JP6393732B2 - Solar power generation monitoring device and solar power generation monitoring method - Google Patents

Solar power generation monitoring device and solar power generation monitoring method Download PDF

Info

Publication number
JP6393732B2
JP6393732B2 JP2016225865A JP2016225865A JP6393732B2 JP 6393732 B2 JP6393732 B2 JP 6393732B2 JP 2016225865 A JP2016225865 A JP 2016225865A JP 2016225865 A JP2016225865 A JP 2016225865A JP 6393732 B2 JP6393732 B2 JP 6393732B2
Authority
JP
Japan
Prior art keywords
power generation
reference value
generation efficiency
value
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016225865A
Other languages
Japanese (ja)
Other versions
JP2018084421A (en
Inventor
薫 馬原
薫 馬原
Original Assignee
濱田重工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 濱田重工株式会社 filed Critical 濱田重工株式会社
Priority to JP2016225865A priority Critical patent/JP6393732B2/en
Publication of JP2018084421A publication Critical patent/JP2018084421A/en
Application granted granted Critical
Publication of JP6393732B2 publication Critical patent/JP6393732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光発電監視装置及び太陽光発電監視方法に関する。   The present invention relates to a photovoltaic power generation monitoring device and a photovoltaic power generation monitoring method.

近年、化石燃料の枯渇に加えて地球温暖化等の地球環境問題が深刻化していることから、クリーンエネルギーである太陽光発電が注目されている。太陽光発電では、複数の太陽電池(セル)を並べてパネル状に形成した太陽電池パネル(太陽電池モジュール)が使用される。   In recent years, in addition to the depletion of fossil fuels, global environmental problems such as global warming have become serious, so solar power generation, which is clean energy, has attracted attention. In solar power generation, a solar battery panel (solar battery module) in which a plurality of solar batteries (cells) are arranged in a panel shape is used.

大規模な太陽光発電設備では、複数の太陽電池モジュールが直列に接続されて太陽電池ストリングを構成し、複数の太陽電池ストリングがパワーコンディショナーに並列に接続されている。パワーコンディショナーは、太陽電池モジュールで発電した直流電流を交流電流に変換すると共に、太陽電池モジュールから得られる電力を常に最大値に維持する。   In a large-scale photovoltaic power generation facility, a plurality of solar cell modules are connected in series to form a solar cell string, and the plurality of solar cell strings are connected in parallel to a power conditioner. The power conditioner converts the direct current generated by the solar cell module into an alternating current, and always maintains the electric power obtained from the solar cell module at the maximum value.

電流値や発電量などの発電に関する各種データは、リアルタイムで監視サーバーへ送られる。監視サーバーは、パワーコンディショナーや太陽電池ストリング等の発電設備全体の発電状況を監視し、異常が発生した場合、太陽光発電設備管理者へ通知する。   Various data related to power generation such as current value and power generation amount are sent to the monitoring server in real time. The monitoring server monitors the power generation status of the entire power generation equipment such as the power conditioner and the solar battery string, and notifies the solar power generation equipment manager when an abnormality occurs.

例えば特許文献1には、単位時間毎の平均発電量を算出し、単位面積あたりに換算した平均発電量を平均日射量で除算して変換効率を求め、日別変換効率データを生成する変換効率生成部と、所定期間の日別変換効率データに基づき、所定の気温帯域毎に平均変換効率を算出し、算出された平均変換効率に変動幅を加味し、経年劣化係数を乗じて気温帯域毎の劣化判断の判定値とし、気温帯域別データを生成する判定値生成部と、所定期間に対応する劣化診断対応期間における日別変換効率データに基づき、単位時間毎に平均気温が所定の気温帯域に該当する場合、変換効率が判定値以下であるか否かを判定し、判定値以下である場合太陽電池パネルの劣化がある旨を出力装置に出力する劣化診断部とを備える太陽電池劣化診断装置が開示されている。   For example, in Patent Document 1, the average power generation amount per unit time is calculated, the average power generation amount converted per unit area is divided by the average solar radiation amount to obtain the conversion efficiency, and the conversion efficiency for generating the daily conversion efficiency data Based on the daily conversion efficiency data of the generator and the predetermined period, calculate the average conversion efficiency for each predetermined temperature band, add the fluctuation range to the calculated average conversion efficiency, and multiply by the aging degradation coefficient for each temperature band The average temperature is a predetermined temperature band for each unit time based on a determination value generation unit that generates temperature band-specific data and a daily conversion efficiency data in a deterioration diagnosis corresponding period corresponding to a predetermined period. If the conversion efficiency falls below the determination value, it is determined whether or not the conversion efficiency is below the determination value. Device disclosed To have.

また、特許文献2には、太陽光発電パネルが発電した電力量を用いて発電効率を算出する発電効率算出部と、日射量と太陽光発電パネルのパネル温度を用いて発電効率の理想値を算出し、発電効率算出部で算出した発電効率と理想値との比を理想度として算出する理想度算出部と、理想度が経時的に低下しているか否かを判定する判定部とを有する太陽光発電管理装置が開示されている。   Patent Document 2 also describes a power generation efficiency calculation unit that calculates power generation efficiency using the amount of power generated by the solar power generation panel, and an ideal value of power generation efficiency using the amount of solar radiation and the panel temperature of the solar power generation panel. An ideality calculation unit that calculates a ratio between the power generation efficiency calculated by the power generation efficiency calculation unit and the ideal value as an ideality, and a determination unit that determines whether or not the ideality has decreased over time. A solar power management device is disclosed.

特開2014−176195号公報JP 2014-176195 A 特開2015−47030号公報JP 2015-47030 A

特許文献1記載の技術では、判定値算出時に太陽電池モジュール表面の汚れの影響を考慮していないため、太陽電池モジュールが本来有している発電能力に比べて判定値が低く評価される可能性がある。その結果、太陽電池モジュールに劣化や故障が発生しても異常と判定されず、異常の発見が遅れるおそれがある。
一方、特許文献2記載の技術では、理想度の経時的な推移に基づく解析に時間を要するため、太陽電池モジュールの破損などの突発的な故障に対する判断の遅れが懸念される。
In the technique described in Patent Document 1, since the influence of dirt on the surface of the solar cell module is not taken into consideration when calculating the determination value, the determination value may be evaluated lower than the power generation capability that the solar cell module originally has. There is. As a result, even if deterioration or failure occurs in the solar cell module, it is not determined as abnormal, and there is a possibility that discovery of the abnormality is delayed.
On the other hand, in the technique described in Patent Document 2, since time is required for analysis based on the transition of the ideality with time, there is a concern about a delay in judgment for sudden failure such as damage of the solar cell module.

本発明はかかる事情に鑑みてなされたもので、太陽電池モジュール表面の汚れの影響を排除して、従来に比べて高い精度で太陽光発電設備の異常を診断する監視装置及び監視方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a monitoring apparatus and a monitoring method for diagnosing an abnormality of a photovoltaic power generation facility with higher accuracy than conventional methods by eliminating the influence of dirt on the surface of a solar cell module. For the purpose.

上記目的を達成するため、第1の発明は、太陽電池ストリングの電流値及び電圧値と太陽電池ストリングへ入射する日射量より算出した単位日射量当たりの発電量を太陽電池ストリングの定格出力で除した発電効率を基準値と比較し、前記発電効率が前記基準値を下回ったとき、該太陽電池ストリングを異常と判断する太陽光発電監視装置であって、
基準値設定期間において、設定値以上の降雨量を記録した日以後の設定日数以内のデータを用いて算出した日毎の発電効率を温度帯域で層別し、温度帯域毎に発電効率の平均値に変動幅を加味して前記基準値を設定する基準値設定部と、
前記基準値設定期間経過後において、設定値以上の降雨量を記録した日以後の設定日数以内のデータから温度帯域が最も高い発電データを抽出して算出した1日の平均発電効率を前記発電効率として、該平均発電効率と同じ温度帯域の前記基準値と比較する異常判断部とを備えることを特徴としている。
In order to achieve the above object, the first invention divides the power generation amount per unit solar radiation amount calculated from the current value and voltage value of the solar cell string and the solar radiation amount incident on the solar cell string by the rated output of the solar cell string. A photovoltaic power generation monitoring device that compares the generated power generation efficiency with a reference value and determines that the solar cell string is abnormal when the power generation efficiency falls below the reference value,
In the reference value setting period, the power generation efficiency for each day calculated using data within the set number of days after the date of recording the amount of rainfall above the set value is stratified by temperature range, and the average value of power generation efficiency is obtained for each temperature range. A reference value setting unit for setting the reference value in consideration of a fluctuation range;
After the reference value setting period has elapsed, the average power generation efficiency of one day calculated by extracting the power generation data with the highest temperature band from the data within the set number of days after the date when the rainfall amount equal to or greater than the set value was recorded is the power generation efficiency. And an abnormality determination unit for comparing with the reference value in the same temperature range as the average power generation efficiency.

また、第2の発明は、太陽電池ストリングの電流値及び電圧値と太陽電池ストリングへ入射する日射量より算出した単位日射量当たりの発電量を太陽電池ストリングの定格出力で除した発電効率を基準値と比較し、前記発電効率が前記基準値を下回ったとき、該太陽電池ストリングを異常と判断する太陽光発電監視方法であって、
基準値設定期間において、設定値以上の降雨量を記録した日以後の設定日数以内のデータを用いて算出した日毎の発電効率を温度帯域で層別し、温度帯域毎に発電効率の平均値に変動幅を加味して前記基準値を設定する基準値設定ステップと、
前記基準値設定期間経過後において、設定値以上の降雨量を記録した日以後の設定日数以内のデータから温度帯域が最も高い発電データを抽出して算出した1日の平均発電効率を前記発電効率として、該平均発電効率と同じ温度帯域の前記基準値と比較する異常判断ステップとを備えることを特徴としている。
The second invention is based on the power generation efficiency obtained by dividing the power generation amount per unit solar radiation amount calculated from the current value and voltage value of the solar cell string and the solar radiation amount incident on the solar cell string by the rated output of the solar cell string. A photovoltaic power generation monitoring method for determining that the solar cell string is abnormal when the power generation efficiency is lower than the reference value in comparison with a value,
In the reference value setting period, the power generation efficiency for each day calculated using data within the set number of days after the date of recording the amount of rainfall above the set value is stratified by temperature range, and the average value of power generation efficiency is obtained for each temperature range. A reference value setting step for setting the reference value in consideration of a fluctuation range;
After the reference value setting period has elapsed, the average power generation efficiency of one day calculated by extracting the power generation data with the highest temperature band from the data within the set number of days after the date when the rainfall amount equal to or greater than the set value was recorded is the power generation efficiency. And an abnormality determining step for comparing with the reference value in the same temperature range as the average power generation efficiency.

本発明では、太陽電池モジュール表面の汚れによって太陽光発電設備の診断精度が低下するのを防ぐため、一定量以上の降雨によって太陽電池モジュール表面が洗浄された状態時の発電効率及び基準値を算出して太陽光発電設備の診断に使用する。   In the present invention, in order to prevent the diagnostic accuracy of the photovoltaic power generation facility from being deteriorated due to contamination on the surface of the solar cell module, the power generation efficiency and the reference value are calculated when the surface of the solar cell module is washed by a certain amount of rainfall or more. And used for diagnosis of solar power generation equipment.

本発明では、太陽電池モジュール表面の汚れの影響を排除するため、一定量以上の降雨後の設定日数以内のデータを用いて発電効率及び基準値を算出し、太陽光発電設備の診断に使用する。これにより、従来に比べて高い精度で太陽光発電設備の異常を診断することができる。   In the present invention, in order to eliminate the influence of the dirt on the surface of the solar cell module, the power generation efficiency and the reference value are calculated using data within the set number of days after the rain of a certain amount or more, and used for diagnosis of the solar power generation facility. . Thereby, abnormality of a photovoltaic power generation facility can be diagnosed with high precision compared with the past.

本発明の一実施の形態に係る太陽光発電監視装置を備える太陽光発電システムの構成図である。It is a lineblock diagram of a photovoltaic power generation system provided with a photovoltaic power generation monitoring device concerning one embodiment of the present invention. 基準値を算出するフロー図である。It is a flowchart which calculates a reference value. (A)は安定した発電の一例を示す発電量、積算日射量、及び気温のグラフ、(B)は不安定な発電の一例を示す発電量、積算日射量、及び気温のグラフである。(A) is a graph of power generation amount, integrated solar radiation amount, and temperature showing an example of stable power generation, and (B) is a graph of power generation amount, integrated solar radiation amount, and temperature showing an example of unstable power generation. (A)は不連続なデータ領域を含む日射量グラフ、(B)は発電効率の異常値データを含む日射量グラフ、(C)は10分未満のデータを含む日射量グラフ、(D)は不良データを削除した日射量グラフである。(A) is a solar radiation amount graph including discontinuous data areas, (B) is a solar radiation amount graph including abnormal value data of power generation efficiency, (C) is a solar radiation amount graph including data of less than 10 minutes, and (D) is It is a solar radiation amount graph which deleted defective data. 太陽電池ストリングの異常を判断するフロー図である。It is a flowchart which judges abnormality of a solar cell string.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

本発明の一実施の形態における太陽光発電システム10の構成図を図1に示す。
太陽光発電システム10は、太陽光を受光して発電する太陽光発電設備と、太陽光発電設備の発電状況を監視し、太陽光発電設備の異常を診断する監視設備とを備えている。
The block diagram of the photovoltaic power generation system 10 in one embodiment of the present invention is shown in FIG.
The solar power generation system 10 includes a solar power generation facility that receives sunlight to generate power, and a monitoring facility that monitors the power generation status of the solar power generation facility and diagnoses abnormality of the solar power generation facility.

太陽光発電設備は、それぞれ複数の太陽電池モジュール(図示省略)が直列に接続された複数の太陽電池ストリング11と、各太陽電池ストリング11で発電した電流を集積する接続箱12、並びに接続箱12の電流を集積する集電箱13と、集電箱13の電流を集積するパワーコンディショナー14とを備えている。
パワーコンディショナー14は、前述したように、太陽電池ストリング11で発電した直流電流を交流電流に変換すると共に、太陽電池ストリング11から得られる電力を常に最大値に維持する。太陽光発電設備で生じた電力はパワーコンディショナー14を経由して変電設備に送られる。
The solar power generation facility includes a plurality of solar cell strings 11 each having a plurality of solar cell modules (not shown) connected in series, a junction box 12 for accumulating current generated by each solar cell string 11, and a junction box 12. A current collecting box 13 for collecting the current of the current collecting box 13 and a power conditioner 14 for collecting the current of the current collecting box 13.
As described above, the power conditioner 14 converts the direct current generated by the solar cell string 11 into an alternating current, and always maintains the power obtained from the solar cell string 11 at the maximum value. The electric power generated in the solar power generation facility is sent to the substation facility via the power conditioner 14.

監視設備は、太陽電池ストリング11の温度を測定する熱電対15や、太陽光発電設備が設置されているサイトの日射量を測定する日射計16などの測定装置と、各太陽電池ストリング11の電流値、電圧値、温度とサイトの日射量を1分毎に保存する記憶装置17と、太陽光発電設備の異常の有無を判断する太陽光発電監視装置20とを備えている。記憶装置17と太陽光発電監視装置20とはインターネット18を介して接続されている。
なお、記憶装置17にはデータロガーやパーソナルコンピュータ、太陽光発電監視装置20にはパーソナルコンピュータを使用することができる。
The monitoring facility includes a measuring device such as a thermocouple 15 that measures the temperature of the solar cell string 11 and a solar radiation meter 16 that measures the amount of solar radiation at the site where the solar power generation facility is installed, and the current of each solar cell string 11. The storage device 17 that stores the value, voltage value, temperature, and the amount of solar radiation on the site every minute, and the solar power generation monitoring device 20 that determines whether there is an abnormality in the solar power generation facility are provided. The storage device 17 and the photovoltaic power generation monitoring device 20 are connected via the Internet 18.
A data logger or a personal computer can be used for the storage device 17, and a personal computer can be used for the photovoltaic power generation monitoring device 20.

太陽光発電監視装置20は、太陽電池ストリング11の電流値及び電圧値と太陽電池ストリング11へ入射する日射量より算出した単位日射量当たりの発電量を太陽電池ストリング11の定格出力で除した発電効率を基準値と比較し、発電効率が基準値を下回ったとき、当該太陽電池ストリング11を異常と判断する。   The solar power generation monitoring device 20 generates power by dividing the power generation amount per unit solar radiation amount calculated from the current value and voltage value of the solar cell string 11 and the solar radiation amount incident on the solar cell string 11 by the rated output of the solar cell string 11. The efficiency is compared with a reference value, and when the power generation efficiency falls below the reference value, the solar cell string 11 is determined to be abnormal.

太陽光発電監視装置20は基準値設定部21と異常判断部22とを有している。
基準値設定部21は、基準値設定期間において、設定値以上の降雨量を記録した日以後の設定日数以内のデータを用いて算出した日毎の発電効率を温度帯域で層別し、温度帯域毎に発電効率の平均値に変動幅を加味して基準値を設定する。なお、基準値は太陽電池ストリング11ごとに設定される。
異常判断部22は、基準値設定期間経過後において、設定値以上の降雨量を記録した日以後の設定日数以内のデータから温度帯域が最も高い発電データを抽出して算出した1日の平均発電効率を、当該平均発電効率と同じ温度帯域の基準値と比較し、基準値を下回ったとき、当該太陽電池ストリング11を異常と判断する。
The photovoltaic power generation monitoring device 20 includes a reference value setting unit 21 and an abnormality determination unit 22.
In the reference value setting period, the reference value setting unit 21 stratifies the power generation efficiency for each day calculated using data within the set number of days after the date when the amount of rainfall equal to or greater than the set value was recorded, In addition, the reference value is set by adding the fluctuation range to the average value of the power generation efficiency. The reference value is set for each solar cell string 11.
The abnormality determination unit 22 extracts the power generation data having the highest temperature band from the data within the set number of days after the date when the rainfall amount equal to or greater than the set value is recorded after the reference value setting period has elapsed. The efficiency is compared with a reference value in the same temperature range as the average power generation efficiency, and when the efficiency falls below the reference value, the solar cell string 11 is determined to be abnormal.

次に、上記構成を有する太陽光発電監視装置20によって、各太陽電池ストリング11に対して実施される太陽光発電監視プロセス(方法)について詳細に説明する。
[基準値の設定]
基準値設定部21で実施されるプロセス(基準値設定ステップ)を図2のフロー図を用いて説明する。
なお、基準値設定期間は、太陽光発電システム10が稼動を開始した最初の1年間とする。
Next, the photovoltaic power generation monitoring process (method) performed on each solar cell string 11 by the photovoltaic power generation monitoring device 20 having the above configuration will be described in detail.
[Reference value setting]
A process (reference value setting step) performed by the reference value setting unit 21 will be described with reference to the flowchart of FIG.
The reference value setting period is the first year when the photovoltaic power generation system 10 starts operation.

(1)太陽光発電設備が設置されているサイトに最も近い観測地点の降雨量データを、気象庁のホームページ(HP)から取得する(ST11)。
(2)降雨量6mm/h(設定値)以上の降雨量を記録した日以後の4日(設定日数)以内のデータを記憶装置17から抽出する(ST12)。抽出データは、対象日における太陽電池ストリング11の電流値、電圧値、温度、並びにサイトの日射量である。
(1) The rainfall data at the observation point closest to the site where the photovoltaic power generation facility is installed is acquired from the homepage (HP) of the Japan Meteorological Agency (ST11).
(2) Data within 4 days (set number of days) after the day when the rainfall amount of 6 mm / h (set value) or more is recorded is extracted from the storage device 17 (ST12). The extracted data is the current value, voltage value, temperature, and site solar radiation amount of the solar cell string 11 on the target day.

(3)精度の高い異常診断を行うためには、ばらつきの小さい安定した発電データが必要である。そのため、抽出したデータから作成した発電量グラフを用いて、安定した発電データであるかどうか確認する。図3(A)に示すように、発電量グラフが綺麗な放物線を描いている場合、安定した発電データとみなし、図3(B)に示すように、発電量グラフが不規則に変化している場合、不安定な発電データとみなす。なお、安定した発電データか否かの判断は、太陽電池ストリング11全体が正常に発電していると考えられる9:00〜15:00のデータを用いて行う。
安定した発電データではない場合(ST13)、ST12に戻る。
(3) In order to perform highly accurate abnormality diagnosis, stable power generation data with small variations is required. Therefore, it is confirmed whether the power generation data is stable by using the power generation amount graph created from the extracted data. As shown in FIG. 3 (A), when the power generation graph draws a beautiful parabola, it is regarded as stable power generation data, and as shown in FIG. 3 (B), the power generation graph changes irregularly. If so, it is considered unstable power generation data. In addition, the judgment whether it is stable electric power generation data is performed using the data of 9:00 to 15:00 considered that the solar cell string 11 whole is generating electric power normally.
When the power generation data is not stable (ST13), the process returns to ST12.

(4)安定した発電データである場合(ST13)、当該日のデータを温度帯域で層別し、最大温度帯域のデータを抽出する(ST14)。最大温度帯域のデータには、電流値、電圧値、日射量のばらつきが小さいデータが多く含まれている。
なお、温度帯域は、例えば、30℃〜35℃、35℃〜40℃、…、50℃〜55℃、55℃〜60℃のように、5℃ごと層別されている。
(4) When the power generation data is stable (ST13), the data of the day is stratified by the temperature band, and the data of the maximum temperature band is extracted (ST14). The maximum temperature band data includes many data with small variations in current value, voltage value, and amount of solar radiation.
In addition, the temperature zone is stratified every 5 degreeC like 30 degreeC-35 degreeC, 35 degreeC-40 degreeC, ..., 50 degreeC-55 degreeC, 55 degreeC-60 degreeC, for example.

(5)抽出したデータから、日射量の低下による発電効率の異常値を示したデータや不連続なデータを除外する(ST15)。
図4(A)の枠で囲んだ領域は、日射量の大幅な減少に伴って太陽電池ストリング11の温度が低下し、データが不連続になっている領域を示している。
図4(B)の枠で囲んだ領域は、 日射量の大幅な減少に伴い、日射量と電流値にずれが生じて発電効率が異常値を示した領域である。
図4(C)の枠で囲んだ領域は、不連続なデータと発電効率の異常値を示したデータを削除したことによって10分未満データとなった領域である。
図4(D)は、不良データを削除した日射量グラフである。
(5) Data indicating an abnormal value of power generation efficiency due to a decrease in the amount of solar radiation and discontinuous data are excluded from the extracted data (ST15).
A region surrounded by a frame in FIG. 4A shows a region where the temperature of the solar cell string 11 is lowered and the data is discontinuous with a significant decrease in the amount of solar radiation.
The region surrounded by the frame in FIG. 4B is a region where the power generation efficiency shows an abnormal value due to a difference between the solar radiation amount and the current value due to a significant decrease in the solar radiation amount.
The area surrounded by the frame in FIG. 4C is an area that has become data less than 10 minutes by deleting discontinuous data and data indicating an abnormal value of power generation efficiency.
FIG. 4D is a solar radiation amount graph from which defective data is deleted.

(6)データ数が50個未満の場合(ST16)、ST12に戻る。
(7)データ数が50個以上の場合(ST16)、当該データより発電効率を算出し(ST17)、算出した発電効率を該当する温度帯域に保存する(ST18)。例えば、冬場の発電効率では、最大温度帯域が30℃〜35℃付近のデータ、夏場の発電効率では、最大温度帯域が55℃〜60℃付近のデータとなる。
(6) If the number of data is less than 50 (ST16), the process returns to ST12.
(7) When the number of data is 50 or more (ST16), the power generation efficiency is calculated from the data (ST17), and the calculated power generation efficiency is stored in the corresponding temperature band (ST18). For example, in winter power generation efficiency, the maximum temperature range is data in the vicinity of 30 ° C. to 35 ° C., and in summer power generation efficiency, the maximum temperature range is in the range of 55 ° C. to 60 ° C.

(8)基準値設定期間である1年を経過していない場合(ST19)、ST11に戻って他の月日について同様の処理を行う。
(9)基準値設定期間である1年を経過した場合(ST19)、温度帯域毎に保存されている発電効率についてその平均値を算出し、平均値に変動幅を加味して各温度帯域の基準値を設定する(ST20)。変動幅は、−3σとする。ただし、σは発電効率の標準偏差である。
(8) If one year, which is the reference value setting period, has not elapsed (ST19), the process returns to ST11 and the same processing is performed for other months and days.
(9) When one year, which is the reference value setting period, has passed (ST19), the average value is calculated for the power generation efficiency stored for each temperature band, and the fluctuation range is added to the average value for each temperature band. A reference value is set (ST20). The fluctuation range is −3σ. Where σ is the standard deviation of power generation efficiency.

[異常判断]
基準値設定期間である1年を経過した後に、異常判断部22で実施されるプロセス(異常判断ステップ)を図5のフロー図を用いて説明する。
なお、気象庁HPより気象データを取得(ST21)してからデータ数≧50個(ST26)までのプロセスは、基準値の設定におけるST11〜ST16と同様なので説明を省略する。
[Abnormal judgment]
A process (abnormality determination step) performed by the abnormality determination unit 22 after the passage of the reference value setting period of one year will be described with reference to the flowchart of FIG.
Note that the process from the acquisition of weather data from the Japan Meteorological Agency HP (ST21) to the number of data ≧ 50 (ST26) is the same as ST11 to ST16 in the setting of the reference value, and the description thereof will be omitted.

(1)データ数が50個以上の場合(ST26)、当該データについて発電効率の平均値を算出する(ST27)。
(2)算出した1日の平均発電効率を、当該平均発電効率と同じ温度帯域の基準値と比較し(ST28)、基準値未満である場合、基準値未満となった太陽電池ストリング11を異常ありとして表示し(ST29)、基準値以上である場合、異常なしとして終了する(ST30)。
(1) When the number of data is 50 or more (ST26), an average value of power generation efficiency is calculated for the data (ST27).
(2) The calculated daily average power generation efficiency is compared with a reference value in the same temperature range as the average power generation efficiency (ST28). If the average power generation efficiency is less than the reference value, the solar cell string 11 that is less than the reference value is abnormal. Displayed as being present (ST29), and if it is equal to or greater than the reference value, the process is terminated as being normal (ST30).

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、設定値を降雨量6mm/h、設定日数を4日、基準値の変動幅を−3σとしているが、勿論これらの数値に限定されるものではなく、例えば、降雨量を4mm/h〜8mm/h、設定日数を2日〜6日、変動幅を−2σ〜−3σとしてもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above embodiment, the set value is 6 mm / h of rainfall, the set number of days is 4 days, and the fluctuation range of the reference value is −3σ. Of course, the value is not limited to these values. The amount may be 4 mm / h to 8 mm / h, the set number of days may be 2 to 6 days, and the fluctuation range may be −2σ to −3σ.

10:太陽光発電システム、11:太陽電池ストリング、12:接続箱、13:集電箱、14:パワーコンディショナー、15:熱電対、16:日射計、17:記憶装置、18:インターネット、20:太陽光発電監視装置、21:基準値設定部、22:異常判断部 10: Solar power generation system, 11: Solar cell string, 12: Junction box, 13: Current collection box, 14: Power conditioner, 15: Thermocouple, 16: Solar radiation meter, 17: Storage device, 18: Internet, 20: Photovoltaic power generation monitoring device, 21: reference value setting unit, 22: abnormality determination unit

Claims (2)

太陽電池ストリングの電流値及び電圧値と太陽電池ストリングへ入射する日射量より算出した単位日射量当たりの発電量を太陽電池ストリングの定格出力で除した発電効率を基準値と比較し、前記発電効率が前記基準値を下回ったとき、該太陽電池ストリングを異常と判断する太陽光発電監視装置であって、
基準値設定期間において、設定値以上の降雨量を記録した日以後の設定日数以内のデータを用いて算出した日毎の発電効率を温度帯域で層別し、温度帯域毎に発電効率の平均値に変動幅を加味して前記基準値を設定する基準値設定部と、
前記基準値設定期間経過後において、設定値以上の降雨量を記録した日以後の設定日数以内のデータから温度帯域が最も高い発電データを抽出して算出した1日の平均発電効率を前記発電効率として、該平均発電効率と同じ温度帯域の前記基準値と比較する異常判断部とを備えることを特徴とする太陽光発電監視装置。
The power generation efficiency obtained by dividing the power generation amount per unit solar radiation amount calculated from the current value and voltage value of the solar cell string and the solar radiation amount incident on the solar cell string by the rated output of the solar cell string is compared with a reference value, and the power generation efficiency Is a photovoltaic power generation monitoring device that determines that the solar cell string is abnormal when the reference value falls below the reference value,
In the reference value setting period, the power generation efficiency for each day calculated using data within the set number of days after the date of recording the amount of rainfall above the set value is stratified by temperature range, and the average value of power generation efficiency is obtained for each temperature range. A reference value setting unit for setting the reference value in consideration of a fluctuation range;
After the reference value setting period has elapsed, the average power generation efficiency of one day calculated by extracting the power generation data with the highest temperature band from the data within the set number of days after the date when the rainfall amount equal to or greater than the set value was recorded is the power generation efficiency. A solar power generation monitoring apparatus comprising: an abnormality determination unit that compares the average power generation efficiency with the reference value in the same temperature range as the average power generation efficiency.
太陽電池ストリングの電流値及び電圧値と太陽電池ストリングへ入射する日射量より算出した単位日射量当たりの発電量を太陽電池ストリングの定格出力で除した発電効率を基準値と比較し、前記発電効率が前記基準値を下回ったとき、該太陽電池ストリングを異常と判断する太陽光発電監視方法であって、
基準値設定期間において、設定値以上の降雨量を記録した日以後の設定日数以内のデータを用いて算出した日毎の発電効率を温度帯域で層別し、温度帯域毎に発電効率の平均値に変動幅を加味して前記基準値を設定する基準値設定ステップと、
前記基準値設定期間経過後において、設定値以上の降雨量を記録した日以後の設定日数以内のデータから温度帯域が最も高い発電データを抽出して算出した1日の平均発電効率を前記発電効率として、該平均発電効率と同じ温度帯域の前記基準値と比較する異常判断ステップとを備えることを特徴とする太陽光発電監視方法。
The power generation efficiency obtained by dividing the power generation amount per unit solar radiation amount calculated from the current value and voltage value of the solar cell string and the solar radiation amount incident on the solar cell string by the rated output of the solar cell string is compared with a reference value, and the power generation efficiency Is a photovoltaic power generation monitoring method for determining that the solar cell string is abnormal when the value falls below the reference value,
In the reference value setting period, the power generation efficiency for each day calculated using data within the set number of days after the date of recording the amount of rainfall above the set value is stratified by temperature range, and the average value of power generation efficiency is obtained for each temperature range. A reference value setting step for setting the reference value in consideration of a fluctuation range;
After the reference value setting period has elapsed, the average power generation efficiency of one day calculated by extracting the power generation data with the highest temperature band from the data within the set number of days after the date when the rainfall amount equal to or greater than the set value was recorded is the power generation efficiency. And an abnormality determination step of comparing with the reference value in the same temperature band as the average power generation efficiency.
JP2016225865A 2016-11-21 2016-11-21 Solar power generation monitoring device and solar power generation monitoring method Active JP6393732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225865A JP6393732B2 (en) 2016-11-21 2016-11-21 Solar power generation monitoring device and solar power generation monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225865A JP6393732B2 (en) 2016-11-21 2016-11-21 Solar power generation monitoring device and solar power generation monitoring method

Publications (2)

Publication Number Publication Date
JP2018084421A JP2018084421A (en) 2018-05-31
JP6393732B2 true JP6393732B2 (en) 2018-09-19

Family

ID=62238305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225865A Active JP6393732B2 (en) 2016-11-21 2016-11-21 Solar power generation monitoring device and solar power generation monitoring method

Country Status (1)

Country Link
JP (1) JP6393732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040451A (en) * 2019-09-04 2021-03-11 春禾科技股▲分▼有限公司 Device for determining abnormality of power generation efficiency in solar device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340464A (en) * 2004-05-26 2005-12-08 Sharp Corp Solar cell array diagnostic system and solar light generating system using thereof
JP2011216811A (en) * 2010-04-02 2011-10-27 Sharp Corp Solar cell abnormality diagnosis system, solar cell abnormality diagnosis apparatus and solar cell abnormality diagnosis method
JP5524769B2 (en) * 2010-09-01 2014-06-18 株式会社Nttファシリティーズ Photovoltaic power generation diagnostic device
JP2015047030A (en) * 2013-08-29 2015-03-12 大日本印刷株式会社 Photovoltaic power generation management device, photovoltaic power generation management system, photovoltaic power generation management method, program, recording medium
JP2016001958A (en) * 2014-06-12 2016-01-07 三菱電機株式会社 Photovoltaic power generation system
JP6308896B2 (en) * 2014-07-10 2018-04-11 三菱電機株式会社 Failure judgment device
JP6129219B2 (en) * 2015-01-08 2017-05-17 株式会社コンテック Anomaly detection method for photovoltaic strings and anomaly detection program for photovoltaic strings

Also Published As

Publication number Publication date
JP2018084421A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
Sun et al. Real‐time monitoring and diagnosis of photovoltaic system degradation only using maximum power point—the Suns‐Vmp method
JP6093465B1 (en) Power generation diagnosis method and power generation diagnosis apparatus for solar power generation system
JP7289995B2 (en) Method and apparatus for recognizing operating state of photovoltaic string and storage medium
Roumpakias et al. Comparative performance analysis of grid-connected photovoltaic system by use of existing performance models
KR102578223B1 (en) Apparatus for estimating photovoltaic power generation
CN108599724A (en) A kind of photovoltaic module on-line monitoring system and monitoring method
KR20190005514A (en) Method and apparatus for predicting the degradation ratio of the solar cell module
Lurwan et al. Predicting power output of photovoltaic systems with solar radiation model
Copper et al. Australian technical guidelines for monitoring and analysing photovoltaic systems
Ribeiro et al. A statistical methodology to estimate soiling losses on photovoltaic solar plants
Thotakura et al. Operating temperature prediction and comparison for rooftop PV arrays in coastal climates of India
JP6393732B2 (en) Solar power generation monitoring device and solar power generation monitoring method
Cornaro et al. Twenty-four hour solar irradiance forecast based on neural networks and numerical weather prediction
Boughamrane et al. Comparative Analysis of Measured and Simulated Performance of the Moroccan First MV Grid Connected Photovoltaic Power Plant ofAssa, Southern Morocco
Sun et al. In-situ self-monitoring of real-time photovoltaic degradation only using maximum power point: the suns-vmp method
Ya'acob et al. Modelling of photovoltaic array temperature in a tropical site using generalized extreme value distribution
Asimov et al. Digital twin for pv plant’s power generation analysis
Kim et al. Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling
JP2021145509A (en) Abnormality detection device, abnormality detection method, and abnormality detection program
Sánchez et al. Prediction and production of small PV power plant
JP2021035098A (en) Deterioration detection method for solar cell string, deterioration detection system, and deterioration detection device
Goumenos et al. Performance loss rate estimation for systems affected by potential induced degradation
Sinan Rashid et al. Technical performance evaluation of solar photovoltaic systems: A case study of eight PV systems on the Swedish market installed at RISE research facilities
EL BOUJDAINI SOL PV: Impact analysis of the operating temperature of solar inverters
Hossain Thermal characteristics of microinverters on dual-axis trackers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6393732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250