JP6400491B2 - Inscribed planetary gear unit - Google Patents

Inscribed planetary gear unit Download PDF

Info

Publication number
JP6400491B2
JP6400491B2 JP2015008812A JP2015008812A JP6400491B2 JP 6400491 B2 JP6400491 B2 JP 6400491B2 JP 2015008812 A JP2015008812 A JP 2015008812A JP 2015008812 A JP2015008812 A JP 2015008812A JP 6400491 B2 JP6400491 B2 JP 6400491B2
Authority
JP
Japan
Prior art keywords
tooth
teeth
meshing
internal
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015008812A
Other languages
Japanese (ja)
Other versions
JP2016133179A (en
Inventor
中村 公昭
公昭 中村
貴裕 國知
貴裕 國知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015008812A priority Critical patent/JP6400491B2/en
Publication of JP2016133179A publication Critical patent/JP2016133179A/en
Application granted granted Critical
Publication of JP6400491B2 publication Critical patent/JP6400491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内接式遊星歯車装置に関する。   The present invention relates to an inscribed planetary gear device.

内接式遊星歯車装置は、内歯を備えた内歯歯車と、外歯を備えた外歯歯車と、前記内歯歯車の中心軸線周りに回転自在で、前記内歯と前記外歯とが噛み合った状態で前記外歯歯車を前記内歯歯車の中心軸線に対して偏心した軸線周りに回転自在に支持する偏心部材とを有している。内接式遊星歯車装置は、内歯歯車の歯数が外歯歯車の歯数より少なくとも一つ少なく、偏心部材を入力部材とし、内歯歯車と外歯歯車との何れか一方を固定部材、他方を出力部材とすることにより、減速機(ハイポサイクロイド型減速機)として用いられる。   The internal planetary gear device includes an internal gear with internal teeth, an external gear with external teeth, and a rotation around a central axis of the internal gear, and the internal teeth and the external teeth are And an eccentric member that rotatably supports the external gear around an axis that is eccentric with respect to the central axis of the internal gear in a meshed state. In the internal planetary gear device, the number of teeth of the internal gear is at least one less than the number of teeth of the external gear, the eccentric member is an input member, and either the internal gear or the external gear is a fixed member, By using the other as an output member, it is used as a reduction gear (hypocycloid type reduction gear).

従来の内接式遊星歯車装置では、内歯および外歯は、インボリュート曲線あるいはトロコイド曲線による歯形によるものである(例えば、特許文献1)。   In the conventional inscribed planetary gear device, the inner teeth and the outer teeth are based on a tooth profile based on an involute curve or a trochoid curve (for example, Patent Document 1).

特開2013−142459号公報JP2013-142459A

インボリュート曲線あるいはトロコイド曲線による歯形は、歯元側から歯先側に向かうに従って歯厚を徐々に減少する歯形で、噛み合い圧力角が正になる歯形によるものであるから、内歯と外歯との噛み合いにより生じる径方向分力は、歯同士が互い離れる方向、つまり噛み合いが離れる方向に作用する。   The tooth profile based on the involute curve or trochoid curve is a tooth profile that gradually decreases the tooth thickness from the root side to the tip side, and is due to the tooth profile that makes the meshing pressure angle positive. The radial component force generated by the meshing acts in a direction in which the teeth are separated from each other, that is, in a direction in which the meshing is separated.

このため、このような歯形によるものにおいて、トルク伝達効率を高めるためには、また、歯飛び現象(ラチェット現象)を避けるためには、内歯と外歯との径方向への偏心押付力を上げる等によって噛み合い力を大きくする必要がある。しかし、噛み合い圧が高いと、歯面の摩耗が激しくなり、歯車の耐久性に問題が生じる。   For this reason, in such a tooth profile, in order to increase the torque transmission efficiency and to avoid the tooth skipping phenomenon (ratchet phenomenon), the eccentric pressing force in the radial direction between the inner teeth and the outer teeth is increased. It is necessary to increase the meshing force by raising it. However, if the meshing pressure is high, tooth surface wear becomes severe and a problem occurs in the durability of the gear.

本発明が解決しようとする課題は、内接式遊星歯車装置において、噛み合い圧を高めることなく、高いトルク伝達効率が得られ、歯飛び現象も生じないようにすることである。   The problem to be solved by the present invention is to achieve high torque transmission efficiency without increasing the meshing pressure in the inscribed planetary gear device and to prevent the tooth skipping phenomenon from occurring.

本発明による内接式遊星歯車装置は、内歯(12)を備えた内歯歯車(10)と、外歯(22)を備えた外歯歯車(20)と、前記内歯歯車(10)の中心軸線周りに回転自在で、前記内歯(12)と前記外歯(22)とが噛み合った状態で前記外歯歯車(20)を前記内歯歯車(10)の中心軸線に対して偏心した軸線周りに回転自在に支持する偏心部材(30)とを有する内接式遊星歯車装置であって、前記内歯(12)および前記外歯(22)は、少なくとも一部において噛み合い圧力角が負になる歯形である。噛み合い圧力角が負になる部分(12A、22A)の歯形は、歯元側から歯先側に向かうに従って歯厚が徐々に増大する歯形である。   An internal planetary gear device according to the present invention includes an internal gear (10) having internal teeth (12), an external gear (20) having external teeth (22), and the internal gear (10). The external gear (20) is eccentric with respect to the central axis of the internal gear (10) with the internal teeth (12) and the external teeth (22) meshing with each other. An internal planetary gear device having an eccentric member (30) rotatably supported around the axis line, wherein the internal teeth (12) and the external teeth (22) have at least a partial meshing pressure angle. This is a negative tooth profile. The tooth profile of the portion (12A, 22A) where the meshing pressure angle is negative is a tooth profile in which the tooth thickness gradually increases from the tooth base side toward the tooth tip side.

噛み合い圧力角が負による噛み合いでは、内歯(12)と外歯(22)との噛み合い圧による反力(Fa)の径方向の分力(Fb)は、歯同士が径方向に互い近付く方向(噛み合いが深くなる方向)に作用する。これにより、偏心押付力を大きくすることなく、確実な噛み合い状態が確保され、高いトルク伝達効率が得られると共に、歯飛び現象が生じることがない。   In meshing with a negative meshing pressure angle, the component force (Fb) in the radial direction of the reaction force (Fa) due to the meshing pressure between the inner teeth (12) and the outer teeth (22) is the direction in which the teeth approach each other in the radial direction. Acts in the direction of deepening the mesh. As a result, a positive meshing state is ensured without increasing the eccentric pressing force, high torque transmission efficiency is obtained, and tooth skipping does not occur.

本発明による内接式遊星歯車装置は、好ましくは、前記内歯(12)および前記外歯(22)は、噛み合い初期から中期にかけて噛み合い圧力角が負になり、噛み合い末期に噛み合い圧力角が正になる歯形である。噛み合い圧力角が正になる部分(12E、22E)の歯形は、歯元側から歯先側に向かうに従って歯厚が徐々に減少する歯形である。   In the internal planetary gear device according to the present invention, preferably, the internal teeth (12) and the external teeth (22) have a negative meshing pressure angle from the initial meshing stage to the middle meshing period, and the meshing pressure angle is positive at the final meshing stage. Tooth shape that becomes. The tooth profile of the portion (12E, 22E) where the meshing pressure angle becomes positive is a tooth profile in which the tooth thickness gradually decreases from the tooth base side toward the tooth tip side.

この構成によれば、噛み合い末期に噛み合い圧力角が正による噛み合いがあるので、その分、トルク伝達効率が向上する。   According to this configuration, since the meshing pressure angle is meshed with positive at the end of meshing, the torque transmission efficiency is improved accordingly.

本発明による内接式遊星歯車装置は、好ましくは、噛み合い圧力角が負になる部分(22A)と噛み合い圧力角が正になる部分(22E)とが円弧(22F)によって接続されている歯形である。   The inscribed planetary gear device according to the present invention preferably has a tooth profile in which a portion (22A) where the meshing pressure angle is negative and a portion (22E) where the meshing pressure angle is positive are connected by an arc (22F). is there.

この構成によれば、噛み合い圧力角が負になる部分(22A)と噛み合い圧力角が正になる部分(22E)との接続部が尖った形状である場合に比して内歯(12)および外歯(22)の摩耗が減少し、歯車の耐久性が向上する。   According to this configuration, the internal teeth (12) and the teeth (12) and the portion (22A) where the meshing pressure angle is negative and the portion (22E) where the meshing pressure angle is positive have a sharp shape as compared with the case where The wear of the external teeth (22) is reduced, and the durability of the gear is improved.

本発明による内接式遊星歯車装置は、好ましくは、前記内歯歯車(10)の歯溝(14)の形状は、前記外歯(22)と干渉しないように前記外歯(22)の噛み合い軌跡によって画成される輪郭形状と同じ形状あるいは前記輪郭形状に近似した形状である。   In the internal planetary gear device according to the present invention, preferably, the shape of the tooth groove (14) of the internal gear (10) meshes with the external teeth (22) so as not to interfere with the external teeth (22). It is the same shape as the contour shape defined by the trajectory or a shape approximate to the contour shape.

この構成によれば、内歯歯車(10)と外歯歯車(20)とが互いに干渉することなく、内歯(12)と外歯(22)とが良好に噛み合う。   According to this configuration, the internal gear (10) and the external gear (20) mesh with each other well without interfering with each other.

本発明による内接式遊星歯車装置によれば、内歯と外歯との噛み合い圧による反力の径方向の分力が歯同士が径方向に互い近付く方向に作用するので、噛み合い圧を高めることなく、高いトルク伝達効率が得られ、歯飛び現象が生じることもない。   According to the inscribed planetary gear device according to the present invention, the component force in the radial direction of the reaction force caused by the meshing pressure between the inner teeth and the outer teeth acts in the direction in which the teeth approach each other in the radial direction, so that the meshing pressure is increased. Therefore, high torque transmission efficiency can be obtained, and the tooth skipping phenomenon does not occur.

本発明による内接式遊星歯車装置の一つの実施形態を示す正面図。The front view which shows one Embodiment of the inscribed planetary gear apparatus by this invention. 本実施形態による内接式遊星歯車装置の内歯を拡大して示す正面図。The front view which expands and shows the internal tooth of the internal type planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の外歯を拡大して示す正面図。The front view which expands and shows the external tooth of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の内歯に対する外歯の運動軌跡を示す説明図。Explanatory drawing which shows the movement locus | trajectory of the external tooth with respect to the internal tooth of the internal planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態1を示す部分正面図。The partial front view which shows the meshing state 1 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態2を示す部分正面図。The partial front view which shows the meshing state 2 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態3を示す部分正面図。The partial front view which shows the meshing state 3 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態4を示す部分正面図。The partial front view which shows the meshing state 4 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態5を示す部分正面図。The partial front view which shows the meshing state 5 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態6を示す部分正面図。The partial front view which shows the meshing state 6 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い状態7を示す部分正面図。The partial front view which shows the meshing state 7 of the inscribed planetary gear apparatus by this embodiment. 本実施形態による内接式遊星歯車装置の噛み合い時の反力を示す説明図。Explanatory drawing which shows the reaction force at the time of meshing | engagement of the inscribed planetary gear apparatus by this embodiment.

以下に、本発明による内接式遊星歯車装置の実施形態を、図1〜図4を参照して説明する。   Embodiments of an inscribed planetary gear device according to the present invention will be described below with reference to FIGS.

内接式遊星歯車装置は、図1に示されているように、円環形状の内歯歯車10を有する。内歯歯車10の内周部には周方向に一連の内歯12が形成されている。内歯歯車10は、不図示の固定部材に固定され、反力要素をなす。内歯歯車10の内側には円環形状の外歯歯車20が配置されている。外歯歯車20の外周部には周方向に一連の外歯22が形成されている。外歯22の歯数Zbは内歯12の歯数Zaより1つ少なく、外歯歯車20のピッチ円半径は内歯歯車10のピッチ円半径より小さい。   The inscribed planetary gear device has an annular internal gear 10 as shown in FIG. A series of internal teeth 12 are formed in the circumferential direction on the inner peripheral portion of the internal gear 10. The internal gear 10 is fixed to a fixing member (not shown) and forms a reaction force element. An annular external gear 20 is arranged inside the internal gear 10. A series of external teeth 22 are formed on the outer peripheral portion of the external gear 20 in the circumferential direction. The number of teeth Zb of the external teeth 22 is one less than the number of teeth Za of the internal teeth 12, and the pitch circle radius of the external gear 20 is smaller than the pitch circle radius of the internal gear 10.

内歯歯車10および外歯歯車20は、プレス成形あるいはレーザ切断加工された複数枚の金属薄板の積層構造体によって構成されている。   The internal gear 10 and the external gear 20 are configured by a laminated structure of a plurality of thin metal plates that have been press-formed or laser cut.

外歯歯車20の内側には偏心部材30が配置されている。偏心部材30は、内歯歯車10と同心の中心軸部32と、中心軸部32に対して偏心した偏心軸部34とを有する。偏心部材30は、中心軸部32を不図示の固定部材に当該中心軸部32の中心軸線周りに回転自在に支持され、偏心軸部34の外周部に軸受36によって外歯歯車20を、内歯12と外歯22とが噛み合った状態で、偏心軸部34の中心軸線周りに回転自在に支持している。つまり、偏心部材30は、中心軸部32を固定部材(不図示)に固定自在に支持されていることにより、内歯歯車10の中心軸線周りに回転自在であり、偏心軸部34において、内歯12と外歯22とが噛み合った状態で外歯歯車20を内歯歯車10の中心軸線に対して偏心した軸線周りに回転自在に支持している。   An eccentric member 30 is disposed inside the external gear 20. The eccentric member 30 has a central shaft portion 32 concentric with the internal gear 10 and an eccentric shaft portion 34 that is eccentric with respect to the central shaft portion 32. The eccentric member 30 has a central shaft portion 32 supported by a fixing member (not shown) so as to be rotatable around the central axis of the central shaft portion 32, and the external gear 20 is mounted on the outer peripheral portion of the eccentric shaft portion 34 by a bearing 36. The teeth 12 and the outer teeth 22 are supported so as to be rotatable around the central axis of the eccentric shaft portion 34 in a state where the teeth 12 and the outer teeth 22 are engaged with each other. In other words, the eccentric member 30 is rotatable about the central axis of the internal gear 10 by supporting the central shaft portion 32 so as to be fixed to a fixing member (not shown). In a state where the teeth 12 and the external teeth 22 are engaged with each other, the external gear 20 is rotatably supported around an axis that is eccentric with respect to the central axis of the internal gear 10.

この構成において、偏心部材30が中心軸部32の中心軸線周りに回転駆動される入力要素をなし、オルダム継手等によって外歯歯車20の、中心軸部32の中心軸線周りに回転成分のみが取り出されることにより、外歯歯車20が出力要素をなす。   In this configuration, the eccentric member 30 serves as an input element that is rotationally driven around the central axis of the central shaft portion 32, and only the rotational component of the external gear 20 around the central axis of the central shaft portion 32 is extracted by an Oldham coupling or the like. As a result, the external gear 20 forms an output element.

なお、図1において、符号Aは内歯歯車10および中心軸部32の中心を、符号Bは外歯歯車20および偏心軸部34の中心を示している。   In FIG. 1, the symbol A indicates the center of the internal gear 10 and the central shaft portion 32, and the symbol B indicates the center of the external gear 20 and the eccentric shaft portion 34.

この内接式遊星歯車装置では、中心Aを回転中心とした偏心部材30の回転によって、外歯歯車20が偏心軸部34の中心軸線周りに、つまり中心Bを回転中心として回転(自転)しながら、内歯12と外歯22とが噛み合った状態で外歯歯車20が内歯歯車10の内周を転動する。外歯歯車20が内歯歯車10に対して内サイクロイド運動をする。   In this inscribed planetary gear device, the rotation of the eccentric member 30 about the center A causes the external gear 20 to rotate (rotate) around the central axis of the eccentric shaft portion 34, that is, about the center B as a rotation center. However, the external gear 20 rolls on the inner periphery of the internal gear 10 with the internal teeth 12 and the external teeth 22 engaged. The external gear 20 performs an internal cycloid movement with respect to the internal gear 10.

これにより、式による減速比のハイポサイクロイド型減速機が得られる。
減速比=Zb/(Za−Zb)=Zb/1=Zb
Thereby, a hypocycloid type reduction gear having a reduction ratio according to the equation is obtained.
Reduction ratio = Zb / (Za−Zb) = Zb / 1 = Zb

上述の内接式遊星歯車装置において、偏心部材30が図1で見て反時計廻り方向に回転している場合の、外歯22の回転方向進み側の歯先近傍点C(外歯22が最も周方向に突出した点、図3参照)の内歯12に対する運動軌跡(噛み合い軌跡)は、図4に符号Dにより示されているようになる。   In the above-described inscribed planetary gear device, when the eccentric member 30 rotates in the counterclockwise direction as viewed in FIG. The movement trajectory (meshing trajectory) with respect to the internal teeth 12 at the point that protrudes most in the circumferential direction (see FIG. 3) is as indicated by the symbol D in FIG.

内歯12および外歯22の歯形は、図2、図3に示されているように、上述の噛み合いにおいて、噛み合い初期から中期にかけて噛み合い圧力角が負になり、噛み合い末期に噛み合い圧力角が正になる歯形である。   As shown in FIGS. 2 and 3, the tooth profile of the inner teeth 12 and the outer teeth 22 is such that the meshing pressure angle becomes negative from the initial meshing stage to the middle meshing stage, and the meshing pressure angle is positive at the final meshing stage. Tooth shape that becomes.

噛み合い圧力角が負である場合は、歯元側から歯先側に向かうに従って歯厚が徐々に増大する歯形で、内歯12あるいは外歯22を歯先側から歯底側を見て歯面がオーバハングした面をなすようになる。これに対し、噛み合い圧力角が正である場合には、歯元側から歯先側に向かうに従って歯厚が徐々に減少する歯形をなす。   When the meshing pressure angle is negative, the tooth thickness gradually increases as it goes from the tooth base side to the tooth tip side, and the tooth surface of the inner tooth 12 or the outer tooth 22 is viewed from the tooth tip side to the tooth bottom side. Becomes an overhanging surface. On the other hand, when the meshing pressure angle is positive, a tooth profile is formed in which the tooth thickness gradually decreases from the tooth base side to the tooth tip side.

内歯12および外歯22において、噛み合い圧力角が負となる部分は、歯末の負傾斜部分12A、22Aであり、負傾斜部分12A、22Aでは歯元側から歯先側に向かうに従って歯厚が徐々に増大している。負傾斜部分12A、22Aより歯元側は、すみ肉曲線部12B、22Bを経て歯底部12C、22Cに至る歯形になっている。   In the inner teeth 12 and the outer teeth 22, the portions where the meshing pressure angle is negative are the negative inclined portions 12 </ b> A and 22 </ b> A of the end of the teeth. Is gradually increasing. The tooth root side from the negative inclined portions 12A and 22A has a tooth profile that reaches the tooth bottom portions 12C and 22C through the fillet curve portions 12B and 22B.

内歯12および外歯22において、噛み合い圧力角が正となる部分は、負傾斜部分12A、22Aより歯先側の正傾斜部分12E、22Eであり、正傾斜部分12E、22Eでは歯元側から歯先側に向かうに従って歯厚が徐々に減少している。外歯22の正傾斜部分22Eと負傾斜部分22Aとは円弧部22Fによって滑らかに接続されている。円弧部22Fは外歯22が最も周方向に突出した部位(歯先近傍点C相当の部位)をなす。   In the inner teeth 12 and the outer teeth 22, the portions where the meshing pressure angle is positive are the positive inclined portions 12E and 22E on the tooth tip side of the negative inclined portions 12A and 22A, and the positive inclined portions 12E and 22E are from the tooth root side. The tooth thickness gradually decreases toward the tooth tip side. The positive inclined portion 22E and the negative inclined portion 22A of the external tooth 22 are smoothly connected by an arc portion 22F. The circular arc portion 22F forms a portion (a portion corresponding to the tooth tip vicinity point C) where the outer teeth 22 protrude most in the circumferential direction.

隣接する内歯12間に画定される歯溝14は、外歯22の歯先近傍点Cがハイポサイクロイド状の運動をするとして、外歯22との干渉を避けるべく、外歯22の外周軌跡によって画成される輪郭形状とほぼ同じ形状になっている。これにより、内歯歯車10と外歯歯車20とが互いに干渉することなく、内歯12と外歯22との良好な噛み合いが保証される。   The tooth gap 14 defined between the adjacent internal teeth 12 has an outer peripheral locus of the external teeth 22 in order to avoid interference with the external teeth 22 assuming that the tooth tip vicinity point C of the external teeth 22 performs a hypocycloidal movement. The shape is almost the same as the contour shape defined by. As a result, the internal gear 10 and the external gear 20 do not interfere with each other, and good meshing between the internal teeth 12 and the external teeth 22 is ensured.

なお、厳密には、トルク伝達に関与しない歯溝14の底部(歯底部12C)と外歯22の歯先部22Dとの摺接による摩擦損失が生じないように、この部分においては歯溝14の底部(歯底部12C)と外歯22の歯先部22Dとの間に隙間16(図7参照)ができるように歯溝14が形成されている。   Strictly speaking, in this portion, the tooth gap 14 is not provided so that friction loss due to sliding contact between the bottom portion (tooth bottom portion 12C) of the tooth groove 14 not involved in torque transmission and the tooth tip portion 22D of the external tooth 22 does not occur. The tooth gap 14 is formed so that a gap 16 (see FIG. 7) is formed between the bottom portion (the tooth bottom portion 12 </ b> C) and the tooth tip portion 22 </ b> D of the external tooth 22.

オーバハング部を含む上述の歯形による内歯12および外歯22は、ホブカッタ等による切削加工によって創成することは困難であるが、内歯歯車10および外歯歯車20は、プレス成形あるいはレーザ切断加工された複数枚の金属薄板の積層構造体によって構成すれば、歯形設計の自由度が高く、オーバハング部を含む歯形でも容易に製作することができる。これにより、上述の歯形による内歯12、外歯22による内歯歯車10、外歯歯車20を容易に生産性よく実現することができる。   Although it is difficult to create the internal teeth 12 and the external teeth 22 including the overhang portion by the above-described tooth profile by cutting with a hob cutter or the like, the internal gear 10 and the external gear 20 are formed by press molding or laser cutting. Further, if it is constituted by a laminated structure of a plurality of thin metal plates, the tooth profile design is highly flexible and a tooth profile including an overhang portion can be easily manufactured. Thereby, the internal gear 12 by the above-mentioned tooth profile, the internal gear 10 by the external gear 22, and the external gear 20 can be easily realized with high productivity.

図5〜図11は、内歯歯車10の周方向の各位置における内歯12と外歯22との噛み合い状態を示している。この図示例の外歯歯車20の回転方向は反時計廻り方向である。以下の説明では、外歯22が内歯12に最も深く噛み合う位置(最大偏心位置)を原点位置X(図1参照)とし、それより回転方向遅れ側の位置を前角度の位置、それより回転方向進み側の位置を後角度の位置と呼ぶ。   5 to 11 show the meshing state of the internal teeth 12 and the external teeth 22 at each position in the circumferential direction of the internal gear 10. The rotation direction of the external gear 20 in the illustrated example is a counterclockwise direction. In the following description, the position (maximum eccentric position) at which the outer teeth 22 engage with the inner teeth 12 most deeply is defined as the origin position X (see FIG. 1), and the position behind the rotational direction is rotated from the position of the front angle. The position on the direction advance side is called the rear angle position.

内歯12と外歯22とは、図5に示されているように、前90度程度の位置で、負傾斜部分12A、22Aによって噛み合いが始まる。この負傾斜部分12A、22Aによる噛み合いは、図6に示されているように、原点位置付近の回転角位置まで続く。これにより、内歯12と外歯22とは、噛み合い初期から中期にかけて噛み合い圧力角が負になる。   As shown in FIG. 5, the inner teeth 12 and the outer teeth 22 start to be engaged by the negative inclined portions 12A and 22A at a position of about 90 degrees forward. The meshing by the negatively inclined portions 12A and 22A continues to the rotational angle position near the origin position, as shown in FIG. Thereby, the meshing pressure angle of the internal teeth 12 and the external teeth 22 becomes negative from the initial meshing to the middle.

原点位置Xでは、図7に示されているように、負傾斜部分12Aと22Aとが離間し、外歯22の歯先部22Dが歯溝14の底部に最も近付く。   At the origin position X, as shown in FIG. 7, the negatively inclined portions 12 </ b> A and 22 </ b> A are separated from each other, and the tooth tip portion 22 </ b> D of the external tooth 22 comes closest to the bottom portion of the tooth gap 14.

原点位置Xより後90度程度の位置までの区間では、図8に示されているように、トルク伝達をしない側(回点方向遅れ側)の負傾斜部分12Aと22Aとが接触しつつ外歯22が歯溝14より抜け出す方向に移動する。後90度程度の位置では、図9に示されているように、正傾斜部分12Eと22Eとの噛み合いが始まる。正傾斜部分12Eと22Eとによる噛み合いは、図10に示されているように、後135度程度の位置まで続く。これより更に回転方向進み側の位置では、図11に示されているように、正傾斜部分12Eと22Eとが離間し、内歯12と外歯22との噛み合いが終了する。これにより、内歯12と外歯22とは、噛み合い末期において噛み合い圧力角が正になる。   As shown in FIG. 8, in the section from the origin position X to a position of about 90 degrees, the negative inclined portions 12A and 22A on the side where torque transmission is not performed (turning direction delay side) are in contact with each other. The tooth 22 moves in the direction of coming out of the tooth gap 14. At a position of about 90 degrees afterward, as shown in FIG. 9, the meshing between the forward inclined portions 12E and 22E starts. As shown in FIG. 10, the meshing between the forward inclined portions 12E and 22E continues to a position of about 135 degrees. At a position on the further forward side in the rotational direction, as shown in FIG. 11, the forward inclined portions 12E and 22E are separated from each other, and the meshing between the inner teeth 12 and the outer teeth 22 is completed. Thereby, the meshing pressure angle of the internal teeth 12 and the external teeth 22 becomes positive at the end of meshing.

上述した噛み合い初期から中期にかけて生じる噛み合い圧力角が負による噛み合いでは、図12に示されているように、内歯12と外歯22との噛み合い圧による反力Faの径方向の分力Fbは、その噛み合い圧力角からして歯同士が径方向に互い近付く方向、つまり、噛み合いが深くなる方向に作用する。これにより、歯飛び現象を生じ易い噛み合い初期から中期にかけて、噛み合いが離れる方向に変位することに対する抵抗力が増大する。このことにより、噛み合い圧を高めることなく、確実な噛み合い状態が確保され、高いトルク伝達効率が得られる。また、確実な噛み合い状態のもとに歯飛び現象が生じことがない。   In meshing with a negative meshing pressure angle generated from the initial meshing stage to the middle stage as described above, the component force Fb in the radial direction of the reaction force Fa due to the meshing pressure between the inner teeth 12 and the outer teeth 22 is as shown in FIG. From the meshing pressure angle, the teeth act in the direction in which the teeth approach each other in the radial direction, that is, in the direction in which the meshing becomes deep. As a result, the resistance to displacement in the direction of disengagement increases from the initial stage to the middle stage where the tooth skip phenomenon is likely to occur. Thus, a reliable meshing state is ensured without increasing the meshing pressure, and high torque transmission efficiency is obtained. Further, the tooth skipping phenomenon does not occur under a reliable meshing state.

噛み合い末期において、噛み合い圧力角が正による噛み合いが存在するので、その分、トルク伝達効率が向上する。この噛み合いは後90度以降の回転角位置で生じるから、噛み合い圧による反力の径方向の分力が、噛み合い圧力角が負となる噛み合いの回転位置での内歯12と外歯22との噛み合いを離すように作用することがない。   At the end of meshing, there is a meshing with positive meshing pressure angle, so that the torque transmission efficiency is improved accordingly. Since this meshing occurs at the rotational angle position after 90 degrees, the radial component of the reaction force due to the meshing pressure is the difference between the internal teeth 12 and the external teeth 22 at the meshing rotational position where the meshing pressure angle is negative. It does not act to release the mesh.

上述の噛み合いにおいて、外歯22の最も周方向に突出して内歯12に接触する部位が円弧部22Fであることにより、これが尖った形状である場合に比して内歯12の摩耗が軽減される。これにより、内歯歯車10の耐久性が向上する。   In the above-described meshing, the portion of the outer teeth 22 that protrudes in the most circumferential direction and contacts the inner teeth 12 is the arc portion 22F, so that the wear on the inner teeth 12 is reduced as compared with a pointed shape. The Thereby, the durability of the internal gear 10 is improved.

以上、本発明を、その好適な実施形態について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施形態により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   Although the present invention has been described above with reference to preferred embodiments thereof, the present invention is not limited to such embodiments and can be deviated from the spirit of the present invention, as will be readily understood by those skilled in the art. It is possible to change appropriately within the range not to be.

例えば、内歯12、外歯22の正傾斜部分12E、22Eは必須でなく、内歯12および外歯22は、少なくとも一部において噛み合い圧力角が負になる歯形であればよく、外歯22の歯形は、基本的には、図3に仮想線Eによって示されているように、歯元側から歯先側に向かうに従って歯厚が徐々に増大する台形の歯形である。   For example, the positively inclined portions 12E and 22E of the internal teeth 12 and the external teeth 22 are not essential, and the internal teeth 12 and the external teeth 22 may have a tooth shape that meshes at least partially and has a negative pressure angle. The tooth form is basically a trapezoidal tooth form in which the tooth thickness gradually increases from the tooth base side toward the tooth tip side, as indicated by a virtual line E in FIG.

また、内歯12の外歯22から見た相対運動の軌跡によって外歯22の歯形を生成することもできる。これにより、内歯12と外歯22とが互い接触し合うことで噛み合い面積を大きくして応力を緩和することができる。   Further, the tooth profile of the external tooth 22 can be generated based on the locus of relative movement as viewed from the external tooth 22 of the internal tooth 12. As a result, the inner teeth 12 and the outer teeth 22 come into contact with each other, thereby increasing the meshing area and relieving stress.

外歯22の歯数Zbが内歯12の歯数Zaより1つ少ないことが、大きい減速比を得るうえで好ましいが、この歯数差は、2、3など、1以外であってもよい。内歯歯車10を固定要素として外歯歯車20を出力要素としたが、外歯歯車20を固定要素として内歯歯車10を出力要素とすることもできる。   The number of teeth Zb of the external teeth 22 is preferably one less than the number of teeth Za of the internal teeth 12 in order to obtain a large reduction ratio. However, this difference in the number of teeth may be other than 1, such as 2, 3. . Although the internal gear 10 is used as a fixed element and the external gear 20 is used as an output element, the internal gear 10 can be used as an output element using the external gear 20 as a fixed element.

10 内歯歯車
12 内歯
12A 負傾斜部分
12B 肉曲線部
12C 歯底部
12E 正傾斜部分
14 歯溝
16 隙間
20 外歯歯車
22 外歯
22A 負傾斜部分
22D 歯先部
22E 正傾斜部分
22F 円弧部
30 偏心部材
32 中心軸部
34 偏心軸部
36 ボール軸受
DESCRIPTION OF SYMBOLS 10 Internal gear 12 Internal tooth 12A Negative inclination part 12B Thick curve part 12C Tooth bottom part 12E Positive inclination part 14 Tooth groove 16 Crevice 20 External gear 22 External tooth 22A Negative inclination part 22D Tooth tip part 22E Positive inclination part 22F Arc part 30 Eccentric member 32 Central shaft part 34 Eccentric shaft part 36 Ball bearing

Claims (6)

内歯を備えた内歯歯車と、
外歯を備えた外歯歯車と、
前記内歯歯車の中心軸線周りに回転自在で、前記内歯と前記外歯とが噛み合った状態で前記外歯歯車を前記内歯歯車の中心軸線に対して偏心した軸線周りに回転自在に支持する偏心部材とを有する内接式遊星歯車装置であって、
前記内歯および前記外歯は、少なくとも一部において噛み合い圧力角が負になる歯形である内接式遊星歯車装置。
An internal gear with internal teeth;
An external gear with external teeth;
The external gear is rotatable about a central axis of the internal gear, and the external gear is supported rotatably about an axis eccentric with respect to the central axis of the internal gear in a state where the internal teeth and the external teeth are engaged with each other. An inscribed planetary gear device having an eccentric member that comprises:
The internal planetary gear device, wherein the internal teeth and the external teeth are tooth shapes in which at least a part of the internal teeth and the external pressure angle are negative.
噛み合い圧力角が負になる部分の歯形は、歯元側から歯先側に向かうに従って歯厚が徐々に増大する歯形である請求項1に記載の内接式遊星歯車装置。   2. The inscribed planetary gear device according to claim 1, wherein the tooth profile of the portion where the meshing pressure angle becomes negative is a tooth profile in which the tooth thickness gradually increases from the tooth base side toward the tooth tip side. 前記内歯および前記外歯は、噛み合い初期から中期にかけて噛み合い圧力角が負になり、噛み合い末期に噛み合い圧力角が正になる歯形である請求項1または2に記載の内接式遊星歯車装置。   3. The internal planetary gear device according to claim 1, wherein the inner teeth and the outer teeth are tooth shapes in which a meshing pressure angle becomes negative from an initial meshing stage to a middle stage, and a meshing pressure angle becomes positive at a final meshing stage. 噛み合い圧力角が正になる部分の歯形は、歯元側から歯先側に向かうに従って歯厚が徐々に減少する歯形である請求項3に記載の内接式遊星歯車装置。   4. The inscribed planetary gear device according to claim 3, wherein the tooth profile of the portion where the meshing pressure angle becomes positive is a tooth profile in which the tooth thickness gradually decreases from the tooth base side to the tooth tip side. 噛み合い圧力角が負になる部分と噛み合い圧力角が正になる部分とが円弧によって接続されている歯形である請求項3または4に記載の内接式遊星歯車装置。   The inscribed planetary gear set according to claim 3 or 4, wherein a portion where the meshing pressure angle is negative and a portion where the meshing pressure angle is positive are connected by a circular arc. 前記内歯歯車の歯溝の形状は、前記外歯と干渉しないように前記外歯の噛み合い軌跡によって画成される輪郭形状と同じ形状である請求項1から5の何れか一項に記載の内接式遊星歯車装置。   The shape of the tooth groove of the internal gear is the same shape as the contour shape defined by the meshing locus of the external teeth so as not to interfere with the external teeth. Inscribed planetary gear unit.
JP2015008812A 2015-01-20 2015-01-20 Inscribed planetary gear unit Active JP6400491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008812A JP6400491B2 (en) 2015-01-20 2015-01-20 Inscribed planetary gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008812A JP6400491B2 (en) 2015-01-20 2015-01-20 Inscribed planetary gear unit

Publications (2)

Publication Number Publication Date
JP2016133179A JP2016133179A (en) 2016-07-25
JP6400491B2 true JP6400491B2 (en) 2018-10-03

Family

ID=56426040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008812A Active JP6400491B2 (en) 2015-01-20 2015-01-20 Inscribed planetary gear unit

Country Status (1)

Country Link
JP (1) JP6400491B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481335B2 (en) * 1995-01-06 2003-12-22 ティーエスコーポレーション株式会社 Inner mesh planetary gear
JP4107895B2 (en) * 2002-07-11 2008-06-25 株式会社日本自動車部品総合研究所 Inscribed mesh planetary gear mechanism
JP2013142459A (en) * 2012-01-12 2013-07-22 Mikuni Corp Hypocycloid device
JP2013245801A (en) * 2012-05-29 2013-12-09 Origin Electric Co Ltd Internal gear reducer utilizing planetary motion

Also Published As

Publication number Publication date
JP2016133179A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
CN106536975B (en) Amphistyly Wave gear device
CN106536978B (en) Amphistyly Wave gear device
JP2011007339A (en) Eccentric oscillating-type planetary gear device
JP2010096190A (en) Dog clutch device
JP6220757B2 (en) Inscribed planetary gear unit
JP2005036735A (en) Internal gear pump and inner rotor of the pump
JP2005036937A (en) Harmonic drive gearing
RU2659187C1 (en) Dual harmonic gear drive
JPWO2015170391A1 (en) Wave generator for wave gear device and method for manufacturing wave generator
JP5870906B2 (en) Ring gear mounting structure
TWI608185B (en) Dual type strain wave gearing
JP2005517139A (en) Transmission device with groove for lubricant
EP4280433A3 (en) Deceleration mechanism and motor having deceleration mechanism installed therein
JP6400491B2 (en) Inscribed planetary gear unit
JP2016200275A (en) Speed reducer
WO2013114990A1 (en) Face gear and gear device
EP2669521B1 (en) Rotor for oil pump
JP6369274B2 (en) Inscribed mesh planetary gear mechanism
JP6332106B2 (en) Ravigneaux type planetary gear unit
JP2009074547A (en) Rotation electrical device
JP2014122668A (en) Planetary gear mechanism
JP4626948B2 (en) Eccentric oscillation type planetary gear unit
JP2006009616A (en) Internal gear pump
JP5856331B1 (en) Synchronous ring manufacturing method
JP6040608B2 (en) Wave gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180905

R150 Certificate of patent or registration of utility model

Ref document number: 6400491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150