JP6396676B2 - Methane fermentation apparatus and treatment method of water-containing organic waste - Google Patents

Methane fermentation apparatus and treatment method of water-containing organic waste Download PDF

Info

Publication number
JP6396676B2
JP6396676B2 JP2014100902A JP2014100902A JP6396676B2 JP 6396676 B2 JP6396676 B2 JP 6396676B2 JP 2014100902 A JP2014100902 A JP 2014100902A JP 2014100902 A JP2014100902 A JP 2014100902A JP 6396676 B2 JP6396676 B2 JP 6396676B2
Authority
JP
Japan
Prior art keywords
liquid
circulation
methane fermentation
pipe
biogas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014100902A
Other languages
Japanese (ja)
Other versions
JP2015217322A (en
Inventor
飯田 克己
克己 飯田
Original Assignee
活水プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 活水プラント株式会社 filed Critical 活水プラント株式会社
Priority to JP2014100902A priority Critical patent/JP6396676B2/en
Publication of JP2015217322A publication Critical patent/JP2015217322A/en
Application granted granted Critical
Publication of JP6396676B2 publication Critical patent/JP6396676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、メタン発酵装置及び含水有機廃棄物の処理方法に関する。   The present invention relates to a methane fermentation apparatus and a method for treating hydrous organic waste.

ここで含水有機廃棄物としては、食品工場等で発生する高濃度有機廃水、食品原料残渣、及び、家庭、飲食店、コンビニ等から発生する生ごみ、さらには、畜産業から発生する家畜糞尿、並びに、浄水場等で発生する下水汚泥等を挙げることができる。   Here, the water-containing organic waste includes high-concentration organic wastewater generated at food factories, food raw material residues, and garbage generated from households, restaurants, convenience stores, etc., further livestock manure generated from the livestock industry, In addition, sewage sludge generated at a water purification plant and the like can be mentioned.

従来の嫌気発酵であるメタン発酵においては、液体や気体を発酵槽中に噴射する方式や発酵液中に設置したプロペラ型の攪拌機によって攪拌を行う方法は、いずれも発酵槽の一部に推進力を与えて攪拌する方式であるため、攪拌ムラが生じやすく、攪拌が不確実な場合には発酵液中の浮遊物が発酵液上部に蓄積してスカム(浮きかす)を形成する場合がしばしばある。このようなスカムが形成した場合には発酵が滞ってしまい、発酵槽内に存在する嫌気性微生物の生態系が崩れて、発酵が機能しなくなってしまう危険性もある。(以上、特許文献1段落0004から一部編集を加えて引用)。   In methane fermentation, which is a conventional anaerobic fermentation, both the method of injecting liquid and gas into the fermenter and the method of stirring with a propeller-type stirrer installed in the fermenter both provide propulsion to part of the fermenter. Since stirring is likely to occur, stirring unevenness is likely to occur, and when stirring is uncertain, suspended matter in the fermentation liquid often accumulates on the top of the fermentation liquid and forms scum. . When such a scum is formed, fermentation is delayed, there is a risk that the ecosystem of anaerobic microorganisms present in the fermenter will be destroyed and fermentation will not function. (Excerpted from Patent Document 1, paragraph 0004 with some edits).

すなわち、メタン発酵においては、完全に消化しきれずに、未消化の高濃度消化廃液が出ることが多い。また、未消化物が多いため、スカムが表面停滞し、滞留物による槽の閉塞および配管の閉塞が発生し、運転を停止して清掃をする必要があった。   That is, in methane fermentation, undigested high-concentration waste liquid often comes out without being completely digested. Moreover, since there are many undigested substances, the surface of the scum is stagnated, the tank and the pipe are blocked by the accumulated matter, and it is necessary to stop the operation and perform cleaning.

この問題点を解決するために、発酵槽をヘッドスペースができる構造として、このヘッドスペースに達する長さのアームを備えることが提案されている。(特許文献1要約等)
しかし、この技術でも水平回転軸両端の発酵槽両側壁に対するシール性が要求されるメカニカル部を備える必要があり、定期的なメインテナンスを必要とした。
In order to solve this problem, it has been proposed that the fermenter has an arm having a length reaching the head space as a structure capable of forming a head space. (Patent Document 1 Abstract, etc.)
However, even in this technique, it is necessary to provide a mechanical part that requires sealing performance on both side walls of the fermenter at both ends of the horizontal rotation shaft, and periodic maintenance is required.

また、メタン発酵で生成するバイオガスは、標準的にメタン(CH4)が約60vol%、二酸化炭(CO2)40vol%とともに微量の硫化水素(H2S)約0.2vol%が含まれる(特許文献3段落0003参照)。硫黄含有化合物が、酸素の無い状態で微生物に分解されることにより、硫黄成分が還元されて硫化水素となるためである。バイオガス中の硫化水素の濃度が高くなると、バイオガスの品質を低下させるだけでなく、メタン発酵を阻害する。 Biogas produced by methane fermentation typically contains about 60 vol% methane (CH 4 ), 40 vol% carbon dioxide (CO 2 ), and about 0.2 vol% hydrogen sulfide (H 2 S) ( (See Patent Document 3, paragraph 0003). This is because when the sulfur-containing compound is decomposed into microorganisms in the absence of oxygen, the sulfur component is reduced to hydrogen sulfide. When the concentration of hydrogen sulfide in the biogas increases, not only the quality of the biogas is lowered, but also the methane fermentation is inhibited.

そのような場合、通常、酸化鉄や活性炭を利用する乾式脱硫方式に比して安価である生物脱硫塔が使用される(特許文献1段落0005、特許文献2段落0010、特許文献3段落0005等)。   In such a case, a biological desulfurization tower that is cheaper than a dry desulfurization method using iron oxide or activated carbon is usually used (Patent Document 1, Paragraph 0005, Patent Document 2, Paragraph 0010, Patent Document 3, Paragraph 0005, etc.) ).

そして、生物脱硫塔で生成する硫酸は、循環水の酸性度を増大させるため中和させる必要がある。この中和にバイオガス生成に際して副生するアンモニアを利用することが提案されている(特許文献4要約等)。   And the sulfuric acid produced | generated in a biological desulfurization tower needs to be neutralized in order to increase the acidity of circulating water. It has been proposed to use ammonia produced as a by-product during biogas generation for this neutralization (summary of Patent Document 4).

特開2006−7091号公報JP 2006-7091 A 特開2012−115812号公報JP 2012-115812 A 特開2013−139032号公報JP 2013-139032 A

本発明は、攪拌のためのメカニカル機構を備えない簡単な構造で、且つ、攪拌効率も良好で消化率を増大させることができるメタン発酵装置および該メタン発酵装置を用いた含水有機廃棄物の処理方法を提供することを目的とする。   The present invention has a simple structure that does not include a mechanical mechanism for stirring, has good stirring efficiency and can increase digestibility, and treatment of water-containing organic waste using the methane fermentation apparatus It aims to provide a method.

本発明者は、上記課題を解決するために、鋭意開発に努力をした結果、下記各構成のメタン発酵装置(1)及び含水有機廃棄物処理方法(2)に想到した。   As a result of diligent efforts to solve the above-mentioned problems, the present inventor has come up with a methane fermentation apparatus (1) and a water-containing organic waste treatment method (2) having the following configurations.

(1) 含水有機廃棄物からの発酵原液を嫌気発酵させるメタン発酵槽と、脱硫を行う脱硫塔と、前記メタン発酵槽からのバイオガスを前記脱硫塔で脱硫を行い又は脱硫を行わずに貯留するガスホルダとを備えるメタン発酵装置であって
前記メタン発酵槽が、
縦型の回流仕切り壁、該回流仕切り壁の内側及び外側の少なくとも一方に充填される接触床、発酵槽に供給される発酵原液を循環させる循環配管を備え、
該循環配管は、循環方向に循環ポンプ及び吸引噴射器を備え、
前記吸引噴射器は、ガスホルダとバイオガスを吸引可能に接続され、
前記循環配管の先部に噴射管が接続されるとともに、該噴射管の噴射口が回流仕切り壁の内側又は外側の下方開口に臨むように配されて、
該噴射口からバイオガスが吸引混合された前記発酵原液を噴射させることにより、前記回流仕切り壁を挟んで旋回流を発生するようにしたものであり
前記脱硫塔が、
塔中間高さ位置に微生物担体が充填されるとともに、該微生物担体の下方に液貯留部を、同上方にシャワーパイプを備え、また、
前記脱硫塔の液貯留部に元部が接続され、前記シャワーパイプに先部が接続される液循環配管を備え、
該液循環配管は、循環方向に循環ポンプ及び吸引噴射器を備え、
前記微生物担体の直下高さ位置にバイオガスを導入可能とされ、
前記微生物担体が、水圧により扁平度を変化させ得る撓み性を有する合成樹脂製の扁平網状筒体の充填体で形成されている、ことを特徴とする。
(1) storing a fermentation stock solution from water-containing organic waste and methane fermentation tank to an anaerobic fermentation, without a desulfurization tower for performing desulfurization was carried out or desulfurization desulfurization biogas from the methane fermentation tank in the desulfurization tower a methane fermentation apparatus Ru and a gas holder which,
The methane fermenter is
A vertical circulation partition wall, a contact bed filled in at least one of the inside and outside of the circulation partition wall, and a circulation pipe for circulating the fermentation stock solution supplied to the fermenter,
The circulation pipe includes a circulation pump and a suction injector in the circulation direction,
The suction injector is connected to a gas holder and a biogas so as to be suckable;
An injection pipe is connected to the tip of the circulation pipe, and an injection port of the injection pipe is arranged so as to face a lower opening inside or outside the circulation partition wall,
By injecting the fermentation stock solution biogas is aspirated mixture from the injection port, which was to generate a swirl flow across the circumfluence partition wall,
The desulfurization tower is
A microbial carrier is filled at the middle height of the tower, a liquid reservoir is provided below the microbial carrier, and a shower pipe is provided above the microbial carrier.
A liquid recirculation pipe connected to the liquid storage part of the desulfurization tower and connected to the shower pipe at the front part;
The liquid circulation pipe includes a circulation pump and a suction injector in the circulation direction,
Biogas can be introduced at a height position directly below the microbial carrier,
The microbial carrier is formed of a filling body of a flat reticular cylindrical body made of a synthetic resin having flexibility that can change flatness by water pressure .

(2)含水有機廃棄物を、液状若しくはスラリーの場合はそのまま、又は、固状の場合若しくはスラリーを形成しない固状を含む場合は破砕して発酵原液として、メタン発酵によりバイオガスを生成させる含水有機廃棄物の処理方法であって、
前記メタン発酵を、脱硫塔を備えた上記(1)のメタン発酵装置を用いて行うとともに、前記脱硫塔から発生する脱硫済みの消化液を好気生物処理槽に導入し、さらに沈殿槽を経て、河川に放流可能な汚染濃度に浄化処理することを、特徴とする。
(2) Water-containing organic waste, in the case of liquid or slurry, or hydrated to produce biogas by methane fermentation as a fermentation stock solution by crushing it if it is solid or contains a solid that does not form a slurry A method for treating organic waste,
While performing the said methane fermentation using the methane fermentation apparatus of said (1) provided with the desulfurization tower, the desulfurized digestive liquid which generate | occur | produces from the said desulfurization tower is introduce | transduced into an aerobic biological treatment tank, and also through a precipitation tank It is characterized by purifying to a pollution concentration that can be discharged into rivers.

図1は本発明に係る含水有機廃棄物の処理方法の一例を示す全体流れ図である。FIG. 1 is an overall flowchart showing an example of a method for treating hydrous organic waste according to the present invention. (A)は含水廃棄物処理方法に使用するメタン発酵槽の一態様を示す概略立面図、(B)は(A)のB−B線断面図である。(A) is a schematic elevation which shows the one aspect | mode of the methane fermenter used for a water-containing waste processing method, (B) is a BB sectional drawing of (A). (A)は含水廃棄物処理方法に使用するメタン発酵槽の他の態様を示す概略立面図、(B)は(A)のB−B線断面図である。(A) is a schematic elevation which shows the other aspect of the methane fermenter used for a hydrous waste processing method, (B) is the BB sectional drawing of (A). (A)は図2・3で使用する板状接触床要素の立面図、(B)は該接触床要素のB−B線矢視図である。(A) is an elevation view of the plate-like contact floor element used in FIGS. 2 and 3, and (B) is a view taken along the line B-B of the contact floor element. 図4に使用する扁平網管の一例を示す斜視図である。It is a perspective view which shows an example of the flat net tube used for FIG. 硫黄酸化菌を担持させる担持体の構成要素とする扁平網状筒体の一例を示す斜視図である。It is a perspective view which shows an example of the flat reticulated cylinder used as the component of the support body which carries | supports sulfur oxidation bacteria.

以下、本発明に係るメタン発酵装置および含水有機廃棄物の処理方法について、図例に基づいて、作用とともに説明する。   Hereinafter, the processing method of the methane fermentation apparatus and the water-containing organic waste according to the present invention will be described together with actions based on the drawings.

図1は、一実施形態における、含水有機廃棄物32の処理方法の流れ図である。   FIG. 1 is a flowchart of a method for treating hydrous organic waste 32 in one embodiment.

含水有機廃棄物32は、前処理として、異物(無機物等)を除去しておく。含水有機廃棄物が、有機廃棄物が液状若しくはスラリーの場合はそのまま発酵原液7とし、固状の場合は、適宜、注水しながら中間粉砕機33でスラリー状として、発酵原液7とする。ここで、粉砕粒径は、5mm以下、望ましくは3mm以下、さらに望ましくは2mm以下とする。発酵原液7をメタン発酵装置のメタン発酵槽1に供給容易とし、且つ、メタン発酵に際して発酵分解を促進させるためである。   The water-containing organic waste 32 removes foreign matters (such as inorganic substances) as a pretreatment. When the water-containing organic waste is liquid or slurry, it is used as the fermentation stock solution 7 as it is. When it is solid, it is used as the fermentation stock solution 7 as a slurry with the intermediate pulverizer 33 while water is poured as appropriate. Here, the pulverized particle size is 5 mm or less, desirably 3 mm or less, and more desirably 2 mm or less. This is because the fermentation stock solution 7 can be easily supplied to the methane fermentation tank 1 of the methane fermentation apparatus, and the fermentation decomposition can be promoted during the methane fermentation.

ここで、発酵原液となる含水有機廃棄物としては、前述の技術分野の項で挙げたものを使用できる。   Here, as the water-containing organic waste as a fermentation stock solution, those mentioned in the above-mentioned technical field can be used.

通常、液又はスラリーである発酵原液7は、原液貯槽35に貯留しておき、該原液貯槽35の底部流出口37に接続され、供給ポンプ36を備えた原液供給配管38を介してメタン発酵装置のメタン発酵槽(以下、単に「発酵槽」と称することがある。)1に供給する。メタン発酵槽1への原液供給量は、供給配管38に備えられている液流量計30及び流量制御弁31により制御する。   Usually, the fermentation stock solution 7 which is a liquid or a slurry is stored in the stock solution storage tank 35, connected to the bottom outlet 37 of the stock solution storage tank 35, and connected to the bottom outlet 37 of the stock solution via a stock solution supply pipe 38 provided with a supply pump 36. Methane fermenter (hereinafter simply referred to as “fermentor”) 1. The stock solution supply amount to the methane fermentation tank 1 is controlled by a liquid flow meter 30 and a flow control valve 31 provided in the supply pipe 38.

また、含水有機廃棄物32が家畜糞尿等を含む場合、原液貯槽35の原液供給配管38の供給ポンプ36とメタン発酵槽1の原液供給口39との間に、衛生処理タンク(図示せず)を設けて、加熱処理(例えば、70〜72℃×1h)して殺菌・不活性化しておくことが望ましい。これにより、消化液の直接液肥化や、沈殿槽51で発生する沈降汚泥61をコンポスト(堆肥)40とすることが容易となる。   When the hydrated organic waste 32 contains livestock manure, etc., a sanitary treatment tank (not shown) is provided between the supply pump 36 of the stock solution supply pipe 38 of the stock solution storage tank 35 and the stock solution supply port 39 of the methane fermentation tank 1. It is desirable to disinfect and inactivate by heat treatment (for example, 70 to 72 ° C. × 1 h). Thereby, it becomes easy to make the compost (compost) 40 the direct liquid fertilization of the digested liquid and the sedimentation sludge 61 generated in the settling tank 51.

そして、本実施形態のメタン発酵装置は、含水有機廃棄物32からの発酵原液7を嫌気発酵(メタン発酵)させる発酵槽1と、発酵槽1からのバイオガスの脱硫を行う生物脱硫塔17、及び,脱硫後のバイオガスを貯留するガスホルダ10とを備えたものである。   And the methane fermentation apparatus of this embodiment is the fermenter 1 which carries out the anaerobic fermentation (methane fermentation) of the fermentation undiluted solution 7 from the water-containing organic waste 32, and the biodesulfurization tower 17 which performs the desulfurization of the biogas from the fermenter 1. And the gas holder 10 which stores the biogas after desulfurization is provided.

ここで、発酵槽1の最上部に設けられたガス出口15と生物脱硫塔17の底部側の側面(微生物担体19の直下位置高さ)に設けられたガス流入口18の間は一次ガス配管16で接続されている。また、発酵槽1の越流口41と、生物脱硫塔17の底部側の液貯留部20の側面に形成された液流入口56との間は、消化液移送配管42で接続されている。微生物担体19の生物脱硫塔17の上端側に設けられたガス流出口28とガスホルダ10の底部流入口(図示せず)との間は二次ガス配管16Aで接続されている。さらに、ガスホルダ10の底部還流口(図示せず)との間はガス還流配管12で接続されている。   Here, a primary gas pipe is provided between the gas outlet 15 provided at the top of the fermenter 1 and the gas inlet 18 provided on the bottom side surface of the biological desulfurization tower 17 (the height just below the microorganism carrier 19). 16 is connected. Further, the overflow inlet 41 of the fermenter 1 and the liquid inlet 56 formed on the side surface of the liquid reservoir 20 on the bottom side of the biological desulfurization tower 17 are connected by a digestive fluid transfer pipe 42. A gas outlet 28 provided on the upper end side of the biological desulfurization tower 17 of the microorganism carrier 19 and a bottom inlet (not shown) of the gas holder 10 are connected by a secondary gas pipe 16A. Further, a gas reflux pipe 12 is connected to the bottom reflux port (not shown) of the gas holder 10.

なお、メタン発酵で生成するバイオガスおよび消化液中にH2Sを実質的に含まず脱硫を行わない場合は、バイオガス11を、ガスホルダ10に脱硫塔17を経ずに直接導入することもできる。 In addition, when the biogas produced by methane fermentation and the digestion liquid do not substantially contain H 2 S and desulfurization is not performed, the biogas 11 may be directly introduced into the gas holder 10 without passing through the desulfurization tower 17. it can.

上記発酵槽1は、図2に示す如く、通常、竪型とされている。発酵槽1からガスホルダ10へのバイオガスの排出導入を、気体輸送機を用いずに行うことが容易となるためである。   As shown in FIG. 2, the fermenter 1 is usually in a bowl shape. It is because it becomes easy to perform discharge introduction of the biogas from the fermenter 1 to the gas holder 10 without using a gas transporter.

発酵槽1の断面は、図例では円形であるが、楕円形、矩形、多角形等任意である。また径(一辺)と高さの比は、1:1〜1:5程度が好適である。発酵槽1の材質は、鋼板製、樹脂製、コンクリート製等任意である。   Although the cross section of the fermenter 1 is circular in the illustrated example, it is arbitrary such as an ellipse, a rectangle, or a polygon. The ratio of the diameter (one side) to the height is preferably about 1: 1 to 1: 5. The material of the fermenter 1 is arbitrary, such as the product made from a steel plate, resin, and concrete.

なお、発酵槽1は、図示しないが、保温乃至加温のために、断熱材で被覆されているとともに、加熱手段を外部又は内部に備えている。加熱手段としては、電気ヒータ、蒸気直噴、ジャケット構造(温水乃至蒸気)等を挙げることができる。そして、これらの加熱手段で、中温発酵の場合は、例えば、30〜40℃に、高温発酵の場合は、例えば、50〜60℃にそれぞれ、槽内温度を制御する。   In addition, although not shown in figure, the fermenter 1 is equipped with the heat | fever means outside or inside while being coat | covered with the heat insulating material for heat insulation thru | or warming. Examples of the heating means include an electric heater, steam direct injection, and a jacket structure (hot water or steam). And in these heating means, the temperature in a tank is controlled to 30-40 degreeC, for example in the case of medium temperature fermentation, and 50-60 degreeC in the case of high temperature fermentation, respectively.

発酵槽1は、縦型の回流仕切り壁2、該回流仕切り壁2の内側及び外側の少なくとも一方に充填される接触床4、及び、発酵槽1に供給される発酵原液を循環させる循環配管8を備えている。   The fermenter 1 includes a vertical circulation partition wall 2, a contact bed 4 filled in at least one of the inside and the outside of the circulation partition wall 2, and a circulation pipe 8 that circulates a fermentation stock solution supplied to the fermenter 1. It has.

図2に示す本実施形態では、回流仕切り壁が上昇流管(ドラフトチューブ)2で形成されている。そして、接触床64は、上昇流管2の外側に充填されて形成されている。該接触床64は、メタン菌を担持可能であれば、紐状、ハニカム状、板状等、特に限定されないが、特公平6-34997号公報で提案されている板状の接触床要素65で形成することが望ましい(図4参照)。   In the present embodiment shown in FIG. 2, the circulation partition wall is formed by an upflow pipe (draft tube) 2. The contact bed 64 is formed by filling the outside of the upflow pipe 2. The contact bed 64 is not particularly limited as long as it can support methane bacteria, and is not particularly limited, but is a plate-like contact bed element 65 proposed in Japanese Patent Publication No. 6-34997. It is desirable to form (refer FIG. 4).

図例では、接触床64は、複数個の板状の接触床要素65が、発酵槽1の内壁上部に取り付けられ、放射状に所定ピッチで切欠きを有する大・小リング体からなる一対の接触床枠1a、1bに、放射状に懸架保持されている。該接触床要素65は、図4に示す如く、複数本の扁平網管66の上・下端に、それぞれ、取り付け部材67および錘68が取り付けられ、扁平網管66の上・下端が閉じられた支持端、自由端とされたものである。扁平網管66は、図5に示す如く、網管を略完全に押し潰してなる形状である。   In the illustrated example, the contact floor 64 is a pair of contacts composed of large and small ring bodies in which a plurality of plate-like contact floor elements 65 are attached to the upper part of the inner wall of the fermenter 1 and have notches at predetermined pitches radially. Radially suspended and held on the floor frames 1a and 1b. As shown in FIG. 4, the contact floor element 65 has a supporting end in which an attachment member 67 and a weight 68 are attached to the upper and lower ends of a plurality of flat mesh tubes 66, respectively, and the upper and lower ends of the flat mesh tube 66 are closed. , The free end. As shown in FIG. 5, the flat net tube 66 has a shape formed by crushing the net tube almost completely.

接触床64の構成を、上記の如く、多数本の扁平網管を並列させて、搖動可能に少なくとも上端で連結した板状の接触床要素65で形成されているものとした場合は、菌増殖フロックが適度に剥離して生成フロックによる閉塞が発生せず、発酵原液との接触面積が安定し、この点からもメタン生成効率が良好となる。   When the structure of the contact floor 64 is formed of the plate-shaped contact floor element 65 in which a large number of flat net tubes are juxtaposed and connected at least at the upper end as described above, However, it is peeled off moderately, and no clogging due to the generated flocs occurs, and the contact area with the fermentation stock solution is stabilized. From this point, the methane production efficiency is improved.

ここでは、上昇流管2の内径を小さくして旋回流を発生し易くしてあるが、上昇流管2の内径を大きくして、上昇流管2の内側にも接触床を形成してもよい。この場合は、エアリフト作用が弱まり旋回流3の攪拌効果が低減するおそれがある。   Here, the inner diameter of the upflow pipe 2 is reduced to make it easy to generate a swirling flow. However, even if the inner diameter of the upflow pipe 2 is increased to form a contact bed inside the upflow pipe 2. Good. In this case, the air lift action is weakened and the stirring effect of the swirling flow 3 may be reduced.

第一循環配管8は、循環方向に、循環ポンプ6および第一吸引噴射器(エジェクタ)9を備えている。循環配管8の元部が発酵槽1の底部に形成された吸引口5と接続され、先部は噴射管14と接続されている。また、第一吸引噴射器9には、第二流体入口13がガスホルダ10とガス還流配管12を介して接続されている。なお、ガス流量は、ガスホルダ10からのガス還流配管12に取り付けられたガス流量計30Aと制御バルブ31とにより制御される。   The first circulation pipe 8 includes a circulation pump 6 and a first suction injector (ejector) 9 in the circulation direction. The base of the circulation pipe 8 is connected to the suction port 5 formed at the bottom of the fermenter 1, and the tip is connected to the injection pipe 14. A second fluid inlet 13 is connected to the first suction injector 9 through a gas holder 10 and a gas recirculation pipe 12. The gas flow rate is controlled by a gas flow meter 30 </ b> A and a control valve 31 attached to the gas recirculation pipe 12 from the gas holder 10.

また、噴射管14の噴射口14aが上昇流管2の下方開口(回流仕切り壁の内側の下方開口)に臨むように配されている。   Further, the injection port 14a of the injection pipe 14 is arranged so as to face the lower opening of the upflow pipe 2 (the lower opening inside the circulation partition wall).

そして、噴射口14aからバイオガスが吸引混合された被処理液7Aを噴射させることにより、上昇流管(回流仕切り壁)2の外側から内側に向かう旋回流3が発生する。噴流効果とエアリフトによる対流循環効果の双方の作用により、槽内被処理液7が、液滴状となって、接触床4に何度も繰り返し接触して、メタン細菌を活性化させるため、被処理液7Aの発酵処理が促進される。こうして、被処理液7A中の有機物は酸生成菌により低級脂肪酸に分解され、ガス生成菌(メタン菌)によってさらに分解され、CH4とCO2等のバイオガスが生成する。なお、有機物に含硫アミノ酸(システィン等)が含まれる場合、H2Sも生成する。このため、バイオガスおよび消化液(処理済み液)の双方に硫黄成分が含まれ脱硫処理をする必要がある。 And the swirling flow 3 which goes to the inner side from the outer side of the upflow pipe (circulation partition wall) 2 generate | occur | produces by injecting the to-be-processed liquid 7A in which biogas was sucked and mixed from the injection port 14a. Due to the action of both the jet effect and the convection circulation effect by the air lift, the treatment liquid 7 in the tank becomes droplets and repeatedly contacts the contact bed 4 many times to activate the methane bacteria. The fermentation treatment of the treatment liquid 7A is promoted. Thus, the organic matter in the liquid 7A to be treated is decomposed into lower fatty acids by acid producing bacteria and further decomposed by gas producing bacteria (methane bacteria) to produce biogas such as CH 4 and CO 2 . In the case where the organic matter contained sulfur-containing amino acids (cysteine, etc.), H 2 S is also produced. For this reason, sulfur components are contained in both biogas and digested liquid (treated liquid), and it is necessary to perform a desulfurization process.

なお、発酵槽1における循環流量は、発酵槽1の大きさにもよるが、0.2〜1回転/hできる流量が望ましい。したがって、大型装置の場合は、循環ポンプ6及び第一吸引噴射器9の台数を増やせばよい。また、循環ポンプ6の吐出量にバイオガスの吸引量が加算され循環混合流体は比重が小さくなり、循環噴射流の流速を速めるため、相対的に小出力の循環ポンプで旋回流を発生させることができる。   In addition, although the circulation flow rate in the fermenter 1 is based on the magnitude | size of the fermenter 1, the flow rate which can be 0.2-1 rotation / h is desirable. Therefore, in the case of a large apparatus, the number of circulation pumps 6 and first suction injectors 9 may be increased. In addition, the biogas suction amount is added to the discharge amount of the circulation pump 6 to reduce the specific gravity of the circulating mixed fluid and increase the flow rate of the circulating jet flow. Therefore, a swirling flow is generated by a relatively small output circulating pump. Can do.

上記のメタン発酵に伴い発生するスカム(浮遊フロック)及び消化液(発酵液)7Aは槽内旋回流3による噴流攪拌作用によって、スカムを含む消化液7Aが偏在滞留することなく、且つ、微細化され凝集フロックが生成することない。したがって、発酵槽1の底部に泥状物もほとんど発生しないとともに、越流口(移送口)41や消化液移送配管42に閉塞が発生することがない。   The scum (floating floc) and digestive liquid (fermented liquid) 7A generated by the above methane fermentation are refined without the scum-containing digested liquid 7A being unevenly retained by the jet stirring action of the swirling flow 3 in the tank. The aggregate floc is not generated. Therefore, almost no mud is generated at the bottom of the fermenter 1, and no clogging occurs in the overflow port (transfer port) 41 or the digestive fluid transfer pipe 42.

そして、発酵槽1で生成したバイオガスは発酵槽1のガス出口15から排出されて一次ガス配管16を介して生物脱硫塔17へ移送される。処理済み液(消化液)7Aも越流口41から消化液移送配管42を介して生物脱硫塔17へ移送される。ここで、発酵槽1から生物脱硫塔17のガス流入口18にバイオガスが差圧で流入する。また、発酵槽1から消化液7Aが生物脱硫塔17の液貯留部20に落差で流入する。   And the biogas produced | generated with the fermenter 1 is discharged | emitted from the gas outlet 15 of the fermenter 1, and is transferred to the biodesulfurization tower 17 via the primary gas piping 16. FIG. The treated liquid (digested liquid) 7A is also transferred from the overflow port 41 to the biological desulfurization tower 17 through the digested liquid transfer pipe. Here, biogas flows from the fermenter 1 into the gas inlet 18 of the biological desulfurization tower 17 with a differential pressure. Moreover, the digested liquid 7A flows from the fermenter 1 into the liquid storage section 20 of the biological desulfurization tower 17 by a drop.

上記生物脱硫塔17は、硫黄酸化細菌が担持される微生物担体19が充填されている。   The biological desulfurization tower 17 is packed with a microbial carrier 19 on which sulfur-oxidizing bacteria are supported.

この微生物担体19は、スポンジ体、ラシヒリング、脱臭用樹脂単体等任意である。特に、前述の特公平6-34997号公報で提案されている図5に示すような扁平網管66で形成した接触床要素65(図4参照)や、特許第3170636号公報で提案されている図6に示す扁平網状筒体70を無数、ラシヒリングと同様に充填させて接触床を形成することが望ましい。後者の場合は、旋回浮遊に際して扁平度が変化することにより、前者の場合は、扁平網管が独立搖動することにより、それぞれ微生物担体19に閉塞が発生し難くなるためである。   The microorganism carrier 19 is optional such as a sponge body, Raschig ring, or a deodorizing resin alone. In particular, a contact floor element 65 (see FIG. 4) formed by a flat net tube 66 as shown in FIG. 5 proposed in the above-mentioned Japanese Patent Publication No. 6-34997, or a diagram proposed in Japanese Patent No. 3170636. It is desirable to form a contact bed by filling countless flat mesh-like cylinders 70 shown in Fig. 6 in the same manner as Raschig rings. In the latter case, the flatness changes when swirling and floating, and in the former case, the flat mesh tube swings independently, which makes it difficult for the microorganism carrier 19 to be blocked.

そして、微生物担体19の下方に液貯留部20を、同上方にシャワーパイプ27をそれぞれ備えている。液貯留部20底部の吸引口23と、シャワーパイプ27の消化液吐出口23Aとの間には、循環ポンプ22を備えた第二循環配管24が配されている。該循環配管24は、循環方向に循環ポンプ22及び第二吸引噴射器(エジェクタ)を備えている。そして、前記微生物担体の直下高さ位置にガス導入口18が形成され、バイオガスを導入可能とされている。   And the liquid storage part 20 is provided below the microorganism carrier 19, and the shower pipe 27 is provided above the same, respectively. Between the suction port 23 at the bottom of the liquid reservoir 20 and the digestive fluid discharge port 23 </ b> A of the shower pipe 27, a second circulation pipe 24 including a circulation pump 22 is disposed. The circulation pipe 24 includes a circulation pump 22 and a second suction injector (ejector) in the circulation direction. A gas introduction port 18 is formed at a height position directly below the microbial carrier so that biogas can be introduced.

さらに、上記循環配管24の吐出側に、循環液(消化液)にエアを吸引混合する第二吸引噴射器25を備えている。なお、第二吸引噴射器25のエア吸引配管26は、エア流量計30Bと流量制御弁31を備え、吸引エア量を制御可能となっている。なお、硫黄酸化細菌が必要とする吸引エア量は、生成ガスの3〜5%である。   Furthermore, a second suction injector 25 for sucking and mixing air into the circulating fluid (digestion fluid) is provided on the discharge side of the circulation pipe 24. The air suction pipe 26 of the second suction injector 25 includes an air flow meter 30B and a flow rate control valve 31, and can control the amount of suction air. Note that the amount of suction air required by the sulfur-oxidizing bacteria is 3 to 5% of the generated gas.

そして、循環ポンプ22を稼働させると、空気が第二吸引噴射器25で吸引混合された循環液(消化液)が、シャワーパイプ27から液滴状に噴射される。この結果、微生物担持体19の下側に発酵槽1から流入したバイオガス11が、消化液と、微生物担持体19の部位で向流接触する。   When the circulation pump 22 is operated, the circulating fluid (digested fluid) in which air is sucked and mixed by the second suction injector 25 is ejected from the shower pipe 27 in the form of droplets. As a result, the biogas 11 that has flowed into the lower side of the microorganism carrier 19 from the fermenter 1 comes into countercurrent contact with the digested liquid at the site of the microorganism carrier 19.

すると、微生物担体19に担持された硫黄酸化細菌が噴射液中の空気で酸化されて活性化して、H2Sが効率よく酸化されて硫酸(H2SO4)となる。こうして、発酵槽1からのバイオガス及び消化液が脱硫される。 Then, the sulfur-oxidizing bacteria carried on the microorganism carrier 19 are oxidized and activated by the air in the spray solution, and H 2 S is efficiently oxidized to sulfuric acid (H 2 SO 4 ). In this way, the biogas and digestive fluid from the fermenter 1 are desulfurized.

ここで、消化液も脱硫させるのは、後述の如く、H2Sは水1容に対して2.3容であり、消化液にもH2Sが溶けていることが考えられるためである。消化液中のH2Sが実質的に含まれない場合は、循環液は、市水(水道水)を直接使用したり、後述の如く、消化液を生物処理槽及び沈殿槽等で処理したものを、回収再使用したりしてもよい。後述の浄化処理液を還流使用してもよい。後者の場合は、廃水量を低減できて望ましい。 Here, the reason why the digestive liquid is also desulfurized is that, as will be described later, H 2 S is 2.3 volumes per volume of water, and it is considered that H 2 S is also dissolved in the digestive liquid. When H 2 S in the digestive liquid is not substantially contained, the circulating liquid directly uses city water (tap water), or the digested liquid is processed in a biological treatment tank, a sedimentation tank or the like as described later. Things may be recovered and reused. A purification treatment liquid described later may be used for reflux. The latter case is desirable because the amount of waste water can be reduced.

また、硫化水素及び炭酸ガスの水に対する溶解度は、それぞれ水1容に対して2.3容(25℃)、約1容(常温常圧)である(大木他3名著「化学辞典」東京化学同人、1994年刊参照)。これに対して、メタンは水に殆ど溶けない。このため、バイオガスを水と上記向流接触させることにより、硫化水素は水に吸収されながら硫黄酸化細菌により酸化されるとともに、炭酸ガスも溶解除去される。その結果、バイオガスのメタン比率が増大して、バイオガスの品質が向上することが期待できる。   The solubility of hydrogen sulfide and carbon dioxide in water is 2.3 volumes (25 ° C) and about 1 volume (room temperature and normal pressure) for 1 volume of water, respectively (Oki et al., “Chemical Dictionary”, Tokyo Chemical Dojin, (See 1994). In contrast, methane is almost insoluble in water. For this reason, by bringing biogas into counter-current contact with water, hydrogen sulfide is oxidized by sulfur-oxidizing bacteria while being absorbed in water, and carbon dioxide gas is dissolved and removed. As a result, it can be expected that the methane ratio of biogas increases and the quality of biogas is improved.

さらに、メタン発酵に際して、含水有機廃棄物が家畜糞尿の如くタンパク質を多く含む場合、すなわちC/N比が低い場合、発酵原液もC/N比が低すぎて(C/N比=10未満)、有機酸アンモニウムが生成し、分解有機酸のCH4とCO2への分解が阻害される。このため、バイオガス中及び消化液中のアンモニアは除去することが望ましい。本実施形態では、アンモニアは、生物脱硫塔17へ導入されて、生物脱硫塔17で生成する硫酸と反応して中性の安定な硫酸アンモニウムとなる。なお、アンモニアは硫化水素と反応して、水に易容でアルカリ性を示す不安定な硫化アンモニウム(NH4HS・NH3)も生成するが、硫化アンモニウムは生物脱硫塔17へ導入されて、硫酸と反応して同様に硫酸アンモニウムとなる。このため、アンモニアがメタン発酵および後述の生物処理槽43における生物浄化を阻害することが殆どない。 Furthermore, when hydrated organic waste contains a large amount of protein such as livestock manure during methane fermentation, that is, when the C / N ratio is low, the fermentation stock solution is too low (C / N ratio = less than 10). An organic acid ammonium is formed, and decomposition of the decomposed organic acid into CH 4 and CO 2 is inhibited. For this reason, it is desirable to remove ammonia in biogas and digestive fluid. In the present embodiment, ammonia is introduced into the biological desulfurization tower 17 and reacts with sulfuric acid generated in the biological desulfurization tower 17 to become neutral stable ammonium sulfate. Ammonia reacts with hydrogen sulfide to produce unstable ammonium sulfide (NH 4 HS · NH 3 ) that is easily tolerated and alkaline in water, but ammonium sulfide is introduced into the biological desulfurization tower 17 to produce sulfuric acid. To ammonium sulfate as well. For this reason, ammonia hardly inhibits methane fermentation and biological purification in the biological treatment tank 43 described later.

脱硫されたバイオガス11は、ガスホルダ10に導入される。有水式ガスホルダ10の内圧は、ゲージ圧で2〜3kPa(200〜300mmAq)程度とする。また、ガスホルダ10に貯留されたバイオガスは回収ガス59とし、精製して都市ガス等に販売する。該精製法としては、慣用の膜分離法、吸着法、薬液洗浄法、高圧洗浄法等を挙げることができる。   The desulfurized biogas 11 is introduced into the gas holder 10. The internal pressure of the water-containing gas holder 10 is about 2 to 3 kPa (200 to 300 mmAq) in terms of gauge pressure. Moreover, the biogas stored in the gas holder 10 is used as the recovered gas 59, purified and sold to city gas or the like. Examples of the purification method include a conventional membrane separation method, an adsorption method, a chemical solution washing method, and a high-pressure washing method.

他方、脱硫された消化液は、生物脱硫塔17の越流口21から脱硫液移送配管42Aを経て好気生物処理槽43の底部側の液流入口44へ導入される。   On the other hand, the desulfurized digestive liquid is introduced from the overflow port 21 of the biological desulfurization tower 17 to the liquid inlet 44 on the bottom side of the aerobic biological treatment tank 43 through the desulfurization liquid transfer pipe 42A.

生物処理槽43は、旋回流45を発生させるために縦邪魔板(バッフル)46を備え、その一方に散気管(曝気管)47が配され、他方に酸化細菌が担持された接触床64が配されている。散気管47からは送風機48により空気を吹き込み曝気(エアレーション)により接触酸化処理を行う。ここで、接触床64は、発酵槽1で用いたものを使用可能である。   The biological treatment tank 43 includes a vertical baffle plate (baffle) 46 for generating a swirl flow 45, and an aeration tube (aeration tube) 47 is arranged on one side thereof, and a contact bed 64 carrying oxidized bacteria on the other side. It is arranged. Air is blown from the diffuser tube 47 by a blower 48, and contact oxidation is performed by aeration. Here, as the contact floor 64, the one used in the fermenter 1 can be used.

そして、好気生物処理槽43の上部に設けられた越流口49と、沈殿槽51のセンターウェル52との間に液落下配管50が設けられて、好気生物処理槽43からフロック含有処理済み液が沈殿槽51へ落差流入するようになっている。なお、好気生物処理槽43の生物酸化(活性汚泥)処理により発生するフロックは、本実施形態では、凝集沈殿する前に越流口49から沈殿槽51へ一次清浄液として移送されるため、好気生物処理槽43の底部にフロックが沈殿することはない。   A liquid dropping pipe 50 is provided between the overflow port 49 provided in the upper part of the aerobic organism treatment tank 43 and the center well 52 of the settling tank 51, and the floc-containing treatment is performed from the aerobic organism treatment tank 43. The spent liquid flows into the settling tank 51 to drop. In this embodiment, flocs generated by biological oxidation (activated sludge) treatment in the aerobic biological treatment tank 43 are transferred as a primary cleaning liquid from the overflow port 49 to the precipitation tank 51 before being coagulated and settled. Flock does not settle at the bottom of the aerobic organism treatment tank 43.

沈殿槽51は、上側中央部に筒状のセンターウェル52を備えるとともに、該センターウェル52と槽内壁との間にドーナツ状の越流口54を備えている。そして、該越流口54からの清浄化処理液は排水配管55から廃水溝58に排水されるようになっている。   The sedimentation tank 51 is provided with a cylindrical center well 52 in the upper central portion, and a donut-shaped overflow port 54 between the center well 52 and the tank inner wall. The cleaning solution from the overflow port 54 is drained from the drain pipe 55 to the waste water groove 58.

図3に発酵槽の他の態様を示す。   FIG. 3 shows another embodiment of the fermenter.

この発酵槽1Aは、槽の内周壁の内側を複数枚(図例では4枚)の邪魔板(回流仕切壁)60で四角断面の内側と同じく4個の割円断面からなる外側とに区画されている。該四角断面の内側に接触床4が充填され、前記割円断面の各下方開口に噴射管14を噴射口が臨むように配されている。そして、循環配管8の循環ポンプ6を稼働させて、発酵槽1A内の被処理液7Aを循環させるに際して、第一吸引噴射器9から、バイオガスが吸引混合された被処理液7Aを、前記割円断面の下方開口に噴射管14から噴射させるものである。他の構成は、図2と同様であるので、同一図符号を付してそれらの説明を省略する。   This fermenter 1A is divided into a plurality of (four in the illustrated example) baffle plates (circulation partition walls) 60 on the inner side of the inner peripheral wall of the tank and an outer side made of four split circular sections as well as the inner side of the square section. Has been. The inside of the square cross section is filled with the contact floor 4, and the injection pipe 14 is arranged so that the injection port faces each lower opening of the split circular section. Then, when the circulation pump 6 of the circulation pipe 8 is operated to circulate the treatment liquid 7A in the fermentation tank 1A, the treatment liquid 7A in which biogas is sucked and mixed from the first suction injector 9 The fuel is injected from the injection pipe 14 into the lower opening of the split circular section. Since other configurations are the same as those in FIG. 2, the same reference numerals are given and description thereof is omitted.

この発酵槽1Aは、前述の発酵槽1と対比すると、下記長所・短所を有する。   This fermenter 1A has the following advantages and disadvantages as compared with the fermenter 1 described above.

1)長所:多くの旋回流を得やすくなる。     1) Advantage: It becomes easy to obtain many swirling flows.

2)短所:邪魔板のコストが嵩む。     2) Cons: The cost of baffle plates increases.

次に、上記実施形態における作用・効果の概要をまとめると下記の如くになる。   Next, the outline of the operation and effect in the above embodiment is summarized as follows.

従来のメタン発酵装置の問題点は、メタン発酵槽内、送出し口及び移送配管等での閉塞が発生し易いことにあり、結果的にバイオガス生成効率も低い。本発明のメタン発酵装置は、これらの問題点を解決できる。   The problem with the conventional methane fermentation apparatus is that clogging is likely to occur in the methane fermentation tank, the delivery port, the transfer piping, etc., resulting in low biogas production efficiency. The methane fermentation apparatus of the present invention can solve these problems.

本実施形態のメタン発酵装置は、循環ポンプによる発酵原液を循環噴射させると同時に、該循環流にバイオガスを吸引混合することにより、発酵原液中の懸濁固形分が微細化されるとともに、フロックの発生も抑制される。さらに、発酵原液をバイオガスと混合噴射させることにより発酵原液が液滴状となってメタン菌が活性化してメタンの生成効率が良好となる。   The methane fermentation apparatus of the present embodiment circulates and injects a fermentation stock solution by a circulation pump, and at the same time sucks and mixes biogas into the circulation flow, thereby refining suspended solids in the fermentation stock solution and Is also suppressed. Furthermore, by mixing and injecting the fermentation stock solution with biogas, the fermentation stock solution becomes droplets, methane bacteria are activated, and methane production efficiency is improved.

また、循環水量も多いため、どの接触床にも循環水が均一に行きわたる。このため、メタン菌の着床も均一で、バイオガスに全ての接触床が寄与でき、発酵効率が向上する。   In addition, since the amount of circulating water is large, the circulating water is uniformly distributed to any contact bed. For this reason, the bed of methane bacteria is uniform, all the contact beds can contribute to the biogas, and the fermentation efficiency is improved.

さらに、生物脱硫塔においても、H2Sを含有する消化液を、循環ポンプで循環させて吸引噴射器を作動させることにより、エアが吸引混合されて酸素が略飽和状態の循環液が、噴射口から微生物担体に噴射される。このため、微生物担体19に着床した硫黄酸化細菌で脱硫が効率よく行われる。 Further, in the biological desulfurization tower, the digestion liquid containing H 2 S is circulated by a circulation pump and the suction injector is operated, whereby the circulating liquid in which air is sucked and mixed and oxygen is substantially saturated is injected. Sprayed from the mouth onto the microbial carrier. For this reason, desulfurization is efficiently performed by the sulfur-oxidizing bacteria that have been deposited on the microorganism carrier 19.

本発明における生物脱硫塔は、乾式脱硫の脱硫剤である酸化鉄等を使用しないため、定期的に脱硫剤を交換乃至補充する必要がない。生物脱硫では、H2Sの酸化には、空気中の酸素のみを利用するため、安価に脱硫を継続できる。 Since the biological desulfurization tower in the present invention does not use iron oxide or the like, which is a desulfurization agent for dry desulfurization, it is not necessary to periodically replace or supplement the desulfurization agent. In biological desulfurization, only oxygen in the air is used for the oxidation of H 2 S, so desulfurization can be continued at low cost.

メタン発酵により生成した消化液は、適宜、生物脱硫塔を経て好気性の生物処理槽43にて、沈殿槽51を経て放流可能に十分な水質(例えば、水質汚濁法排水基準日間平均COD120mg/Lより格段に低値;表2参照)まで浄化できる。   The digested liquid produced by methane fermentation is adequately water quality (for example, average COD of 120 mg / L for water pollution method effluent standard day) that can be discharged through the sedimentation tank 51 in the aerobic biological treatment tank 43 through the biological desulfurization tower. It can be purified to a much lower value (see Table 2).

なお、含水有機廃棄物がアミノ酸を含む場合、メタン発酵により生成するアンモニアが発生してpHが8以上になると、有機酸アンモニウムが蓄積し、低級脂肪酸のCH4およびCO2への分解が阻害される。 In addition, when the water-containing organic waste contains amino acids, when ammonia generated by methane fermentation is generated and the pH is 8 or more, organic acid ammonium accumulates, and decomposition of lower fatty acids into CH 4 and CO 2 is inhibited. The

このため、上記実施形態で、生物脱硫塔の酸化反応で生成する硫酸と中和してアンモニアを除去しているが、下記方法でも可能である。   For this reason, in the said embodiment, although neutralized with the sulfuric acid produced | generated by the oxidation reaction of a biological desulfurization tower, ammonia is removed, the following method is also possible.

図示は省略するが、特許第2564131号で提案されている下記構成の表面曝気浸漬炉床水処理装置を用いて、消化液中のアンモニアを、曝気水車にて蒸発揮散処理させてもよい。   Although illustration is omitted, the ammonia in the digested liquid may be vaporized and diffused in an aeration turbine using the surface aeration immersion hearth water treatment device proposed in Japanese Patent No. 2564131 having the following configuration.

「生物処理法の一種である固定接触法における接触酸化法に使用される表面曝気浸漬濾床水処理装置において、処理槽の上部に水車を水平に回転可能に固定し、水車の水の掻き出し部材のすぐ下部より前記処理槽の下部に向けて、前記処理槽の幅全域にわたり下部が開放されている回流仕切板を設けて、前記水車の水掻き出し部材の一部が水没する位置に水位を調節し、前記水車の回転により、前記回流仕切板を境にして回流を発生させるように構成するとともに、前記回流仕切板の少なくとも一側に浸漬濾床が配され、該浸漬濾床が扁平網管を主要素とする板状濾床要素を複数枚、並立させて形成されていることを特徴とする。」   "In a surface aeration immersion filter bed water treatment device used in the contact oxidation method in the fixed contact method, which is a kind of biological treatment method, the water wheel is fixed to the upper part of the treatment tank so that it can rotate horizontally, and the water scraping member of the water wheel From the lower part of the water tank to the lower part of the treatment tank, a circulation partition plate having a lower part opened across the entire width of the treatment tank is provided, and the water level is adjusted to a position where a part of the water scraping member of the water wheel is submerged. In addition, the rotation of the water turbine causes the circulation to occur at the boundary of the circulation partition plate, and an immersion filter bed is disposed on at least one side of the circulation partition plate, and the immersion filter bed has a flat mesh tube. It is characterized by being formed by arranging a plurality of plate-shaped filter bed elements as main elements side by side. "

また、図1における好気生物処理槽においても、送風機と散気管を用いて曝気する方法であるが、この曝気に際してアンモニアを揮散除去することもできる。好気微生物にとって、アンモニアは阻害要因となるが、生物処理槽を複数槽設け、第1段目にて、曝気処理すれば、アンモニアを揮散除去できる。   Further, in the aerobic biological treatment tank in FIG. 1, the aeration method is performed using a blower and an air diffuser, but ammonia can be volatilized and removed during the aeration. For aerobic microorganisms, ammonia is an inhibiting factor, but if a plurality of biological treatment tanks are provided and aeration treatment is performed in the first stage, ammonia can be volatilized and removed.

生物処理槽に回流接触床を充填することにより、生物処理槽(曝気槽)における活性汚泥量(MLSS:Mixed Liquor Suspended Solid)が大幅に増大することにより、放流可能な処理水が得られる。   By filling the biological treatment tank with the circulating contact bed, the amount of activated sludge (MLSS: Mixed Liquor Suspended Solid) in the biological treatment tank (aeration tank) is greatly increased, so that treated water that can be discharged can be obtained.

含水有機廃棄物の種類によって多少の変化はあるが、中温発酵処理(37〜38℃)を、メタン発酵槽の滞留時間10〜15日程度で、400〜1200L/kg-vs(有機物原料1kg当たりのガス発生量)のバイオガスが得られる。そのときの、メタンガスと炭酸ガスの比は、前者/後者=54/46〜69/31の範囲内である。そして、得られたバイオガスの低発熱量は、21000〜23000kJ/m3である。 Although there are some changes depending on the type of water-containing organic waste, medium-temperature fermentation treatment (37-38 ° C) is performed at 400-1200 L / kg-vs (per 1 kg of organic raw materials) with a residence time of about 10-15 days in the methane fermenter. The amount of generated gas) is obtained. At that time, the ratio of methane gas to carbon dioxide gas is within the range of the former / the latter = 54/46 to 69/31. And the low calorific value of the obtained biogas is 21000-23000 kJ / m < 3 >.

それぞれ下記各仕様の装置(槽・塔)を用いて、各有機廃棄物の処理を行った。   Each organic waste was treated using an apparatus (tank / tower) with the following specifications.

<メタン発酵槽1(1基)>
・槽寸法・・・800φ×1400H
・槽容量・・・500L
・接触床容量・・・300L
・循環ポンプ(1台)・・・32A×40L/分×10mH×0.25kW
・吸引噴射器(2基)・・・32A×32A
・加温ヒータ(1基)・・・1kw
<Methane fermentation tank 1 (1 unit)>
-Tank dimensions: 800φ x 1400H
-Tank capacity: 500L
・ Contact floor capacity: 300L
・ Circulating pump (1 unit) ・ ・ ・ 32A × 40L / min × 10mH × 0.25kW
・ Suction injector (2 units) ・ ・ ・ 32A × 32A
・ Heating heater (1 unit) ... 1kw

<生物脱硫塔17(1基)>
・塔寸法・・・350φ×1600H
・微生物担体容量・・・350φ×900H=85L
・水槽容量・・・350φ×400H=38L
・循環ポンプ(1台)・・・25A×30L/分×10mH×0.2kW
・吸引噴射器(1基)・・・25A×25A
<Biodesulfurization tower 17 (1 unit)>
・ Tower dimensions: 350φ x 1600H
・ Microbe carrier capacity: 350φ x 900H = 85L
・ Water tank capacity: 350φ × 400H = 38L
・ Circulating pump (1 unit) ... 25A x 30L / min x 10mH x 0.2kW
・ Suction injector (1 unit) ... 25A × 25A

<好気生物処理槽43(2槽式1基)>
・槽寸法・・・W800×L1200×H1200
・槽容量・・・400L×2槽=800L
・接触床容量・・・250L×2槽=500L
・送風機・・・25A×0.2m3/分×0.1kgf/cm2×0.4kW
<Aerobic organism treatment tank 43 (two tank type one)>
-Tank dimensions: W800 x L1200 x H1200
-Tank capacity: 400L x 2 tanks = 800L
・ Contact floor capacity: 250L x 2 tanks = 500L
・ Blower ・ ・ ・ 25A × 0.2m 3 /min×0.1kgf/cm 2 × 0.4kW

<沈殿槽51(1基)>
・槽寸法・・・800φ×1200H
<Precipitation tank 51 (1 unit)>
-Tank dimensions ... 800φ × 1200H

<有水式ガスホルダ10(1基)>
・有水タンク寸法・・・600φ×600H=140L
・ガスホルダ寸法・・・450φ×800H=125L
・ガスゲージ圧・・・2〜3kPa(200〜300mmAq)
<Water-containing gas holder 10 (1 unit)>
・ Water tank dimensions: 600φ x 600H = 140L
・ Gas holder dimensions: 450φ × 800H = 125L
・ Gas gauge pressure: 2 to 3 kPa (200 to 300 mmAq)

<中間粉砕機(一軸回転刃式破砕機)33(1基)>
・シリンダ寸法・・・200φ×L300
・動力・・・2.2kW
<Intermediate crusher (single-axis rotary blade crusher) 33 (1 unit)>
・ Cylinder dimensions: 200φ x L300
・ Power: 2.2kW

<原液貯槽35(1基)>
・槽寸法・・・W500×L800×H500=200L
・供給ポンプ(1台)・・・25A×30L/分×10mH×0.2kW
<Stock solution storage tank 35 (1 unit)>
-Tank dimensions: W500 x L800 x H500 = 200L
・ Supply pump (1 unit) ・ ・ ・ 25A × 30L / min × 10mH × 0.2kW

そして、下記特性の各食堂生ごみを粉砕して、又は豚糞尿はそのまま、それぞれ発酵原液とした。これらの発酵原液を、表1に示す条件で、メタン発酵(中温発酵:約35℃)及び一連の後処理を行った。なお「COD(Chemical Oxygen Demand)」は、重クロム酸で酸化するCR法に準じて測定した。   And each dining room garbage of the following characteristic was grind | pulverized, or each pig manure was made into the fermentation undiluted | stock solution as it was. These fermentation stock solutions were subjected to methane fermentation (medium temperature fermentation: about 35 ° C.) and a series of post-treatments under the conditions shown in Table 1. “COD (Chemical Oxygen Demand)” was measured according to the CR method of oxidizing with dichromic acid.

Figure 0006396676
Figure 0006396676

<食堂生ごみ>
・含水率:85%、COD:200g/kg、粉砕大きさ:約2mm。
<Dining room garbage>
-Moisture content: 85%, COD: 200 g / kg, grinding size: about 2 mm.

<豚糞尿>
・含水率:90%、COD:90g/kg、粉砕せずにそのまま。
<Pig manure>
-Moisture content: 90%, COD: 90 g / kg, without pulverization.

そして、バイオガス生成量・組成および消化液・浄化処理水の各CODについて計測した結果を、表2に示す。該表2に示す結果から、良好な組成のバイオガスが得られるとともに、河川に放流可能な十分に低いCODを有する浄化処理水が得られることが確認できた。   Table 2 shows the measurement results for each COD of biogas production amount / composition and digestive fluid / purified water. From the results shown in Table 2, it was confirmed that biogas having a good composition was obtained, and purified water having a sufficiently low COD that could be discharged into a river was obtained.

Figure 0006396676
Figure 0006396676

1・・・(メタン)発酵槽
6・・・メタン発酵槽の循環ポンプ
7・・・発酵原液(被処理液)
7A・・・消化液(処理済み液)
9・・・第一吸引噴射器
10・・・有水式ガスホルダ(ガスホルダ)
17・・・生物脱硫塔
19・・・微生物担体
22・・・脱硫塔の循環ポンプ
25・・・第二吸引噴射器
27・・・シャワーパイプ
32・・・(含水)有機廃棄物
33・・・中間粉砕機
35・・・原液貯槽
43・・・好気生物処理槽
51・・・沈殿槽
64・・・接触床
DESCRIPTION OF SYMBOLS 1 ... (Methane) fermenter 6 ... Circulation pump 7 of methane fermenter ... Fermentation undiluted | stock solution (processed liquid)
7A ... Digestive liquid (processed liquid)
9 ... First suction injector 10 ... Water-containing gas holder (gas holder)
17 ... Biological desulfurization tower 19 ... Microorganism carrier 22 ... Desulfurization tower circulation pump 25 ... Second suction injector 27 ... Shower pipe 32 ... (water-containing) Organic waste 33 ... Intermediate crusher 35 ... Stock solution storage tank 43 ... Aerobic treatment tank 51 ... Precipitation tank 64 ... Contact bed

Claims (5)

含水有機廃棄物からの発酵原液を嫌気発酵させるメタン発酵槽と、脱硫を行う脱硫塔と、前記メタン発酵槽からのバイオガスを前記脱硫塔で脱硫を行い又は脱硫を行わずに貯留するガスホルダとを備えるメタン発酵装置であって
前記メタン発酵槽が、
縦型の回流仕切り壁、該回流仕切り壁の内側及び外側の少なくとも一方に充填される接触床及び被処理液を循環させる循環配管を備え、
該循環配管は、循環方向に循環ポンプ及び吸引噴射器を備え、
前記吸引噴射器は、前記ガスホルダとバイオガスを吸引可能に接続され、さらに、
前記循環配管の先端側に噴射管が接続されるとともに、該噴射管の噴射口が前記回流仕切り壁の内側又は外側の下方開口に臨むように配されて、
該噴射口からバイオガスが吸引混合された前記被処理液を噴射させることにより、前記回流仕切り壁を挟んで旋回流が発生するようにしたものであ
前記脱硫塔が、
塔中間高さ位置に微生物担体が充填されるとともに、該微生物担体の下方に液貯留部を、同上方にシャワーパイプを備え、また、
前記脱硫塔の液貯留部に元部が接続され、前記シャワーパイプに先部が接続される液循環配管を備え、
該液循環配管は、循環方向に循環ポンプ及び吸引噴射器を備え、
前記微生物担体の直下高さ位置にバイオガスを導入可能とされ、
前記微生物担体が、水圧により扁平度を変化させ得る撓み性を有する合成樹脂製の扁平網状筒体の充填体で形成されている、
ことを特徴とするメタン発酵装置。
A methane fermentation tank for anaerobic fermentation fermentation stock solution from water-containing organic waste, a desulfurization tower for performing desulfurization, and a gas holder for storing biogas from the methane fermentation tank without carried or desulfurization desulfurization in the desulfurization tower a methane fermentation apparatus Ru provided with,
The methane fermenter is
A vertical circulation partition wall, a contact bed filled in at least one of the inner and outer sides of the circulation partition wall, and a circulation pipe for circulating the liquid to be treated;
The circulation pipe includes a circulation pump and a suction injector in the circulation direction,
The suction injector is connected to the gas holder so as to be able to suck biogas, and
An injection pipe is connected to the front end side of the circulation pipe, and an injection port of the injection pipe is arranged so as to face a lower opening inside or outside the circulation partition wall,
By injecting the liquid to be treated biogas is aspirated mixture from the injection port state, and are not swirling flow across the swirling flow partition wall has to be generated,
The desulfurization tower is
A microbial carrier is filled at the middle height of the tower, a liquid reservoir is provided below the microbial carrier, and a shower pipe is provided above the microbial carrier.
A liquid recirculation pipe connected to the liquid storage part of the desulfurization tower and connected to the shower pipe at the front part;
The liquid circulation pipe includes a circulation pump and a suction injector in the circulation direction,
Biogas can be introduced at a height position directly below the microbial carrier,
The microbial carrier is formed of a filling material of a flat reticular cylindrical body made of a synthetic resin having flexibility that can change flatness by water pressure.
A methane fermentation apparatus characterized by that.
前記接触床が、多数本の扁平網管を並列させて、搖動可能に少なくとも上端で連結した板状接触床要素で形成されていることを特徴とする請求項1記載のメタン発酵装置。   2. The methane fermentation apparatus according to claim 1, wherein the contact bed is formed of a plate-like contact bed element in which a large number of flat net tubes are juxtaposed and connected at least at the upper end so as to be capable of swinging. 前記微生物担体が、多数本の扁平網管を並列させて、搖動可能に少なくとも上端で連結した板状接触床要素の充填体で形成されていることを特徴とする請求項1又は2に記載のメタン発酵装置。 3. The methane according to claim 1 , wherein the microbial carrier is formed of a packed body of plate-like contact bed elements in which a large number of flat mesh tubes are juxtaposed and connected at least at the upper end so as to be capable of being oscillated. Fermenter. 前記脱硫塔が、さらに、液貯留部にメタン発酵槽からの消化液を導入可能とされている、ものであることを特徴とする請求項1〜3のいずれかに記載のメタン発酵装置。 The desulphurization tower according to any one of claims 1 to 3, wherein the desulfurization tower is further capable of introducing a digested liquid from a methane fermentation tank into a liquid storage section. 含水有機廃棄物を、液状若しくはスラリーの場合はそのまま、又は、固状の場合若しくはスラリーを形成しない固状を含む場合は中間粉砕機で粉砕して発酵原液として、メタン発酵によりバイオガスを生成させる含水有機廃棄物の処理方法であって、
前記メタン発酵を、請求項に記載のメタン発酵装置を用いて行うとともに、前記脱硫塔から発生する脱硫済みの消化液を好気生物処理槽に導入し、さらに沈殿槽を経て、河川に放流可能な汚染濃度に浄化処理することを、特徴とする含水有機廃棄物の処理方法。
In the case of hydrated organic waste, if it is liquid or slurry, or if it is solid or contains a solid that does not form a slurry, it is crushed with an intermediate pulverizer to produce biogas by methane fermentation as a fermentation stock solution A method for treating hydrous organic waste,
While performing the said methane fermentation using the methane fermentation apparatus of Claim 4 , it introduce | transduces into the aerobic biological treatment tank the desulfurized digested liquid which generate | occur | produces from the said desulfurization tower, and also discharge | releases to a river through a sedimentation tank A method for treating hydrous organic waste, characterized by purifying it to a possible contamination concentration.
JP2014100902A 2014-05-14 2014-05-14 Methane fermentation apparatus and treatment method of water-containing organic waste Active JP6396676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100902A JP6396676B2 (en) 2014-05-14 2014-05-14 Methane fermentation apparatus and treatment method of water-containing organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100902A JP6396676B2 (en) 2014-05-14 2014-05-14 Methane fermentation apparatus and treatment method of water-containing organic waste

Publications (2)

Publication Number Publication Date
JP2015217322A JP2015217322A (en) 2015-12-07
JP6396676B2 true JP6396676B2 (en) 2018-09-26

Family

ID=54777215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100902A Active JP6396676B2 (en) 2014-05-14 2014-05-14 Methane fermentation apparatus and treatment method of water-containing organic waste

Country Status (1)

Country Link
JP (1) JP6396676B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209614A (en) * 2016-05-24 2017-11-30 日本プライスマネジメント株式会社 Methane fermentation apparatus
JP6122232B1 (en) * 2016-05-27 2017-04-26 鹿島建設株式会社 Methane fermentation treatment system and methane fermentation treatment method
KR101939751B1 (en) * 2016-11-18 2019-01-18 엔텍스 주식회사 Compression rotary high-concentration concentrator and concentration method
KR101751207B1 (en) * 2016-11-29 2017-06-28 (주)제이에스엔 Double stage wet scrubbing de-sulfurization apparatus and process using liquid fertilizer at bio gas plant
JP7030582B2 (en) * 2017-03-21 2022-03-07 大阪瓦斯株式会社 Desulfurization equipment and biogas desulfurization method
CN110240331B (en) * 2019-06-12 2020-01-07 山东民和生物科技股份有限公司 Method and system for performing biogas desulfurization by using electrolysis and air flotation to treat biogas slurry
TWI726350B (en) * 2019-07-08 2021-05-01 吾邦土智慧生活股份有限公司 Fertilizer production device
CN112209562A (en) * 2020-09-05 2021-01-12 东营市延旭环保科技有限公司 Large-scale biogas engineering system and process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178394A (en) * 1989-12-07 1991-08-02 Katsumi Iida Anaerobic filter bed digestion apparatus
JP3780406B2 (en) * 2001-01-30 2006-05-31 日立造船株式会社 Methane fermentation equipment
JP2004008078A (en) * 2002-06-06 2004-01-15 Fuji Electric Holdings Co Ltd Method for measuring number of bacteria in methane fermentation tank and method for methane fermentation using the same
JP3909329B2 (en) * 2004-02-12 2007-04-25 住友重機械工業株式会社 Wastewater treatment equipment
JP2012012421A (en) * 2010-06-29 2012-01-19 Hitachi Engineering & Services Co Ltd Generation system of biogas, and biological desulfurization method of biogas

Also Published As

Publication number Publication date
JP2015217322A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6396676B2 (en) Methane fermentation apparatus and treatment method of water-containing organic waste
CN104649524B (en) A kind of livestock and poultry cultivation sewage water treatment method
CN100494103C (en) Integrated ozone and aeration biological filtering pool water treatment apparatus and method
CN103435224A (en) Waste water treatment technology for livestock breeding
CN102145965A (en) Textile dyeing wastewater advanced treatment recycling technology
CN101323494A (en) Carwash circulating water processing system
CN101323493A (en) Waste water treatment apparatus based on ozone oxidation and aerating biological filter
CN201240972Y (en) Waste water advanced treatment apparatus combining ozone oxidation and downflow type aerating biological filter pool
CN207608464U (en) The device of inversion A AO+MBR integrated sewage disposals
CN106698856A (en) Comprehensive treatment system for fermented antibiotic pharmaceutical wastewater
CN102161554A (en) Anaerobic hydrolysis-acidification and anoxic-aerobic process-sequencing batch reactor (AO-SBR) integrated sewage treatment reaction tank
CN108217880A (en) A kind of sewage disposal flocculation plant based on unordered stirring technique
CN106007228A (en) Integrated sewage treatment equipment based on ABR
CN108862828A (en) A kind of municipal sewage denitrogenation dephosphorizing treatment process
CN102229447A (en) Anaerobic reactor for treating waste water containing emulsified liquid
JP5064338B2 (en) Wastewater treatment equipment
CN206345748U (en) The processing system of the reverse osmosis concentrated Organic substance in water of petrifaction sewage
CN205917142U (en) Integration small town domestic sewage treatment equipment
CN208762361U (en) A kind of sewage treatment unit
CN104787974A (en) Phosphorus removal biological aerated filter-catalytic ozonation coupling device and use method thereof
CN202054668U (en) Anaerobic reactor for treating wastewater containing emulsion
CN101591086A (en) Hydrolysis and high efficient aeration oxidation ditch sewage treatment system
CN211394152U (en) Reclaimed water treatment device
CN212222717U (en) Glycerol-containing wastewater treatment integrated device
CN209619118U (en) A kind of domestic sewage purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6396676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250