JP6397781B2 - Concentrator - Google Patents

Concentrator Download PDF

Info

Publication number
JP6397781B2
JP6397781B2 JP2015036742A JP2015036742A JP6397781B2 JP 6397781 B2 JP6397781 B2 JP 6397781B2 JP 2015036742 A JP2015036742 A JP 2015036742A JP 2015036742 A JP2015036742 A JP 2015036742A JP 6397781 B2 JP6397781 B2 JP 6397781B2
Authority
JP
Japan
Prior art keywords
protein
separation membrane
concentrated
concentrator
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015036742A
Other languages
Japanese (ja)
Other versions
JP2016154809A (en
Inventor
康子 佐藤
康子 佐藤
亜矢子 小林
亜矢子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56824371&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6397781(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2015036742A priority Critical patent/JP6397781B2/en
Priority to CN201610108598.5A priority patent/CN105924497B/en
Publication of JP2016154809A publication Critical patent/JP2016154809A/en
Application granted granted Critical
Publication of JP6397781B2 publication Critical patent/JP6397781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis

Description

本発明は、腹水、胸水、心嚢液等の体腔液の濃縮器に関する。   The present invention relates to a concentrator for body cavity fluid such as ascites, pleural effusion and pericardial fluid.

例えば難治性腹水症の治療法として、患者から腹水を採取し、当該腹水を濾過し癌細胞や細菌などの病因物質を除去してアルブミンなどからなる蛋白質水溶液を生成し、その後その蛋白質水溶液を濃縮し、当該濃縮液を体内に再注入する腹水濾過濃縮再静注法(Cell-free and Concentrated Ascites Reinfusion Therapy)がある。   For example, as a treatment for intractable ascites, ascites is collected from a patient, and the ascites is filtered to remove pathogenic substances such as cancer cells and bacteria to produce a protein aqueous solution composed of albumin and the like, and then the protein aqueous solution is concentrated. In addition, there is a cell-free and concentrated ascites reinfusion therapy in which the concentrate is reinjected into the body.

上記蛋白質水溶液の濃縮には、通常、腹水処理回路に接続された濃縮器が用いられる(特許文献1、2参照)。この濃縮器は、本体内部に中空糸膜などの分離膜を有し、蛋白質水溶液の水分を分離膜を通して分離して蛋白質水溶液を濃縮している。   For the concentration of the protein aqueous solution, a concentrator connected to an ascites treatment circuit is usually used (see Patent Documents 1 and 2). This concentrator has a separation membrane such as a hollow fiber membrane inside the main body, and concentrates the aqueous protein solution by separating the water of the aqueous protein solution through the separation membrane.

特開平5−220219号公報Japanese Patent Laid-Open No. 5-220219 特開平5−168699号公報JP-A-5-168699

しかしながら、腹水などから濾過され生成された蛋白質水溶液は、粘度が高く、蛋白質の付着性が高いため、1L程度の少量の濃縮でも、蛋白質が分離膜に付着し、分離膜に目詰まりが起こり始める場合が多い。目詰まりが起こり始めると、分離膜の空孔を水分が通過しにくくなるので、蛋白質水溶液から水分が十分に除去されず、5倍程度の高倍率の濃縮を実現するのが難しくなる。ここで、濃縮倍率とは、濃縮前の蛋白質水溶液量を濃縮液量で除した値を指す。一方で、目詰まりを抑制しようと、分離膜の空隙率を上げると、今度は水分と共に蛋白質も分離膜の空孔を通じて漏出してしまう。この結果、濃縮された蛋白質溶液(濃縮液)における蛋白質の回収率が低くなる。   However, an aqueous protein solution produced by filtration from ascites or the like has high viscosity and high protein adhesion. Therefore, even when concentrated in a small amount of about 1 L, the protein adheres to the separation membrane and clogging begins to occur in the separation membrane. There are many cases. When clogging starts to occur, it becomes difficult for moisture to pass through the pores of the separation membrane, so that the moisture is not sufficiently removed from the protein aqueous solution, and it becomes difficult to achieve concentration at a high magnification of about 5 times. Here, the concentration ratio refers to a value obtained by dividing the amount of protein aqueous solution before concentration by the amount of concentrated solution. On the other hand, if the porosity of the separation membrane is increased in order to suppress clogging, protein will leak through the pores of the separation membrane this time along with moisture. As a result, the protein recovery rate in the concentrated protein solution (concentrated solution) is lowered.

本出願はかかる点に鑑みてなされたものであり、腹水などの体腔液を濾過して生成された蛋白質水溶液を濃縮する濃縮器において、高倍率の濃縮を実現しつつ、蛋白質の高い回収率を確保することをその目的とする。   The present application has been made in view of such points, and in a concentrator that concentrates an aqueous protein solution produced by filtering body cavity fluid such as ascites, it achieves a high protein recovery rate while achieving high-concentration concentration. Its purpose is to ensure.

本発明者らは、濃縮器の分離膜の空隙率と親水性度を所定の範囲に調整することにより、高倍率の濃縮を実現しつつ、高い蛋白質の回収率を実現できることを見出し、本発明を完成するに至った。
即ち、本発明の態様は以下を含む。
(a)体腔液が濾過され生成された蛋白質水溶液を分離膜により濃縮する濃縮器であって、前記分離膜は、60%以上80%以下の空隙率及び毛細管上昇法で測定した前記分離膜の液面上昇値が内径200μmの中空糸膜に換算すると60mm〜150mmであり、濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、蛋白質水溶液の濃縮液を得る濃縮工程を実施した場合に、下記条件(1)、(2)を満たすように構成されている、濃縮器。
(1)蛋白質水溶液原液を5L濃縮した際の最大膜間圧力差が500mmHg以下であり、
(2)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を5L濃縮した時の膜間圧力差をBとした場合に、B/A≦1.6となる。
(b)前記分離膜は、前記濃縮工程を実施した場合に、さらに下記条件(3)、(4)を満たすように構成されている、(a)に記載の濃縮器。
(3)蛋白質水溶液原液を2L濃縮した際に得られる濃縮液の蛋白質回収率が40%以上であり、
(4)蛋白質水溶液原液を5L濃縮した際に得られる濃縮液の蛋白質回収率が70%以上である。
(c)前記条件(4)において蛋白質水溶液原液を5L濃縮した際に得られる濃縮液のアルブミンの回収率が80%以上である、(b)に記載の濃縮器。
(d)前記分離膜は、前記濃縮工程を実施した場合に、さらに下記(5)を満たすように構成されている、(a)〜(c)のいずれかに記載の濃縮器。
(5)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を10L濃縮した時の膜間圧力差をCとした場合に、C/A≦1.5となる。
(e)前記分離膜に使用する基材は、ポリスルホン系、エチレンビニルアルコール系、セルロースアセテート系、ポリエチレン系、ポリエステル系ポリマーアロイ(PEPA)、ポリメチルメタクリレート系(PMMA)、又はポリアクリロニトリル系である、(a)〜(d)のいずれかに記載の濃縮器。
(f)前記分離膜は、中空糸膜である、(a)〜(e)のいずれかに記載の濃縮器。
(g)前記分離膜は、ポリスルホン系の中空糸膜である、(f)に記載の濃縮器。
The present inventors have found that by adjusting the porosity and hydrophilicity of the separation membrane of the concentrator to a predetermined range, it is possible to realize a high protein recovery rate while realizing high-concentration concentration. It came to complete.
That is, the aspect of this invention contains the following.
(A) A concentrator for concentrating a protein aqueous solution produced by filtering body cavity fluid with a separation membrane, wherein the separation membrane has a porosity of 60% or more and 80% or less, and the separation membrane measured by a capillary ascending method. When the liquid level rise value is converted into a hollow fiber membrane having an inner diameter of 200 μm, it is 60 mm to 150 mm, and a protein aqueous solution solution having a concentration of 3 g / dL is passed at a flow rate of 50 mL / min to carry out a concentration step to obtain a concentrated solution of the protein aqueous solution. In some cases, the concentrator is configured to satisfy the following conditions (1) and (2).
(1) The maximum transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 5 L is 500 mmHg or less,
(2) When the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 2 L is A and the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 5 L is B, B / A ≦ 1.6.
(B) The concentrator according to (a), wherein the separation membrane is configured to further satisfy the following conditions (3) and (4) when the concentration step is performed.
(3) The protein recovery rate of the concentrate obtained when 2 L of the aqueous protein solution stock is concentrated is 40% or more,
(4) The protein recovery rate of the concentrate obtained when 5 L of the protein aqueous solution stock is concentrated is 70% or more.
(C) The concentrator according to (b), wherein the albumin recovery rate of the concentrated solution obtained when 5 L of the aqueous protein solution is concentrated in the condition (4) is 80% or more.
(D) The concentrator according to any one of (a) to (c), wherein the separation membrane is configured to satisfy the following (5) when the concentration step is performed.
(5) When the transmembrane pressure difference when 2 L of the protein aqueous solution stock is concentrated is A and the transmembrane pressure difference when 10 L of the protein aqueous solution is concentrated is C, C / A ≦ 1.5.
(E) The substrate used for the separation membrane is polysulfone, ethylene vinyl alcohol, cellulose acetate, polyethylene, polyester polymer alloy (PEPA), polymethyl methacrylate (PMMA), or polyacrylonitrile. , (A) to (d).
(F) The concentrator according to any one of (a) to (e), wherein the separation membrane is a hollow fiber membrane.
(G) The concentrator according to (f), wherein the separation membrane is a polysulfone-based hollow fiber membrane.

本発明によれば、体腔液を濾過して生成された蛋白質水溶液を濃縮する濃縮器において、高倍率の濃縮を実現しつつ、蛋白質の高い回収率を確保できる。   ADVANTAGE OF THE INVENTION According to this invention, in the concentrator which concentrates the protein aqueous solution produced | generated by filtering body cavity fluid, it is possible to ensure a high protein recovery rate while realizing high-concentration concentration.

腹水処理システムの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of an ascites processing system. 濃縮器の縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section of a concentrator. 原液濃縮量に対する膜間圧力差の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the transmembrane pressure difference with respect to stock solution concentration. 分離膜を拡大した模式図である。It is the schematic diagram which expanded the separation membrane. 実施例の腹水処理システムの概略を示す説明図である。It is explanatory drawing which shows the outline of the ascites processing system of an Example.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。なお、図面の上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Note that the positional relationship such as up, down, left, and right in the drawing is based on the positional relationship shown in the drawing unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios. Furthermore, the following embodiment is an illustration for explaining the present invention, and is not intended to limit the present invention only to the embodiment. The present invention can be variously modified without departing from the gist thereof.

図1は、本実施の形態に係る濃縮器22を備えた体腔液処理システムとしての腹水処理システム1の構成の概略を示す説明図である。   FIG. 1 is an explanatory diagram showing an outline of the configuration of an ascites treatment system 1 as a body cavity fluid treatment system provided with a concentrator 22 according to the present embodiment.

図1に示すように腹水処理システム1は、例えば液体回路としての腹水処理回路10を備えている。腹水処理回路10は、体腔液貯留部としての腹水バッグ20と、濾過器21と、濃縮器22と、濃縮液貯留部としての濃縮腹水バッグ23と、腹水バッグ20と濾過器21を接続する第1の流路24と、濾過器21と濃縮器22を接続する第2の流路25と、濃縮器22と濃縮腹水バッグ23を接続する第3の流路26とを有している。   As shown in FIG. 1, the ascites treatment system 1 includes an ascites treatment circuit 10 as a liquid circuit, for example. The ascites treatment circuit 10 connects the ascites bag 20 as a body cavity fluid reservoir, a filter 21, a concentrator 22, a concentrated ascites bag 23 as a concentrate reservoir, and the ascites bag 20 and the filter 21. 1 channel 24, second channel 25 connecting filter 21 and concentrator 22, and third channel 26 connecting concentrator 22 and concentrated ascites bag 23.

腹水バッグ20は、例えばポリ塩化ビニルなど軟質性の樹脂からなる容器であり、患者から採取された体腔液としての腹水を収容できる。   The ascites bag 20 is a container made of a soft resin such as polyvinyl chloride, and can store ascites as a body cavity fluid collected from a patient.

濾過器21は、腹水から癌細胞、細菌などの所定の病因物質を除去し、それ以外のアルブミンなどの蛋白質を含む蛋白質水溶液(濾過液)を通過させる中空糸膜からなる濾過膜30を有している。濾過器21では、例えば腹水が濾過膜30の一次側(中空糸膜の内側)の入口から供給され、当該腹水が濾過膜30を通過して濾過膜30の二次側(中空糸膜の外側)に排出されることにより、腹水を濾過することができる。濾過器21の濾過膜30の一次側の出口は、濾過膜30を通過しない成分が排液される図示しない排液部に連通している。また、例えば腹水が濾過膜30の二次側(中空糸膜の外側)の入口から供給され、当該腹水が濾過膜30を通過して濾過膜30の一次側(中空糸膜内外側)に排出されることにより、腹水を濾過することもできる。   The filter 21 has a filtration membrane 30 made of a hollow fiber membrane that removes predetermined pathogens such as cancer cells and bacteria from ascites and allows other protein aqueous solutions (filtrate) containing proteins such as albumin to pass therethrough. ing. In the filter 21, for example, ascites is supplied from the inlet of the primary side of the filtration membrane 30 (inside the hollow fiber membrane), and the ascites passes through the filtration membrane 30 to the secondary side of the filtration membrane 30 (outside of the hollow fiber membrane). Ascites can be filtered. The outlet on the primary side of the filtration membrane 30 of the filter 21 communicates with a drainage unit (not shown) from which components that do not pass through the filtration membrane 30 are drained. Further, for example, ascites is supplied from the inlet of the secondary side of the filtration membrane 30 (outside of the hollow fiber membrane), and the ascites passes through the filtration membrane 30 and is discharged to the primary side of the filtration membrane 30 (outside of the hollow fiber membrane). By doing so, ascites can also be filtered.

第1の流路24は、例えばポリ塩化ビニルなど軟質性のチューブであり、腹水バッグ20の出口から濾過器21の濾過膜30の一次側の入口に接続されている。第1の流路24には、例えばチューブポンプ40が設けられ、腹水バッグ20の腹水を濾過器21に送ることができる。なお、チューブポンプ40を設けずに、腹水バッグ20の腹水を重力落下により濾過器21に供給するようにしてもよい。   The first flow path 24 is a soft tube such as polyvinyl chloride, and is connected from the outlet of the ascites bag 20 to the inlet on the primary side of the filtration membrane 30 of the filter 21. For example, a tube pump 40 is provided in the first flow path 24, and the ascites in the ascites bag 20 can be sent to the filter 21. Note that the ascites in the ascites bag 20 may be supplied to the filter 21 by gravity drop without providing the tube pump 40.

濃縮器22は、濾過器21を通過した濾過液中の水分を除去して濃縮する中空糸膜からなる分離膜60を有している。濃縮器22は、筒状容器50を有し、筒状容器50の内部に、その長手方向に沿って分離膜60が配置されている。筒状容器50の上部及び下部には、分離膜60の内側(空間)に通じるポート51、52が設けられ、筒状容器50の側面部には、分離膜60の外側(空間)に通じる2つのポート53、54が設けられている。濃縮器22の上部のポート51は、第2の流路25を介して濾過器21に通じている。濃縮器22の下部のポート52は、第3の流路26を介して濃縮腹水バッグ23に通じている。濃縮器22の側面部のポート53は、除去された水分が排液される図示しない排液部に連通している。また、濾過器22のポート54は、例えば閉鎖されている。濃縮器22では、例えば蛋白質水溶液が分離膜60の一次側(中空糸膜の内側)の入口から供給され、当該蛋白質水溶液に含まれる水分が、分離膜60を通じて分離膜60の二次側(中空糸膜の外側)に抜けることにより、蛋白質水溶液を濃縮できる。濃縮器22の構成の詳細については後述する。   The concentrator 22 has a separation membrane 60 made of a hollow fiber membrane that removes and concentrates water in the filtrate that has passed through the filter 21. The concentrator 22 has a cylindrical container 50, and a separation membrane 60 is disposed inside the cylindrical container 50 along the longitudinal direction thereof. Ports 51 and 52 that communicate with the inside (space) of the separation membrane 60 are provided in the upper and lower portions of the cylindrical container 50, and 2 that communicate with the outside (space) of the separation membrane 60 on the side surface of the cylindrical container 50. Two ports 53 and 54 are provided. An upper port 51 of the concentrator 22 communicates with the filter 21 via the second flow path 25. The lower port 52 of the concentrator 22 communicates with the concentrated ascites bag 23 via the third flow path 26. The port 53 on the side surface of the concentrator 22 communicates with a drainage unit (not shown) from which the removed water is drained. Further, the port 54 of the filter 22 is closed, for example. In the concentrator 22, for example, an aqueous protein solution is supplied from the inlet of the primary side (inside the hollow fiber membrane) of the separation membrane 60, and moisture contained in the aqueous protein solution passes through the separation membrane 60 to the secondary side (hollow). The protein aqueous solution can be concentrated by slipping outside the thread membrane. Details of the configuration of the concentrator 22 will be described later.

第2の流路25は、例えばポリ塩化ビニルなど軟質性チューブであり、濾過器21の濾過膜30の二次側の出口から濃縮器22の分離膜60の一次側のポート51に接続されている。第2の流路25には、例えばチューブポンプ70が設けられ、濾過器21で濾過された濾過液を濃縮器22に送ることができる。   The second flow path 25 is a flexible tube such as polyvinyl chloride, and is connected from the outlet on the secondary side of the filtration membrane 30 of the filter 21 to the port 51 on the primary side of the separation membrane 60 of the concentrator 22. Yes. For example, a tube pump 70 is provided in the second flow path 25, and the filtrate filtered by the filter 21 can be sent to the concentrator 22.

第3の流路26は、例えばポリ塩化ビニルなど軟質性チューブであり、濃縮器22の分離膜60の一次側のポート52から濃縮腹水バッグ23に接続されている。   The third flow path 26 is a flexible tube such as polyvinyl chloride, and is connected to the concentrated ascites bag 23 from the port 52 on the primary side of the separation membrane 60 of the concentrator 22.

濃縮腹水バッグ23は、例えばポリ塩化ビニルなど軟質性の樹脂からなる容器であり、濃縮器22で濃縮された蛋白質を含む濃縮液を収容できる。   The concentrated ascites bag 23 is a container made of a soft resin such as polyvinyl chloride, for example, and can store a concentrated liquid containing the protein concentrated by the concentrator 22.

次に、濃縮器22の構成について説明する。図2は、濃縮器22の構成の概略を示す縦断面の説明図である。   Next, the configuration of the concentrator 22 will be described. FIG. 2 is an explanatory view of a longitudinal section showing an outline of the configuration of the concentrator 22.

濃縮器22は、上述のように筒状容器50を有し、筒状容器50の内部にその長手方向に沿って中空糸膜である分離膜60が配置されている。筒状容器50は、円筒状の容器胴部50aと、容器胴部50aの両端開口を閉鎖するヘッダー50bにより構成されている。ポート51、52は、ヘッダー50bに形成され、ポート53、54は、容器胴部50aに形成されている。   The concentrator 22 has the cylindrical container 50 as described above, and the separation membrane 60 that is a hollow fiber membrane is disposed along the longitudinal direction inside the cylindrical container 50. The cylindrical container 50 includes a cylindrical container body 50a and a header 50b that closes both end openings of the container body 50a. The ports 51 and 52 are formed in the header 50b, and the ports 53 and 54 are formed in the container body 50a.

分離膜60の両端部は、筒状容器50の両端部において硬化性樹脂のポッティング材80によりポッティング加工されている。これにより、分離膜60の両端部は、筒状容器50に固定され、筒状容器50の両端部には、分離膜60の各中空糸膜の内側が開口する開口端面81が形成される。筒状容器50の内部の分離膜60の中空糸膜の外側空間は、筒状容器50の側面部のポート53、54に連通している。分離膜60の中空糸膜の内側空間は、開口端面81を通じて、ポート51、52に連通している。かかる構成により、濾過液である蛋白質水溶液が、ポート51から分離膜60の内側空間に流入し、その蛋白質水溶液の水分が、分離膜60を介して分離膜60の外側空間に流出して、蛋白質水溶液から水分を除去して濃縮できる。分離膜60の外側空間に流入した水分は、ポート53から排出できる。また、分離膜60の内側空間を通過し水分が除去された蛋白質水溶液は、ポート52から濃縮腹水バッグ23に濃縮液として排出される。   Both ends of the separation membrane 60 are potted with a potting material 80 of a curable resin at both ends of the cylindrical container 50. As a result, both end portions of the separation membrane 60 are fixed to the cylindrical container 50, and open end surfaces 81 where the inner sides of the hollow fiber membranes of the separation membrane 60 open are formed at both end portions of the cylindrical container 50. The outer space of the hollow fiber membrane of the separation membrane 60 inside the cylindrical container 50 communicates with the ports 53 and 54 on the side surface of the cylindrical container 50. The space inside the hollow fiber membrane of the separation membrane 60 communicates with the ports 51 and 52 through the open end surface 81. With this configuration, the protein aqueous solution that is the filtrate flows into the inner space of the separation membrane 60 from the port 51, and the moisture of the protein aqueous solution flows out to the outer space of the separation membrane 60 through the separation membrane 60, It can be concentrated by removing moisture from the aqueous solution. Moisture flowing into the outer space of the separation membrane 60 can be discharged from the port 53. The protein aqueous solution from which moisture has been removed after passing through the inner space of the separation membrane 60 is discharged from the port 52 to the concentrated ascites bag 23 as a concentrated solution.

分離膜60は、60%以上80%以下の空隙率及び毛細管上昇法で測定した前記分離膜の液面上昇値が内径200μmの中空糸膜に換算すると60mm〜150mmであり、濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、蛋白質水溶液の濃縮液を得る濃縮工程Pを実施した場合に、下記条件(1)、(2)を満たすように構成されている。
(1)蛋白質水溶液原液を5L濃縮した際の最大膜間圧力差が500mmHg以下である。
(2)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を5L濃縮した時の膜間圧力差をBとした場合に、B/A≦1.6となる。
The separation membrane 60 has a porosity of 60% or more and 80% or less and the separation membrane liquid level rise value measured by the capillary rise method is 60 mm to 150 mm when converted to a hollow fiber membrane having an inner diameter of 200 μm, and the concentration is 3 g / dL. When the concentration step P in which the protein aqueous solution stock solution is passed at a flow rate of 50 mL / min to obtain a concentrated solution of the protein aqueous solution is performed, the following conditions (1) and (2) are satisfied.
(1) The maximum transmembrane pressure difference when 5 L of the protein aqueous solution stock solution is concentrated is 500 mmHg or less.
(2) When the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 2 L is A and the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 5 L is B, B / A ≦ 1.6.

すなわち、図3に示すように分離膜60は、当該分離膜60に濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、濃縮した場合に、蛋白質水溶液原液5Lを濃縮した際の最大膜間圧力差(分離膜60の一次側の圧力と二次側の圧力の差の最大値)が500mmHg以下であって、B(蛋白質水溶液を5L濃縮した時の膜間圧力差)/A(蛋白質水溶液原液を2L濃縮した時の膜間圧力差)が1.6以下になるように、空隙率と親水性度が調整されている。図3における曲線S1、S2、S3は、上記条件(1)、(2)を満たす分離膜を示し、曲線S4、S5は、条件(1)、(2)を満たさない分離膜を示す。   That is, as shown in FIG. 3, the separation membrane 60 has a concentration of 3 g / dL of a protein aqueous solution stock solution passed through the separation membrane 60 at a flow rate of 50 mL / min and is concentrated. Maximum transmembrane pressure difference (maximum difference between primary side pressure and secondary side pressure of separation membrane 60) is 500 mmHg or less, and B (transmembrane pressure difference when 5 L of protein aqueous solution is concentrated) / A The porosity and the hydrophilicity are adjusted so that (the intermembrane pressure difference when 2 L of the protein aqueous solution is concentrated) is 1.6 or less. Curves S1, S2, and S3 in FIG. 3 indicate separation membranes that satisfy the conditions (1) and (2), and curves S4 and S5 indicate separation membranes that do not satisfy the conditions (1) and (2).

なお、空隙率は、次式により定義される。
空隙率=(Y-X)×100/Y
X:一定量の膜の重量
Y:Xの一定量の膜が基材で満たされていると仮定したとき(空隙がないとき)の重量。
本発明において、空隙率は60%以上80%以下であることが必要である。より好ましくは、65%以上80%以下であり、65%以上75%以下であればさらに好ましい。60%より小さい場合、濃縮時に目詰まりが起こりやすくなる為好ましくない。また、80%より大きい場合は、濃縮時の蛋白質漏出量が大きくなり好ましくない。分離膜が中空糸膜状ではなく平膜状である場合も上記式で空隙率を算出する。
The porosity is defined by the following formula.
Porosity = (Y−X) × 100 / Y
X: Weight of a certain amount of film Y: Weight when it is assumed that a certain amount of film of X is filled with the substrate (when there is no void).
In the present invention, the porosity needs to be 60% or more and 80% or less. More preferably, it is 65% or more and 80% or less, and more preferably 65% or more and 75% or less. If it is less than 60%, clogging tends to occur during concentration, which is not preferable. On the other hand, if it is larger than 80%, the amount of protein leakage during concentration is undesirably large. Even when the separation membrane is not a hollow fiber membrane but a flat membrane, the porosity is calculated by the above formula.

本発明において、親水性度は、毛細管上昇法によって測定される。本発明でいう毛細管上昇法とは、中空糸膜の中空開口部の一端(平膜の場合は平膜の一辺)を水溶液に浸し、一定時間後に毛細管現象で上昇した液面の水面からの高さを測定する方法のことをいう。具体的には、以下の前処理(P)、(Q)、すなわち分離膜を注射用蒸留水で洗浄する(P)、分離膜を十分に乾燥させる(Q)、の後、乾燥させた分離膜の一端を水溶液に浸し、一定時間後に毛細管現象で上昇した液面の水面からの高さを測定する方法のことをいう。
管状構造の分離膜の場合、毛管上昇に関しては、一般的に、以下の関係式があることが知られている。
h=2γcosθ/rρg
h:液体面からの上昇位
γ:液体の表面張力
θ:接触角(固体と液体の接触面から液体と気体の接触面への角度)
r:管半径
ρ:液体の密度
g:重力加速度
すなわち、r(管半径)、ρ(液体密度)、h(液体面からの上昇位)を測定することによって液体の表面張力を測定することができ、この関係式から、管状構造体内表面の液体に対する濡れ易さ、すなわち、親水性、疎水性の度合いは、毛細管中の液面上昇の度合いによって評価することが可能である。
したがって、分離膜の場合も上記の毛細管上昇法により、中空糸内表面の水溶液に対する濡れ易さ、すなわち、親水性(疎水性)の度合いを測定することができる。また、内径の異なる分離膜であっても、各々の毛細管中の液面上昇値と内径を測定し、上式の関係から基準とする分離膜の内径に換算する補正をすることによって、各々の親水性(疎水性)の度合いを、基準とする内径の分離膜の液面上昇値として絶対比較することが可能になる。本発明では液面上昇値として中空糸膜の内径を200μmに換算した補正値を使用する。 分離膜の毛管上昇値を測定するに際しては、分離膜の水分率や内径が測定値に影響を与えるので、水分率と内径を測定しておく必要がある。分離膜の水分率としては5%以下である必要があり、水分率が5%より大きいと、分離膜が本質的に有している内表面の疎水性の性質が現れにくくなり、その毛管上昇値は、大きな測定値を示すようになり、正確な測定ができなくなってしまう。
毛細管現象による水溶液の液面上昇値を測定するに際しては、その測定時間も重要である。分離膜がより親水性である場合は、上昇していく水溶液のスピードが速くなり、短時間での測定では測定値にばらつきがでてしまう。また、多くのサンプルを一度に測定することが難しくなる。実用的な測定時間は、分離膜を水溶液に浸してから5秒以上経過した時点が好ましく、より実用的には3分以内の適当な時間に設定することが好ましい。本発明では1分後の値を示す。
分離膜が平膜の場合、親水性度は、接触角(化学便覧等)で調べるか、もしくは、同一材質・同一組成を用いた内径200μmの中空糸膜における毛細管上昇法による液面上昇値とする。
本発明において、毛細管上昇法により測定される水溶液の上昇値の、中空糸膜の内径を200μmに換算した補正値は60mm以上150mm以下であることが必要である。より好ましくは、65mm以上145mm以下であり、70mm以上140mm以下であればさらに好ましい。後述するように、60mmより低い、つまり親水性が低すぎる場合においても、また、150mmより高い、つまり親水性が高すぎる場合においても、分離膜表面の束縛蛋白質層F1が厚くなりすぎてしまい、濃縮倍率が低下するため好ましくない。
In the present invention, the degree of hydrophilicity is measured by a capillary rise method. The capillary ascending method referred to in the present invention is a method in which one end of a hollow opening of a hollow fiber membrane (one side of a flat membrane in the case of a flat membrane) is immersed in an aqueous solution, and the liquid level that has risen by capillary action after a certain time is increased from the water surface. This is a method of measuring the thickness. Specifically, the following pretreatments (P) and (Q), that is, the separation membrane is washed with distilled water for injection (P), the separation membrane is sufficiently dried (Q), and then dried. This is a method in which one end of a membrane is immersed in an aqueous solution, and the height of the liquid level rising by capillary action after a certain time is measured from the water surface.
In the case of a tubular separation membrane, it is generally known that there is the following relational expression regarding capillary rise.
h = 2γ cos θ / rρg
h: Ascending position from liquid surface γ: Surface tension of liquid θ: Contact angle (angle from contact surface of solid and liquid to contact surface of liquid and gas)
r: tube radius ρ: liquid density g: gravitational acceleration That is, the surface tension of the liquid can be measured by measuring r (tube radius), ρ (liquid density), and h (rising position from the liquid surface). From this relational expression, it is possible to evaluate the ease of wetting of the surface of the tubular structure body with respect to the liquid, that is, the degree of hydrophilicity and hydrophobicity, by the degree of rise in the liquid level in the capillary.
Therefore, also in the case of a separation membrane, the ease of wetting of the inner surface of the hollow fiber with respect to the aqueous solution, that is, the degree of hydrophilicity (hydrophobicity) can be measured by the above-described capillary ascent method. In addition, even for separation membranes with different inner diameters, the liquid level rise value and inner diameter in each capillary are measured, and each of the separation membranes is corrected by converting to the reference separation membrane inner diameter from the above equation. The degree of hydrophilicity (hydrophobicity) can be absolutely compared as the liquid level rise value of the separation membrane having a reference inner diameter. In the present invention, a correction value obtained by converting the inner diameter of the hollow fiber membrane to 200 μm is used as the liquid level rise value. When measuring the capillary rise value of the separation membrane, the moisture content and the inner diameter of the separation membrane affect the measurement value, so it is necessary to measure the moisture content and the inner diameter. The moisture content of the separation membrane needs to be 5% or less. If the moisture content is greater than 5%, the hydrophobic nature of the inner surface inherent to the separation membrane is less likely to appear, and the capillary rises. The value shows a large measured value, and accurate measurement cannot be performed.
When measuring the level rise of an aqueous solution due to capillary action, the measurement time is also important. When the separation membrane is more hydrophilic, the speed of the rising aqueous solution increases, and the measurement value varies in a short time measurement. Moreover, it becomes difficult to measure many samples at once. Practical measurement time is preferably the time when 5 seconds or more have passed since the separation membrane was immersed in the aqueous solution, and more practically, it is preferably set to an appropriate time within 3 minutes. In the present invention, the value after 1 minute is shown.
When the separation membrane is a flat membrane, the degree of hydrophilicity is determined by the contact angle (chemical handbook, etc.), or the liquid level rise value by the capillary rise method in a hollow fiber membrane with an inner diameter of 200 μm using the same material and composition. To do.
In the present invention, the correction value obtained by converting the inner diameter of the hollow fiber membrane to 200 μm of the increased value of the aqueous solution measured by the capillary ascending method needs to be 60 mm or more and 150 mm or less. More preferably, it is 65 mm or more and 145 mm or less, and more preferably 70 mm or more and 140 mm or less. As will be described later, even when the hydrophilicity is lower than 60 mm, that is, when the hydrophilicity is too low, and when higher than 150 mm, that is, when the hydrophilicity is too high, the bound protein layer F1 on the surface of the separation membrane becomes too thick. This is not preferable because the concentration factor is lowered.

図4に示すように、例えば分離膜60に蛋白質水溶液を通液した場合、60a部分の総体積つまり空隙率が高いと、分離時に目詰まりが起こりにくくなり、高倍率の濃縮が可能となるが、反面、水分と共に蛋白質も通過してしまい、蛋白質の回収率が低下する。空隙率を適切な範囲に調整することによって、透水量を確保しつつ、なおかつ蛋白質を通過させないことが可能になると考えた。
さらに、分離膜60の表面に蛋白質水溶液の蛋白質が不可逆的に堆積した束縛蛋白質層F1と蛋白質が可逆的に堆積した自由蛋白質層F2が形成されると一般的に考えられている。この束縛蛋白質層F1と自由蛋白質層F2が堆積し厚みが増すと分離膜60の目詰まりが生じ、分離膜60を透過する透水量が減少し、濃縮率が低下する。ここで、本願発明者らは、束縛蛋白層F1の厚みを薄く調整して目詰まりを抑制することを考えた。
As shown in FIG. 4, for example, when an aqueous protein solution is passed through the separation membrane 60, if the total volume of the portion 60a, that is, the porosity is high, clogging hardly occurs at the time of separation, and high-magnification can be achieved. On the other hand, the protein also passes with the water, and the protein recovery rate is lowered. It was considered that by adjusting the porosity to an appropriate range, it is possible to ensure the water permeability and not allow the protein to pass through.
Further, it is generally considered that a bound protein layer F1 in which proteins in an aqueous protein solution are irreversibly deposited and a free protein layer F2 in which proteins are reversibly deposited are formed on the surface of the separation membrane 60. When the bound protein layer F1 and the free protein layer F2 are deposited and the thickness is increased, the separation membrane 60 is clogged, the amount of water permeated through the separation membrane 60 is reduced, and the concentration rate is lowered. Here, the inventors of the present application considered reducing the clogging by adjusting the thickness of the constrained protein layer F1 to be thin.

束縛蛋白質層F1の厚みが分離膜60の親水性度に依存することを見出すに至った。すなわち、膜全体の疎水性が強すぎる場合と、逆に膜全体の親水性が強すぎる場合の両方において、蛋白質が分離膜60に付着しやすくくなり束縛蛋白質層F1が厚くなることを発見した。よって、本発明は、分離膜60の空隙率と親水性度を適切な値に調整することで、束縛蛋白質層F1の厚みを適正な範囲に調整し、もって、分離膜60の透水量を確保し高い濃縮率を実現しつつ、分離膜60からの蛋白質の漏れを抑制し蛋白質の高い回収率を確保するものである。   It has been found that the thickness of the bound protein layer F1 depends on the hydrophilicity of the separation membrane 60. That is, it was found that the protein tends to adhere to the separation membrane 60 and the bound protein layer F1 becomes thick both when the hydrophobicity of the entire membrane is too strong and conversely when the hydrophilicity of the entire membrane is too strong. . Therefore, the present invention adjusts the thickness of the bound protein layer F1 to an appropriate range by adjusting the porosity and hydrophilicity of the separation membrane 60 to appropriate values, thereby ensuring the water permeability of the separation membrane 60. In addition, while realizing a high concentration rate, the leakage of the protein from the separation membrane 60 is suppressed and a high recovery rate of the protein is ensured.

分離膜60に使用する基材は、ポリスルホン系、エバールなどのエチレンビニルアルコール系、セルロースアセテート系、ポリエチレン系、ポリエステル系ポリマーアロイ(PEPA)、ポリメチルメタクリレート系(PMMA)、又はポリアクリロニトリル系であり、特にポリスルホン系の基材が好ましい。また、親水性度は、基材に親水化剤を添加する親水化処理を施すことによって調整し、親水化剤としては、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリプロピレングリコール、エバールなどのエチレン-ビニルアルコール共重合体、ポリヒドロキシエチルアクリレート、等が挙げられる。分離膜60の親水性度の調整は、例えば基材の種類、親水化剤の量や種類を調整することによって行う。
また、分離膜60の空隙率は、例えば、熱延伸によって開口する分離膜の場合は延伸温度、延伸速度、延伸ロール径を調整することによって行う。また、二重紡口などを用いて湿式紡糸する場合は、ポリマー原液の吐出速度、内液の組成、紡糸温度を調整することによって行う。
The substrate used for the separation membrane 60 is polysulfone, ethylene vinyl alcohol such as eval, cellulose acetate, polyethylene, polyester polymer alloy (PEPA), polymethyl methacrylate (PMMA), or polyacrylonitrile. In particular, a polysulfone base material is preferred. Further, the degree of hydrophilicity is adjusted by applying a hydrophilization treatment by adding a hydrophilizing agent to the substrate. Examples of the hydrophilizing agent include ethylene such as polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, polypropylene glycol, and eval. -Vinyl alcohol copolymer, polyhydroxyethyl acrylate, etc. are mentioned. The hydrophilicity of the separation membrane 60 is adjusted by adjusting, for example, the type of base material and the amount and type of hydrophilizing agent.
The porosity of the separation membrane 60 is determined by adjusting the stretching temperature, the stretching speed, and the stretching roll diameter, for example, in the case of a separation membrane that opens by thermal stretching. In the case of wet spinning using a double spinning nozzle or the like, it is carried out by adjusting the discharge rate of the polymer stock solution, the composition of the internal solution, and the spinning temperature.

本実施の形態によれば、最大膜間圧力差の値が大きくならず(所定条件の濃縮工程Pにおいては5L濃縮しても500mmHg以下に維持される)、また、膜間圧力差の上昇率が小さいもの(濃縮工程PにおいてはB/A≦1.6以下)であるので、分離膜60の空隙率と親水性度を特定の値の範囲に設定した結果、束縛蛋白質層F1の厚みが適切な値の範囲に調整されていると考えらえる。よって、腹水を濾過して生成された蛋白質水溶液を濃縮する濃縮器において、分離膜60の透水量が確保され、分離膜60から蛋白質の漏出が抑えられるので、高倍率の濃縮を実現しつつ、蛋白質の高い回収率を実現できる。   According to the present embodiment, the value of the maximum transmembrane pressure difference does not become large (in the concentration step P of the predetermined condition, it is maintained at 500 mmHg or less even if 5 L is concentrated), and the increase rate of the transmembrane pressure difference Is small (B / A ≦ 1.6 or less in the concentration step P), and as a result of setting the porosity and hydrophilicity of the separation membrane 60 within a specific value range, the thickness of the bound protein layer F1 is It can be considered that the value is adjusted to an appropriate range. Therefore, in the concentrator for concentrating the protein aqueous solution produced by filtering the ascites, the water permeability of the separation membrane 60 is ensured, and protein leakage from the separation membrane 60 can be suppressed. A high recovery rate of protein can be realized.

上記実施の形態において、分離膜60は、60%以上80%以下の空隙率及び毛細管上昇法で測定した前記分離膜の液面上昇値が内径200μmの中空糸膜に換算すると60mm〜150mmであり、濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、蛋白質水溶液の濃縮液を得る濃縮工程Pを実施した場合に、さらに下記条件(3)、(4)を満たすように構成されていてもよい。
(3)蛋白質水溶液原液を2L濃縮した際に得られる濃縮液の蛋白質回収率が40%以上である。
(4)蛋白質水溶液原液を5L濃縮した際に得られる濃縮液の蛋白質回収率が70%以上である。
In the above-described embodiment, the separation membrane 60 has a porosity of 60% or more and 80% or less and a liquid level rise value of the separation membrane measured by a capillary ascending method is 60 mm to 150 mm when converted to a hollow fiber membrane having an inner diameter of 200 μm. In addition, when the concentration step P for obtaining a concentrated solution of the protein aqueous solution by passing the protein aqueous solution stock solution with a concentration of 3 g / dL at a flow rate of 50 mL / min, the following conditions (3) and (4) are further satisfied. May be.
(3) The protein recovery rate of the concentrate obtained when 2 L of the protein aqueous solution stock is concentrated is 40% or more.
(4) The protein recovery rate of the concentrate obtained when 5 L of the protein aqueous solution stock is concentrated is 70% or more.

かかる場合、分離膜60は、空隙率及び親水性度を適切な値の範囲に設定することによって、分離膜60における蛋白質の漏出を低減し、蛋白質の高い回収率を実現できる。   In such a case, the separation membrane 60 can reduce protein leakage in the separation membrane 60 and set a high protein recovery rate by setting the porosity and hydrophilicity to appropriate values.

また、分離膜60は、さらに上記条件(4)において蛋白質水溶液原液を5L濃縮した際に得られる濃縮液のアルブミンの回収率が80%以上になるように、空隙率及び親水性度を設定してもよい。   Further, the separation membrane 60 is further set with a porosity and a hydrophilicity so that the albumin recovery rate of the concentrated solution obtained when 5 L of the protein aqueous solution is concentrated under the above condition (4) is 80% or more. May be.

また、上記実施の形態において、分離膜60は、60%以上80%以下の空隙率及び毛細管上昇法で測定した前記分離膜の液面上昇値が内径200μmの中空糸膜に換算すると60mm〜150mmであり、濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、蛋白質水溶液の濃縮液を得る濃縮工程Pを実施した場合に、さらに下記(5)を満たすように構成されていてもよい。
(5)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を10L濃縮した時の膜間圧力差をCとした場合に、C/A≦1.5となる。
Moreover, in the said embodiment, when the separation membrane 60 is converted into a hollow fiber membrane having a porosity of 60% or more and 80% or less and a liquid level increase value of the separation membrane measured by the capillary ascending method, an inner diameter of 200 μm, 60 mm to 150 mm. When a concentration step P for obtaining a concentrated aqueous solution of protein by passing a 3 g / dL aqueous protein solution at a flow rate of 50 mL / min and carrying out the concentration step P is performed, the following (5) is further satisfied. Also good.
(5) When the transmembrane pressure difference when 2 L of the protein aqueous solution stock is concentrated is A and the transmembrane pressure difference when 10 L of the protein aqueous solution is concentrated is C, C / A ≦ 1.5.

すなわち、分離膜60は、濃縮工程Pを実施した場合の、C(蛋白質水溶液を10L濃縮した時の膜間圧力差)/A(蛋白質水溶液原液を2L濃縮した時の膜間圧力差)が1.5以下になるように、空隙率と親水性度が調整されている。   That is, the separation membrane 60 has a C (transmembrane pressure difference when the protein aqueous solution is concentrated by 10 L) / A (transmembrane pressure difference when the protein aqueous solution stock is concentrated by 2 L) when the concentration step P is performed. The porosity and the hydrophilicity are adjusted so as to be 5 or less.

かかる場合、濃縮工程Pにおいて10L濃縮したときの膜間圧力差の上昇率が小さく抑えられるので、より多くの蛋白質水溶液を長時間濃縮しても膜間圧力差が上昇せず、緻密層F1の厚みが適切な値に維持されていると考えられる。よって、腹水を濾過して生成された蛋白質水溶液を濃縮する濃縮器において、分離膜60の透水量が確保され、分離膜60からの蛋白質の漏出が抑えられるので、高倍率の濃縮を実現しつつ、蛋白質の高い回収率を実現できる。   In such a case, since the rate of increase in the transmembrane pressure difference when 10 L is concentrated in the concentration step P is suppressed, the transmembrane pressure difference does not increase even if a larger amount of protein aqueous solution is concentrated for a long time. It is thought that the thickness is maintained at an appropriate value. Therefore, in the concentrator for concentrating the protein aqueous solution produced by filtering the ascites, the water permeability of the separation membrane 60 is ensured and the leakage of the protein from the separation membrane 60 is suppressed, so that high-concentration concentration is achieved. High protein recovery rate can be realized.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば上記実施の形態における濃縮器22の構成はこれに限られない。また、濃縮器22を有する腹水処理システム1の構成もこれに限られない。濃縮器22の分離膜60が中空糸膜であったが、蛋白質水溶液の水分を分離できれば他の種類の膜、例えば平膜であってもよい。   For example, the configuration of the concentrator 22 in the above embodiment is not limited to this. Further, the configuration of the ascites treatment system 1 having the concentrator 22 is not limited to this. The separation membrane 60 of the concentrator 22 is a hollow fiber membrane, but may be another type of membrane, for example, a flat membrane, as long as it can separate the water in the protein aqueous solution.

また、腹水以外の他の体腔液、例えば胸水や心嚢液を濃縮する濃縮器にも本発明は適用できる。   The present invention can also be applied to a concentrator that concentrates body cavity fluid other than ascites, such as pleural effusion or pericardial fluid.

以下の実施例において、本発明における腹水濃縮倍率および最終的な蛋白質回収率について検証した実験結果を示す。本実施例においては、濃縮前の蛋白質水溶液を模擬した液を「元液」と称する。   In the following Examples, the experimental results verified for the ascites concentration rate and the final protein recovery rate in the present invention are shown. In this example, a solution simulating a protein aqueous solution before concentration is referred to as “original solution”.

図5に示すように、元液貯留部100、濃縮器101、濃縮液貯留部102、圧力計103、104、105およびポンプ106、107を配置し、回路で接続した。圧力計として、マノメーター(コパル電子社製、PG-200-102GP-P)を用いた。ポンプはEYELA社製のローラーポンプ(RP−1000)を使用し、ポンプ106は流速が50mL/minになるように設定し、ポンプ107は流速が40mL/minになるように設定した。   As shown in FIG. 5, the original liquid storage unit 100, the concentrator 101, the concentrated liquid storage unit 102, the pressure gauges 103, 104, and 105 and the pumps 106 and 107 were arranged and connected by a circuit. A manometer (manufactured by Copal Electronics, PG-200-102GP-P) was used as the pressure gauge. The pump used was a roller pump (RP-1000) manufactured by EYELA, the pump 106 was set to have a flow rate of 50 mL / min, and the pump 107 was set to have a flow rate of 40 mL / min.

<元液の作製方法>
ウシの血液を用いた血球成分を含む疑似腹水を作製した。まず、抗凝固剤としてヘパリンナトリウム注(1万単位/牛血液1L)を添加した牛血液を遠心分離し、血漿層、赤血球層およびバフィーコート層の各溶液を得て、これらを別々に回収することで血漿を得た。次に血漿を濾過器(旭化成メディカル(株)社製 腹水濾過器AHF−MO−W)で濾過させた後、生理食塩液を混和して蛋白質濃度3.0(g/dL)、アルブミン濃度を1.5(g/dL)に調製した元液を10L作製した。
<Preparation method of the original solution>
A simulated ascites containing blood cell components using bovine blood was prepared. First, bovine blood to which heparin sodium injection (10,000 units / 1 L of bovine blood) was added as an anticoagulant was centrifuged to obtain plasma layer, red blood cell layer and buffy coat layer solutions, which were collected separately. Plasma was obtained. Next, the plasma was filtered through a filter (ascites filter AHF-MO-W manufactured by Asahi Kasei Medical Co., Ltd.), and then mixed with physiological saline to adjust the protein concentration to 3.0 (g / dL) and the albumin concentration. 10 L of the original solution prepared to 1.5 (g / dL) was prepared.

<蛋白質濃度の測定方法および蛋白質回収率の算出方法>
蛋白質濃度は、ビューレット法により測定した。自動分析装置(東京貿易メディカルシステム(株)社製、Biolis24i)、測定用試薬としてイアトロTPII((株)L
SIメディエンス社製)を用いた。
元液中の蛋白質量をTP1、濃縮液の蛋白質量をTP2とした場合、蛋白質回収率は以下の式を用いて算出した。
蛋白質回収率=TP2/TP1×100(%)
<Method for measuring protein concentration and method for calculating protein recovery>
The protein concentration was measured by the burette method. Automatic analyzer (manufactured by Tokyo Trading Medical System Co., Ltd., Biolis 24i), Iatro TPII (Co., Ltd. L) as a reagent for measurement
SI Medience).
When the amount of protein in the original solution is TP1, and the amount of protein in the concentrate is TP2, the protein recovery rate was calculated using the following equation.
Protein recovery rate = TP2 / TP1 × 100 (%)

<アルブミン濃度の測定方法およびアルブミン回収率の算出方法>
アルブミン濃度は、BCG法により測定した。自動分析装置(東京貿易メディカルシステム(株)社製、Biolis24i)、測定用試薬としてイアトロファインALBII(
(株)LSIメディエンス社製)を用いた。
元液中のアルブミン量をALB1、濃縮液中のアルブミン量をALB2とした場合、アルブミン回収率は以下の式を用いて算出した。
アルブミン回収率=ALB2/ALB1×100(%)
<Measurement method of albumin concentration and calculation method of albumin recovery>
The albumin concentration was measured by the BCG method. Automatic analyzer (manufactured by Tokyo Trading Medical System Co., Ltd., Biolis 24i), Iatrofine ALBII (reagent for measurement)
LSI Medience Co., Ltd.) was used.
When the amount of albumin in the original solution was ALB1, and the amount of albumin in the concentrate was ALB2, the albumin recovery rate was calculated using the following equation.
Albumin recovery rate = ALB2 / ALB1 × 100 (%)

<膜間圧力差の測定方法>
圧力計103、圧力計104、圧力計105で示す圧力をそれぞれP1、P2、P3とすると、膜間差圧は以下の式で算出した。
膜間差圧=(P1+P2)/2−P3 (mmHg)
<Measurement method of transmembrane pressure difference>
When the pressures indicated by the pressure gauge 103, the pressure gauge 104, and the pressure gauge 105 are P1, P2, and P3, respectively, the transmembrane pressure difference was calculated by the following equation.
Transmembrane pressure difference = (P1 + P2) / 2−P3 (mmHg)

<膜間圧力差の比(B/A、C/A)の算出方法>
元液2L処理時の膜間圧力差をA(mmHg)、元液5L処理時の膜間圧力差をB(mmHg)、元液2L処理時の膜間圧力差をC(mmHg)とする。膜間圧力差の比は、上記BおよびCをAで除し、小数点第2位を四捨五入した値とした。
<Calculation method of transmembrane pressure difference ratio (B / A, C / A)>
The transmembrane pressure difference during the original liquid 2L treatment is A (mmHg), the transmembrane pressure difference during the original liquid 5L treatment is B (mmHg), and the transmembrane pressure difference during the original liquid 2L treatment is C (mmHg). The ratio of the transmembrane pressure difference was a value obtained by dividing B and C by A and rounding off to the second decimal place.

<濃縮倍率>
元液量を10Lを、濃縮液量Xで除した値を濃縮倍率とし、以下のように判定した。
濃縮倍率が5倍・・・〇
濃縮倍率が5倍未満・・・×
本実施例においては、ポンプ106の流量が50mL/minであるのに対し、ポンプ107の流量が40mL/minであるので、目詰まりすることなく全量濃縮できれば、濃縮液量は2Lとなり、濃縮倍率は5倍となる。
<Concentration ratio>
A value obtained by dividing the original liquid volume by 10 L and the concentrated liquid volume X was taken as the concentration ratio, and the following determination was made.
Concentration factor is 5 times ... Yes Concentration factor is less than 5 times ... x
In this embodiment, the flow rate of the pump 106 is 50 mL / min, whereas the flow rate of the pump 107 is 40 mL / min. Therefore, if the total amount can be concentrated without clogging, the amount of the concentrated solution becomes 2 L, and the concentration factor Will be 5 times.

<最終蛋白質回収率>
元液中の蛋白質量をTP1、最終的に得られた濃縮液中の蛋白質量をTP3とした場合、最終蛋白質回収率は以下の式を用いて算出した。
最終蛋白質回収率=TP3/TP1×100(%)
また、最終蛋白回収率を以下のように判定した。
最終蛋白回収率が50%以上・・・〇
最終蛋白回収率が50%未満・・・×
<Final protein recovery rate>
When the protein amount in the original solution is TP1, and the protein amount in the finally obtained concentrated solution is TP3, the final protein recovery rate was calculated using the following equation.
Final protein recovery rate = TP3 / TP1 × 100 (%)
The final protein recovery rate was determined as follows.
Final protein recovery rate is 50% or more 〇 Final protein recovery rate is less than 50% ・ ・ ・ ×

(実施例1)
濃縮器として、内径200μm、膜厚45μm、長さ330mm、空隙率78%、毛細管上昇法による液面上昇値110mmのポリスルホン/ポリビニルピロリドン中空糸9000本からなる中空糸膜型濃縮器を用いた。結果を表1に示す。
Example 1
As the concentrator, a hollow fiber membrane type concentrator composed of 9000 polysulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 200 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 78%, and a liquid level increase value of 110 mm by the capillary ascending method was used. The results are shown in Table 1.

(実施例2)
濃縮器として、内径185μm、膜厚45μm、長さ330mm、空隙率73%、毛細管上昇法による液面上昇値120mm(内径200μmとして換算した値)のポリスルホン/ポリビニルピロリドン中空糸10600本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 2)
As a concentrator, a hollow fiber comprising 10600 polysulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 185 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 73%, and a liquid level rising value of 120 mm (converted as an inner diameter of 200 μm) by the capillary ascending method. The same experiment as in Example 1 was performed except that a membrane concentrator was used. The results are shown in Table 1.

(実施例3)
濃縮器として、内径185μm、膜厚45μm、長さ330mm、空隙率60%、毛細管上昇法による液面上昇値120mm(内径200μmとして換算した値)のポリスルホン/ポリビニルピロリドン中空糸10600本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 3)
As a concentrator, a hollow fiber composed of 10600 polysulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 185 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 60%, and a liquid level rising value of 120 mm (converted as an inner diameter of 200 μm) by the capillary ascending method. The same experiment as in Example 1 was performed except that a membrane concentrator was used. The results are shown in Table 1.

(実施例4)
濃縮器として、内径185μm、膜厚45μm、長さ330mm、空隙率72%、毛細管上昇法による液面上昇値150mm(内径200μmとして換算した値)のエチレン−ビニルアルコール共重合体(エバール)中空糸10600本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 4)
As a concentrator, an ethylene-vinyl alcohol copolymer (EVAL) hollow fiber having an inner diameter of 185 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 72%, and a liquid level increase value of 150 mm (converted as an inner diameter of 200 μm) by the capillary ascending method The same experiment as in Example 1 was performed except that 10600 hollow fiber membrane type concentrators were used. The results are shown in Table 1.

(実施例5)
濃縮器として、内径200μm、膜厚45μm、長さ330mm、空隙率80%、毛細管上昇法による液面上昇値110mmのポリスルホン/ポリビニルピロリドン中空糸9000本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 5)
As the concentrator, a hollow fiber membrane type concentrator composed of 9000 polysulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 200 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 80%, and a liquid level increase value of 110 mm by the capillary ascending method was used. Except that, the same experiment as in Example 1 was performed. The results are shown in Table 1.

(実施例6)
濃縮器として、内径200μm、膜厚45μm、長さ330mm、空隙率63%、毛細管上昇法による液面上昇値70mmのポリエーテルスルホン/ポリビニルピロリドン中空糸9000本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 6)
As the concentrator, a hollow fiber membrane type concentrator composed of 9000 polyethersulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 200 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 63%, and a liquid level rising value of 70 mm by the capillary ascending method is used. The same experiment as in Example 1 was performed except that it was. The results are shown in Table 1.

(実施例7)
濃縮器として、内径200μm、膜厚45μm、長さ330mm、空隙率70%、毛細管上昇法による液面上昇値60mmのセルローストリアセテート中空糸9000本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Example 7)
Other than using a hollow fiber membrane type concentrator consisting of 9000 cellulose triacetate hollow fibers having an inner diameter of 200 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 70%, and a liquid level increase value of 60 mm by the capillary ascending method. The same experiment as in Example 1 was performed. The results are shown in Table 1.

(比較例1)
濃縮器として、内径200μm、膜厚45μm、長さ330mm、空隙率52%、毛細管上昇法による液面上昇値180mmのエチレン−ビニルアルコール共重合体(エバール)中空糸9000本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Comparative Example 1)
As a concentrator, a hollow fiber membrane type comprising 9000 ethylene-vinyl alcohol copolymer (EVAL) hollow fibers having an inner diameter of 200 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 52%, and a liquid level rising value of 180 mm by the capillary ascending method. The same experiment as in Example 1 was performed except that a concentrator was used. The results are shown in Table 1.

(比較例2)
濃縮器として、内径185μm、膜厚45μm、長さ330mm、空隙率55%、毛細管上昇法による液面上昇値110mm(内径200μmとして換算した値)のポリスルホン/ポリビニルピロリドン中空糸10600本からなる中空糸膜型濃縮器を用いたこと以外は実施例1と同様の実験を行った。結果を表1に示す。
(Comparative Example 2)
As a concentrator, a hollow fiber comprising 10600 polysulfone / polyvinylpyrrolidone hollow fibers having an inner diameter of 185 μm, a film thickness of 45 μm, a length of 330 mm, a porosity of 55%, and a liquid level rising value of 110 mm (converted as an inner diameter of 200 μm) by the capillary ascending method. The same experiment as in Example 1 was performed except that a membrane concentrator was used. The results are shown in Table 1.

Figure 0006397781
Figure 0006397781

本発明は、体腔液を濾過して生成された蛋白質水溶液を濃縮する濃縮器において、高倍率の濃縮を実現しつつ、蛋白質の高い回収率を確保する際に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for securing a high protein recovery rate while achieving high-concentration concentration in a concentrator that concentrates an aqueous protein solution produced by filtering body cavity fluid.

1 腹水処理システム
22 濃縮器
60 分離膜
1 Ascites treatment system 22 Concentrator 60 Separation membrane

Claims (7)

体腔液が濾過され生成された蛋白質水溶液を分離膜により濃縮する濃縮器であって、
前記分離膜は、60%以上80%以下の空隙率及び毛細管上昇法で測定した前記分離膜の液面上昇値が内径200μmの中空糸膜に換算すると60mm〜150mmであり、濃度3g/dLの蛋白質水溶液原液を流速50mL/minで通液させ、蛋白質水溶液の濃縮液を得る濃縮工程を実施した場合に、下記条件(1)、(2)を満たすように構成されている、濃縮器。
(1)蛋白質水溶液原液を5L濃縮した際の最大膜間圧力差が500mmHg以下であり、
(2)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を5L濃縮した時の膜間圧力差をBとした場合に、B/A≦1.6となる。
A concentrator that concentrates an aqueous protein solution produced by filtering body cavity fluid with a separation membrane,
The separation membrane has a porosity of 60% or more and 80% or less and a liquid level rise value of the separation membrane measured by a capillary rise method is 60 mm to 150 mm when converted to a hollow fiber membrane having an inner diameter of 200 μm, and a concentration of 3 g / dL. A concentrator configured to satisfy the following conditions (1) and (2) when a concentration step of obtaining a concentrated solution of an aqueous protein solution by passing the aqueous protein solution at a flow rate of 50 mL / min is performed.
(1) The maximum transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 5 L is 500 mmHg or less,
(2) When the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 2 L is A and the transmembrane pressure difference when the protein aqueous solution stock solution is concentrated by 5 L is B, B / A ≦ 1.6.
前記分離膜は、前記濃縮工程を実施した場合に、さらに下記条件(3)、(4)を満たすように構成されている、請求項1に記載の濃縮器。
(3)蛋白質水溶液原液を2L濃縮した際に得られる濃縮液の蛋白質回収率が40%以上であり、
(4)蛋白質水溶液原液を5L濃縮した際に得られる濃縮液の蛋白質回収率が70%以上である。
The concentrator according to claim 1, wherein the separation membrane is configured to further satisfy the following conditions (3) and (4) when the concentration step is performed.
(3) The protein recovery rate of the concentrate obtained when 2 L of the aqueous protein solution stock is concentrated is 40% or more,
(4) The protein recovery rate of the concentrate obtained when 5 L of the protein aqueous solution stock is concentrated is 70% or more.
前記条件(4)において蛋白質水溶液原液を5L濃縮した際に得られる濃縮液のアルブミンの回収率が80%以上である、請求項2に記載の濃縮器。   The concentrator according to claim 2, wherein the albumin recovery rate of the concentrate obtained when 5 L of the protein aqueous solution is concentrated under the condition (4) is 80% or more. 前記分離膜は、前記濃縮工程を実施した場合に、さらに下記(5)を満たすように構成されている、請求項1〜3のいずれかに記載の濃縮器。
(5)蛋白質水溶液原液を2L濃縮した時の膜間圧力差をA、蛋白質水溶液原液を10L濃縮した時の膜間圧力差をCとした場合に、C/A≦1.5となる。
The concentrator according to any one of claims 1 to 3, wherein the separation membrane is configured to satisfy the following (5) when the concentration step is performed.
(5) When the transmembrane pressure difference when 2 L of the protein aqueous solution stock is concentrated is A and the transmembrane pressure difference when 10 L of the protein aqueous solution is concentrated is C, C / A ≦ 1.5.
前記分離膜に使用する基材は、ポリスルホン系、エチレンビニルアルコール系、セルロースアセテート系、ポリエチレン系、ポリエステル系ポリマーアロイ(PEPA)、ポリメチルメタクリレート系(PMMA)、又はポリアクリロニトリル系である、請求項1〜4のいずれかに記載の濃縮器。   The base material used for the separation membrane is polysulfone, ethylene vinyl alcohol, cellulose acetate, polyethylene, polyester polymer alloy (PEPA), polymethyl methacrylate (PMMA), or polyacrylonitrile. The concentrator in any one of 1-4. 前記分離膜は、中空糸膜である、請求項1〜5のいずれかに記載の濃縮器。   The concentrator according to any one of claims 1 to 5, wherein the separation membrane is a hollow fiber membrane. 前記分離膜は、ポリスルホン系の中空糸膜である、請求項6に記載の濃縮器。   The concentrator according to claim 6, wherein the separation membrane is a polysulfone-based hollow fiber membrane.
JP2015036742A 2015-02-26 2015-02-26 Concentrator Active JP6397781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015036742A JP6397781B2 (en) 2015-02-26 2015-02-26 Concentrator
CN201610108598.5A CN105924497B (en) 2015-02-26 2016-02-26 Inspissator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015036742A JP6397781B2 (en) 2015-02-26 2015-02-26 Concentrator

Publications (2)

Publication Number Publication Date
JP2016154809A JP2016154809A (en) 2016-09-01
JP6397781B2 true JP6397781B2 (en) 2018-09-26

Family

ID=56824371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015036742A Active JP6397781B2 (en) 2015-02-26 2015-02-26 Concentrator

Country Status (2)

Country Link
JP (1) JP6397781B2 (en)
CN (1) CN105924497B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131038B2 (en) * 2018-04-04 2022-09-06 東洋紡株式会社 Hollow fiber membrane for ascites filtration
TWI794706B (en) * 2019-12-27 2023-03-01 日商旭化成醫療股份有限公司 Test solution for evaluating protein recovery performance of body cavity fluid concentrator and manufacturing method thereof
JP7402680B2 (en) * 2019-12-27 2023-12-21 旭化成メディカル株式会社 Test liquid for evaluating protein recovery performance of body cavity fluid concentrator and its manufacturing method
TWI808366B (en) * 2019-12-27 2023-07-11 日商旭化成醫療股份有限公司 Evaluation test method for body cavity fluid concentrator
JP7395348B2 (en) * 2019-12-27 2023-12-11 旭化成メディカル株式会社 Evaluation test method for body cavity fluid concentrator
JPWO2022265104A1 (en) * 2021-06-18 2022-12-22

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607856A (en) * 1983-06-27 1985-01-16 株式会社クラレ Anionic body fluid treating membrane
CA1325175C (en) * 1989-05-25 1993-12-14 Asahi Medical Co., Ltd. Compact plasma separator and an apparatus containing the same
JP2543466Y2 (en) * 1991-03-29 1997-08-06 株式会社クラレ Body fluid filtration and concentration device
JPH05220219A (en) * 1992-02-14 1993-08-31 Kuraray Co Ltd Ascites treating device
AU2003248780A1 (en) * 2002-07-10 2004-01-23 Pall Corporation Hollow fiber membrane systems
JP4992104B2 (en) * 2005-03-29 2012-08-08 旭化成メディカル株式会社 Module for hemofiltration or hemodiafiltration
JP2006343220A (en) * 2005-06-09 2006-12-21 Toray Ind Inc Pretreatment method of biocomponent-containing solution and analysis solution purification method
JP2007215569A (en) * 2006-02-14 2007-08-30 Asahi Kasei Medical Co Ltd Plasma component separator and blood purifying apparatus by double filtration
EP2545986B1 (en) * 2010-03-09 2020-12-09 Toyobo Co., Ltd. Porous hollow fiber membrane for treatment of protein-containing liquid
JP5856821B2 (en) * 2010-11-26 2016-02-10 旭化成メディカル株式会社 Ascites filtration concentrator
CN104334201B (en) * 2012-05-25 2016-06-15 旭化成医疗株式会社 The manufacture method of high concentration protein solution and manufacturing installation

Also Published As

Publication number Publication date
CN105924497B (en) 2019-08-02
JP2016154809A (en) 2016-09-01
CN105924497A (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6397781B2 (en) Concentrator
US10675399B2 (en) Polymeric whole blood hollow fiber membrane filter medium and use thereof for separating blood plasma/serum from whole blood
US9156005B2 (en) Hollow fiber membrane and method for manufacturing thereof
US20150165106A1 (en) Capillary dialyzers
JP5211071B2 (en) Porous hollow fiber membrane for blood treatment
US9243991B2 (en) Device and process for testing hollow fibre membrane filters
WO2016060209A1 (en) Body fluid filtration device of hollow fiber membrane type, and method for filtrating protein solution
US11938253B2 (en) Gas exchange composite membranes and methods of use thereof
JPH06505640A (en) Rectifier dialyzer, membrane and method
JP5856821B2 (en) Ascites filtration concentrator
JPH09201412A (en) Apparatus for removing bubble and extracorporeal blood circulation system
EP0041692B1 (en) Blood oxygenator
Gu et al. A microfilter utilizing a polyethersulfone porous membrane with nanopores
WO2022265104A1 (en) Concentrator
WO2014031532A1 (en) Microfluidic device for filtering fluids and dialysis
US20220023800A1 (en) Dialyzer comprising a fluorine-containing hollow fiber membrane
Stromberg et al. Membrane filtration technology in plasma exchange
JP6745027B2 (en) Device for removing microbubbles in blood and cardiopulmonary system
JP2007014666A (en) External perfusion based blood purifier
JPH07506496A (en) Rectifier dialysis equipment, bioreactors and membranes
EP3473327A1 (en) Integrated fluid treatment device, and process using such device
Gu et al. Microfilter fabricated with PDMS and PES membrane applicable for implantable artificial kidney
JPH0736838B2 (en) Plasma collection device
JP2007082818A (en) Blood plasma purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531