JP6397578B2 - 解剖学的構造の識別 - Google Patents

解剖学的構造の識別 Download PDF

Info

Publication number
JP6397578B2
JP6397578B2 JP2017534894A JP2017534894A JP6397578B2 JP 6397578 B2 JP6397578 B2 JP 6397578B2 JP 2017534894 A JP2017534894 A JP 2017534894A JP 2017534894 A JP2017534894 A JP 2017534894A JP 6397578 B2 JP6397578 B2 JP 6397578B2
Authority
JP
Japan
Prior art keywords
envelope
anatomy
scan line
ultrasonic transducer
neural tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017534894A
Other languages
English (en)
Other versions
JP2017532174A (ja
Inventor
シン,カーン
グプタ,サーチン
Original Assignee
アバス サージカル,エル・エル・シー
アバス サージカル,エル・エル・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アバス サージカル,エル・エル・シー, アバス サージカル,エル・エル・シー filed Critical アバス サージカル,エル・エル・シー
Publication of JP2017532174A publication Critical patent/JP2017532174A/ja
Application granted granted Critical
Publication of JP6397578B2 publication Critical patent/JP6397578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)

Description

(関連出願の相互参照)
本願は、2014年9月17日出願の「DEVICE AND METHOD FOR IDENTIFYING ANATOMICAL STRUCTURES」と題する、米国仮特許出願第62/051,670号に対する優先権を主張し、その内容は、あらゆる目的で、その全体が参照により本明細書に組み込まれる。本願はまた、あらゆる目的で、以下の関連出願をその全体において参照により組み込む:Direct Visualization Dissector and Retractor System for Minimally Invasive Proceduresと題する、2013年7月17日出願の米国仮出願第61/847,517号、Ultrasonic Visualization,Dissection,and Retraction System for Minimally Invasive Proceduresと題する、2013年8月19日出願の米国仮出願第61/867,534号、OCT Visualization,Dissection,and Retraction System for Minimally Invasive Proceduresと題する、2013年8月21日出願の米国仮出願第61/868,508号、Nerve Detection Systemと題する、2013年11月2日出願の米国仮出願第61/899,179号、System and Method for Identifying Anatomical Structures Ultrasonicallyと題する、2013年12月29日出願の米国仮出願第61/921,491号、System and Method for Identifying Anatomical Structures Ultrasonicallyと題する、2014年1月19日出願の米国仮出願第61/929,083号、System and Method for Identifying Anatomical Structures Ultrasonically Employing Two or More Transducersと題する、2014年4月9日出願の米国仮出願第61/977,594号、及びDevice and Method for Identifying Anatomical Structuresと題する、2014年7月12日出願の米国非仮出願第14/329,940号。
低侵襲手術(「MIS」)を利用した外科技術は、現在の従来の「切開」外科的処置に取って代わるように迅速に適合されている。「切開」手術は、典型的には、非病変解剖学的構造に著しい巻き添え損傷を引き起こす可能性がある、より大きい切開を必要とする。例えば、介在する軟組織(例えば、腱、靭帯、椎間関節カプセル、筋肉など)が、手術が行われる範囲又は解剖学的構造の直接的な外科用可視化を可能にするために切断、更には可能性として切除される場合さえある。
対照的に、経皮技術とも称され得る低侵襲技術は、著しく小さい切開を伴い、患者の生体構造に対してあまり外傷的ではない。軟組織は、最小限の非病変生体構造への巻き添え損傷で温存され得る。MISの典型的な利点としては、失血の減少、術後疼痛の減少、より小さい瘢痕形成、費用の低下、及び「切開」又は従来の外科技術におけるよりも患者にとってより迅速なリハビリテーションが挙げられ得る。
低侵襲手術技術は、現在、様々な外科的処置に適合されている。例えば、結腸癌のための腹腔鏡下結腸切除術などの腹腔鏡下手術の形態の低侵襲技術が開発されている。最近では、外科医は脊髄手術用途においてMISを利用している。
現在のMIS技術は、神経要素などの主要な解剖学的特徴を正確に、かつ一貫して検出及び回避することができず、重度の神経学的後遺症及び他の系への有害な影響をもたらす可能性がある。例えば、低侵襲的手術器具でさえ、神経系要素(例えば、神経、脊髄)に影響を及ぼすか、又は神経系要素と接触する場合、感覚消失、感覚過負荷、疼痛、又は他の望ましくない、若しくは有害な影響をもたらす可能性がある。解剖学的特徴の検出及び識別は、これらの問題及び本開示を読んだ後に明らかになり得る他の問題への対処に役立ち得る。
したがって、本開示の一態様において、低侵襲手術のためのデバイスが提供され得、近位部分、遠位部分、及び近位部分と遠位部分との間に形成された主要部分を備える本体を含んでもよい。少なくとも1つの超音波トランスデューサが、本体の遠位部分に配置されてもよく、かつ本体の主要部分から離れて延在する領域を走査するように構成されてもよい。本デバイスは、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに、少なくとも1つの超音波トランスデューサからの信号を受信させ、かつその信号に基づき解剖学的構造を識別させる、命令を記憶するメモリとを有する、信号処理ユニットを含んでもよい。
別の態様において、低侵襲手術のためのデバイスが提供され得る。本デバイスは、近位部分、遠位部分、長手方向軸を有するデバイスの近位部分と遠位部分との間に形成された主本体、及びデバイスの遠位部分内に配設され、かつデバイスの遠位部分の遠位端に隣接した領域を走査するように構成された、少なくとも1つの超音波トランスデューサを含んでもよい。
別の態様において、方法が提供されてもよく、本体の遠位部分に配置され、かつ本体の主要部分から離れて延在する領域を走査するように構成された、少なくとも1つの超音波トランスデューサからのデータを受信することを含んでもよい。本方法はまた、その領域内に位置する解剖学的構造を識別するためにデータを処理することと、解剖学的構造と関連した表示を出力することとを含んでもよい。
別の態様において、標的生体構造を識別するための方法が、遠位部分と、デバイスの主本体内に少なくとも部分的に配設された少なくとも1つの超音波トランスデューサとを有するデバイスと共に提供されてもよい。本方法は、標的生体構造に関して患者の身体の生体構造を走査することと、患者の生体構造の電圧波形を決定することと、患者の生体構造の電圧波形を標的生体構造の所定の電圧波形と比較することと、患者の生体構造の電圧波形が標的生体構造の所定の電圧波形と一致するかの通知を送信することとを含んでもよい。
デバイスの一実施形態の側面図である。 図1のデバイスの別の実施形態の側面図である。 本開示の一実施形態で使用され得る超音波撮像システムの機能図である。 本開示の一実施形態で使用され得る超音波トランスデューサの図である。 本開示の一実施形態で使用され得る超音波撮像システムの一実施形態の別の機能図である。 2つ以上の超音波トランスデューサが中に配設されたデバイスの一実施形態である。 1つの超音波トランスデューサが中に配設されたデバイスの別の実施形態である。 トランスデューサの走査幅を示す。 一構成におけるトランスデューサの走査幅を示す。 トランスデューサのうちの一方が、もう一方のトランスデューサに対してある角度で位置付けられた、本開示の別の実施形態である。 図10の実施形態の走査幅を示す。 2つのトランスデューサがデバイスの長手方向軸に向かって角度が付けられた、本開示の更に別の実施形態である。 本開示の一実施形態によって撮られた標的生体構造の走査像を示す。 本開示の一実施形態によって取り込まれた標的生体構造のスキャン及びAライン画像スキャンである。 本開示の一実施形態の構成を示す。 本開示の一実施形態によって取り込まれた標的生体構造の画像を示す。 本開示の一実施形態によって取り込まれた標的生体構造の更なる画像を示す。 本開示の一実施形態によって取り込まれた標的生体構造のスキャンである。 本開示の実施形態と共に使用され得るリトラクタシステムの一実施形態を示す。 本開示の実施形態と共に使用され得る拡張器システムの一実施形態を示す。 グローブに組み込まれる本開示の一実施形態である。 図21で開示された実施形態の部分側面図である。 図21で開示されたグローブ実施形態の一実施形態の正面断面図である。 図21で開示されたグローブ実施形態の別の実施形態の正面断面図である。 図21で開示されたグローブ実施形態の更に別の実施形態の正面断面図である。 光干渉断層法を利用する本開示の別の実施形態の図である。 図26で開示された実施形態と共に使用されるプローブの一実施形態である。 図26で開示された実施形態と共に使用されるプローブの2つの実施形態を示す。 直接可視化能力を有する本開示の一実施形態の側面図である。 図29で開示された実施形態の断面図である。 直接可視化能力を有する本開示の別の実施形態である。 図31で開示された実施形態の部分断面図である。 図29で開示された実施形態の部分正面断面図である。 図29で開示された本開示の別の実施形態である。 図31で開示された本開示の別の実施形態の側面断面図である。 図29で開示されたチャネルの更に別の実施形態である。 図29で開示されたチャネルの更に別の実施形態である。 リトラクタシステムと使用するときの本開示の一実施形態を示す。 本発明のリトラクタシステムの一実施形態を示す。 本発明のリトラクタシステムの別の実施形態を示す。 神経判別子としての走査線エネルギーの例示的なグラフを示す。 設計されたバンドパスフィルタ及び仕様を含む例示的なユーザインターフェース設計ウィンドウを示す。 受信されたRF信号に対するバンドパスフィルタの例示的な適用であり、それにより、トランスデューサ表面付近の低周波ノイズを抑制することを示す。 分離可能なデータ及び分離不可能なデータに対するSVM分類スキームの実施例を示す。 特徴変数間の2次元(2D)関係を示すプロット行列を示す。 特徴変数間の2次元(2D)関係を示すプロット行列を示す。 訓練されたSVMの性能を定義する例示的な受信者動作特性(ROC)曲線を示す。 本明細書に記載される1つ以上の態様に従ったコンピュータデバイスを示す。
本開示の理解を助けるために、以下の定義が本願で使用される用語を参照して提供される。
本明細書全体を通じて、かつ添付の特許請求の範囲において、身体の組織、脊椎、又は他の神経要素に関して本開示の態様の適用を考察するとき、そのようなデバイスに関する「近位」という用語は、操作者により近い位置又はデバイスの一部分を指すよう意図される。「遠位」という用語は、操作者から更に離れた位置又はデバイスの一部分を指すよう意図される。
以下の実施形態は、同様の要素が同様の数字によって言及される図面を参照して記載される。様々な要素の関係及び機能は、以下の発明を実施するための形態によってよりよく理解される。以下に記載される実施形態は、ほんの一例であり、本開示は、図面に示される実施形態に限定されない。
本開示の1つ以上の態様によると、標的解剖学的構造を検出することが可能なデバイスが提供され得る。本デバイスは、デバイスが患者の生体構造を通じて前進させられているときに超音波及び/又は光干渉断層法(OCT)技術を利用してもよい。本デバイスは、先端を有する遠位部分を有してもよく、先端は、患者の生体構造を穿孔又は断裂することなく患者の生体構造を切開すると同時に、デバイスが先端によって切開されているときの生体構造を検査することを可能にするために使用され得る。本明細書で考察されるデバイスが操作者によって保持され得るデバイスとの関連で考察される一方で、本デバイス及び/又はデバイスの部品が、ロボット及び他の同様のシステムによって実施されるものなどの自動処置中に使用され得ることが企図される。
図1に示される一実施形態において、デバイス10は、近位部分12と遠位部分14とを有し、主本体16が近位部分12と遠位部分14との間に配設される。主本体16は、近位端18と遠位端20とを有し、長手方向軸Lによって画定される。近位端18は、それに取り付けられたハンドル(図示せず)又は把持部分(図示せず)を有してもよい。主本体16の長さは異なってもよいが、50〜300mmの長さを含むことができる。しかしながら、いくつかの実施形態では、長さはこの範囲外であってもよい。同様に、主本体16の外径は異なってもよく、3mm〜20mmの外径を含むことができる。主本体16は、PEEK(ポリエーテルエーテルケトン)、ステンレス鋼、炭素繊維、及びチタンを含む医療グレードのポリマーが挙げられるがこれらに限定されない、任意の好ましい外科グレードの材料から作製され得る。主本体16、及びデバイス10の構成要素のうちの1つ以上は、概して、操作者が放射線撮像を介して患者の生体構造に対するデバイス10の位置を検出することを可能にするために、放射線不透過マーカを含んでもよい。
図1に示されるように、デバイス10の遠位部分14は、先端22を含む。先端22は、図1に示されるように半球形の形状であってもよいが、先端22はまた異なる形状であってもよいことが企図される。例えば、限定せず、先端22は、半球形、円錐形、角錐形、槍状、又は非球面の形状を有してもよい。先端22は、それが組織を通過するときに患者の生体構造を断裂又は分断することなく、筋肉などの患者の生体構造を切開するように構成されてもよい。結果として、先端22の外径は、1mm〜50mm、及び好ましくは2mm〜9mmの範囲の直径を有してもよい。先端22の外径が同様にこの範囲外であってもよいことが理解される。先端22が、デバイス10の特定の実施形態が先端22を含まなくてもよいように任意であることが更に理解される。
図1に示される実施形態に例示されるように、デバイス10の主本体16は、実質的に真っ直ぐであってもよい。しかしながら、主本体16が、非ゼロの曲線半径を有する湾曲形状を有することを含む、異なる形状を有してもよいことが企図される。そのような実施形態の一例は図2に示され、それは、患者の仙骨前空間を通じたアクセスを必要とするMISのために使用されてもよい。主本体16はまた、「L」、「C」、「U」形状、又はそれらの間の形状をとってもよい。
デバイス10は、超音波能力を含んでもよい。このデバイスの目的は、具体的にパターン化された配列の高周波超音波トランスデューサ、及び体内の特定の組織のスペクトル特性を収集する監視システムを特徴とする器具としての機能を果たすことであり得る。例えば、本システムは、筋肉、脂肪、神経、及び骨のスペクトル特性を検出することが可能であってもよい。生体構造が超音波トランスデューサ(複数可)によって刺激されると、それは、監視システムによって検出され得る特定のスペクトル特性を放射する。本システムは、神経からの信号及び周囲組織からの信号を区別するために、走査線画像を検査し、かつ振幅、形状、及び他のスペクトル成分の特定のパラメータを求めてもよい。例えば、神経組織は、周囲組織と比較して底エコーであってもよい。しかしながら、単一走査線又はRF特性から神経を識別する信号中の特徴を提供する内部構造がある。本システムは、本デバイスがシステムによって検出される特定の種類の生体構造に隣接又は近接していることを操作者に通知する。本デバイスは、外科医が低侵襲的処置を実施しているときに患者の生体構造のある特定の部分(例えば、神経)を識別及び回避することを可能にすることができる。
デバイス10は、図3〜5に示されるように、患者の生体構造を検出するための超音波撮像素子24が備わっていてもよい。超音波撮像素子24は、音波を放射するように構成され、デバイス10の遠位端20に配設されてもよい、トランスデューサ26を含んでもよい。図4に示されるように、トランスデューサ26は、シングルエレメント集束トランスデューサを含んでもよく、約10〜40MHzの動作範囲を含む周波数動作範囲を有してもよい。いくつかの態様において、動作範囲は、この周波数範囲よりも高くてもよく、又は低くてもよい。加えて、又はあるいは、トランスデューサ26は、複数のチャネルを有する微細加工アレイ(CMUT)を含んでもよい。所望の周波数は、用途及び標的生体構造に応じて異なり得る。例えば、一実施形態では、周波数又は周波数範囲は、画像テクスチャ及びエコー輝度に基づき、bモード画像上で周囲組織及び隣接した生体構造からの神経を検出するために選択されてもよい。リアルタイムで神経組織と筋肉組織を確実に区別することは、定量的なアプローチを必要とし得、かつ組織特異的な特性を推定するために、システムの自動又は手動較正を必要とし得る。いくつかの態様において、超音波を神経刺激と比較するメタアナリシスは、超音波誘導に対して優れた結果をもたらし得る。
図3及び5に示されるように、トランスデューサ26は、RF−パルサ/レシーバ28と通信していてもよく、それは、アナログ−デジタル変換器30と通信していてもよく、それは、デジタル信号プロセッサ32及びモニタなどの出力34と通信していてもよい。
一実施形態では、トランスデューサ26は、RFパルサ/レシーバ28から生成された電気信号又はパルスを音波に変換し、次いで、反射音波を電気信号に変換して戻す。超音波トランスデューサ26は、短く高周波の損傷を与えない音パルスであってもよい音パルスを組織の中へと放ち、次いで、組織からの反射が聞こえるのを待ってもよい。組織中の音速は高い(約1500m/秒)ため、このプロセスは、数ミリメートルの組織を撮像するのに数ミリ秒かかり得る。上記のように、RFパルサ/レシーバ28は、音波を生成するためにトランスデューサ26に(例えば、ケーブルを介して)送信され得る電気インパルスを生成してもよく、また、トランスデューサ26が受信する反射音波によって生成されたトランスデューサ26からの信号を受信してもよい。アナログ−デジタル変換器30は、トランスデューサ26から受信したアナログ無線周波数信号を、コンピュータが分析し得るデジタル形態に変換する。デジタル信号プロセッサ32は、デジタル変換器30から受信したデジタル化された信号を処理する。信号フィルタリング及び処理動作は、組織の反射信号特性を検出し、リアルタイムで神経組織と筋肉組織を区別するために、本システムの様々な構成要素(例えば、デジタル信号プロセッサ32)のハードウェア、ファームウェア、及び/又はソフトウェアにプログラムされてもよい。いったん神経組織特徴が検出されると、ハードウェア、ファームウェア、及び/又はソフトウェアシステムは、出力表示部34と通信してもよい。出力34は、生体構造若しくは生体構造を示す信号を表示するようにプログラム化されてもよい視覚モニタ(例えば、実際の画像若しくはプログラム可能な色構成(赤/黄/緑)を介して)、及び/又は可聴インジケータを出すように制御されてもよい音発生デバイスを含んでもよい。例えば、スピーカなどの音発生デバイスは、デバイス10が所定の範囲(例えば、1mm〜10cm)内で標的生体構造(例えば、神経)の存在に遭遇する/存在を検出するときに「ビープ音」を出してもよい。
これらの構成要素のうちの1つ以上が互いに無線通信していてもよく、1つ又は複数の構成要素に組み合わされてもよく、かつ追加の構成要素がこれらの構成要素又は1つ以上の識別された構成要素間で通信していてもよく、かつ特定の実施形態において含まれなくてもよいことが理解される。
一実施形態において、トランスデューサ26の外径は約3mmであってもよいが、約1mm〜10mmの範囲であってもよい。更に、トランスデューサ26は、デバイス10に対する様々な位置に配設されるように構成される。例えば、図6に示されるように、トランスデューサ26は、主本体16の遠位端20において、又は遠位端20の先端22の部分において配設されてもよい。トランスデューサ26はまた、それが、デバイス10内に形成された導管36内に取り外し可能に配設され、いったん作業空間が識別され、アクセス可能になると取り外され得るように、取り外し可能であってもよい。いくつかの態様において、作業空間は、患者の生体構造内のデバイス10の挿入及び/又は操作によって作られた空間であってもよい。
複数のトランスデューサ26が、デバイス10の一部として提供されてもよい。いくつかの態様において、2つ以上のトランスデューサ26は、神経を検出するために、患者の生体構造の多方向走査を提供するために、側面に(例えば、主本体16の両側に)位置付けられてもよい。側面に位置付けられたトランスデューサは、主本体16の周囲の円周方向に生体構造をぐるりと走査するように構成されてもよく、主本体16の遠位端20に位置付けられたトランスデューサによって検出されなかった神経(又は他の標的生体構造)を検出してもよい。多方向走査は、デバイス10が患者の生体構造を通じて前進させられるときに、本システムが複数の方向で患者の生体構造の走査像を生成することを可能にする。
再び図6を参照すると、デバイス10は、筋肉、脂肪、神経、及び骨などの患者の生体構造を刺激するために使用される、少なくとも1つの超音波トランスデューサ26(高周波超音波トランスデューサなど)を含んでもよい。一連のトランスデューサ26(例えば、1つのトランスデューサ、2つ以上のトランスデューサ)が、デバイス10の長さに沿って配設されて、周囲の生体構造の超音波刺激のより幅広いパターンを可能にしてもよい。本実施形態において、デバイス10の長手方向軸に実質的に平行である方向に超音波周波数を放射する、デバイス10の遠位端上の1つのトランスデューサ26があってもよい。デバイス10の長手方向軸に実質的に垂直である経路に沿って、超音波周波数を放射する第1のトランスデューサ27に隣接した、別のトランスデューサ26があってもよい。トランスデューサ26が、特定の用途に必要とされる任意の方向に配向され得ることが理解され得る。
図7は、5MHzトランスデューサ26が本デバイスの遠位端21に位置する、一実施形態を示す。そのような実施形態では、トランスデューサ26の直径は3mmであってもよく、トランスデューサは前向きであってもよい。そのような実施形態では、走査範囲は約14mmである。いくつかの態様において、トランスデューサ26による走査領域の面積(図8の斜線セクション)は、トランスデューサの外径を超えることができない。これは、トランスデューサ26がトランスデューサ26の直径を越えて位置する領域を識別又は走査することができないように、走査幅がトランスデューサ26の外径及びトランスデューサ26の周辺制限によって制限されるためであり得る。
したがって、トランスデューサ26がデバイス10内に収容される、本明細書に開示された態様などのいくつかの態様において、トランスデューサ26は、トランスデューサ26を収容するデバイスの外側部分のすぐ正面である(遠位である)領域を走査することが不可能であり得る。この領域44は、図9に示される。この1つの結果は、標的生体構造がトランスデューサ26の走査領域を越えて位置付けられている場合、それが検出されずにいる可能性があるということである。
いくつかの態様において、例えば、トランスデューサ26の走査領域のすぐ向こうに(即ち、走査直径の外側に)位置する標的生体構造を検出するために、デバイス10は、互いに対してある角度で位置付けられた2つ以上のトランスデューサを含んでもよい。例えば、図10及び11に示されるように、第1のトランスデューサ40は、主本体16の外側縁部に対してある角度で位置付けられてもよい。角度は、デバイス10の遠位端21の面から測定されてもよく、又はデバイス10の長手方向軸と交差する水平方向軸から測定されてもよい。本実施形態の角度αは7°であるが、それは特定の実施形態に応じて0°〜180°変化し得ることが理解される。更に、本実施形態において、角度は、トランスデューサ26の縁部と主本体16の隣接した外側縁部との間に形成されてもよい。
トランスデューサ40は、主本体16の任意の部分に対して角度が付けられてもよい。例えば、第1のトランスデューサ40は、図12に示されるように、主本体16の長手方向軸に沿って、又はそれに最も近く位置付けられた部分の周囲で第1のトランスデューサ40を枢動させることによって角度が付けられてもよい。具体的には、図12に示されるように、トランスデューサ40、42は、軽斜角α、αが主本体20の長手方向軸からのトランスデューサの角度として測定されるように、主本体16の長手方向軸に向かって角度が付けられてもよい。
図10に示される実施形態において、第1のトランスデューサ40は、第1のトランスデューサ40が主本体16の外側縁部を越えて延在する領域を走査することを可能にする角度(例えば、主本体16の縁部から7°)で位置付けられてもよい。第1のトランスデューサ40の角度付けは、デバイス10が、デバイスの主本体16に対して角度が付けられていないトランスデューサの走査領域の外側にある、いかなる標的生体構造も走査及び検出することを可能にし得る。この特定の実施形態における第1の角度が付けられたトランスデューサ40によって走査され得る領域は、図10に示される。
2つのトランスデューサ素子は、デバイス10の先端に取り付けられてもよい。これは、例えば、デバイス10が後方散乱信号を検出することを可能にし得る。いくつかの態様において、デバイス10及び/又は2つのトランスデューサ素子は、プローブ先端22から最大1cm遠位に存在する神経又は他の神経要素の存在を検出するように構成されてもよい(例えば、神経又は他の神経要素は、本デバイスの経路中にあってもよい)。いくつかの態様において、デバイスは、異なる刺激周波数を有するトランスデューサが提供されてもよい(例えば、第1のトランスデューサ40は、5MHzの周波数で刺激してもよく、第2のトランスデューサは、10MHzの周波数で刺激してもよい)。源から放射されるビームパターン又は視界は、3mmの素子直径及び3の絞り値(f/3)をとる視界IIを使用してモデリングされてもよい。
いくつかの態様において、2つのトランスデューサ素子40、42は、プローブの先端に位置付けられてもよい。傾斜した素子40は、7°などの傾斜角を有して外向きである。傾斜した素子は、プローブの縁部において一端を有してもよい。傾斜していない素子42は、デバイス10の遠位部分の縁部から中心に置かれてもよい。この構成は、プローブの断面積がプローブ表面よりも少なくとも1cm上であってもよいように、デバイス10が組織を蛇行するときに回転させられることを可能にし得る。
トランスデューサ40、42の直径は異なってもよく、1mm〜20mmに及ぶことができる。例えば、図10に示される実施形態では、第1のトランスデューサ及び第2のトランスデューサ40、42はそれぞれ、約3mmの直径を有する。トランスデューサが互いに同じ直径を有する必要はなく、図10の上面図に示されるようにずれていてもよい。
主本体16は、第1のトランスデューサ40が、前向きのトランスデューサの走査範囲のすぐ向こうにある任意の標的生体構造が存在するかどうかを検出するために、外側領域全体を走査することを可能にするために回転させられ得る。主本体16をその長手方向軸を中心に回転させることによって、第1のトランスデューサ40は、本デバイスの主本体16に対して角度が付けられていないトランスデューサの走査領域内にはない外側領域を走査することができる。
角度が付けられたトランスデューサの数は異なってもよく、主本体16の遠位端に対して様々な角度で位置付けられ得る。例えば、図12に示されるように、第1及び第2のトランスデューサ40、42は、それらの走査範囲が、図9に示されるように、デバイス10の遠位部分20に遠位の範囲及びトランスデューサ40、42の外径のすぐ正面の範囲を越えた領域のスキャンを提供するように交差するように、互いに向かって位置付けられる。また、トランスデューサ40、42は、主本体16の遠位端に対して2つ以上の軸上のある角度で位置付けられてもよい。
デバイス10は、患者の生体構造のbモードスキャン及び、例えば、bモード画像中の走査線からの電圧波形を含む関連データを決定するように構成され得る。ある特定の解剖学的部分(例えば、神経)に対する電圧波形は、患者の生体構造内の同様の解剖学的部分を検出するために使用されてもよい独特の電圧波形を有してもよい。同様の解剖学的部分を検出するための一方法は、bモード画像の走査線からの電圧波形を、標的生体構造の走査線からの既知の電圧波形と比較することによる方法であってもよい。具体的には、bモードスキャン(及びa走査線、電圧波形などの関連データ)は、デバイス10によって取り込まれてもよい。スキャン及び/又はデータは、デバイス10からのbモードスキャンによって取り込まれた領域が標的生体構造を含むかどうかを決定するために、既知の解剖学的特徴(例えば、神経)の所定のbモードスキャン(及び関連データ)と比較されてもよい。
デバイス10は、神経、神経束、又は神経根を含む神経要素を含む、患者の生体構造のある特定の部分を検出することが可能な神経モニタリングシステムと併用されてもよい。本考察の目的で、デバイス10及び神経モニタリングシステムは、患者の脊髄神経を検出することに関して考察されるが、デバイス10及び神経モニタリングシステムが他の神経(末梢及び中枢)並びに脊髄を検出するために使用され得ることが企図される。デバイス10と併用され得る一種の神経モニタリングシステムは、米国特許第7,920,922号に開示され、その全体は、参照により本明細書に組み込まれる。
実験
以下の考察は、デバイス10を使用して神経を検出するために使用され得る目標超音波周波数、及び患者の生体構造に挿入されるデバイス10によって取り込まれたbモード走査像が従来の非侵襲的超音波デバイスによって取り込まれた結果に匹敵するかどうかを決定するために使用された実験に関する。両方の目標を以下のプロセスを使用して達成した。
図13は、臨床的超音波アレイシステムを用いた、ウサギの坐骨神経のスキャンを示す例示的なデータを示す。スキャンをウサギの安楽死の前後に実施して、神経が両方の場合において見られることを確実にした。図13は、生存(左側、画像1300)及び死亡(右側、画像1350)に対するbモード画像(神経断面図)を示す。神経は、各場合において見られる(矢印1305、矢印1355)。
高周波(40Mhz)プローブを使用して、神経を走査し、神経の底部は筋肉にまだ付着しており、神経はプローブの被写界深度で中心に置かれる。図14は、このスキャンのbモード画像を示す。画像は、(上から下に):水(1400)、神経(1410)、及び筋肉(1420)を示す。神経は、画像の右側に向かって筋肉から分離し、神経と筋肉との間に間隙が見られる。図14はまた、垂直線によって示される、bモード画像の中心の走査線からの電圧波形を示す、プロット1450を示す。
脚筋を通じた20MHzシングルエレメントプローブを用いて、後肢坐骨神経を走査した。筋肉は無傷のまま保たれ、筋肉を調べるための窓を提供するために皮膚を除去した。図15に示される画像1500は、設定を示す。
20MHzプローブを用いて走査する前に、臨床スキャンを実施した。神経の臨床スキャンからの画像1600は図16に示され、20MHzプローブによって実施されたスキャンからの画像1700は図17に示される。臨床撮像システムと20MHzプローブシステムとの間の比較は、両方の技術が同様の画像をもたらすことを示唆する。例えば、(神経の長手方向に対する)横断面及び縦の走査平面の両方は、臨床システム及び20MHzシステムの両方に対して、背景の筋肉中に神経を示す。
20MHzの結果は、少なくとも2つの理由のために重要である。第一に、結果は、筋肉の内側のコントラストが、図17の左側の画像1710に示されるように20MHzで存在することを示す。第二に、20MHz信号に対する透過深さは、1cmを超える深さで見られるのに十分であった。これは、神経の検出に必要とされる外科プローブから離れた距離であってもよい。したがって、これは、信号が神経を検出するために使用され得る場合、信号強度及び透過が選択された超音波周波数で問題であるべきではないことを示唆する。
図18は、神経を通る単一走査線の画像1800を示す。単一走査線から神経を検出するために使用され得る神経からの特有の特徴がある。
別の実験において、図10に開示された実施形態と同様の構成を有するデュアルエレメントトランスデューサ40、42を利用した。本実施形態を使用して、22本の死後のウサギの脚の坐骨神経を試験した。合計142組の無線周波数(RF)データを収集した。データの各片を30mmの横方向距離にわたって記録し、トランスデューサ表面から約5〜20mmの軸方向領域を取り込んだ。最大1.5cmの深度及び最大15MHzの中心周波数で、−35°〜35°の扇形走査を実施するときの撮像性能を評価した。走査のために使用された超音波トランスデューサは、デュアルエレメントの10MHzトランスデューサであり、各エレメントは直径が3mmであり、f値は3であった。パルサ/レシーバを使用して画像を取得し、その設定は、以下の表に示される。
Figure 0006397578
上述のように、デバイスは、超音波bモード画像を取り込むために使用され、坐骨神経は、通常、以下に見られるように本質的に楕円形又は円形である、分離した高エコー領域として識別され得る。したがって、画像を分類しようとする最初の試みのうちの1つは、受信された走査線のエネルギーへの閾値化に基づいた。例えば、図41に示されるデータから、走査線エネルギーが坐骨神経の存在の検出を可能にすることがわかる。しかしながら、分類基準としてエネルギーを単独で使用することは、神経の散乱した弱い特徴を、分離した強い散乱体の鋭く強い特徴と区別するために十分ではない可能性がある(例えば、図41のデータ点4100)。
低周波共鳴もまた、特に、トランスデューサの表面付近で、受信されたRF走査線中に存在し得る。共鳴のスペクトル分析は、500kHz〜2MHzのノイズ成分などの高ノイズ成分を示し得る。このノイズに対処するために、受信されたRFは、表2に記載され、かつ図42の例示的なユーザインターフェース4200に示される、設計仕様を使用して構成された、ソフトウェア、ハードウェア、及び/又はファームウェアなど、有限インパルス応答(FIR)バンドパスフィルタを通されてもよい。更に、バンドパスフィルタの例示的な出力4300は、図43に示される。
Figure 0006397578
走査線エネルギーの身を使用した神経の分類が満足のいく結果をもたらさない可能性があるため、多変量アプローチの分類アプローチが検討され得ることが理解される。1つの一般に使用される多変量分類アルゴリズムは、サポートベクターマシン(SVM)である。SVMは、2つのラベル付けされたデータセット間で最適に分離する超平面を見つけようとする管理された学習アルゴリズムであってもよい。データセット内の各観察は、多くの特徴からなり、それは、いくつかの態様において、データの分類に役立つために使用されてもよい記述変数であってもよい。
例えば、図44のSVM分類スキーム4410及び4420を参照して、以下の2次元分類の問題を考慮する。訓練セット中のithの観察は、特徴ベクトル
Figure 0006397578
及び観察の種類を記載するデータラベル
Figure 0006397578
と関連する。特徴空間にわたるいかなる超平面も
Figure 0006397578
として定義され得、式中、βは、ベクトルである。SVMの全体的な目標は、最適化問題
Figure 0006397578
iを解くことであり、それは、訓練セット中の全ての
Figure 0006397578
に対して制約を受ける。
最適化問題を解くことによって、SVMは、分離可能なデータ間のマージンを最大化する超平面を位置付け得る。いったんβ及びβに対する値が見つかると、次いで、新しい事象が、超平面のどの側にそれらが位置するのかに基づき、又は同等に分類され得る。
Figure 0006397578
SVMのこの単純な形態は、図44の左側の場合(例えば、スキーム4410)のように、分離可能なデータに有効である。しかしながら、多くの場合、データは、右側の場合(例えば、スキーム4420)など、分離可能ではない可能性がある。この場合、SVMは、最適化問題にスラック変数、
Figure 0006397578
を含むように、最適化問題を変更しなければならない。次いで、新しい最適化問題は、
Figure 0006397578
によって示され、
Figure 0006397578
になるようにする。これらのスラック変数を追加することによって、スラック変数が、特定のデータ点が誤って分類されること可能にするため、ここで、制約がはるかに制限的ではなくなる。誤った分類の量は、矩形制約として既知の再重み付け係数によって制御されてもよい。いくつかの態様において、矩形制約は、操作者によって指定されたパラメータであってもよい。矩形制約が高いとき、最適化アルゴリズムは、スラック係数を小さくさせてもよく、それにより、より制限的な分類アルゴリズムをもたらす。
いくつかの分類の問題は、単純な線形決定境界に自動的に役立たない。これらの場合、特徴セットは、線形分離を試みる前に異なるドメインに変換されてもよい。例えば、xの場合は、変換されたバージョンh(x)で置き換えられてもよい。典型的には、これらの特徴の変換は、それらのカーネルによって指定される。変換のカーネルは、変換された特徴ベクトル間の内積として、又は象徴的に定義される。
Figure 0006397578
一般に使用されるカーネルは、放射基底関数又はガウシアンカーネルであってもよく、それは、以下の形態を有してもよい。
Figure 0006397578
実際に、ガウシアンカーネルは、非線形分類においてうまく機能することが概して既知である。しかしながら、ガウシアンカーネルはまた、最適化するための別の自由度、幅パラメータσを追加する。これは、標的生体構造に応じて、操作者によって調整される必要があり得る更に別のパラメータである。
各走査線に対して、特徴セットは、受信されたRFデータ及びエンベロープの統計情報に基づき生成されてもよい。分離した強い散乱体による破損を軽減するために、エンベロープの対数に基づく統計もまた計算され得る。問題に対する分類子の同一性及び唯一性は、分類子を構築するために使用される特徴セットの組み合わせである。特徴の完全なリストは、以下に示される。特定の実施形態に対して、これらの特徴の任意の組み合わせが、SVMが標的生体構造を識別するために使用されてもよいことが理解される。(1)受信されたRFの歪度、(2)エンベロープの平均値、(3)エンベロープの分散、(4)エンベロープの歪度、(5)エンベロープの尖度、(6)エンベロープの対数の平均値、(7)エンベロープの対数の分散、(8)エンベロープの対数の歪度、(9)エンベロープの対数の尖度。
図45は、上記の特徴が、神経を含まない走査線から神経を含む走査線を鑑別に判別するように見えないことを実証する、プロット行列4500を示す。データのほとんどは、単純な線形決定境界に従うように見えず、したがって、σ=1を有するガウシアンカーネルを使用して、非線形の傾向の維持を助ける。矩形制約パラメータもまた、訓練中に1に設定した。
SVMの性能を評価するために、評価メトリックが特別にプログラムされたコンピュータデバイスによって計算されてもよい。いくつかの態様において、レシーバ動作特徴が評価メトリックとして使用されてもよい。例えば、分類アルゴリズムとして、ROC曲線は、真陽性率対偽陽性率をプロットし、したがって、様々な閾値レベルにおける動作間の異なるトレードオフを表示する。図46は、ROCプロットの結果4600を示し、分類アルゴリズムが訓練データ分散に基づき良好な性能を有するように見えることを示す。
試験は、ガウシアンベースのSVMが、単一走査線中の坐骨神経の存在の決定において強力なツールになり得ることを実証した。任意の多変量アルゴリズムのパワーの大部分は、データを記載するために使用される特徴の中にある。単一の走査線のみを利用して、本システムは、80%を超える真陽性率及び10%未満の偽陰性率を達成することが可能であり得る。
企図される更なる技術としては、組織中のより深い特徴を目立たせるための時間ゲイン補正などの処理後スキーム、又はエネルギー信号からの強力なピークのうちの一部を除去するためのメジアンフィルタなどのフィルタを使用することが挙げられる。
神経(又は任意の他の解剖学的特徴)の検出は、自動化されてもよい。いったん解剖学的特徴が検出されると、「ビープ」音若しくは点滅光信号(又は同様の信号)などの音又は視覚信号が医師に与えられて、それら又はデバイスが神経からある特定の距離内にあることを示す。
神経の自動検出は、単一走査線に基づいてもよく、プローブによって取り込まれたbモード走査線を標的生体構造の既知の走査線と比較してもよい。いくつかの態様において、検出システムは、取り込まれた走査線が標的生体構造の既知の走査線と同一であるか、又は標的生体構造の既知の走査線のある特定の所定の値以内にあることを、操作者に通知してもよい(例えば、標的生体構造の既知の走査線は、独特な特徴を表し得る)。検出システムはまた、標的生体構造に対するプローブの先端の近接を決定し、かつプローブの先端が設定された距離(例えば、1mm)以内にあるときに操作者に通知するように較正されてもよい。更に、本システムは、標的生体構造の空間的位置、及び逆に非標的生体構造の空間的位置を操作者に通知するように構成されている。
本開示の態様に関する更なる詳細
いくつかの態様において、デバイス10は、生体構造のある特定の部分又は側面(例えば、神経又は血管)を検出するために使用される、図29及び30に示される画像取込システム200が備わっていてもよい。画像取込システム200が、スタンドアロンとして、又は超音波撮像素子24に対して補助的な検出技術として使用され得る。いくつかの態様において、本実施形態における先端22は、外側表面202と内側表面204とを有するレンズ23である。レンズ23の外側表面202が内側表面204と同じ形状である必要はなく、所望の光学性能に応じて異なってもよいことが理解される。レンズ23は、レンズ23を超えた画像拡大Iを提供してもよく、又はしなくてもよい。本実施形態において、レンズ23は拡大を提供しない。本実施形態におけるレンズ23は透明であるが、以下で考察されるように薄い色が付けられ得るか、又はカラーフィルタが提供され得、曇り防止、結露防止、及び/又は反射防止コーティング又は特性を有してもよい。
図30で更に見られるように、デバイス10の遠位部分14は、画像取込デバイス201を有する画像取込システム200を更に含む。画像取込デバイス201は、主本体16の遠位端20に隣接して配設される画像取込センサ206を含んでもよい。画像取込デバイス201は、画像取込デバイス201を、画像処理構成要素を収容する筐体207に接続する、光ファイバケーブル205を担持してもよい、可撓性シース203に接続され得る。また、画像取込デバイス201が画像処理システムに無線で連結され得ることも企図される。
画質の特性を調節することができる画像制御システムと通信している画像取込出力208が含まれてもよい。また、画像取込デバイス201が、任意の配線で接続された構成要素なしで、画像制御システムに画像及び映像を無線で伝送し得ることも理解され得る。「画像取込デバイス」という用語は、ビデオカメラ、デジタルカメラ、CCDセンサなど、静止画像又はビデオ画像を記録するか、又は取り込むように構成されたデバイスを含んでもよい。本デバイスと共に使用され得る画像取込デバイスの一例は、OMNIVISIONセンサOV 6930を有する1/18”CMOSカメラであってもよい。しかしながら、当業者は、本明細書に記載される本開示に従った「画像取込デバイス」、照明デバイスなどの設定及び構成要素を容易に企図するであろう。
一態様において、画像取込デバイス201の画像センサ206は、主本体10の遠位部分14内に配設されてもよい。画像センサ206又は取込デバイス201は、それが画像センサ206(若しくは取込デバイス201)の遠位表面210を形成するように、又は主本体16の遠位端20と同一平面上にあるように、主本体16の最遠位端20にあってもよい。いくつかの態様において、「画像センサ」は、「画像取込デバイス」と同義であってもよい。いくつかの態様において、画像センサ206は、用途に応じて、主本体16の遠位端20から近位に戻って設定されてもよい。例えば、画像センサ206は、主本体16の遠位端20から引っ込んでいてもよい。あるいは、画像センサ206又は画像取込デバイス28は、主本体16の遠位端20から先端22の内側表面204に向かって延在してもよい。
画像取込デバイス201は、光軸Oを画定してもよい。図30に示されるように、光軸Oは、上記のように、主本体16によって画定される長手方向軸Lと同一線上の軸である。しかしながら、光軸Oはまた、長手方向軸Lであっても、又は長手方向軸Lからずれていてもよい。画像取込デバイス201は、特定の用途に応じて5〜180°と異なる視野αを有する。
画像取込デバイス201は、先端22の外側表面202のすぐ向こうに存在する画像Iを取り込むように構成されてもよい。具体的には、図31及び32でよりよく示されるように、先端22は、ここで要素212と指定される患者の生体構造を切断するように構成されてもよい。ここで見られるように、先端22は、生体構造を切断する一方で、その形状によって作業空間214を作ってもよい。これは、生体構造を画像取込デバイス201に直接当接させて、それが画質をゆがめる可能性がある代わりに、画像取込デバイス201が切断プロセス中に生体構造を表示することを可能にし得る。
本実施形態において、作業空間214は、画像取込デバイス201の遠位表面210と先端22の外側表面212との間の空間として画定されてもよい。作業空間214は、画像取込デバイス201がその視野角α内にある生体構造の一部分を表示することを可能にし得る。作業空間214なしでは、生体構造は画像取込デバイス201に当接し、かつそれにより画像取込デバイス201を妨害し、それにより、照明デバイス216が生体構造を照明すること、及び画像取込デバイス201が画像を取り込むことを阻止する可能性がある。いくつかの態様における作業空間214は、主に空気で充填されてもよいが、作業空間が液体又はガスなどの他の材料で充填され得ることが理解され得る。あるいは、作業空間214は、先端22の内側表面204が主本体の遠位端20に隣接するように、中空でない先端によって作られてもよい。作業空間214が先端22の外側表面202と画像取込デバイス28との間に2mm〜10mm又はそれ以上の距離を作ってもよいことが理解され得る。
主本体16の遠位部分14はまた、図30の断面図である図33に示されるように、照明デバイス216を含んでもよい。照明デバイス216は、1組の発光ダイオード42(「LED」)を含んでもよい。LED 218の数及び画像取込デバイス201に対する各LED 218の位置が異なり得ることが理解され得る。例えば、特定の用途のために1つのLED 218のみがあってもよい。逆に、4つ以上ほどのLED 218があってもよい。いくつかの態様において、LED 218は互いから等距離で離間されるが、それは必要条件ではなく、LED 218は等間隔でなくてもよい。他の照明デバイス216は、紫外線から赤外線に及ぶ様々な波長の近赤外線LED、中赤外線LED、他のLEDなどの光源、又は当該技術分野において既知の任意の同様の光源を含んでもよい。照明デバイス216はまた、画像取込デバイス201の周囲の環状輪から放射される光源、又は画像取込デバイス201の周囲で角度を付けて離間した複数の光ファイバの形態をとってもよい。
デバイス10中の照明デバイス40は、主本体16の遠位端20内に配設されてもよい。しかしながら、照明デバイス216は、反射が画像取込デバイス201の視野を損なう可能性があるため、照明デバイス216が先端22の内側表面204上の反射を生じさせないように、遠位端20若しくは先端22の外側にあってもよく、又は先端22に埋め込まれてもよい。例えば、かつ限定せず、照明デバイス216は、図34に示されるように、主本体16の長手方向軸Lの両側に、かつ主本体16の遠位端20から遠位に配設されてもよい。
照明デバイス216の種類にかかわらず、照明デバイス216の強度は、患者の生体構造の照明レベルを変化させるように調節されてもよい。更に、照明デバイス216が2つ以上の照明源を含む場合、照明源のうちのいつくかはオフにされてもよく、一方で、他の照明源はオンのままであり、各源の強度は、独立して調節されてもよい。
照明デバイス216はまた、フィルタを通じて、神経又は血管などの患者の生体構造のある特定の特徴を強調するために、カラーフィルタを含んでもよい。照明デバイス216が1つ以上のLED 218からなるいくつかの態様において、赤、青、黄、緑、又は他の色などの異なる色のLEDが使用されて、患者の生体構造のある特定の特徴を強化又は強調してもよい。照明デバイス216と共にフィルタを配置することの1つの代替方法は、画像取込デバイス201と共にフィルタを含むことであってもよい。フィルタは、赤、オレンジ、黄、緑、マゼンタ、青、バイオレットなどを含むカラーフィルタを含んでもよい。フィルタはまた、所望の生体構造をよりよく表示するために、UV、IR、又はUV−IRフィルタなどのバンドパスフィルタを含んでもよい。あるいは、又は上記と併せて、照明デバイス216は、神経などの患者の生体構造のある特定の特徴を検出するために、紫外線に依存してもよい。本実施形態において、照明デバイス216は、紫外線領域又は可視領域中の波長域の励起光を含む照明光で、患者の生体構造の所望の部分を照射する光源を含んでもよい。また、照明デバイス216が、可視領域及び紫外線領域中の照明光を同時に放射するための両方の照明手段を有してもよく、適切なスペクトル応答を有する画像取込デバイスが両方の領域中の画像を取り込むことができることが企図される。
照明デバイス216は、図35に開示されるように、照明軸IAを有してもよい。照明軸IAは、本デバイスの光軸O又は長手方向軸Lと同一線上にあってもよく、又はなくてもよい。照明デバイス216及び照明軸IAの位置は、患者の生体構造の画像をゆがめる可能性がある画像取込デバイス201によって取り込まれた反射をもたらし得る。反射は、先端22又はレンズ23の外側表面202又は内側表面204から反射する、照明デバイス216によって生成された光線によって引き起こされ得る。照明デバイス216によって引き起こされた反射を最小限に抑える、かつ/又は排除するために、照明軸IAは、画像取込デバイス201の光軸Oに対して変位されてもよい。図35に示される態様において、光学的先端22が、楕円形の外側表面202を有する固体レンズとして示される。楕円形表面の1つの特性は、光源がその焦点に配置される場合、楕円の表面上の全ての光線が第2の焦点に反射されるということである。LED又は光ファイバの形態の2つの光源216のそれぞれは、楕円形表面202の焦点に配置されてもよい。楕円形表面から反射した照明光線220は、この表面の焦点に集中してもよい一方で、表面202に当接した組織から反射した光線222は、取込デバイス201に向かって方向付けられてもよい。この配置は、画像取込デバイス201又はセンサ206への照明ビームの直接的な光反射を排除する一方で、その軸上位置を維持する。光軸Oと照明軸IAとの間のずれは、1〜2.5mmを含む範囲内で異なってもよい。
光軸Oと照明軸IAとの間のずれを含む本デバイスの別の実施形態は、図31に示される。本実施形態に示されるように、先端22の先端光軸SOは、画像取込デバイス201の光軸Oからずれて、画像取込デバイス201によって取り込まれた反射の量を低減するか、又は最小限に抑える。本実施形態において、照明は、画像取込デバイス201のレンズの周囲の光ファイバの環状輪によって提供される。内側表面204から反射した照明ビームは、先端22の曲率中心に焦点を合わせる。先端光軸が画像取込デバイス201の光軸に対してずれているため、その曲率中心は目的の視野の外側にあり、したがって、反射したビームは画質を低下させない。
画像取込システム200は、以下で考察されるグローブの実施形態と共に使用されてもよく、画像取込デバイス201、その先端22、センサ206、照明デバイス216は、以下で考察されるように、グローブ110の示指112の遠位部分114上に配置されてもよい。画像取込システム200はまた、独立して、又はデバイス10若しくはグローブ110の実施形態で上記に記載される超音波撮像素子24と併せて使用されてもよい。
図36及び37に示されるように、デバイス10はまた、主本体16及び先端22内に少なくとも部分的に配設された導管224を含んでもよい。図36に示される態様において、導管224は、主本体16の長手方向軸Lからずれていてもよい。しかしながら、いくつかの態様において、導管224は、主本体12の長手方向軸Lと同一線上であってもよい。導管224は、主本体12の近位端18から延在してもよく、又は主本体12の一部分のみに沿って形成され、先端22を含むデバイスの遠位部分14全体を通じて延在してもよい。導管224は、このデバイスの超音波又は可視化の実施形態で使用されてもよい。導管224はまた、主本体16の長手方向軸に沿って配置されてもよく、それは、トランスデューサ26が導管224を収容するためにずらされる必要がある。
言い換えれば、導管224の位置は異なってもよく、用途によって決まる。例えば、かつ限定せず、導管は長手方向軸Lに対して、図36に開示される実施形態に示されるよりも近く配置されてもよい。あるいは、導管は、主本体16の長手方向軸Lに実質的に平行である方向に沿って延在する隆起部分を形成するために、本デバイスの主本体16の外部に配置されてもよい。本実施形態において、導管224は、本実施形態の主本体16の遠位端20の断面図である図37に示されるように、隆起部分中に存在する。
加えて、特定のデバイス10のための2つ以上の導管224があってもよく、それにより、操作者が複数の器具を患者の生体構造中に同時に配置することを可能にすることが企図される。導管の直径は、用途によって決まり、異なり得、0.3mm〜5.5mmであってもよい。
図36及び37に示される導管224は、患者の生体構造を通じてデバイス10を誘導するためのガイドワイヤ、2つの脊椎間の椎間腔などの手術部位にデバイス10を固定するためのkワイヤ、患者の生体構造の特定の領域に更なる照明を提供するための光ファイバなどの照明デバイス、上記の超音波プローブなどの、患者の生体構造の特定の領域を撮像又は検出するための超音波プローブ、患者の生体構造の特定の領域を撮像又は検出するための可視光又は赤外光を放射する光ファイバコード、神経モニタリングのための神経刺激器などを含む、多くの器具を受容するように構成されてもよい。
低侵襲手術(MIS)に関連して使用されるための本開示の様々な態様が企図される。デバイス10は、側方後腹膜椎体間固定術(LLIF)(例えば、XLIF、DLIF)、軸性腰椎椎体間固定術(AxiaLif)、経椎間孔腰椎椎体固定術(TLIF)、後方腰椎椎体間固定術(PLIF)、前方腰椎椎体間固定術、経胸的腰椎椎体間固定術、後胸膜胸郭固定術、Kambinの三角形を利用した椎体間固定術、並びに頸部/胸部/腰椎椎弓切除術、椎間孔拡大術、及び椎間板切除術が挙げられるがこれらに限定されない、様々なMIS法のために使用されてもよい。デバイス10は、その範囲が血管、腹部臓器/骨盤臓器、神経根、及び脊髄などの他の解剖学的部分がないことを確実にするために使用されてもよい。図19に示されるように、いったん手術部位46にあると、デバイス10は、手術部位46を照明して、外科医がデバイス10の主本体16内に形成された導管を介して器具(例えば、Kワイヤ)を手術部位に導入することを可能にするか、又はリトラクタシステム若しくは拡張器システムがデバイス10なしで手術部位の直接可視化及び作業ポータルを作ることを可能にするために使用されてもよい。
上記のように、手術部位にアクセスするための同様の工程を必要とする、このデバイス10が使用され得る多くの用途があり得る。以下に記載される使用方法はLLIFの実施と関連しているが、デバイス10が上記の他のMIS法を実施するための同様の様式で使用され得ることが理解され得る。
動作中、超音波撮像素子24は、本明細書に記載されるように、患者の生体構造を検出するために使用される。外科医は、神経の存在(又は非存在)を検出するために、超音波撮像素子24によって生成される画像又はオーディオキューに依存し、それにより、手術がデバイス10を、患者の生体構造を通じて手術部位46に向かって再配置する(又は前進させ続ける)ことを可能にしてもよい。超音波撮像素子24はまた、標的解剖学的特徴(例えば、神経)の存在又は非存在を確認することによって、画像取込デバイス(図示せず)によって取り込まれた画像が正確であることを確認するために使用されてもよい。画像取込デバイスは、デバイス10に遠位の領域の画像を取り込むために、デバイス14の遠位部分14内に配設されたカメラなどからなってもよい。
画像取込システム200はまた、患者の生体構造を視覚的に検出するための同様の様式で使用されてもよい。画像取込システム200は、超音波撮像素子24によって検出されるものを確認するために使用されてもよく、又は患者の生体構造のある特定の部分を検出するために独立して使用されてもよい。
いったん筋肉が裂かれ、手術部位46に到達すると、外科医は、手術部位46に到達したことを確実にするために導管を通じてkワイヤを配置し、手術部位46に対してデバイス10を固定することができる。リトラクタツール48は、所定の位置に設置されて、外科医に手術部位46への直接的な外科作業導管を与える。あるいは、一連の拡張器が主本体16にわたって順次に配置されて、作業空間を作ってもよい。いったん脊椎へのこの直接的なアクセスが達成されると、外科医は、外科ツールを用いて、標準的な椎間板切除術(椎間板を除去する)、椎体部分切除術(椎骨を除去する)、又は固定術(2つの骨を一緒に利用する)を実施することが可能である。
リトラクタシステム48の一実施形態は、第1のブレード49と第2のブレード51とを含んでもよく、それらの両方が主本体16の外径にぴったりとフィットする開口部を形成する半円形の形状である。ブレードの断面形状が主本体16の形状(例えば、三角形、楕円形、正方形、矩形など)を模倣し得ることが理解される。いったん手術部位にあると、リトラクタブレード49、51は、切開を拡大するために、かつデバイス10が取り外されることを可能にし、図19に示されるように、手術部位46への直接可視化を可能にするために、互いに対して分離するように構成されている。第1のブレード49及び第2のブレード51の遠位端53が、主本体12の遠位部分14に隣接していることが企図される。任意の既知の種類のリトラクタシステムがデバイス10と共に使用され得る。
一実施形態において、図37に開示されるものと同様のリトラクタシステム226は、デバイス10にわたって配設され、いったん手術部位又は外科手術が行われる他の位置に到達すると、患者の生体構造内の作業空間を作るために拡張するように構成されてもよい。リトラクタシステム226の本実施形態は、第1のブレード228と第2のブレード230とを含み、それらの両方が主本体16の外径にぴったりとフィットする開口部を形成する半円形の形状である。いったん手術部位にあると、リトラクタブレード228、230は、切開を拡大して、デバイス10が取り外されることを可能にし、図38に示されるように、手術部位68への直接可視化を可能にするために、互いに対して分離するように構成されている。第1のブレード228及び第2のブレード230の遠位端232が、主本体12の遠位部分14に隣接していてもよい。任意の種類の既知のリトラクタシステムがデバイス10と共に使用され得る。刺激電極、可視化カメラ、及び照明デバイス(光、超音波、赤外線、及び紫外線)もまた、リトラクタブレード228、239に沿って、又はそれらの中に配置されて、上記の神経検出を可能にしてもよいことが理解され得る。
デバイス10の周囲に配設されたリトラクタ226の断面図である、図39に示されるように、デバイス10の主本体16は、リトラクタシステム226の第1及び第2のブレード228、230によって形成された補助溝236を摺動受容するように構成された、その長手方向軸に沿った方向にその長さに沿って配設された隆起チャネル(複数可)234を有してもよい。いくつかの態様において、隆起チャネル234及び/又は溝236は、正方形、矩形、半球形、又は同様の断面形状を有してもよい。更に、チャネル234及び溝236の数及び位置は異なってもよい。例えば、かつ限定せず、主本体16に沿って広がる1つのチャネル/溝のみがあってもよい。
あるいは、主本体16の外側表面の周囲に等距離で配置される3つ以上のチャネル/溝があってもよい。チャネル及び溝はまた、リトラクタ226がデバイス10にわたって配設されるときに、溝236が、ブレード228、230が拡張することを防止するように、図40に示されるように、溝236が主本体16上にあり、隆起チャネル234がブレード228、230に沿って形成されるように、置き換えられてもよい。チャネル236及び溝72は、デバイス10の主本体16の一部分のみ及びブレード228、230に沿って延在してもよい。
リトラクタシステム226は、様々な厚さ及び直径を有するブレード228、230の複数の組からなってもよい。例えば、かつ限定せず、ブレード228、230は、閉鎖(例えば、折り畳み)構成であるときに2mm〜80mmに及ぶ全外径を有するようにサイズが異なってもよい。更に、ブレード228、230は、それらが拡張構成であるときに患者の体内に2mm〜220mmの開口部を作るように構成されてもよい。デバイス10及びリトラクタシステム226は、より大きい格納直径を有するブレード228、230の第1の組が患者の体内に第1の開口部を作るために使用されてもよく、次いで、ブレード228、230の第1の組とは異なる格納直径を有するより小さい直径のブレードの第2の組が、主本体16にわたって、かつ第1の開口部内に摺動配設され、第1の開口部に遠位の位置で患者の体内に第2の開口部を開口するように格納されてもよいように構成されてもよい。ブレードの第1及び第2の組によって作られた開口部は、異なる開口部直径を有してもよい。リトラクタシステム226は、操作者が、患者内に、異なる解剖学的レベルで異なる格納直径を有する複数の開口部を作ることを可能にしてもよい。光源(図示せず)は、ブレード228、230の遠位端に、又はブレード228、230の長さに沿って配設されて、患者の体内の開口部を照明し、ブレード228、230によって作られた開口部内の、かつその開口部に遠位の患者の生体構造の領域を照明してもよい。加えて、導管(図示せず)もまた、2つの脊椎間の椎間腔などの手術部位にブレード228、230を固定するためのkワイヤなどの医療器具、患者の生体構造の特定の領域に更なる照明を提供するための光ファイバなどの照明デバイス、神経刺激を提供するための電気導管、患者の生体構造の特定の領域を撮像又は検出するための超音波プローブ、画像取込デバイス、患者の生体構造の特定の領域を撮像又は検出するための可視光又は赤外光を放射する光ファイバコードなどのうちの1つ以上を受容するために、ブレード内に形成されてもよい。ブレード228、230は、PEEK(ポリエーテルエーテルケトン)を含む医療グレードのポリマーが挙げられるがこれに限定されない、任意の好ましい外科グレードの材料から作製されてもよく、透明(例えば、透明プラスチックから作製される)又は半透明であってもよい。
別の実施形態では、リトラクタシステム226は、それが主本体16の一部を形成し、いったん手術側にあると展開され得るように、デバイス10と一体化されてもよい。本実施形態におけるリトラクタシステム226は、主本体16の長手方向軸から離れて半径方向に拡張して、主本体16によって作られた経路を拡大する。次いで、主本体16は、リトラクタシステム226内に作業ポータルを作るために、手術部位から引き出され得る。
図20に示される一連の拡張カニューレ(例えば、拡張器100)もまた、デバイス10の遠位部分14によって作られた切開の直径を拡大するために、デバイス10の主本体16の周囲に摺動配置され得る。作業空間を作るための他の医療処置で使用される直接可視化のための作業空間を作るために、一連の拡張カニューレを採用する技術もまた、デバイス10と併用され得る。
椎間板物質が除去された後、外科医は、その側の同じ切開を通じてインプラントを挿入することが可能であり得る。このスペーサ(ケージ)は、椎間板の高さ(隣接した椎体間の空間)が正確であることを確実にするために、かつ脊椎が適切に整列されることを確実にするために、椎骨を適切な位置で保持することを補助し得る。このスペーサは骨移植片と一緒に、脊椎がその特定の部分で融合することを可能にするために最適な環境を設定するように設計されてもよい。外科医は、蛍光透視法を使用して、スペーサが正しい位置にあることを確実にしてもよい。次いで、外科医は、リトラクタを取り外し、切開を縫合してもよい。
あるいは、先端22が腰筋に隣接して配設されるとき、外科医は、デバイスにわたってリトラクタシステムのブレードの第1の組を摺動させ、リトラクタシステム48を拡張して、第1の作業空間(表面ドックとも称される)を作ってもよい。この作業空間は、外科医が、肉眼(目視)検査を介して、又は光カメラ/解剖器具(例えば、デバイス10のつ以上の構成要素)を用いてのいずれかで、腰筋及び周囲領域を視覚的に検査することを可能にし得る。次に、外科医は、本明細書に記載されるように、ここで腰筋を通じて切開するために第1の作業空間内に配設されている本デバイスを使用することによって、手技を継続してもよい。いったん先端22が、ここでは椎間板隙である手術部位に到達すると、ブレードの第1の組よりも小さいリトラクタブレードの第2の組は、デバイス10にわたって摺動させられて、第1の作業空間よりも直径が小さい第2の作業空間を作るために拡張される。次いで、外科医は、本明細書に考察される様式で手技を継続する。第1の作業空間を構築することの1つの利点は、それが、いったん手技が第1の手術部位において完了すると、外科医が手術部位からデバイス10を取り外し、第2の位置で、腰筋よりも上に形成される第1の作業空間内にデバイス10の遠位先端22を再配置及び再挿入することを可能にして、外科医が腰筋を貫通して第2の手術部位に到達して、介在する神経血管構造のために腰筋切開が現在危険である別の手技又はマルチレベル手技(L3−4及びL4−5椎間板隙又は腰椎椎体部分切除術(2つの椎間板及び介在する骨の除去))を実施及び完了することを可能にすることであり得る。先端22が任意であり、デバイス10の遠位端21が手術部位に向かって前進させられるデバイスの部分であってもよいことが理解される。
デバイス10はまた、軸性腰椎椎体間固定術(AxiaLIF)を実施するために使用されてもよい。手術時、患者は、脊柱前弯症を維持しながら脚を広げて、腹臥位になってもよい。カテーテルが直腸に挿入されると、空気が直腸の可視化のための処置中に注入されることを可能にする。外科医が尾骨の先端の横方向に小さい切開(15〜18mm)を作った後、デバイス10の遠位先端22は、切開を通じて挿入され、仙骨前空間へと通される。外科医は、デバイス10の遠位部分14を使用して、仙骨前空間をスイープ走査して、空間がいかなる障害となる生体構造(例えば、結腸、直腸)もないことを確実にする。デバイス10は、仙骨の前方皮質に沿って、かつ正中線上を、通常S1−2接合部に近い入口点にそっと通される。いったん軌道が選択されると、次いで、急な斜角のピンが導管36を通じて、又はリトラクタシステム48が展開された後のいずれかで、L5−S1空間へと動かされる。リトラクタシステム48又は一連の拡張器が使用されて、仙骨中に約10mmの開口部を作り、それを通じて10mmのチャネルがL5−S1椎間板に開けられる。次いで、デバイス10は、仙骨前空間から引き出され、次いで、外科医は、AxiaLIF処置の残りの工程を実施する。
デバイス10はまた、Kambinの三角形への直接的なアクセスを可能にするために使用されてもよい(椎間孔外腰椎椎体間固定術)。この処置のために、患者は、腰椎前弯症の修復を可能にする放射線透過性フレームを使用して、典型的にはジャクソンテーブル上に腹臥位で配置される。蛍光透視撮像が利用されて、画像増強装置の頭尾角度を制御することによって、上位及び下位椎体の骨端板を識別する。加えて、蛍光透視画像は、領域に向かって20〜35度回転させられ、上関節プロセスが椎間板の中央で見られるようにする。この位置において、デバイス10の先端22は、挿入され、Kambinの三角形と一般に称される範囲を経皮的に標的化し得る。Kambinの三角形は、背外側椎間板にわたる範囲として定義される。斜辺は、出ている神経根であり、基部(幅)は、尾椎の上縁であり、高さは、硬膜/横断する神経根である。
デバイス10はまた、出ている神経根、神経根動脈、莢膜嚢、及び椎間板隙などの様々な解剖学的特徴を超音波で識別するために使用されてもよい。次いで、kワイヤがデバイス10を介した超音波検出下で、導管36を介して椎間板隙中に配置され、解剖器具/リトラクタシステム48の結合を可能にし得る。次いで、後続の拡張が実施され、本デバイスを使用して神経血管構造を直接可視化し、外科医によって識別されるときにこれらの構造を回避すると同時に、椎間孔中のアクセスを可能にし得る。
図21に示される別の実施形態では、超音波撮像素子24は、グローブ110と併用されてもよい。本実施形態において、操作者は、触れることによって提供される触覚フィードバックに依存する一方で、なおも患者の生体構造の超音波撮像/走査を可能にし得る。より具体的には、グローブシステム(又はデバイス)は、組織、即ち、神経、血管、及び含膜構造の切開及び分離を容易にする触覚フィードバックを可能にし得る。概して、触覚フィードバックは、いくつかの低侵襲/経皮技術において許容されない可能性がある直接可視化の独特な観点なしで、通常の外科手術における組織の切開を可能にする。
超音波撮像素子24は、音波を放射するように構成され、グローブ110の遠位端20に配設されてもよい、トランスデューサ26を含んでもよい。一実施形態において、トランスデューサ26は、グローブ110の示指112の遠位部分114に沿って位置する。図22によりよく示されるように、先端22は、先端22の外側表面24が示指112の最遠位部を越えて延在しないように、示指112の遠位部分114の一部を形成するか、又はそれに接続される。当然のことながら、先端22が実施形態に応じて遠位部分を越えて延在する場合があることが理解される。
超音波撮像素子24の残りの部分を含む筐体にトランスデューサ26を接続するケーブルを担持してもよい可撓性導管116が、トランスデューサ26に接続される。可撓性導管116は、グローブ110の示指112及び頂部分118の長さに沿って広がる。しかしながら、導管116がグローブ110の任意の長さ又は表面にそって広がることができ、用途によって決まることが理解され得る。可撓性導管116はまた、可撓性導管116内に摺動配設され得るkワイヤ又は他の器具を担持するために、チャネルを提供してもよい(以下で更に考察されるように)。可撓性導管116は、可撓性導管116の一部分が示指114の遠位部分114においてユニット109の開口部120を提供するように、ユニット109を通過し、ユニット109と連通している。
ユニット109は、図23に示されるように、底部分122を有してもよい。底部分122は、いったん操作者の手がグローブ109内に配置されると補助的フィットを提供するために、凹状の湾曲を有してもよい。加えて、ユニット109の近位部分124は、ユニット109が処置中に連接されるときに、患者の生体構造に対して最小の破壊を引き起こすように、先細であってもよい。更に、ユニット109は、図24及び25に示されるように、処置中に患者の生体構造に対するいかなる不注意な破壊も最小限に抑え、かつ小さい全体的な形状を維持するために、全体的な半円形又は円筒形の形状を有してもよい。例えば、ユニット109の高さは、低い形状を達成するために全幅未満であってもよい。あるいは、ユニット109の外側部分は、低い形状を維持するために、示指112の幅を越えて延在せず、かつそれと同一線上になってもよい。ユニット109の外部の外径は、0.5〜20mmに及び、所望の用途に応じてこの範囲外であってもよい。ユニット109の長さは、0.5〜10mmに及ぶことができるが、用途に応じてこの範囲外であってもよい。2つ以上のトランスデューサ26が指の遠位部分に沿って位置付けられ、それらが患者の生体構造の多方向(例えば、180°〜300°)走査を提供するようにしてもよいことが理解される。
トランスデューサ26は、神経又は標的生体構造を検出するために、患者の生体構造の多方向走査を提供するために、側面に(例えば、示指112の両側に)位置付けられてもよい。側面に位置付けられたトランスデューサは、主本体16の遠位端に位置付けられたトランスデューサによって検出されなかった神経(又は他の標的生体構造)を検出するために、示指112の周囲の円周方向に生体構造をぐるりと走査するように構成されてもよい。多方向走査は、グローブ110の示指112が患者の生体構造を通じて前進させられるときに、本システムが複数の方向で患者の生体構造の走査像を生成することを可能にし得る。上述のように、次いで、トランスデューサと連通しているシステムは、順方向走査トランスデューサによって取り込まれていない神経でさえ検出することができる。
グローブの実施形態は、低侵襲手術(MIS)と関連して使用され得る。グローブ110は、側方後腹膜椎体間固定術(LLIF)(例えば、eXtreme Lateral Lumbar Interbody Fusion(XLIF)、直接側方椎体間固定術(DLIF))、軸性腰椎椎体間固定術(AxiaLif)、経椎間孔腰椎椎体固定術(TLIF)、後方腰椎椎体間固定術(PLIF)、前方腰椎椎体間固定術、経胸的腰椎椎体間固定術、後胸膜胸郭固定術、Kambinの三角形を利用した椎体間固定術、並びに頸部/胸部/腰椎椎弓切除術、椎間孔拡大術、及び椎間板切除術が挙げられるがこれらに限定されない、様々なMIS法のために使用されてもよい。グローブ110は、その範囲が血管、腹部臓器/骨盤臓器、神経根、及び脊髄などの他の解剖学的部分がないことを確実にするために使用されてもよい。
上記のように、手術部位にアクセスするための同様の工程を必要とする、このグローブ110が使用され得る多くの用途があり得る。外科医は、神経の存在(又は非存在)を検出するために、超音波撮像素子24によって生成される画像又はオーディオキューに依存し、それにより、手術がグローブ110を、患者の生体構造を通じて手術部位48に向かって再配置する(又は前進させ続ける)ことを可能にしてもよい。
いったん筋肉が裂かれ、手術部位48に到達すると、外科医は、手術部位48に到達したことを確実にするために導管を通じてkワイヤを配置し、手術部位48に対してグローブ110を固定することができる。リトラクタツールは、所定の位置に設置されて、外科医に手術部位48への直接的な外科作業導管を与える。あるいは、一連の拡張器がkワイヤにわたって順次に配置されて、作業空間を作ってもよい。いったん脊椎へのこの直接的なアクセスが達成されると、外科医は、外科ツールを用いて、標準的な椎間板切除術(椎間板を除去する)、椎体部分切除術(椎骨を除去する)、又は固定術(2つの骨を一緒に利用する)を実施することが可能である。
椎間板物質が除去された後、外科医は、その側の同じ切開を通じてインプラントを挿入することが可能である。このスペーサ(ケージ)は、椎間板の高さ(隣接した椎体間の空間)が正確であることを確実にするために、かつ脊椎が適切に整列されることを確実にするために、椎骨を適切な位置で保持することを補助する。このスペーサは骨移植片と一緒に、脊椎がその特定の部分で融合することを可能にするために最適な環境を設定するように設計される。外科医は、蛍光透視法を使用して、スペーサが正しい位置にあることを確実にする。次いで、外科医は、リトラクタを取り外し、切開を縫合する。
グローブシステムはまた、軸性腰椎椎体間固定術(AxiaLIF)を実施するために使用されてもよい。手術時、患者は、脊柱前弯症を維持しながら脚を広げて、腹臥位になる。カテーテルが直腸に挿入されると、空気が直腸の可視化のための処置中に注入されることを可能にする。外科医が尾骨の先端の横方向に小さい切開(15〜18mm)を作った後、示指112の遠位部分及び遠位先端22は、切開を通じて挿入され、仙骨前空間へと通される。外科医は、示指112を使用して、仙骨前空間をスイープ検査して、空間がいかなる障害となる生体構造(例えば、結腸、直腸)もないことを、視覚的に、かつ超音波撮像を用いて確実にする。示指112は、仙骨の前方皮質に沿って、かつ正中線上を、通常S1−2接合部に近い入口点に前進させられる。いったん軌道が選択されると、次いで、急な斜角のピンが導管を通じて、又はリトラクタシステムが展開された後のいずれかで、L5−S1空間へと動かされる。リトラクタシステム又は一連の拡張器が使用されて、仙骨中に約10mmの開口部を作り、それを通じて10mmのチャネルがL5−S1椎間板に開けられる。次いで、示指112は、仙骨前空間から引き出され、次いで、外科医は、AxiaLIF処置の残りの工程を実施する。
グローブシステム110はまた、Kambinの三角形への直接的なアクセスを可能にするために使用されてもよい(椎間孔外椎体間固定術)。この処置のために、患者は、腰椎前弯症の修復を可能にする放射線透過性フレームを使用して、典型的にはジャクソンテーブル上に腹臥位で配置される。蛍光透視撮像が利用されて、画像増強装置の頭尾角度を制御することによって、上位及び下位椎体の骨端板を識別する。加えて、蛍光透視画像は、領域に向かって20〜35度回転させられ、上関節プロセスが椎間板の中央で見られるようにする。この位置において、示指112は挿入され、Kambinの三角形と一般に称される範囲を経皮的に標的化し得る。Kambinの三角形は、背外側椎間板にわたる範囲として定義される。斜辺は、出ている神経根であり、基部(幅)は、尾椎の上縁であり、高さは、硬膜/横断する神経根である。
グローブシステムは、出ている神経根、神経根動脈、莢膜嚢、及び椎間板隙などの様々な解剖学的特徴を識別するために使用されてもよい。次いで、kワイヤが超音波可視化下で、導管を介して椎間板隙中に配置され、解剖器具/リトラクタシステムの結合を可能にし得る。次いで、後続の拡張が実施され、本デバイスを使用して神経血管構造を直接可視化し、外科医によって識別されるときにこれらの構造を回避すると同時に、椎間孔中のアクセスを可能にし得る。
デバイス10はまた、赤外放射光源及び赤外線画像取込デバイスを含む、赤外線技術を含んでもよい。デバイス10は、デバイス10の遠位部分14に載置された赤外線放射検出素子を含む。赤外光線は、例えば、2〜14マイクロメートルの波長で高感度である。本開示の赤外線態様の一実施形態は、一体化真空パッケージに包装され、かつデバイス10の遠位先端上の読み出し電子機器と共同設置されたマイクロボロメータセンサ素子の2次元配列を使用する。本開示の赤外線態様が、本明細書で考察される他の実施形態と併用されてもよく、又はそれらとは別であってもよいことが理解される。本開示と共に使用され得る1つのそのような赤外線システムは、米国特許第6,652,452号に開示され、その全体が参照により本明細書に組み込まれる。
デバイス10はまた、独立型検出システムとして、又は本明細書に開示される他の実施形態と併せて、光干渉断層法(以下「OCT」)技術を利用してもよい。OCTは、近赤外光を使用して画像を生成する、光信号取得及び処理方法である。背景として、OCTは、後方散乱又は後方反射した光を測定することによって、物質及び生体系中の内部微細構造の高解像度の断面断層撮像を実施する。OCT画像は、典型的には、組織を通じた断面平面の光後方散乱を表す2次元又は3次元データセットである。約1〜15マイクロメートルの画像解像度が、従来の超音波よりも1又は2桁大きく達成され得る。撮像は、その場で、かつリアルタイムで実施され得る。
OCTは、試料内の異なる散乱体から後方散乱した光を干渉法によって検出することによって、深さ分解された画像を形成する。図26に示される典型的なOCTシステム50において、レーザ52からの光は、光ファイバ結合器/スプリッタ54によって、2つのアーム、即ち、基準アーム56及び試料アーム58に分割される。基準アーム56に結合された光が固定ミラー60から後方反射される一方で、試料アーム58において、光は、OCTプローブ62を通じて投影され、それは以下でより詳細に考察される。
OCTプローブ62は、集束レンズ(例えば、GRINレンズ)を通じて対象の試料(患者の組織又は生体構造)に焦点が合わせられる。OCTは、レーザ52からの光を試料上の小さい点(集束レンズによって決定されたスポットサイズ)に収束させることによって試料が照明される、点毎の撮像技術である。試料アーム58中の光は、組織内を移動し、組織内の異なる散乱体によって後方散乱され、基準アーム56からの光と組み合わされる。基準アーム56及び試料アーム58の光路の長さが一致した場合、光検出器又は分光計によって測定され得る干渉図形が形成される。干渉図形の周波数成分は、ビームが試料中で遭遇した散乱体の深さ及び強度に関する情報を含む。得られた干渉図形は処理されて、Aスキャンとして概して既知の1次元の深さ情報を形成する(単一のAスキャンが画像中の単一の列である)。次いで、光ビームが試料にわたって走査されて、2次元又は3次元画像を生成する。ビームは、ベンチトップ型OCTシステム中の検流計を使用して、又は手持ち式OCTデバイス中のMEMSスキャナを使用して、走査され得る。このデータは、コンピュータ又はプロセッサ95に送信され、それによって処理される。
図27に更に開示されるように、OCTプローブ62は、GRINSレンズ64を含んでもよく、本実施形態におけるその直径は1mmであるが、目的の用途に応じて異なり得る。OCTプローブ62とOCTシステムの残りの部分(例えば、光ファイバ結合器54又は検出器68)との間に光線を伝達する、単一モード光ファイバ66が、本実施形態に含まれる。単一モード光ファイバ66は、約900マイクロメートルの厚さ及び約1.5mの長さを有してもよい。これらの仕様は、当然のことながら、一例であり、用途に応じて異なり得る。標的の位置及び配向に応じて光を屈折させるためのプリズム70が、GRINSレンズ64の遠位端に取り付けられてもよい。標的の表面が光線(又はビーム)の長手方向軸のすぐ正面にあるか、又はそれに実質的に垂直である状況において、プリズム70が必要ではない場合があることが理解され得る。本実施形態において、プリズムの長さは約700マイクロメートルであるが、長さは異なり得、用途によって決まることが理解される。
OCTプローブ62の2つの異なる実施形態が図28に示される。第1の実施形態は、前方画像プローブ72であり、それは、光線(又はビーム)がプローブ72の正面に向かって外向きに延在して、標的(例えば、組織)に到達するように、プリズム70を含まない。第2の実施形態74は、プリズム70を含み、それは、本実施形態が、プローブ72の先端の下に、又はそれに対してある角度で配置される標的を撮像することを可能にする。OCT技術はまた、超音波の実施形態110に関して上記で考察される様式で、グローブシステムに組み込まれてもよい。
OCT画像を最適化するために操作されてもよいパラメータのうちのいくつかとしては、(a)Aスキャン速度(システムが1秒で取得できるAスキャンの数)、(b)軸方向及び横方向分解能、並びに(c)撮像深度が挙げられる。Aラインスキャン速度は、OCTシステムがどれほど速く動作し得るかを決定する。掃引源OCTシステムに関して、速度は、レーザの波長掃引速度によって決まる一方で、スペクトルドメインOCTシステムに関して、速度は、分光計で使用されるラインスキャンカメラの速度によって概して制限される。トレードオフは、より高いAスキャン速度において、露光時間が低減される必要があり、それは、取得されたデータのSNRを減少させる可能性があるということである。軸方向分解能(深さにわたった分解能)は、レーザ源の帯域幅及び波長によって決定される。概して、帯域幅が高くなると、軸方向分解能はより良好になる。横方向寸法に沿った分解能は、試料アーム58中のレンズの開口数によって決定される。開口数が高くなると、横方向分解能はより高くなるが、トレードオフは被写界深度の低減である。更に、源の中心波長の増加に伴い、軸方向分解能及び横方向分解能の両方が低下する。最後に、撮像深度は通常、光がどれほど深く対象の組織又は試料を透過することができるかによって制限される。より高い波長は、より大きい撮像深度を提供する。これら及び他のパラメータは、神経根などの患者の生体構造のある特定の特徴を検出するように最適化されてもよい。
OCTプローブ62は、デバイス10の遠位部分14に位置付けられてもよい。あるいは、OCTプローブ62は、kワイヤ構造の遠位端に位置付けられ、導管36を通じて配設されてもよい。いずれの実施形態においても、OCTプローブ62は、デバイス10の遠位部分14に隣接した(又はその正面にある)患者の生体構造の一部分を撮像するように構成されている。外科医は、手術部位に到達するために必要に応じて、患者の生体構造を撮像するためにOCTプローブ62を挿入してもよい。OCTシステム50は、患者の生体構造(例えば、神経根)の選択した予め選択された部分の検出を視覚的及び/又は聴覚的に示すように構成されてもよい。上記のように、OCTシステムは、独立して、又は本明細書に記載される他の検出技術と組み合わせて使用され得ることが理解され得る。
一実施形態において、刺激電極は、デバイス10の遠位部分14に隣接する領域中の任意の神経を刺激するために、先端22の形成部品などのデバイス10の遠位端に配置されてもよく、又は導管36を通じて配設された、Kワイヤなどの器具の遠位端に配置されてもよい。EMG電極は、米国特許第7,920,922号に記載される様式で、いかなる神経脱分極も検出するために、皮膚上に配置され得る。神経の近接、位置、方法、生理学が決定される一様式もまた、米国特許第7,920,922号に開示される。刺激を使用して神経を検出する他の技術が当該技術分野において既知であり、それらの技術のうちのいずれも、上記の様式でデバイス10と併用されてもよく、又はデバイス10と一体化されてもよいことが理解される。
超音波撮像素子24は、画像取込デバイスと併せて、又は画像取込デバイスから独立して使用されて、本明細書に記載される患者の生体構造を可視化してもよい。超音波撮像素子24を使用して患者の生体構造のある特定の特徴を検出する、本明細書に記載される工程及び方法は、画像取込デバイスを使用して補完されてもよい。具体的には、外科医は、神経の存在(又は非存在)を検出するために、超音波撮像素子24によって生成される画像又はオーディオキューに依存し、それにより、手術がデバイス10を、患者の生体構造を通じて手術部位48に向かって再配置する(又は前進させ続ける)ことを可能にしてもよい。超音波撮像素子24はまた、標的解剖学的特徴(例えば、神経)の存在又は非存在を確認することによって、画像取込デバイスによって取り込まれた画像が正確であることを確認するために使用されてもよい。
同様に、動作中、OCTシステム50は、画像取込デバイス及び/若しくは超音波撮像素子24と併せて、又はそれらから独立して使用されて、本明細書に記載される患者の生体構造を走査及び識別し、かつ手術部位にアクセスしてもよい。超音波撮像素子24を採用して、手術部位にアクセスし、標的生体構造(例えば、神経)を回避するために使用される工程及び方法はまた、OCTシステム50を使用して実施されてもよい。更に、超音波撮像素子24を使用した本明細書に記載される工程は、OCTシステム50を使用して補完されてもよい。例えば、外科医は、神経の存在(又は非存在)を検出するために、OCTシステム50によって生成される画像又はオーディオキューに依存し、それにより、手術がデバイス10を、患者の生体構造を通じて手術部位48に向かって再配置する(又は前進させ続ける)ことを可能にしてもよい。OCTシステム50はまた、標的解剖学的特徴(例えば、神経)の存在又は非存在を確認することによって、画像取込デバイスによって取り込まれた画像が正確であることを確認するために使用されてもよい。
図47は、本開示の様々な態様が1つ以上の例示的な実施形態に従って実装されてもよい、例示的な動作環境を示す。図47を参照すると、コンピュータシステム環境4700が、1つ以上の例示的な実施形態に従って使用されてもよい。コンピュータシステム環境4700は、好適なコンピュータ環境の一例にすぎず、本開示に含まれる使用又は機能性の範囲に関していかなる制限も示唆するよう意図していない。コンピュータシステム環境4700は、例示的なコンピュータシステム環境4700に示される構成要素のうちのいずれか1つ又は組み合わせに関するいかなる依存性又は必要条件も有すると解釈されるべきではない。
コンピュータシステム環境4700は、コンピュータデバイス4701、並びにランダムアクセスメモリ(RAM)4705、読み出し専用メモリ(ROM)4707、通信モジュール4709、及びメモリ4715を含む、その関連構成要素の全体的な動作を制御するためのプロセッサ4703を有する、コンピュータデバイス4701を含んでもよい。コンピュータデバイス4701は、様々なコンピュータ可読媒体を含んでもよい。コンピュータ可読媒体は、コンピュータデバイス4701がアクセスし得るいかなる利用可能な媒体であってもよく、非一時的であってもよく、コンピュータ可読命令、オブジェクトコード、データ構造、プログラムモジュール、又は他のデータなどの情報の記憶のための任意の方法又は技術で実装される揮発性及び不揮発性、リムーバブル及び非リムーバブル媒体を含んでもよい。コンピュータ可読媒体の例としては、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ若しくは他のメモリ技術、コンパクトディスク読み出し専用メモリ(CD−ROM)、デジタル汎用ディスク(DVD)若しくは他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ若しくは他の磁気ストレージデバイス、又は所望の情報を格納するために使用することができ、コンピュータデバイス4701がアクセスすることができる任意の他の媒体が挙げられ得る。
必要ではないが、本明細書に記載される様々な態様が、方法、データ処理システムとして、又はコンピュータ実行可能命令を記憶するコンピュータ可読媒体として具現化されてもよい。例えば、プロセッサに、開示された実施形態の態様に従って方法の工程を実施させるための命令を記憶するコンピュータ可読媒体が企図される。例えば、本明細書に開示される方法工程の態様は、コンピュータデバイス4701上のプロセス上で実行されてもよい。そのようなプロセッサは、コンピュータ可読媒体上に記憶されたコンピュータ実行可能命令を実行してもよい。
ソフトウェアは、メモリ4715及び/又はストレージ内に記憶されて、コンピュータデバイス4701が様々な機能を実施することを可能にするためにプロセッサ4703に命令を提供してもよい。例えば、メモリ4715は、オペレーティングシステム4717、アプリケーションプログラム4719、及び関連データベース4721など、コンピュータデバイス4701によって使用されるソフトウェアを記憶してもよい。また、コンピュータデバイス4701のためのコンピュータ実行可能命令のうちのいくつか又は全部が、ハードウェア又はファームウェア中で具現化されてもよい。図示しないが、RAM 4705が、RAM 4705中に記憶されたアプリケーションデータを表す1つ以上のアプリケーションを含んでもよい一方で、コンピュータデバイス4701は、オンであり、対応するソフトウェアアプリケーション(例えば、ソフトウェアタスク)は、コンピュータデバイス4701上で起動している。
通信モジュール4709は、コンピュータデバイス4701のユーザが入力を提供し得るマイクロフォン、キーパッド、タッチスクリーン、及び/又はスタイラスを含んでもよく、音声出力を提供するためのスピーカ、並びに文字、視聴覚、及び/又はグラフィカル出力を提供するためのビデオ表示デバイスのうちの1つ以上を含んでもよい。コンピュータシステム環境4700はまた、光スキャナ(図示せず)を含んでもよい。例示的な使用法は、紙の文書、例えば、通信文書、レシートなどを走査し、デジタルファイルに変換することを含む。
コンピュータデバイス4701は、コンピュータデバイス4741、4751、及び4761などの1つ以上のリモートコンピュータデバイスへの接続をサポートするネットワーク化された環境中で動作してもよい。コンピュータデバイス4741、4751、及び4761は、コンピュータデバイス4701に関連して上記に記載される要素のうちのいずれか又は全部を含む、パーソナルコンピュータデバイス又はサーバであってもよい。コンピュータデバイス4761は、ワイヤレスキャリアチャネル4771上で通信するモバイルデバイス(例えば、スマートフォン)であってもよい。
図1に示されるネットワーク接続は、ローカルエリアネットワーク(LAN)4725及びワイドエリアネットワーク(WAN)4729、並びに他のネットワークを含んでもよい。LANネットワーク環境で使用されるとき、コンピュータデバイス101は、通信モジュール4709中のネットワークインターフェース又はアダプタを通じてLAN4725に接続されてもよい。WANネットワーク環境で使用されるとき、コンピュータデバイス4701は、インターネット4731又は他の種類のコンピュータネットワークなど、WAN4729上の通信を構築するための通信モジュール4709中のモデム又は他の手段を含んでもよい。示されるネットワーク接続は例示的なであり、コンピュータデバイス間の通信リンクを構築する他の手段が使用されてもよい。トランスミッションコントロールプロトコル/インターネットプロトコル(TCP/IP)、イーサネット、ファイル転送プロトコル(FTP)、ハイパーテキスト転送プロトコル(HTTP)など、様々な周知のプロトコルが使用されてもよく、本システムは、クライアント−サーバ構成で動作されて、ユーザがウェブベースのサーバからウェブページを検索することを可能することができる。様々な従来のウェブブラウザのいずれも、ウェブページ上のデータを表示及び操作するために使用され得る。
本開示は、多くの他の汎用又は専用コンピュータシステム環境又は構成と共に動作可能である。開示された実施形態と使用するのに好適であり得る周知のコンピュータシステム、環境、及び/又は構成の例としては、パーソナルコンピュータ(PC)、サーバコンピュータ、手持ち式又はラップトップデバイス、スマートフォン、マルチプロセッサシステム、マイクロプロセッサベースのシステム、セットトップボックス、プログラマブルコンシューマエレクトロニクス、ネットワークPC、ミニコンピュータ、メインフレームコンピュータ、上記のシステム又はデバイスのうちのいずれかを含む分散コンピューティング環境などが挙げられるがこれらに限定されない。
本開示の態様が好ましい実施例の観点から記載されており、特に上記の教示を考慮して、当業者によって変更がなされてもよいため、本開示がそれに限定さないことが理解されるであろう。

Claims (20)

  1. 周囲組織から神経組織を区別するための装置であって、
    近位部分、遠位部分、及び前記近位部分と前記遠位部分との間に形成された主要部分を備える本体と、
    前記本体の前記遠位部分に配置され、かつ前記本体の前記主要部分から離れて延在する領域を走査するように構成された、少なくとも1つの超音波トランスデューサと、
    少なくとも1つのプロセッサと、命令を記憶するメモリとを備える信号処理ユニットと、を備え
    前記命令前記少なくとも1つのプロセッサによって実行されたときに、前記命令は、前記少なくとも1つのプロセッサに、
    前記少なくとも1つの超音波トランスデューサから受信した信号に基づいて、bモード走査線を生成させ、
    受信したRFデータ及び前記bモード走査線に関連したエンベロープの統計情報に基づいて、前記bモード走査線を分類する際に使用される特徴を決定させ、
    前記決定された特徴及び多変量分類アルゴリズムを用いて、前記bモード走査線を分類させ、
    前記分類に基づいて、前記神経組織の有無を決定させる、装置。
  2. 前記信号処理ユニットと通信するように構成された出力ユニットであって、前記神経組織の有無と関連した表示を出力するように更に構成されている、出力ユニットを更に備える、請求項1に記載の装置。
  3. 前記表示が音声表示であり、前記表示が、前記神経組織が前記遠位部分から所定の距離内にあることを示す、請求項に記載の装置。
  4. 前記表示が、前記神経組織の視覚的な識別子を含む、請求項に記載の装置。
  5. 前記少なくとも1つの超音波トランスデューサが、少なくとも2つの超音波トランスデューサを含む、請求項1に記載の装置。
  6. 前記少なくとも1つの超音波トランスデューサが、微細加工アレイを含む、請求項1に記載の装置。
  7. グローブを更に備え、前記グローブの指先が前記遠位部分を構成する、請求項1に記載の装置。
  8. 前記主要部分が、前記主要部分の長手方向軸に沿って配置され、かつ器具を受容するように構成された導管を備える、請求項1に記載の装置。
  9. 周囲組織から神経組織を区別するための方法であって、
    コンピュータデバイスにおいて、本体の遠位部分に配置された少なくとも1つの超音波トランスデューサからの信号を受信する工程と、ここで、前記少なくとも1つの超音波トランスデューサが、前記本体の主要部分から離れて延在する領域を走査するように構成され
    前記コンピュータデバイスによって前記信号を処理することで、前記神経組織の有無を特定する工程と、
    前記コンピュータデバイスによって、前記神経組織の有無と関連した表示を出力する工程と、を含
    前記信号を処理する工程は、
    前記信号に基づいて、bモード走査線を生成する工程と、
    受信したRFデータ及び前記bモード走査線に関連したエンベロープの統計情報に基づいて、前記bモード走査線を分類する際に使用される特徴を決定する工程と、
    前記決定された特徴及び多変量分類アルゴリズムを用いて、前記bモード走査線を分類する工程と、
    前記分類に基づいて、前記神経組織の有無を決定する工程と、
    を含む、方法。
  10. 前記表示が、前記神経組織の視覚的な識別子を含む、請求項に記載の方法。
  11. 前記少なくとも1つの超音波トランスデューサからの前記信号を受信する前に、前記少なくとも1つの超音波トランスデューサの第1の超音波トランスデューサによる第1の音波の伝送、及び前記少なくとも1つの超音波トランスデューサの第2の超音波トランスデューサによる第2の音波の伝送をもたらす工程を更に含む、請求項に記載の方法。
  12. 前記第1の音波が第1の周波数を含み、前記第2の音波が前記第1の周波数とは異なる第2の周波数を含む、請求項11に記載の方法。
  13. 命令を記憶する非一時的なコンピュータ可読媒体であって、前記命令が1以上のプロセッサによって実行されたときに、前記1以上のプロセッサに、
    本体の遠位部分に配置され、かつ前記本体の主要部分から離れて延在する領域を走査するように構成された、少なくとも1つの超音波トランスデューサからの信号を受信させ、
    前記信号に基づいて、bモード走査線を生成させ、
    受信したRFデータ及び前記bモード走査線に関連したエンベロープの統計情報に基づいて、前記bモード走査線を分類する際に使用される特徴を決定させ、
    前記決定された特徴及び多変量分類アルゴリズムを用いて、前記bモード走査線を分類させ、
    前記分類に基づいて、神経組織の有無を決定させ、
    前記神経組織の有無と関連した表示を出力させる、非一時的なコンピュータ可読媒体。
  14. 前記表示が、前記神経組織が前記遠位部分から所定の距離内にあることを示す音声表示である、請求項13に記載のコンピュータ可読媒体。
  15. 前記表示が、前記神経組織の視覚的な識別子を含む、請求項13に記載のコンピュータ可読媒体。
  16. 前記特徴は、
    前記受信したRFの歪度、
    前記エンベロープの平均値、
    前記エンベロープの分散、
    前記エンベロープの歪度、
    前記エンベロープの尖度、
    前記エンベロープの対数の平均値、
    前記エンベロープの対数の分散、
    前記エンベロープの対数の歪度、
    前記エンベロープの対数の尖度、
    のうちの一以上を含む、請求項1に記載の装置。
  17. 前記多変量分類アルゴリズムは、ガウシアンカーネルを備えたサポートベクターマシンを有する、請求項1に記載の装置。
  18. 前記特徴は、
    前記受信したRFの歪度、
    前記エンベロープの平均値、
    前記エンベロープの分散、
    前記エンベロープの歪度、
    前記エンベロープの尖度、
    前記エンベロープの対数の平均値、
    前記エンベロープの対数の分散、
    前記エンベロープの対数の歪度、
    前記エンベロープの対数の尖度、
    のうちの一以上を含む、請求項9に記載の方法。
  19. 前記多変量分類アルゴリズムは、ガウシアンカーネルを備えたサポートベクターマシンを有する、請求項9に記載の方法。
  20. 前記特徴は、
    前記受信したRFの歪度、
    前記エンベロープの平均値、
    前記エンベロープの分散、
    前記エンベロープの歪度、
    前記エンベロープの尖度、
    前記エンベロープの対数の平均値、
    前記エンベロープの対数の分散、
    前記エンベロープの対数の歪度、
    前記エンベロープの対数の尖度、
    のうちの一以上を含む、請求項13に記載のコンピュータ可読媒体。
JP2017534894A 2014-09-17 2015-09-16 解剖学的構造の識別 Active JP6397578B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462051670P 2014-09-17 2014-09-17
US62/051,670 2014-09-17
PCT/US2015/050404 WO2016044411A1 (en) 2014-09-17 2015-09-16 Identifying anatomical structures

Publications (2)

Publication Number Publication Date
JP2017532174A JP2017532174A (ja) 2017-11-02
JP6397578B2 true JP6397578B2 (ja) 2018-09-26

Family

ID=55533789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534894A Active JP6397578B2 (ja) 2014-09-17 2015-09-16 解剖学的構造の識別

Country Status (3)

Country Link
EP (1) EP3193726B1 (ja)
JP (1) JP6397578B2 (ja)
WO (1) WO2016044411A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
EP3280333A4 (en) * 2015-04-09 2018-12-12 Avaz Surgical LLC Device and system for placing securing device within bone
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection
US20200196987A1 (en) * 2018-12-20 2020-06-25 General Electric Company Method and system to manage beamforming parameters based on tissue density

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248072B1 (en) * 1997-09-19 2001-06-19 John M. Murkin Hand controlled scanning device
JPH11169375A (ja) * 1997-12-10 1999-06-29 Hitachi Ltd 組織鑑別用超音波プローブ
US6066096A (en) * 1998-05-08 2000-05-23 Duke University Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems
IL126723A0 (en) * 1998-10-22 1999-08-17 Medoc Ltd Vaginal probe and method
US6746402B2 (en) * 2002-01-02 2004-06-08 E. Tuncay Ustuner Ultrasound system and method
US20050245822A1 (en) * 2002-07-22 2005-11-03 Ep Medsystems, Inc. Method and apparatus for imaging distant anatomical structures in intra-cardiac ultrasound imaging
JP4949264B2 (ja) * 2004-11-19 2012-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医療画像データ内の腫瘍境界を自動的に検出及び区分するシステム及び方法
JP4672386B2 (ja) * 2005-02-17 2011-04-20 株式会社東芝 超音波プローブ及び超音波診断システム
US8057390B2 (en) * 2007-01-26 2011-11-15 The Regents Of The University Of Michigan High-resolution mapping of bio-electric fields
US9119951B2 (en) * 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US8876721B2 (en) * 2011-02-01 2014-11-04 Fujifilm Corporation Ultrasound diagnostic apparatus
EP2713888B1 (en) * 2011-06-01 2019-09-04 Boston Scientific Scimed, Inc. Ablation probe with ultrasonic imaging capabilities
US20130085394A1 (en) * 2011-10-04 2013-04-04 Sonivate Medical, Inc. Glove with integrated sensor
JP2015506209A (ja) * 2011-12-28 2015-03-02 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. アブレーションプローブならびにアブレーションおよび超音波撮像システム
US8663116B2 (en) * 2012-01-11 2014-03-04 Angiodynamics, Inc. Methods, assemblies, and devices for positioning a catheter tip using an ultrasonic imaging system
US9375196B2 (en) * 2012-07-12 2016-06-28 Covidien Lp System and method for detecting critical structures using ultrasound

Also Published As

Publication number Publication date
EP3193726B1 (en) 2021-09-08
EP3193726A1 (en) 2017-07-26
WO2016044411A1 (en) 2016-03-24
EP3193726A4 (en) 2018-07-04
JP2017532174A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
US20210169447A1 (en) Identifying Anatomical Structures
US20180168539A1 (en) Device and System for Placing Securing Device Within Bone
US20230240642A1 (en) Device and Method for Identifying Anatomical Structures
AU2020200104B2 (en) Identifying anatomical structures
JP6397578B2 (ja) 解剖学的構造の識別
US11883064B2 (en) Multi-shield spinal access system
US11712218B2 (en) System and methods for nerve monitoring
US9895063B1 (en) Sensing and avoiding surgical equipment
US8192356B2 (en) Surgical access system and related methods
US20090221922A1 (en) Methods and devices for in situ tissue navigation
US20160106392A1 (en) Ultrasonic array for bone sonography
JP2007524431A (ja) 非侵襲性組織特性顕示システムと方法
US9861427B2 (en) Electro-surgical system, an electro-surgical device, and a method for operating an electro-surgical system
CA2981434C (en) System and method for guided port insertion to minimize trauma
US10194933B2 (en) Clamp ultrasound probe for lung surgery
US20220022960A1 (en) Laser treatment using acoustic feedback
US20210137602A1 (en) Method to precisely place vertebral pedicle anchors during spinal fusion surgery
US11701086B1 (en) Methods and systems for improved nerve detection
US8983567B1 (en) Systems and methods for vessel avoidance during spine surgery
Liu et al. A photoacoustics-enhanced drilling probe for radiation-free pedicle screw implantation in spinal surgery
JP2021526412A (ja) 内視鏡用超音波プローブおよび該プローブのためのシース
US20230346211A1 (en) Apparatus and method for 3d surgical imaging
CN113825467A (zh) 多护罩脊柱进入系统
WO2003063696A1 (en) Apparatus and method for distinguishing tissue types
WO2016151294A1 (en) Medical devices and methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180831

R150 Certificate of patent or registration of utility model

Ref document number: 6397578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250