JP6399816B2 - Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support - Google Patents

Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support Download PDF

Info

Publication number
JP6399816B2
JP6399816B2 JP2014119923A JP2014119923A JP6399816B2 JP 6399816 B2 JP6399816 B2 JP 6399816B2 JP 2014119923 A JP2014119923 A JP 2014119923A JP 2014119923 A JP2014119923 A JP 2014119923A JP 6399816 B2 JP6399816 B2 JP 6399816B2
Authority
JP
Japan
Prior art keywords
transition metal
highly dispersed
metal catalyst
silica support
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014119923A
Other languages
Japanese (ja)
Other versions
JP2015231611A (en
Inventor
保旺 魯
保旺 魯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Original Assignee
National Institute for Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies filed Critical National Institute for Environmental Studies
Priority to JP2014119923A priority Critical patent/JP6399816B2/en
Publication of JP2015231611A publication Critical patent/JP2015231611A/en
Application granted granted Critical
Publication of JP6399816B2 publication Critical patent/JP6399816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、遷移金属をシリカ担体に担持させた触媒に関し、より詳しくは、触媒活性金属原子である遷移金属原子をシリカ表面に化学結合させ、遷移金属原子を原子レベルでシリカ表面に高分散担持させた高分散遷移金属触媒等に関する。   The present invention relates to a catalyst in which a transition metal is supported on a silica support. More specifically, the transition metal atom, which is a catalytically active metal atom, is chemically bonded to the silica surface, and the transition metal atom is supported on the silica surface in a highly dispersed manner at the atomic level. The present invention relates to a highly dispersed transition metal catalyst.

遷移金属が高い触媒能力を持つことはよく知られている。しかし、その金属原子同士が凝集して大きな集合体になってしまうと、触媒反応に関与する原子の数が見かけ上減ってしまい、せっかくの触媒能力を十分に発揮させることができない。   It is well known that transition metals have a high catalytic capacity. However, when the metal atoms aggregate to form a large aggregate, the number of atoms involved in the catalytic reaction is apparently reduced, and the catalytic ability cannot be fully exhibited.

一方、遷移金属粒子を原子レベルで担体に分散担持させることができれば、それぞれの原子が反応に関与できることになり、その触媒としての能力を飛躍的に上げることができる。   On the other hand, if the transition metal particles can be dispersed and supported on the support at the atomic level, each atom can participate in the reaction, and its ability as a catalyst can be dramatically increased.

従来、触媒を製造するには、特許文献1の段落0004に示すように、種々の方法が知られている。遷移金属を担持する方法(従来担持法)としては、含浸法、粉末添加法、共沈法などが用いられている(図4)。しかし、それらの方法では、遷移金属原子を担体表面に原子レベルで分散させることができず、触媒としての性能を十分に発揮させることができない。   Conventionally, as shown in paragraph 0004 of Patent Document 1, various methods are known for producing a catalyst. As a method for supporting a transition metal (conventional supporting method), an impregnation method, a powder addition method, a coprecipitation method, and the like are used (FIG. 4). However, in these methods, the transition metal atom cannot be dispersed on the support surface at the atomic level, and the performance as a catalyst cannot be sufficiently exhibited.

そこで、ニッケル等、高い触媒能力を持つ遷移金属を、担体表面に原子レベルで分散する方法の開発が期待されている。図5の(A)に示すように、固体表面(担体表面)に遷移金属(M)を原子レベルで高分散させた高分散遷移金属触媒であれば、高効率で反応物から生成物を生成できる。それには、図5(B)に示すように、(1)伝統的な触媒(遷移金属の集合体)、(2)担持触媒(遷移金属の集合体の分散)を超え、原子レベルで、担体表面に遷移金属を高分散させる新たな固定化方法の開発が必要である。   Therefore, development of a method for dispersing a transition metal having high catalytic ability such as nickel on the support surface at the atomic level is expected. As shown in FIG. 5 (A), a highly dispersed transition metal catalyst in which transition metal (M) is highly dispersed on the solid surface (support surface) at the atomic level produces products from the reactants with high efficiency. it can. As shown in FIG. 5 (B), (1) the traditional catalyst (aggregation of transition metal), (2) supported catalyst (dispersion of the aggregation of transition metal), and at the atomic level, the support Development of a new immobilization method that highly disperses transition metals on the surface is necessary.

ここで、廃棄物系バイオマスの高効率なガス化改質技術として、高分散遷移金属触媒を適用することで、バイオマスから再生可能利用エネルギーへの転換を容易にし、グリーンテクノロジーとして社会実装するための基礎技術が確立する。   Here, as a highly efficient gasification reforming technology for waste biomass, a highly dispersed transition metal catalyst is applied to facilitate the conversion from biomass to renewable energy, and to implement society as a green technology. Basic technology is established.

廃棄物系バイオマスに熱分解ガス化技術を適用すると、H、CO、COなどを含むガスが生成する。しかし、種々の副生成物が共存しているため、そのままでは当該生成ガスの利用価値はあまり高くない。そこで、高分散遷移金属触媒を用いれば、当該生成ガスから、高濃度H、COが得られ、またはCHの生成をも可能にする。 When the pyrolysis gasification technology is applied to waste biomass, a gas containing H 2 , CO, CO 2 and the like is generated. However, since various by-products coexist, the utility value of the product gas is not so high as it is. Therefore, if a highly dispersed transition metal catalyst is used, high concentrations of H 2 and CO can be obtained from the product gas, or CH 4 can be generated.

その結果、バイオマスのガス化/多段触媒変換プロセスを経て、エネルギー回収技術により、COの排出抑制と副生成物の低減を可能にすることができる。 As a result, through the process of biomass gasification / multistage catalytic conversion, it is possible to suppress CO 2 emission and reduce by-products by energy recovery technology.

特開2001−26422号公報JP 2001-26422 A

Journal of Nanoscience and Technology, 2011, Vol. 11, 2361-2367. [Characteristics of SBA-15 synthesized by one-step method].Journal of Nanoscience and Technology, 2011, Vol. 11, 2361-2367. [Characteristics of SBA-15 synthesized by one-step method].

そこで、本発明は、遷移金属原子を担体表面に原子レベルで分散させた高分散遷移金属触媒、及びシリカ担体表面への遷移金属原子の高分散担持方法を提供することを目的とするものである。   Accordingly, the object of the present invention is to provide a highly dispersed transition metal catalyst in which transition metal atoms are dispersed at the atomic level on the support surface, and a method for highly dispersing and supporting the transition metal atoms on the silica support surface. .

上記課題を解決するために、本発明は、
(1)
遷移金属の無機塩をアンモニウム水溶液に添加した混合液で、遷移金属アンモニウム配位錯イオンを形成し、
前記混合液をシリカ担体と接触させて前記シリカ担体表面のシラノール基の酸素原子に前記遷移金属を結合させ、
前記遷移金属と前記酸素と前記シリカ担体表面のケイ素原子とを化学結合させ、
前記シリカ担体を回収し、
前記シリカ担体の露出表面に、遷移金属原子を原子レベルで高分散担持させてなることを特徴とする
高分散遷移金属触媒の製造方法
(2)
前記遷移金属が、ニッケル、銅、亜鉛、コバルト、カドミウムおよびクロムの内から選択される1種またはそれ以上である(1)に記載の高分散遷移金属触媒の製造方法
(3)
遷移金属の無機塩をアンモニウム水溶液に添加した混合液で、遷移金属アンモニウム配位錯イオンを形成し、
前記混合液をシリカ担体と接触させることで、
前記シリカ担体表面のシラノール基の酸素原子と前記遷移金属が結合し、
さらに、前記遷移金属と前記酸素と前記シリカ担体表面のケイ素原子とが化学結合することで、
前記シリカ担体の露出表面に、遷移金属原子を原子レベルで高分散担持させることを特徴とする
シリカ担体表面への遷移金属原子の高分散担持方法。
(4)
(1)又は(2)に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、バイオマスから得られた混合ガスを接触させることで、二酸化炭素の排出を抑制することを特徴とするバイオマスガスの処理方法。
(5)
(1)又は(2)に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、バイオマスから得られた混合ガスを接触させることで、タール成分の生成量を抑制することを特徴とするバイオマスガスの処理方法。
(6)
(1)又は(2)に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、バイオマスから得られた混合ガスを接触させることで、水素ガス濃度を濃縮し、分離することを特徴とする水素ガスの製造方法。
とした。
In order to solve the above problems, the present invention provides:
(1)
In a mixed solution in which an inorganic salt of a transition metal is added to an aqueous ammonium solution, a transition metal ammonium coordination complex ion is formed,
Contacting the mixed liquid with a silica carrier to bind the transition metal to an oxygen atom of a silanol group on the surface of the silica carrier;
Chemically bonding the transition metal, the oxygen, and silicon atoms on the surface of the silica support;
Recovering the silica support;
A process for producing a highly dispersed transition metal catalyst , wherein transition metal atoms are supported on an exposed surface of the silica carrier in a highly dispersed state at an atomic level.
(2)
The method for producing a highly dispersed transition metal catalyst according to (1), wherein the transition metal is one or more selected from nickel, copper, zinc, cobalt, cadmium and chromium.
(3)
In a mixed solution in which an inorganic salt of a transition metal is added to an aqueous ammonium solution, a transition metal ammonium coordination complex ion is formed,
By contacting the mixed solution with a silica carrier,
The oxygen atom of the silanol group on the surface of the silica support is bonded to the transition metal,
Furthermore, the transition metal, the oxygen and the silicon atom on the surface of the silica support are chemically bonded,
A method for highly dispersing and supporting a transition metal atom on a surface of a silica support, wherein the transition metal atom is supported on the exposed surface of the silica support in a highly dispersed state at an atomic level.
(4)
Suppressing the emission of carbon dioxide by bringing the mixed gas obtained from biomass into contact with the highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to (1) or (2) A method for treating biomass gas, characterized by:
(5)
The production amount of the tar component is suppressed by bringing the mixed gas obtained from biomass into contact with the highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to (1) or (2). A method for treating biomass gas, characterized in that:
(6)
The hydrogen gas concentration is concentrated and separated by bringing the mixed gas obtained from biomass into contact with the highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to (1) or (2) A method for producing hydrogen gas, comprising:
It was.

本発明は、遷移金属とシリカ担体表面のケイ素原子との間に,酸素を介して化学結合を形成することで、過去に報告されている遷移金属の担持方法と比較し、遷移金属がシリカ担体表面に原子レベルで分散担持され、高性能な触媒を作製できる。また同時に当該高分散担持方法は、工業的に大量製造にも容易に適用することができる。 The present invention forms a chemical bond via oxygen between the transition metal and the silicon atom on the surface of the silica support, so that the transition metal is a silica support compared to the transition metal support methods reported in the past. A high performance catalyst can be produced by being dispersed and supported on the surface at the atomic level. At the same time, the high dispersion supporting method can be easily applied to industrial mass production.

資源循環・廃棄物研究センターの熱処理プラントにおいて、本発明に係る高分散遷移金属触媒を改質触媒として用い、バイオマスから得られたガスの改質を行うことにより、高濃度(40−60%)の水素生成や、二酸化炭素及びタール量の大幅削減(0.1g/NM以下)が可能になる(図3(A)、(B))。 By using the highly dispersed transition metal catalyst according to the present invention as a reforming catalyst in a heat treatment plant of the Resource Recycling and Waste Research Center, reforming the gas obtained from the biomass enables high concentration (40-60%) Generation of hydrogen and a significant reduction in carbon dioxide and tar content (0.1 g / NM 3 or less) are possible (FIGS. 3A and 3B).

本発明は、水素生成、アンモニアやメタノールの合成、ガス精製と転換、水素添加、脱水素、石油精製、環境浄化などの広範な技術分野で高効率な工業用触媒として利用することができ、また、材料として、磁性体材料、電気材料、顔料の原料、染色材料としての応用も期待できる。 The present invention can be used as a highly efficient industrial catalyst in a wide range of technical fields such as hydrogen production, synthesis of ammonia and methanol, gas purification and conversion, hydrogenation, dehydrogenation, petroleum refining, and environmental purification. As materials, magnetic materials, electrical materials, pigment raw materials, and dyeing materials can also be expected.

本発明である高分散遷移金属触媒の製造方法の概略図及び説明である。It is the schematic and description of the manufacturing method of the highly dispersed transition metal catalyst which is this invention. 本発明である高分散遷移金属触媒のキャラクタリゼショーン(特性評価)結果である。図2(A)に従来法と本発明法で得た触媒の粉末X線回折パターンである。図2(B)に従来法と本発明法で得た触媒の可視・紫外分光スペクトルである。It is a characteristic result (characteristic evaluation) result of the highly dispersed transition metal catalyst which is this invention. FIG. 2A is a powder X-ray diffraction pattern of the catalyst obtained by the conventional method and the method of the present invention. FIG. 2B is a visible / ultraviolet spectrum of the catalyst obtained by the conventional method and the method of the present invention. 本発明の効果及び用途に関する説明図である。図3(A)は、バイオマスのガス化および多段触媒変換プロセスを経てエネルギー回収技術によりバイオマスの循環再利用の模式図である。図3(B)はバイオマスから高度エネルギー回収プロセスの模式図である。It is explanatory drawing regarding the effect and use of this invention. FIG. 3 (A) is a schematic diagram of recycling and recycling of biomass through energy recovery technology through biomass gasification and multistage catalytic conversion processes. FIG. 3B is a schematic diagram of an advanced energy recovery process from biomass. 従来の遷移金属触媒担持法の説明図である。It is explanatory drawing of the conventional transition metal catalyst support method. 遷移金属触媒の高機能化についての説明図である。It is explanatory drawing about high functionalization of a transition metal catalyst.

次に、実施例に基づいて本発明を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Next, the present invention will be specifically described based on examples. In addition, this invention is not limited to the following Example.

本発明である高分散遷移金属触媒は、図1に示すように、シリカのようによく用いられる担体表面に、種々の遷移金属を原子レベルで高分散担持する方法であり、
下記の方法によって得られる:
(1)遷移金属(M)の無機塩を、水に溶解させ、アンモニウム水溶液を添加し、反応させ、遷移金属アンモニウム配位錯イオンを形成する。遷移金属塩を水に溶解してから、アンモニウム水溶液を添加し、遷移金属種の錯イオンを形成することにより塩基溶液に溶解性が高い遷移金属が得られる。塩基溶液に溶解性が高い遷移金属種の錯体の形成によって、遷移金属酸化物の生成を抑制することができるため、遷移金属を原子レベルでシリカ担体の露出表面に分散させることができる。遷移金属として、ニッケル、銅、亜鉛、コバルト、カドミウムおよびクロムが例示できる。
触媒として、
ニッケルは、水素化処理、脱硫、水素添加、窒素化合物の除去、スチームリフォーミング、メタネーション、石油精製、水素製造、オゾン分解などに利用できる。
銅は、脱硫、COの除去、CO転換、CO酸化、スチームリフォーミング、メタノール合成、モノマーの精製、水素還元、脱水素反応、水素製造、オゾン分解、有害ガスの除去などに利用できる。
亜鉛は、塩素化合物除去、脱硫、COの除去、CO転換、スチームリフォーミング、メタノール合成、モノマーの精製、水素還元、石油精製、水素製造、有害ガスの除去などに利用できる。
コバルトは、素化処理、水素添加、石油精製などに利用できる。
(2)遷移金属アンモニウム配位錯イオンをシリカ表面のシラノール基と接触させ、反応させることにより、酸素原子介してシリカ担体のケイ素原子と結合させた。
遷移金属、酸素、そしてケイ素の間に化学結合を形成させることにより、シリカ担体表面に遷移金属を原子レベルで高分散担持させた。
(3)ろ過することにより、水と分離し、原子レベルで高分散担持させた遷移金属原子を回収した。
(4)使用用途により焼成の操作を加える必要がある。
The highly dispersed transition metal catalyst of the present invention, as shown in FIG. 1, is a method of highly dispersing and supporting various transition metals at the atomic level on a support surface often used like silica.
Obtained by the following method:
(1) An inorganic salt of transition metal (M) is dissolved in water, an aqueous ammonium solution is added and reacted to form a transition metal ammonium coordination complex ion. After the transition metal salt is dissolved in water, an aqueous ammonium solution is added to form a transition metal species complex ion, thereby obtaining a transition metal having high solubility in the base solution. Since the formation of transition metal oxides can be suppressed by forming a complex of a transition metal species that is highly soluble in the base solution, the transition metal can be dispersed on the exposed surface of the silica support at the atomic level. Examples of the transition metal include nickel, copper, zinc, cobalt, cadmium and chromium.
As a catalyst,
Nickel can be used for hydrotreatment, desulfurization, hydrogenation, removal of nitrogen compounds, steam reforming, methanation, petroleum refining, hydrogen production, ozonolysis, and the like.
Copper can be used for desulfurization, CO removal, CO conversion, CO oxidation, steam reforming, methanol synthesis, monomer purification, hydrogen reduction, dehydrogenation, hydrogen production, ozonolysis, removal of harmful gases, and the like.
Zinc can be used for chlorine compound removal, desulfurization, CO removal, CO conversion, steam reforming, methanol synthesis, monomer purification, hydrogen reduction, petroleum refining, hydrogen production, harmful gas removal, and the like.
Cobalt can be used for elemental treatment, hydrogenation, petroleum refining and the like.
(2) The transition metal ammonium coordination complex ion was brought into contact with the silanol group on the silica surface and reacted to bind to the silicon atom of the silica support through an oxygen atom.
By forming a chemical bond between the transition metal, oxygen, and silicon, the transition metal was supported in a highly dispersed state at the atomic level on the surface of the silica support.
(3) By filtering, the transition metal atoms separated from water and supported in a highly dispersed state at the atomic level were recovered.
(4) It is necessary to add a baking operation depending on the intended use.

・担体の調整方法
非特許文献1を参照して、メソポーラスシリカ担体を合成して用いた。
-Preparation method of carrier With reference to Non-Patent Document 1, a mesoporous silica carrier was synthesized and used.

(1)比較例(a)
従来法(含浸法)でメソポーラスシリカ担体へのNiの分散担持方法
20gのエタノールを坩堝に加え、前記合成したメソポーラスシリカ担体重量に対するNiO重量10%に相当する硝酸ニッケル六水和物を前記容器に入れ、超音波をかけて溶解させた後、3%の前記合成したメソポーラスシリカ担体を前記容器に入れてから、2時間超音波を続けてかけた。その後、室温でエタノールを蒸発させ、80℃で乾燥させた。500℃で5時間焼成することにより、従来法でNiが分散したメソポーラスシリカを得た。
(1) Comparative example (a)
Method of Dispersing and Supporting Ni on Mesoporous Silica Support by Conventional Method (Impregnation Method) 20 g of ethanol was added to a crucible, and nickel nitrate hexahydrate corresponding to 10% NiO weight with respect to the weight of the synthesized mesoporous silica support was added to the container. After putting and dissolving by applying ultrasonic waves, 3% of the synthesized mesoporous silica carrier was put in the container, and then ultrasonic waves were continuously applied for 2 hours. Then, ethanol was evaporated at room temperature and dried at 80 ° C. By baking at 500 ° C. for 5 hours, mesoporous silica in which Ni was dispersed was obtained by a conventional method.

(2)実施例(b)
本発明法でメソポーラスシリカ担体へのNiの高分散担持方法
1)30gの水を容器に加え、前記合成したメソポーラスシリカ担体重量に対するNiO重量10%に相当する1.28g硝酸ニッケル六水和物を前記容器に入れ、溶解してからNiモル数に対する4倍のNH水溶液1.17gを滴下し、Niアンモニウム配位錯イオンを調整し、得られた塩基をNi前躯体とした。
2)攪拌しながら、前記調整したNi前躯体に3gの前記合成したメソポーラスシリカ担体を前記容器に入れてから、5分間攪拌を続けた。その後、48時間静置した。
3)ろ過、洗浄、乾燥などの一連の操作を行なった後、500℃で5時間焼成し、Niを高分散したメソポーラスシリカを得た。
(2) Example (b)
Method of high dispersion of Ni on mesoporous silica support according to the method of the present invention 1) 30 g of water is added to a container, and 1.28 g nickel nitrate hexahydrate corresponding to 10% NiO weight with respect to the weight of the synthesized mesoporous silica support is added. After putting into the container and dissolving, 1.17 g of NH 3 aqueous solution 4 times the number of moles of Ni was added dropwise to adjust Ni ammonium coordination complex ions, and the resulting base was used as a Ni precursor.
2) While stirring, 3 g of the synthesized mesoporous silica support was put into the container with the adjusted Ni precursor, and stirring was continued for 5 minutes. Then, it left still for 48 hours.
3) After performing a series of operations such as filtration, washing, and drying, firing was performed at 500 ° C. for 5 hours to obtain mesoporous silica in which Ni was highly dispersed.

・合成した触媒の分析方法
(1)X線回折装置(理学 Multiflex)を用い、CuKα 線を得られた生成物(触媒)に照射し、回折角度10°から90°までのXRDパターンを得た(図2(A))。
可視・紫外分光装置(PerkinElmer LAMBDA 950)を用い、波長400〜800nm範囲に測定し、生成物(触媒)の可視・紫外分光(UV−VIS)スペクトルを得た(図2(B))。
-Analysis method of synthesized catalyst (1) Using an X-ray diffractometer (Science Multiflex), the product (catalyst) obtained with CuKα rays was irradiated to obtain an XRD pattern with a diffraction angle of 10 ° to 90 °. (FIG. 2 (A)).
Using a visible / ultraviolet spectrophotometer (PerkinElmer LAMBDA 950), measurement was performed in a wavelength range of 400 to 800 nm to obtain a visible / ultraviolet spectroscopic (UV-VIS) spectrum of the product (catalyst) (FIG. 2B).

得られた生成物のXRDパターンを図2(A)に示す。縦軸はピーク回折強度、横軸は回折角度である。従来方法で得られた生成物(触媒)のXRDパターンにはNiOに帰属する回折ピークが観測された。一方、本発明法で、得られた生成物(触媒)のXRDパターンにはNiOに帰属する回折ピークが観測されなかった。このことは、本発明法で、Niがメソポーラス担体のケイ素との間に結合した(Niの原子レベル分散)、または極めて小さいNiO粒子として存在することを示唆している。   The XRD pattern of the obtained product is shown in FIG. The vertical axis represents the peak diffraction intensity, and the horizontal axis represents the diffraction angle. A diffraction peak attributed to NiO was observed in the XRD pattern of the product (catalyst) obtained by the conventional method. On the other hand, no diffraction peak attributed to NiO was observed in the XRD pattern of the product (catalyst) obtained by the method of the present invention. This suggests that, in the method of the present invention, Ni is bonded to silicon of the mesoporous support (atomic level dispersion of Ni) or exists as extremely small NiO particles.

上記生成物のUV−VISスペクトルを図2(B)に示す。縦軸はピーク吸収強度、横軸は波長である。従来方法で得られた上記生成物(触媒)のUV−VISスペクトルにはNiOに帰属するバンド(289nm付近のブロードバンド)が観測された。一方、本発明法で、得られた上記生成物(触媒)のUV−VISスペクトルにはNiOに帰属するバンドが観測されなかった。   The UV-VIS spectrum of the product is shown in FIG. The vertical axis represents peak absorption intensity, and the horizontal axis represents wavelength. A band attributed to NiO (broadband near 289 nm) was observed in the UV-VIS spectrum of the product (catalyst) obtained by the conventional method. On the other hand, no band attributed to NiO was observed in the UV-VIS spectrum of the product (catalyst) obtained by the method of the present invention.

これらのことから、Niがすべてメソポーラス担体のケイ素との間に結合した(Niの原子レベル分散)ことが強く示唆され、小さいNiO粒子として存在する可能性が排除された。したがって、本発明法でNiが原子レベルでメソポーラスシリカ担体表面に高分散担持したと言える。   From these, it was strongly suggested that all Ni was bonded to silicon of the mesoporous support (atomic level dispersion of Ni), and the possibility of existing as small NiO particles was excluded. Therefore, it can be said that Ni was supported in a highly dispersed manner on the surface of the mesoporous silica support at the atomic level in the method of the present invention.

Claims (6)

遷移金属の無機塩をアンモニウム水溶液に添加した混合液で、遷移金属アンモニウム配位錯イオンを形成し、
前記混合液をシリカ担体と接触させて前記シリカ担体表面のシラノール基の酸素原子に前記遷移金属を結合させ、
前記遷移金属と前記酸素と前記シリカ担体表面のケイ素原子とを化学結合させ、
前記シリカ担体を回収し、
前記シリカ担体の露出表面に、遷移金属原子を原子レベルで高分散担持させてなることを特徴とする
高分散遷移金属触媒の製造方法
In a mixed solution in which an inorganic salt of a transition metal is added to an aqueous ammonium solution, a transition metal ammonium coordination complex ion is formed,
Contacting the mixed liquid with a silica carrier to bind the transition metal to an oxygen atom of a silanol group on the surface of the silica carrier;
Chemically bonding the transition metal, the oxygen, and silicon atoms on the surface of the silica support;
Recovering the silica support;
A process for producing a highly dispersed transition metal catalyst , wherein transition metal atoms are supported on an exposed surface of the silica carrier in a highly dispersed state at an atomic level.
前記遷移金属が、ニッケル、銅、亜鉛、コバルト、カドミウムおよびクロムの内から選択される1種またはそれ以上である請求項1に記載の高分散遷移金属触媒の製造方法The method for producing a highly dispersed transition metal catalyst according to claim 1, wherein the transition metal is one or more selected from nickel, copper, zinc, cobalt, cadmium and chromium. 遷移金属の無機塩をアンモニウム水溶液に添加した混合液で、遷移金属アンモニウム配位錯イオンを形成し、
前記混合液をシリカ担体と接触させることで、
前記シリカ担体表面のシラノール基の酸素原子と前記遷移金属が結合し、
さらに、前記遷移金属と前記酸素と前記シリカ担体表面のケイ素原子とが化学結合することで、
前記シリカ担体の露出表面に、遷移金属原子を原子レベルで高分散担持させることを特徴とする
シリカ担体表面への遷移金属原子の高分散担持方法。
In a mixed solution in which an inorganic salt of a transition metal is added to an aqueous ammonium solution, a transition metal ammonium coordination complex ion is formed,
By contacting the mixed solution with a silica carrier,
The oxygen atom of the silanol group on the surface of the silica support is bonded to the transition metal,
Furthermore, the transition metal, the oxygen and the silicon atom on the surface of the silica support are chemically bonded,
A method for highly dispersing and supporting a transition metal atom on a surface of a silica support, wherein the transition metal atom is supported on the exposed surface of the silica support in a highly dispersed state at an atomic level.
請求項1又は請求項2に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、
バイオマスから得られた混合ガスを接触させることで、二酸化炭素の排出を抑制することを特徴とするバイオマスガスの処理方法。
A highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to claim 1 or 2,
A method for treating biomass gas, characterized in that emission of carbon dioxide is suppressed by contacting a mixed gas obtained from biomass.
請求項1又は請求項2に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、
バイオマスから得られた混合ガスを接触させることで、タール成分の生成量を抑制することを特徴とするバイオマスガスの処理方法。
A highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to claim 1 or 2,
A method for treating biomass gas, wherein a mixed gas obtained from biomass is brought into contact with each other to suppress the amount of tar components produced.
請求項1又は請求項2に記載の高分散遷移金属触媒の製造方法によって得られた高分散遷移金属触媒に、
バイオマスから得られた混合ガスを接触させることで、水素ガス濃度を濃縮し、分離することを特徴とする水素ガスの製造方法。
A highly dispersed transition metal catalyst obtained by the method for producing a highly dispersed transition metal catalyst according to claim 1 or 2,
A method for producing hydrogen gas, comprising concentrating and separating hydrogen gas concentration by contacting a mixed gas obtained from biomass.
JP2014119923A 2014-06-10 2014-06-10 Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support Active JP6399816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119923A JP6399816B2 (en) 2014-06-10 2014-06-10 Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119923A JP6399816B2 (en) 2014-06-10 2014-06-10 Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support

Publications (2)

Publication Number Publication Date
JP2015231611A JP2015231611A (en) 2015-12-24
JP6399816B2 true JP6399816B2 (en) 2018-10-03

Family

ID=54933455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119923A Active JP6399816B2 (en) 2014-06-10 2014-06-10 Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support

Country Status (1)

Country Link
JP (1) JP6399816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603654B (en) * 2016-07-11 2020-01-10 中国石油化工股份有限公司 Demetallization method of coal tar and catalytic hydrogenation method and system of coal tar

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193735A (en) * 1982-05-06 1983-11-11 Ube Ind Ltd Production of catalyst for hydrogenation of lower hydroxycarboxylic ester
JPS59189936A (en) * 1983-04-12 1984-10-27 Ube Ind Ltd Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester
JP2506578B2 (en) * 1991-02-01 1996-06-12 財団法人石油産業活性化センター Method for purifying exhaust gas containing nitrogen oxides
DE19624283A1 (en) * 1996-06-18 1998-01-02 Basf Ag Process for the preparation of N-substituted cyclic amines
JP4984678B2 (en) * 2006-06-28 2012-07-25 株式会社日立製作所 CO oxidation method
US8557726B2 (en) * 2010-03-12 2013-10-15 Council Of Scientific & Industrial Research Chiral heterogeneous catalyst for assymmetric nitroaldol reaction

Also Published As

Publication number Publication date
JP2015231611A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
Cheng et al. Photocatalytic nitrogen fixation: the role of defects in photocatalysts
Cheng et al. NiCo 2 O 4 nanosheets as a novel oxygen-evolution-reaction cocatalyst in situ bonded on the gC 3 N 4 photocatalyst for excellent overall water splitting
Feng et al. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation
Liu et al. Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions
Nagabhushana et al. Synthesis of bismuth vanadate: its application in H 2 evolution and sunlight-driven photodegradation
Dharmarathna et al. Direct sonochemical synthesis of manganese octahedral molecular sieve (OMS-2) nanomaterials using cosolvent systems, their characterization, and catalytic applications
Eisenberg et al. Understanding oxygen activation on metal-and nitrogen-codoped carbon catalysts
WO2017091857A1 (en) Photocatalytic conversion of carbon dioxide and water into substituted or unsubstituted hydrocarbon(s)
Chen et al. K+, Ni and carbon co-modification promoted two-electron O 2 reduction for photocatalytic H 2 O 2 production by crystalline carbon nitride
Sommers et al. Revisiting the behaviour of BiVO 4 as a carbon dioxide reduction photo-catalyst
Zhou et al. Controllable doping of nitrogen and tetravalent niobium affords yellow and black calcium niobate nanosheets for enhanced photocatalytic hydrogen evolution
Ghoshal et al. Towards H 2 O catalyzed N 2-fixation over TiO 2 doped Ru n clusters (n= 5, 6): a mechanistic and kinetic approach
Liu et al. Biomass-assisted synthesis of CeO2 nanorods for CO2 photoreduction under visible light
Vasilchenko et al. Platinum deposition onto g-C3N4 with using of labile nitratocomplex for generation of the highly active hydrogen evolution photocatalysts
Pan et al. Defect engineering in 2D photocatalytic materials for CO2 reduction
Gao et al. Electronic interaction and oxgen vacancy engineering of g-C3N4/α-Bi2O3 Z-scheme heterojunction for enhanced photocatalytic aerobic oxidative homo-/hetero-coupling of amines to imines in aqueous phase
Yan et al. Preparation, characterization and photocatalytic activity of TiO 2 formed from a mesoporous precursor
Das et al. Boosting photocatalytic property of graphitic carbon nitride with metal complex fabrication for efficient degradation of organic pollutants
Yin et al. Copper vanadate nanowires on g-C3N4 toward highly selective oxidation of methanol to dimethoxymethane
Li et al. Nitrogen activation and surface charge regulation for enhancing the visible-light-driven N2 fixation over MoS2/UiO-66 (SH) 2
CN111151275A (en) MoS2/Mo2C Complex, MoS2/Mo2C/CdS composite material and preparation method and application thereof
Jalil et al. Insight into the development and proceedings of Au@ Al–CeVO 4 catalysts for water splitting: an advanced outlook for hydrogen generation with sunlight
JP6399816B2 (en) Highly dispersed transition metal catalyst and method for highly dispersed loading of transition metal atoms on the surface of a silica support
Lin et al. One-step synthesis of ZnS-N/C nanocomposites derived from Zn-based chiral metal–organic frameworks with highly efficient photocatalytic activity for the selective oxidation of cis-cyclooctene
Liu et al. Metal–organic framework (MOF) as a precursor for synthesis of platinum supporting zinc oxide nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250