for producing a porous electroforming according to any one of claims 1 to 3, wherein the surfactant is added so that a surface tension of the electroplating solution is 28 mN / m or more and 65 mN / m or less. 前記めっき工程の途中で母型をめっき液から取出し、前記孔上に形成された貫通孔の内壁面に非導電性且つ疎水性の物質を塗布するか又は該貫通孔内に非導電性且つ疎水性の物質を塗布又は充填する塗布・充填工程を少なくとも1回行うことを特徴とする請求項1乃至4のいずれか1項に記載の多孔性電鋳の製造方法。   In the middle of the plating process, the matrix is removed from the plating solution, and a non-conductive and hydrophobic substance is applied to the inner wall surface of the through hole formed on the hole, or the non-conductive and hydrophobic substance is applied to the through hole. The method for producing a porous electroforming according to any one of claims 1 to 4, wherein the coating / filling step of coating or filling a conductive substance is performed at least once. 前記非導電性且つ疎水性の物質には撥水性粉体が分散されていることを特徴とする請求項5記載の多孔性電鋳の製造方法。   6. The method for producing porous electroforming according to claim 5, wherein water-repellent powder is dispersed in the non-conductive and hydrophobic substance.
JP2014207736A 2014-10-09 2014-10-09 Production method of porous electroforming Active JP6405180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207736A JP6405180B2 (en) 2014-10-09 2014-10-09 Production method of porous electroforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207736A JP6405180B2 (en) 2014-10-09 2014-10-09 Production method of porous electroforming

Publications (2)

Publication Number Publication Date
JP2016074964A JP2016074964A (en) 2016-05-12
JP6405180B2 true JP6405180B2 (en) 2018-10-17

Family

ID=55951049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207736A Active JP6405180B2 (en) 2014-10-09 2014-10-09 Production method of porous electroforming

Country Status (1)

Country Link
JP (1) JP6405180B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114061B2 (en) * 2018-07-02 2022-08-08 ミタク工業株式会社 METHOD FOR MANUFACTURING METAL POROUS MOLDED PRODUCT
CN110777400B (en) * 2019-10-16 2021-03-19 中国科学院兰州化学物理研究所 Micro electroforming method based on elastic conductive silicon rubber mold

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012387B2 (en) * 1991-12-05 2000-02-21 江南特殊産業株式会社 Method of manufacturing air-permeable electroformed shell
JPH05263286A (en) * 1992-03-17 1993-10-12 Kyokuto Giken:Kk Air passable electrocasting mold and its production
JP2529512B2 (en) * 1992-07-21 1996-08-28 株式会社イケックス工業 Method for manufacturing porous mold by electroforming
JP2716322B2 (en) * 1992-08-24 1998-02-18 株式会社 イケックス工業 Manufacturing method of plated products
JP2716324B2 (en) * 1992-08-24 1998-02-18 株式会社 イケックス工業 Method for manufacturing porous mold by electroforming
JP2505395B2 (en) * 1992-12-25 1996-06-05 三ツ星ベルト株式会社 Method for manufacturing resin mold
JP3298287B2 (en) * 1993-11-01 2002-07-02 株式会社極東精機 Manufacturing method of electroforming mold
US5632878A (en) * 1994-02-01 1997-05-27 Fet Engineering, Inc. Method for manufacturing an electroforming mold
JP3100337B2 (en) * 1996-01-09 2000-10-16 江南特殊産業株式会社 Porous electroformed shell and manufacturing method thereof
JP5524989B2 (en) * 2012-01-18 2014-06-18 極東技研有限会社 Production method of porous electroforming

Also Published As

Publication number Publication date
JP2016074964A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US11560629B2 (en) Methods of preparing articles by electrodeposition and additive manufacturing processes
JP3333025B2 (en) Electro-composite plating method and apparatus for metal material
CN109922936A (en) By on workpiece deposition materials layer manufacture mold, the mold and product that are obtained by the technique
Kim et al. Selective copper metallization of nonconductive materials using jet-circulating electrodeposition
JP6405180B2 (en) Production method of porous electroforming
TWI575122B (en) Production method for stainless steel containing member
CN106801248A (en) The preparation facilities and method of a kind of three-dimensional micro-nano structure device
JP2011519392A (en) Method for producing a three-dimensional structure having a hydrophobic surface using an immersion method
JP6625134B2 (en) Manufacturing method of molded article and molded article
Kim et al. The characteristics of selective 3D metal additive process using electrochemical deposition and nozzle fluid dynamics
JP5524989B2 (en) Production method of porous electroforming
JP4213198B1 (en) Method for producing porous electroformed shell
JP6408527B2 (en) Plating apparatus, plating method and plating jig
JP6828371B2 (en) Plating film manufacturing method
JPH07173668A (en) Production of electroforming metal mold
Zhou et al. Fabrication of high-aspect-ratio metallic microstructures by microelectroforming using silver-coated polydimethylsiloxane molds with controllable wettability
TWI722290B (en) Manufacturing method of wiring board
KR20150087502A (en) Electroplating apparatus and processing method thereof
KR20090098202A (en) Circuit board manufacturing method
JP2006117992A (en) Method for forming object to be plated, method for forming electroplating film, object to be plated and electroplating film
JP2005169547A (en) Pellet molding die and pellet manufacturing method
CN107709631B (en) The excellent surface treated aluminum material of resin adhesion and its manufacturing method and surface treated aluminum material/resin conjugant
JP2008308708A (en) Method for forming plated film, and plating apparatus
Ming et al. Vacuum micro-electroforming technique for the production of void-free microcomponent
RU136437U1 (en) DEVICE FOR APPLICATION OF ELECTRICAL COATINGS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180914

R150 Certificate of patent or registration of utility model

Ref document number: 6405180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250