JP6404747B2 - Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system - Google Patents

Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system Download PDF

Info

Publication number
JP6404747B2
JP6404747B2 JP2015039991A JP2015039991A JP6404747B2 JP 6404747 B2 JP6404747 B2 JP 6404747B2 JP 2015039991 A JP2015039991 A JP 2015039991A JP 2015039991 A JP2015039991 A JP 2015039991A JP 6404747 B2 JP6404747 B2 JP 6404747B2
Authority
JP
Japan
Prior art keywords
power
storage battery
filter
fluctuation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039991A
Other languages
Japanese (ja)
Other versions
JP2016163427A (en
Inventor
佐藤 徹
徹 佐藤
晃 神部
晃 神部
和雅 廣瀬
和雅 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2015039991A priority Critical patent/JP6404747B2/en
Publication of JP2016163427A publication Critical patent/JP2016163427A/en
Application granted granted Critical
Publication of JP6404747B2 publication Critical patent/JP6404747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、蓄電池を充放電制御することによって太陽光発電の出力変動を緩和するシステムに関する。   The present invention relates to a system that mitigates output fluctuations of photovoltaic power generation by charge / discharge control of a storage battery.

再生可能エネルギーの固定価格買取制度が施行され、太陽光発電の導入が急増している。太陽光発電の出力は天候の影響により激しく変動する。そのため、太陽光発電が大量導入されると、その出力変動により配電線系統の電圧や周波数が変動することが問題視されている。   The feed-in tariff system for renewable energy has been put in place, and the introduction of solar power generation has increased rapidly. Solar power output fluctuates drastically due to weather effects. For this reason, when a large amount of photovoltaic power generation is introduced, it is regarded as a problem that the voltage and frequency of the distribution line system fluctuate due to the output fluctuation.

この出力変動に対する対策として、蓄電池システムを設置して、太陽光発電の出力変動を緩和(平準化)する電力平準化システムが知られている(特許文献1参照)。   As a countermeasure against this output fluctuation, a power leveling system that installs a storage battery system and relaxes (levels) the output fluctuation of solar power generation is known (see Patent Document 1).

特許4596695号公報Japanese Patent No. 4596695

電力平準化システムの機能は、急激に変動する太陽光発電の出力を平準化して系統に供給することである。この機能を実現するためには、太陽光発電の出力を平滑化するローパスフィルタを構成して系統に接続すれば良い。   The function of the power leveling system is to level the output of the rapidly changing photovoltaic power generation and supply it to the system. In order to realize this function, a low-pass filter that smoothes the output of photovoltaic power generation may be configured and connected to the system.

すなわち、電力平準化システムを構成することは、電力フィルタを構成することと同じとなる。電力フィルタの減衰量を大きくすればするほど平準化ができるが、逆に蓄電池容量の増大化を招く。このため、システムを最適化するには、電力フィルタの電力伝達関数を如何に設計するかに尽きる。   That is, configuring a power leveling system is the same as configuring a power filter. As the attenuation of the power filter is increased, leveling can be performed, but conversely, the storage battery capacity is increased. For this reason, in order to optimize the system, all that can be done is how to design the power transfer function of the power filter.

そこで、本発明では、電力平準化システムを構成する電力フィルタの電力伝達関数を最適に設計する方法と、電力平準化システムの性能及びコストの面から重要な役割を占める蓄電池容量を最適化するための算出方法について提示する。   Therefore, in the present invention, in order to optimize the storage capacity that occupies an important role in terms of performance and cost of the power leveling system, and a method for optimally designing the power transfer function of the power filter constituting the power leveling system. The calculation method of is presented.

請求項1記載の発明は、蓄電システムを充放電制御することによって急激に変動する太陽光発電の出力を平準化して配電線系統に供給する電力フィルタとしての電力平準化システムにおいて、太陽光発電の出力変動の最大値と、配電系統に供給する電力の変動速度の許容値から必要となる減衰量を決め、当該減衰量から電力フィルタを構成する変動抑制フィルタの遮断周波数を決定することに特徴を有する。   The invention according to claim 1 is a power leveling system as a power filter for leveling the output of solar power generation that varies rapidly by charge / discharge control of the power storage system and supplying the output to the distribution line system. A characteristic is that the required attenuation is determined from the maximum value of the output fluctuation and the allowable value of the fluctuation speed of the power supplied to the distribution system, and the cutoff frequency of the fluctuation suppression filter constituting the power filter is determined from the attenuation. Have.

請求項2記載の発明は、蓄電システムを充放電制御することによって急激に変動する太陽光発電の出力を平準化して配電線系統に供給する電力フィルタとしての電力平準化システムにおいて、電力フィルタを構成する変動抑制フィルタの遮断周波数に対応する蓄電量比率を求め、該蓄電量比率と1日の総発電量を乗算することによって蓄電池容量の最小値(理想値)を求め、それに充放電効率等を考慮することで必要な蓄電容量を決定することに特徴を有する。   According to a second aspect of the present invention, there is provided a power leveling system as a power leveling system as a power leveling filter for leveling the output of photovoltaic power generation that fluctuates rapidly by charge / discharge control of the power storage system and supplying it to a distribution line system The storage capacity ratio corresponding to the cutoff frequency of the fluctuation suppression filter is calculated, and the minimum value (ideal value) of the storage battery capacity is determined by multiplying the storage capacity ratio by the total amount of power generation per day, and the charge / discharge efficiency, etc. It is characterized by determining the necessary storage capacity by taking into account.

請求項1記載の発明によれば、電力フィルタとして機能する電力平準化システムにおける電力伝達関数の設計が容易に実現できる。   According to the first aspect of the present invention, the design of the power transfer function in the power leveling system that functions as a power filter can be easily realized.

請求項2記載の発明によれば、太陽光発電の出力変動を許容値以下に抑えるために必要となる最小の蓄電池容量を算出することができ、システム設計上優位である。   According to invention of Claim 2, the minimum storage battery capacity required in order to suppress the output fluctuation | variation of photovoltaic power generation to an allowable value or less can be calculated, and it is advantageous on system design.

本発明の電力フィルタの制御構成である。It is a control structure of the power filter of this invention. 本発明の電力平準化システムの構成である。It is a structure of the electric power leveling system of this invention. 本発明の平準化コントローラの制御ブロック図である。It is a control block diagram of the leveling controller of the present invention. 遮断周波数と電力変動減衰量の関係を示すグラフである。It is a graph which shows the relationship between a cutoff frequency and electric power fluctuation attenuation amount. 遮断周波数と蓄電量比率の関係を示すグラフである。It is a graph which shows the relationship between a cutoff frequency and a storage amount ratio. 電力変動減衰量と蓄電量比率の関係を示すグラフである。It is a graph which shows the relationship between electric power fluctuation attenuation amount and a storage amount ratio.

以下、本発明の実施の形態について図1乃至図6を用いて説明する。図1に本発明に係る電力平準化システム(電力フィルタ)Aの制御構成を示す。太陽光発電の出力電力Pinを変動抑制フィルタ1により平滑化処理を行ったものが、系統に供給する電力の目標値Po *となる。その目標値と太陽光発電の出力の差分を、後述する蓄電池及び蓄電池パワコンから構成される蓄電池システム2の出力電力指令値Pbs *とする。蓄電池システム2は、その指令値にしたがって蓄電池の電力を充放電制御する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a control configuration of a power leveling system (power filter) A according to the present invention. That the output power P in the solar power was smoothed by fluctuation suppression filter 1 becomes the target value P o * of the power supplied to the grid. The difference between the target value and the output of the photovoltaic power generation is defined as an output power command value P bs * of the storage battery system 2 including a storage battery and a storage battery power conditioner described later. The storage battery system 2 performs charge / discharge control of the power of the storage battery according to the command value.

図1において、Pout Pin Pbsであり、Pbs * Po * Pin、Po * Gf Pinである。蓄電池システム2はPbs Pbs *となるように出力電力Pbsを制御するので、Pout Pin Pbs *=Pin Gf Pin Pin=Gf Pinとなり、結果、変動抑制フィルタ1の伝達関数Gf=電力フィルタ(電力平準化システムA)の伝達関数Gpとなる。 In FIG. 1, P out = P in + P bs and P bs * = P o * P in , P o * = G f P in . Storage battery system 2 has P bs = Since the output power P bs is controlled to be P bs * , P out = P in + P bs * = P in + G f P in P in = G f P in , and as a result, the transfer function G f of the fluctuation suppression filter 1 = the transfer function G p of the power filter (power leveling system A).

図2は図1の制御構成にしたがって太陽光発電に対し交流側で並列に接続する形とした電力平準化システムAの構成を示している。電力平準化システムAは、蓄電池3と、太陽光発電7や蓄電池3の出力電力を計測するトランスデューサ等のセンサ4a〜4d、それからの値を基に電力平準化制御を行って蓄電池3の出力電流指令値を生成する平準化コントローラ5、生成された指令値を基に蓄電池3の出力電流を制御し充放電を行うパワーコンディショナー(以下、蓄電池パワコン)6から構成されている。なお、前記太陽光発電7は、太陽電池8とパワーコンディショナー(以下、太陽光パワコンという)9から構成されている。   FIG. 2 shows a configuration of a power leveling system A that is connected in parallel on the AC side to photovoltaic power generation according to the control configuration of FIG. The power leveling system A performs the power leveling control based on the storage battery 3, the sensors 4a to 4d such as transducers for measuring the output power of the solar power generation 7 and the storage battery 3, and the values therefrom, and the output current of the storage battery 3 The leveling controller 5 generates a command value, and a power conditioner (hereinafter referred to as a storage battery power converter) 6 that controls the output current of the storage battery 3 based on the generated command value and charges and discharges. The solar power generation 7 includes a solar battery 8 and a power conditioner (hereinafter referred to as a solar power converter) 9.

図3は前記平準化コントローラ5の制御ブロック図である。平準化コントローラ5は、変動抑制フィルタ1の機能と、蓄電池3及び蓄電池パワコン6からなる蓄電池システム2における蓄電池パワコン6の出力電力Pbsをフィードバック制御する機能を有している。 FIG. 3 is a control block diagram of the leveling controller 5. The leveling controller 5 has a function of the fluctuation suppression filter 1 and a function of performing feedback control of the output power P bs of the storage battery power conditioner 6 in the storage battery system 2 including the storage battery 3 and the storage battery power conditioner 6.

以下に電力フィルタの遮断周波数と、蓄電池容量の算出法を記す。出力変動の激しさを表す指標として、変動速度の絶対値の最大値|dP / dt|maxを用いる。電力フィルタ通過後に|dP / dt|maxがどの程度小さくなるかで電力フィルタの性能(電力平準化の度合)を評価する。この評価により電力フィルタを決めると、太陽光発電の容量に応じて蓄電池容量Bcapが決まってくる。 The method for calculating the cutoff frequency of the power filter and the storage battery capacity is described below. The maximum absolute value of the fluctuation speed as an indicator of the intensity of output fluctuation | dP / Use dt | max . After passing the power filter | dP / The power filter performance (degree of power leveling) is evaluated based on how small dt | max is. When the power filter is determined by this evaluation, the storage battery capacity B cap is determined according to the capacity of the photovoltaic power generation.

最初に、蓄電池容量算出の概略手順を示し、その後、その詳細を説明する。なお、これ以降、電力や出力の変動速度のことを単に電力変動とか出力変動と言う。蓄電池容量算出の概略手順は次のようになる。   First, an outline procedure for calculating the storage battery capacity will be shown, and then the details will be described. Hereinafter, the fluctuation speed of power and output is simply referred to as power fluctuation or output fluctuation. The general procedure for calculating the storage battery capacity is as follows.

(1)最初に、電力フィルタ通過後に|dP / dt|maxがどの程度減衰するかを把握する。入出力における|dP / dt|maxの比を電力変動減衰量Gとする。そして、その電力変動減衰量Gと電力フィルタの遮断周波数fcとの関係を把握する。数種類のフィルタについて上記の関係を把握し、最終的にその中から最適なフィルタを選択する。 (1) First, after passing through the power filter, | dP / Know how much dt | max decays. | DP at input and output / The ratio of dt | max is the power fluctuation attenuation amount G. Then, to understand the relationship between the power fluctuation attenuation G and the cutoff frequency f c of the power filter. The above relationship is grasped for several types of filters, and the optimum filter is finally selected from them.

(2)次に、系統に供給する電力の変動速度|dPout / dt|の許容値と太陽光発電の出力変動|dPin / dt|maxの比から必要な電力変動減衰量を決める。 (2) Next, the fluctuation speed of the power supplied to the system | dP out / dt | tolerance and photovoltaic power output fluctuation | dP in / The required power fluctuation attenuation is determined from the ratio of dt | max .

(3)そして各フィルタについて、上で求めた減衰量を得るために必要となる遮断周波数fcを求める。 (3) and for each filter, obtain the cutoff frequency f c which is required for obtaining the attenuation amount calculated above.

(4)最後に、各フィルタを用いて平準化を行なった場合に、1日の中で蓄電池3に蓄えられる電力量が最大となるポイント(最大蓄電量)を求める。そして、年間を通じてこの値の最大値を求める。この最大値が最小となるフィルタがシステムに最適なフィルタであり、その値が必要となる蓄電池容量の最小値Bo(理想値)である。このBoに対して、蓄電池やパワコンの充放電効率や、蓄電池を使用する際の放電深度(蓄電池容量に対する放電量の比)を考慮したものが、実際に必要な蓄電池容量Bcapとなる。 (4) Finally, when leveling is performed using each filter, a point (maximum charged amount) at which the amount of power stored in the storage battery 3 is maximized in one day is obtained. Then, the maximum value of this value is obtained throughout the year. The filter having the smallest maximum value is the optimum filter for the system, and the value is the minimum value B o (ideal value) of the required storage battery capacity. For this B o, charge and discharge efficiency and the battery and power conditioners, it takes into account the depth of discharge when using battery (ratio of the discharge amount to the battery capacity), the actual battery capacity B cap required.

上記手順を実施するにあたり、まず(1)の手順として、数種類のフィルタに対して遮断周波数と電力変動減衰量の関係を把握する。次に(4)の手順として、各フィルタに対して遮断周波数と最大蓄電量の関係をあらかじめ把握しておく。ここでは、太陽光発電設備(100 kWと10 kW)を対象とし、その出力データ(1秒サンプリングデータ)を基にしてこれらの関係を把握した場合について説明する。 In carrying out the above procedure, first, as the procedure (1), the relationship between the cutoff frequency and the power fluctuation attenuation amount is grasped for several types of filters. Next, as the procedure of (4), the relationship between the cutoff frequency and the maximum charged amount is grasped in advance for each filter. Here, solar power generation equipment (100 kW and 10 kW), the case where these relations are grasped based on the output data (1 second sampling data) is explained.

最初に、電力フィルタの遮断周波数fcと電力変動減衰量Gの関係を調べる。 具体的には、対象とする太陽光発電の実際の出力データをもとにしたPinを電力フィルタに入力してその出力を計算する。その結果から、フィルタの入力の最大変動速度|dPin / dt|maxと出力の最大変動速度|dPout / dt|maxの比G(電力変動減衰量)を求める。そして、数種類のフィルタについて、遮断周波数fcを変化させて電力変動減衰量Gがどのように変化するかを調べる。 First, examining the relationship between the cutoff frequency f c and the power fluctuation attenuation amount G of the power filter. Specifically, by entering the P in which the actual output data PV of interest based on the power filter to compute the output. From the results, the maximum fluctuation speed of the filter input | dP in / dt | max and maximum output speed | dP out / A ratio G (amount of power fluctuation attenuation) of dt | max is obtained. Then, several kinds of filters, determine to change the cut-off frequency f c by power fluctuation attenuation G how changes.

電力フィルタは1次と2次、3次のバタワース型LPFとした。その理由は、太陽光発電の出力はステップ状に急変する場合があるので、ステップ応答特性が良い点や設計が容易な点を考慮したためである。   The power filters are primary, secondary, and tertiary Butterworth LPFs. The reason is that the output of photovoltaic power generation may change suddenly in a step shape, so that the point response characteristics are good and the design is easy.

まず、対象とする太陽光発電の出力データの中から、変動が激しい日のデータを数日分選び、そのデータによるPinを電力フィルタに入力してその出力を計算する。そして、その結果から電力変動減衰量を求めグラフ化する。 First, from among the output data of the solar power of interest, variation is to choose a few days worth of data intense day, to calculate its output to input P in accordance with the data to the power filter. Then, the power fluctuation attenuation amount is obtained from the result and graphed.

太陽光発電の出力変化の様相はさまざまであり、特に変動が激しい日の出力変化パターンは千差万別である。そのため、電力変動減衰量が最も小さくなる場合のグラフを用いる必要がある。調査した中で、電力変動減衰量が最小となる場合のグラフを図4に示す。   There are various aspects of changes in the output of solar power generation. Therefore, it is necessary to use a graph when the power fluctuation attenuation amount is the smallest. FIG. 4 shows a graph in the case where the power fluctuation attenuation amount is minimized during the investigation.

電力フィルタの遮断周波数fcを変化させて電力変動減衰量Gを求めた結果、両者の間には近似的に式(1):G 10 log10 (|dPout / dt|max /|dPin / dt|max )= a1 log10 ( fc ) b1のような関係があることがわかった。 Power filter by changing the cutoff frequency f c of the result of obtaining the power fluctuation attenuation G, between the two approximately formula (1): G = Ten log 10 (| dP out / dt | max / | dP in / dt | max ) = a 1 log 10 ( f c ) + b I found that there is a relationship like 1 .

電力フィルタの遮断周波数fcと電力変動減衰量Gの関係を把握したことで、必要な減衰量Gを得るための各フィルタのfcを求めることができる。 By grasped a relationship between cutoff frequency f c and the power fluctuation attenuation amount G of the power filter, it is possible to obtain the f c of the filter for obtaining the required attenuation G.

次に、各電力フィルタを用いて平準化を行なった場合に、最大蓄電量Qmaxがどの程度になるかを計算する。そして、電力フィルタの遮断周波数を変化させて最大蓄電量Qmaxがどのように変化するかを調べる。 Next, when the leveling is performed using each power filter, how much the maximum power storage amount Qmax is calculated is calculated. Then, it is examined how the maximum charged amount Q max changes by changing the cutoff frequency of the power filter.

図1に示す電力フィルタの制御構成から、出力電力Pbsと同じ電力が蓄電池3に充放電される。蓄電池3に蓄えられる電力量Q(t )は瞬時電力P(t )の積分値であるから、蓄電量は出力電力Pbsを積分することにより求めることができる。この蓄電量Q(t )の1日の中の最大値が最大蓄電量Qmaxであり、年間を通じたQmaxの最大値が、必要となる蓄電池容量の最小値Boとなる。 From the control configuration of the power filter shown in FIG. 1, the storage battery 3 is charged and discharged with the same power as the output power P bs . The amount of power Q (t stored in the storage battery 3 ) Is the instantaneous power P (t ), The amount of stored electricity can be obtained by integrating the output power P bs . This amount of electricity stored Q (t The maximum value of day of) is the maximum storage amount Q max, the maximum value of Q max through the year, the minimum value B o of battery capacity required.

年間を通じて最大蓄電量が最も大きくなるのは、1日の総発電量が多い日である。このため、このような日を選んで遮断周波数と最大蓄電量の関係を調べる。ただし、最大蓄電量の値そのままでは1日の総発電量に依存するので、総発電量で規格化した式(2):蓄電量比率Cb 最大蓄電量 / 1日の総発電量で検討する。 The maximum amount of electricity stored throughout the year is the day when there is a large amount of total power generation per day. For this reason, such a day is selected and the relationship between the cutoff frequency and the maximum charged amount is examined. However, since the value of the maximum power storage amount is directly dependent on the total power generation amount per day, Formula (2) normalized by the total power generation amount: power storage amount ratio C b = Maximum storage amount / Consider the total amount of power generated per day.

1日の総発電量で規格化することにより、遮断周波数と蓄電量比率の関係は、いろいろな容量の太陽光発電に適用可能となる。今回、対象とする太陽光発電の出力データの中から、1日の総発電量が多い日を数日選び、蓄電量比率を計算した。   By normalizing with the total amount of power generated per day, the relationship between the cut-off frequency and the storage amount ratio can be applied to solar power generation with various capacities. This time, from the output data of the target photovoltaic power generation, we selected several days with a large daily total power generation amount, and calculated the storage amount ratio.

各電力フィルタについて、遮断周波数fcを変化させて蓄電量比率Cbとの関係を調べた結果を図5に示す。その関係は、式(3) :log 10 ( Cb ) a2 log10 ( fc ) b2のように対数直線で近似できる。また、近似直線の傾きa2と切片b2は、太陽光発電の容量や日によらない。これは1日の総発電量が多い日の発電パターンが類似しているためだと考えられる。近似直線の傾きa2がほぼ−1であることから、fcとCbは反比例の関係にあることがわかる。 For each power filters, it shows the results of examining the relationship between varying the cut-off frequency f c by the charged amount ratio C b in FIG. The relationship is given by equation (3): log 10 ( C b ) = a 2 log 10 ( f c ) + It can be approximated by a log-linear as b 2. Further, the slope a 2 and the intercept b 2 of the approximate line do not depend on the capacity of solar power generation or the day. This is thought to be due to the similar power generation pattern of the day with a large total daily power generation. Since the slope a 2 of the approximate line is approximately −1, it can be seen that f c and C b are in an inversely proportional relationship.

各電力フィルタについて、遮断周波数fcと電力変動減衰量Gとの関係、および蓄電量比率Cbとの関係から電力変動減衰量Gと蓄電量比率Cbとの関係を導き出すことができる。 For each power filters can be derived a relationship of the relationship between the cutoff frequency f c and the power fluctuation attenuation G, and the relationship between the storage amount ratio C b and power fluctuation attenuation G and the storage amount ratio C b.

式(1)と式(3)から電力変動減衰量Gと蓄電量比率Cbの関係式を導出した結果は、式(4):log10 ( Cb ) ( a2 / a1 ) ( G b1 ) b2 ( a2 / a1 ) G a2 b1 / a1 b2であり、そのグラフを図6に示す。 Equation (1) and (3) result of deriving the power fluctuation attenuation G and the storage amount ratio C b of the equation from the formula (4): log 10 ( C b ) = ( a 2 / a 1 ) ( G b 1 ) + b 2 = ( a 2 / a 1 ) G a 2 b 1 / a 1 + b 2 and its graph is shown in FIG.

図6のグラフにより、必要な電力変動減衰量Gに対して、蓄電量比率Cbが最小となるフィルタの種類とCbの値が容易に得られる。 The graph of FIG. 6, for the required power fluctuation attenuation G, the value of the charged amount ratio C b is the smallest types of filters and C b can be easily obtained.

以下に、蓄電池容量の計算手順を記す。対象とする太陽光発電の最大出力変動|dPin / dt|maxと、系統に供給する電力の変動速度の許容値|dPr / dt|から、必要な電力変動減衰量Grを式(5):Gr 10 log10 (|dPr / dt|/|dPin / dt|max )より求める。 The calculation procedure of the storage battery capacity is described below. Maximum output fluctuation of the target photovoltaic power generation | dP in / dt | max and the allowable value of the fluctuation speed of power supplied to the system | dP r / From dt |, the required power fluctuation attenuation amount G r is expressed by Equation (5): G r = Ten log 10 (| dP r / dt | / | dP in / dt | max ).

図4に示すような遮断周波数と電力変動減衰量の関係から、必要減衰量Grを得るために必要となる各フィルタの遮断周波数fcを求める。 From the relationship between the cutoff frequency and power fluctuation attenuation as shown in FIG. 4, determine the cutoff frequency f c of the filter necessary to obtain the required attenuation G r.

図5に示すような遮断周波数と蓄電量比率の関係から、各フィルタについて、前項で決定した遮断周波数fcに対する蓄電量比率Cbを求める。蓄電池容量が最小となるのは、Cbが最小となる場合である。したがって、図5に示すような関係グラフの中からCbが最小となるフィルタを選択する。 A cut-off frequency as shown in FIG. 5 from the relationship of the charged amount ratio for each filter to determine the charged amount ratio C b for the cutoff frequency f c determined in the previous section. The storage battery capacity is minimized when Cb is minimized. Therefore, C b to select the filter having the smallest from among the relationship graph shown in FIG.

ただし、図6に示すような電力変動減衰量と蓄電量比率の関係が導出できている場合は、それを用いて、必要な電力変動減衰量Grに対して蓄電量比率Cbが最小となるフィルタを選択する。 However, when the relationship between the power fluctuation attenuation amount and the storage amount ratio as shown in FIG. 6 can be derived, the storage amount ratio C b is minimized with respect to the necessary power fluctuation attenuation amount G r . Select a filter.

太陽光発電の出力データから1日の総発電量の最大値Wmaxを求める。 The maximum value W max of the total power generation per day is obtained from the output data of solar power generation.

得られたCbとWmaxを乗算することにより蓄電池容量が求められる。しかしこの値は、蓄電池3やパワコン6の充放電効率や、蓄電池3を使用する際の放電深度(蓄電池容量に対する放電量の比)を100%とした場合の理想値であり、実際的な値ではない。このため、これらの効率や放電深度を考慮する必要がある。 Battery capacity is calculated by multiplying the C b and W max obtained. However, this value is an ideal value when the charge / discharge efficiency of the storage battery 3 and the power conditioner 6 and the depth of discharge when using the storage battery 3 (the ratio of the discharge amount to the storage battery capacity) are assumed to be 100%. is not. For this reason, it is necessary to consider these efficiency and discharge depth.

蓄電池パワコン6の電力変換効率をηbpcとすると、蓄電池3に充電される電力量は、理想値Bo(=Cb Wmax)に対してηbpc倍(ηbpc Bo )となる。 When the power conversion efficiency of the storage battery power conditioner 6 is η bpc , the amount of power charged in the storage battery 3 is η bpc times (η bpc B o ) with respect to the ideal value B o (= C b W max ).

蓄電池3の充電効率(= 放電電力量 / 充電電力量)をηbとすると、放電可能な電力量は、充電電力量ηbpc Boに対して、蓄電池3でηb倍となり、さらに蓄電池パワコン6から放電するのでηbpc倍となる。結局、最終的に放電可能な電力量は、ηb ηbpc倍(ηb ηbpc 2 Bo )となる。 Charging efficiency of storage battery 3 (= Discharge electric energy / When the charged electrical energy) and eta b, dischargeable amount of power, with respect to charge power amount eta bpc B o, becomes eta b doubled in battery 3, the eta bpc times because further discharge from the storage battery power conditioner 6. Eventually, the amount of power that can be finally discharged is η b η bpc times (η b η bpc 2 B o ).

蓄電池3に充電した1日の太陽光発電の電力は、その日の内にはすべて系統へ放電される。見かけ上、太陽光発電により最大Boの電力を充電することになるので、同量の電力を放電することになる。ところが、前項により放電可能な電力量はηb ηbpc 2 Boとなるので、その損失分(1 ηb ηbpc 2 ) Boをあらかじめ夜間に補充しておく必要がある。補充した電力についても100%放電できるわけではない。前項同様、補充分に対する放電可能な電力量はηb ηbpc倍となる。したがって、あらかじめ充電しておく電力量は、式(6):(1 ηb ηbpc 2 ) Bo / b ηbpc ) ((ηb ηbpc )-1 ηbpc ) Boとなる。 All of the daily solar power generated in the storage battery 3 is discharged to the grid within that day. Apparently, it means to charge the power up to B o by solar power, it will discharge the same amount of power. However, since the amount of power that can be discharged is η b η bpc 2 B o according to the previous section, the loss (1 η b η bpc 2 ) B o needs to be replenished in advance at night. The replenished power cannot be discharged 100%. As in the previous section, the amount of electric power that can be discharged with respect to the supplement is η b η bpc times. Therefore, the amount of power to be charged in advance is given by equation (6): (1 η b η bpc 2 ) B o / b η bpc ) = ((η b η bpc ) -1 η bpc ) B o .

蓄電池3を使用する際の最大放電深度Kdodを考慮すると、必要となる蓄電池3の容量Bcapは式(7):Bcap bpc Bo ((ηb ηbpc )-1 ηbpc ) Bo ) / Kdod Bo / b ηbpc Kdod )= Cb Wmax / b ηbpc Kdod )で求められる。 Considering the maximum discharge depth K dod when the storage battery 3 is used, the required capacity B cap of the storage battery 3 is expressed by the equation (7): B cap = bpc B o + ((η b η bpc ) -1 η bpc ) B o ) / K dod = B o / b η bpc K dod ) = C b W max / b η bpc K dod )

以下に、実際に蓄電池3の容量を求めた計算例を記す。対象としたのは100kW太陽光発電設備である。当該太陽光発電の最大出力変動を|dPin / dt|max 43 kW/sとする。これを石炭火力発電機が追従可能な出力変動3% /分以下に抑えるものとする。つまり、系統に供給する電力の変動速度の許容値を0.05kW/sとした場合、必要な電力変動減衰量は、式(5)からGr −29.3dBとなる。 Below, the calculation example which actually calculated | required the capacity | capacitance of the storage battery 3 is described. The target is a 100kW solar power generation facility. The maximum output fluctuation of the solar power generation | dP in / dt | max = 43 kW / s. 3% output fluctuation that can be followed by coal-fired power generator It shall be suppressed to less than / min. In other words, when the allowable value of the fluctuation speed of the power supplied to the system is 0.05 kW / s, the required power fluctuation attenuation amount can be calculated from Equation (5) as G r = -29.3dB.

この場合、図6の関係から電力フィルタは、バタワース型2次LPFを選択する。電力変動減衰量が−29.3dBとなる電力フィルタの遮断周波数fcを図4から求めると、0.21 mHzとなる。 In this case, the power filter selects the Butterworth type second-order LPF from the relationship of FIG. When determining the cutoff frequency f c of the power filter power fluctuation attenuation amount is -29.3dB from FIG. 4, 0.21 mHz.

図6から蓄電量比率Cbを求めると、4.1 %となる。 From FIG. 6, the storage amount ratio C b is calculated as 4.1. %.

太陽光発電の1日の総発電量の最大値Wmax 650 kWhであるとき、使用する蓄電池3の最大放電深度を80 %、充電効率を95 %、蓄電池パワコン6の効率を94 %とすると、必要な蓄電池3の容量は、式(7)からBcap 37 kWhとなる。 Maximum value of solar power generation per day W max = 650 When it is kWh, the maximum discharge depth of the storage battery 3 to be used is 80 %, Charging efficiency is 95 %, Efficiency of battery power conditioner 6 is 94 Assuming%, the required capacity of the storage battery 3 is B cap = 37 kWh.

以上説明したように、本発明によれば、必要な電力変動減衰量を得るためのフィルタの遮断周波数を求めることができ、システムを最適化できる。   As described above, according to the present invention, the cut-off frequency of the filter for obtaining the necessary power fluctuation attenuation amount can be obtained, and the system can be optimized.

また、太陽光発電の容量に応じた蓄電池容量を算出することができ、システム設計上、優位となる。   Moreover, the storage battery capacity according to the capacity of photovoltaic power generation can be calculated, which is advantageous in system design.

なお、本発明は太陽光発電の場合のみならず、風力発電等の電力平準化にも適用可能であることは当然である。   The present invention is naturally applicable not only to the case of solar power generation but also to power leveling such as wind power generation.

配電系統に対する出力変動対策として利用可能である。   It can be used as an output fluctuation countermeasure for the distribution system.

1 変動抑制フィルタ
2 蓄電池システム
3 蓄電池
4a〜4d トランスデューサ等のセンサ
5 平準化コントローラ
6 蓄電池パワコン
7 太陽光発電
8 太陽電池
9 太陽光パワコン
A 電力平準化システム
DESCRIPTION OF SYMBOLS 1 Fluctuation suppression filter 2 Storage battery system 3 Storage battery 4a-4d Sensors, such as a transducer 5 Leveling controller 6 Storage battery power conditioner 7 Solar power generation 8 Solar battery 9 Solar power conditioner A Electric power leveling system

Claims (2)

蓄電システムを充放電制御することによって急激に変動する太陽光発電の出力を平準化して配電線系統に供給する電力フィルタとしての電力平準化システムにおいて、太陽光発電の出力変動の最大値と、配電系統に供給する電力の変動速度の許容値から必要となる減衰量を決め、当該減衰量から電力フィルタを構成する変動抑制フィルタの遮断周波数を決定することを特徴とする電力平準化システムにおける電力伝達関数の設計方法。   In a power leveling system as a power filter that leveles the output of photovoltaic power generation that fluctuates rapidly by charge / discharge control of the power storage system and supplies it to the distribution line system, the maximum value of output fluctuation of solar power generation and distribution Power transmission in a power leveling system, wherein a required attenuation amount is determined from an allowable value of a fluctuation speed of power supplied to a system, and a cutoff frequency of a fluctuation suppression filter constituting the power filter is determined from the attenuation amount. Function design method. 蓄電システムを充放電制御することによって急激に変動する太陽光発電の出力を平準化して配電線系統に供給する電力フィルタとしての電力平準化システムにおいて、電力フィルタを構成する変動抑制フィルタの遮断周波数に対応する蓄電量比率を求め、該蓄電量比率と1日の総発電量を乗算することによって蓄電池容量の最小値を決定することを特徴とする電力平準化システムにおける蓄電池容量の算出方法。   In the power leveling system as a power filter that leveles the output of photovoltaic power generation that fluctuates rapidly by charge / discharge control of the power storage system and supplies it to the distribution line system, the cutoff frequency of the fluctuation suppression filter constituting the power filter A method for calculating a storage battery capacity in an electric power leveling system, wherein a corresponding storage amount ratio is obtained, and a minimum value of the storage battery capacity is determined by multiplying the storage amount ratio by the total amount of power generated per day.
JP2015039991A 2015-03-02 2015-03-02 Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system Active JP6404747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039991A JP6404747B2 (en) 2015-03-02 2015-03-02 Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039991A JP6404747B2 (en) 2015-03-02 2015-03-02 Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system

Publications (2)

Publication Number Publication Date
JP2016163427A JP2016163427A (en) 2016-09-05
JP6404747B2 true JP6404747B2 (en) 2018-10-17

Family

ID=56847407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039991A Active JP6404747B2 (en) 2015-03-02 2015-03-02 Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system

Country Status (1)

Country Link
JP (1) JP6404747B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663831B2 (en) * 2016-09-29 2020-03-13 サンケン電気株式会社 Apparatus and method for designing capacity of power storage device and recording medium
JP7052230B2 (en) * 2017-06-27 2022-04-12 株式会社デンソー Air flow rate measuring device and air flow rate measuring method
JP2019080413A (en) * 2017-10-23 2019-05-23 三菱電機株式会社 Power management device and power management method
CN112865138B (en) * 2021-01-28 2022-08-16 清华大学 Energy storage primary frequency modulation control method and device for power system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006104B2 (en) * 2007-05-24 2012-08-22 川崎重工業株式会社 Power smoothing method, power smoothing device, and design method of the same
JP5013372B2 (en) * 2007-09-06 2012-08-29 国立大学法人 琉球大学 Manufacturing method of storage battery equipment for wind power generator
JP4551921B2 (en) * 2007-09-27 2010-09-29 株式会社日立エンジニアリング・アンド・サービス Wind power generation system with storage system
JP5391598B2 (en) * 2008-07-10 2014-01-15 株式会社明電舎 Stabilized control system for distributed power supply
JP6032486B2 (en) * 2013-03-14 2016-11-30 清水建設株式会社 Power management system and power management method

Also Published As

Publication number Publication date
JP2016163427A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5042369B2 (en) Power storage device for power generation system and method of operating power storage device
JP6404747B2 (en) Design method of power transfer function in power leveling system and calculation method of storage battery capacity in power leveling system
US20120223670A1 (en) Power control device, power control method, and power supply system
JP2013046503A (en) Power storage system and control method thereof
US20160268818A1 (en) Electricity providing system including battery energy storage system
CN101438476B (en) Output variation relaxation system for new energy power generation system
JP5997845B2 (en) Power supply system and control method thereof
Karmiris et al. Peak shaving control method for energy storage
US20160118846A1 (en) Isolated-Type Hybrid Solar Photovoltaic System and Switching Control Method
WO2011078215A1 (en) Electric-power supply method, computer-readable recording medium, and electric-power generating system
Karmiris et al. Control method evaluation for battery energy storage system utilized in renewable smoothing
JP2010071159A (en) Device for smoothing electric power generated by wind power generation using wind mill and storage battery
JP5104991B1 (en) Power stabilization control device, power stabilization program
Setyawan et al. Optimal Depth-of-Discharge range and capacity settings for battery energy storage in microgrid operation
Bhattacharjee et al. An efficient ramp rate and state of charge control for PV-battery system capacity firming
JP6372690B2 (en) Power management system and power management method
JP6232158B2 (en) Demand power prediction apparatus, power demand prediction method and program
JP6149275B2 (en) Power fluctuation suppression device using multiple power storage devices
JP2016059135A (en) Power management system and power management method
JP7351620B2 (en) Command generation device and command generation method in multiple generation power supply system
JP6384728B2 (en) Power management system and power management method
JP6503155B2 (en) Output fluctuation suppression system for distributed power supply
Männel et al. State of charge based characteristic diagram control for energy storage systems within industrial DC microgrids
JP2015213409A (en) Load leveling device
JP6422682B2 (en) Power control apparatus and power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150