JP6392258B2 - Breakwater construction method - Google Patents

Breakwater construction method Download PDF

Info

Publication number
JP6392258B2
JP6392258B2 JP2016017354A JP2016017354A JP6392258B2 JP 6392258 B2 JP6392258 B2 JP 6392258B2 JP 2016017354 A JP2016017354 A JP 2016017354A JP 2016017354 A JP2016017354 A JP 2016017354A JP 6392258 B2 JP6392258 B2 JP 6392258B2
Authority
JP
Japan
Prior art keywords
wave
caisson
value
dissipating
mound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016017354A
Other languages
Japanese (ja)
Other versions
JP2017137631A (en
Inventor
順 三井
順 三井
草平 丸山
草平 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2016017354A priority Critical patent/JP6392258B2/en
Publication of JP2017137631A publication Critical patent/JP2017137631A/en
Application granted granted Critical
Publication of JP6392258B2 publication Critical patent/JP6392258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、基礎マウンド上にケーソン及び消波ブロックを設置することによって構築される防波堤に関し、特に、想定される津波に対し十分な滑動抵抗力を有する防波堤の構築方法に関する。   The present invention relates to a breakwater constructed by installing caissons and wave-dissipating blocks on a foundation mound, and more particularly to a breakwater construction method having sufficient sliding resistance against an assumed tsunami.

港湾等を保護するために構築される防波堤は、通常、海底に構築した基礎マウンドの上にケーソンを設置し、その沖側(港外側)に多数の消波ブロックを積み上げて(消波工を形成して)構築されている。   Breakwaters constructed to protect harbors, etc., usually have caisson installed on the foundation mound built on the sea floor, and many wave-dissipating blocks are stacked on the offshore side (outside of the port). Formed) and built.

港湾の施設の技術上の基準・同解説検討委員会編 「港湾の施設の技術上の基準・同解説」 日本港湾協会出版 2007年Technical Standards for Port Facilities and Commentary Review Committee “Technical Standards for Port Facilities and Commentary” Japan Port Association Publication 2007

近年では、地震津波によって防波堤のケーソンが陸側へ転落してしまうという被災事例が多数報告されており、耐津波性能の向上が望まれている。   In recent years, many cases have been reported that the breakwater caisson falls to the land side due to the earthquake tsunami, and improvement of tsunami resistance is desired.

本発明は、このような従来技術における課題を解決しようとするものであって、想定される津波に対し十分な滑動抵抗力を有する防波堤を構築する方法を提供することを目的とする。   An object of the present invention is to provide a method for constructing a breakwater having sufficient sliding resistance against an anticipated tsunami.

本発明に係る防波堤の構築方法は、一つのケーソンの重量の値W1にケーソンとマウンドとの摩擦係数の値μ1を乗じて算出されるケーソンの滑動抵抗力の値R1と、当該ケーソンの港内側に積み上げる消波ブロックの総重量の値W2に消波工(消波ブロックを積み上げて構築される構造物)とマウンドとの摩擦係数の値μ2を乗じて算出される滑動抵抗力の値R2と、を加算して算出される滑動抵抗力の値Rを、想定される津波力Pと一致させるために必要となる値W2を求め、総重量が値W2以上となる量の消波ブロックを、前記一つのケーソンの港内側に積み上げることを特徴としている。   The breakwater building method according to the present invention includes a caisson sliding resistance value R1 calculated by multiplying a caisson weight value W1 by a friction coefficient value μ1 between the caisson and the mound, and the inside of the caisson port. The value R2 of the sliding resistance calculated by multiplying the value W2 of the total weight of the wave-dissipating blocks piled up by the friction coefficient value μ2 between the wave-dissipating work (structure constructed by accumulating the wave-dissipating blocks) and the mound The value R2 of the sliding resistance calculated by adding, and the value W2 required to match the assumed tsunami force P is obtained. It is characterized by being stacked inside the port of the one caisson.

尚、消波工とマウンドとの摩擦係数の値μ2を、0.6として値W2を求めることが好ましい。   In addition, it is preferable to obtain the value W2 by setting the value μ2 of the coefficient of friction between the wave absorber and the mound to be 0.6.

本発明に係る防波堤の構築方法によれば、ケーソンの港内側に形成した消波工を、津波に対する受動抵抗として機能させることができ、各ケーソンにおける耐津波性能(安定性)の飛躍的な向上を期待することができ、想定される津波に対し十分な滑動抵抗力を有する防波堤を構築することができる。   According to the construction method of the breakwater according to the present invention, the wave breaker formed inside the caisson port can function as a passive resistance against tsunami, and the tsunami resistance performance (stability) in each caisson can be dramatically improved. Therefore, it is possible to construct a breakwater having sufficient sliding resistance against an assumed tsunami.

図1は、本発明に係る方法によって構築した防波堤1の構造を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the structure of a breakwater 1 constructed by the method according to the present invention. 図2は、本発明の発明者らによる実験において使用された実験装置の斜視図である。FIG. 2 is a perspective view of an experimental apparatus used in an experiment by the inventors of the present invention. 図3は、図2に示す実験装置の断面図である。FIG. 3 is a sectional view of the experimental apparatus shown in FIG. 図4は、図2、図3の実験装置による測定結果に基づいて解析したケーソン3’の変位と滑動抵抗力との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the displacement of the caisson 3 ′ analyzed based on the measurement results by the experimental apparatus of FIGS. 2 and 3 and the sliding resistance force. 図5は、図2、図3の実験装置による測定結果に基づいて解析したケーソン3’の変位と消波工4’とマウンドとの摩擦係数との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the displacement of the caisson 3 'and the friction coefficient between the wave-dissipating work 4' and the mound, which are analyzed based on the measurement results obtained by the experimental apparatus shown in FIGS.

以下、本発明「防波堤の構築方法」を実施するための形態について説明する。図1は、本発明に係る方法によって構築した防波堤1の構造を模式的に示す断面図である。図示されているように、この防波堤1は、海底地盤上に捨石を配置して構築したマウンド2の上にケーソン3を設置するとともに、ケーソン3の港内側(図1において右側)に、消波ブロック5を積み上げることによって、消波工4が構築されている。(尚、図1に示すように、ケーソン3の港外側(図1において左側)にも、必要に応じて消波ブロック5を積み上げ、消波工6を形成してもよい。)   Hereinafter, the form for implementing this invention "the construction method of a breakwater" is demonstrated. FIG. 1 is a cross-sectional view schematically showing the structure of a breakwater 1 constructed by the method according to the present invention. As shown in the figure, the breakwater 1 has a caisson 3 installed on a mound 2 constructed by arranging rubble on the seabed ground, and a wave-extinguishing wave inside the port of the caisson 3 (right side in FIG. 1). By building up the blocks 5, the wave breaker 4 is constructed. (In addition, as shown in FIG. 1, the wave-dissipating block 5 may be piled up on the outer side of the port of the caisson 3 (left side in FIG. 1) to form a wave-dissipating work 6 as necessary.)

このように本発明は、ケーソン3の港内側に多数の消波ブロック5を積み上げて(消波工4を形成して)防波堤1を構築することを一つの特徴とするものである。ケーソン3の港内側に形成した消波工4を、津波に対する受動抵抗として機能させることにより、各ケーソン3における耐津波性能(安定性)の飛躍的な向上を期待することができる。   As described above, the present invention is characterized in that the breakwater 1 is constructed by stacking a large number of wave-dissipating blocks 5 inside the port of the caisson 3 (forming the wave-dissipating work 4). By making the wave-dissipating work 4 formed inside the harbor of the caisson 3 function as a passive resistance against a tsunami, a dramatic improvement in the tsunami resistance performance (stability) in each caisson 3 can be expected.

更に本発明は、想定される津波力に対してケーソン3(及び消波工4)の抵抗力を拮抗させるために必要となる港内側の消波工4の重量を算出し、総重量がその閾値以上となる量の消波ブロック5をケーソン3の港内側に積み上げて消波工4を形成することを特徴としている。   Furthermore, the present invention calculates the weight of the wave-dissipating work 4 inside the harbor that is required to antagonize the resistance of the caisson 3 (and the wave-dissipating work 4) against the assumed tsunami force, The wave-dissipating block 5 is piled up inside the port of the caisson 3 to form the wave-dissipating work 4.

尚、想定される津波力Pに対してケーソン(及び消波工)の抵抗力を拮抗させるために必要となる港内側の消波工の重量(ケーソンの港内側の消波ブロックの総重量)W2は、次のようにして求めることができる。   In addition, the weight of the wave breaker inside the port required to antagonize the resistance force of the caisson (and wave breaker) against the assumed tsunami force P (total weight of wave breaker block inside the caisson port) W2 can be obtained as follows.

「想定される津波力Pに対してケーソン(及び消波工)の抵抗力が拮抗する」とは、「想定される津波力Pと、ケーソンとその港内側に形成される消波工の全体の滑動抵抗力Rが等しい」ということを意味している(P=R)。そして、ケーソンとその港内側に形成される消波工の全体の滑動抵抗力Rは、当該ケーソンの滑動抵抗力R1と、消波工の滑動抵抗力R2との和であり(R=R1+R2)、ケーソンの滑動抵抗力R1は、ケーソンの重量W1に摩擦係数μ1を乗じることによって求めることができ(R1=W1×μ1)、また、消波工の滑動抵抗力R2は、消波工の重量W2に摩擦係数μ2を乗じることによって求めることができる(R2=W2×μ2)。   “The resistance of the caisson (and the wave breaker) antagonizes the assumed tsunami force P” means “the tsunami force P assumed and the entire wave breaker formed inside the caisson and its harbor. Means that the sliding resistance R is equal (P = R). The overall sliding resistance R of the caisson and the wave breaker formed inside the harbor is the sum of the sliding resistance R1 of the caisson and the sliding resistance R2 of the wave quenching (R = R1 + R2). The sliding resistance R1 of the caisson can be obtained by multiplying the weight W1 of the caisson by the friction coefficient μ1 (R1 = W1 × μ1), and the sliding resistance R2 of the wave breaker is the weight of the wave breaker It can be determined by multiplying W2 by the friction coefficient μ2 (R2 = W2 × μ2).

これらを整理すると、次の通りとなる。
P=W1×μ1+W2×μ2
(P:想定される津波力、W1:検討対象となる一つのケーソンの重量、W2:消波工の重量、μ1:ケーソンとマウンドとの摩擦係数、μ2:消波工とマウンドとの摩擦係数)
These can be summarized as follows.
P = W1 × μ1 + W2 × μ2
(P: Assumed tsunami force, W1: Weight of one caisson to be examined, W2: Weight of wave-dissipating work, μ1: Coefficient of friction between caisson and mound, μ2: Coefficient of friction between wave-dissipating work and mound )

従って、想定される津波力Pに対してケーソン(及び消波工)の抵抗力を拮抗させるために必要となる港内側の消波工の重量W2は、次式により求めることができる。
W2=(P−W1×μ1)÷μ2
Therefore, the weight W2 of the wave-dissipating work inside the harbor required to antagonize the resistance of the caisson (and the wave-dissipating work) against the assumed tsunami force P can be obtained by the following equation.
W2 = (P−W1 × μ1) ÷ μ2

ここで、想定される津波力Pの値、及び、ケーソンの重量W1の値は、対象案件毎に適宜設定することができ、また、ケーソンとマウンドとの摩擦係数μ1の値としては、一般に「0.6」という数値が用いられている(例えば、非特許文献1)。一方、消波工とマウンドとの摩擦係数μ2については、これまでに一般的に用いられている数値は存在していない。   Here, the assumed value of the tsunami force P and the value of the caisson weight W1 can be set as appropriate for each target project, and the value of the friction coefficient μ1 between the caisson and the mound is generally “ A numerical value of “0.6” is used (for example, Non-Patent Document 1). On the other hand, there is no numerical value generally used so far for the coefficient of friction μ2 between the wave absorber and the mound.

そこで本発明の発明者らが、模型を用いて実験を行い、消波工とマウンドとの摩擦係数μ2が、どのような値となるか調べたところ、「0.6」という数値となることが判明した。   Therefore, the inventors of the present invention conducted an experiment using a model and examined what value the friction coefficient μ2 between the wave-dissipating work and the mound would be, and the value was “0.6”. There was found.

以下、本発明の発明者らが行った実験の内容とその結果について説明する。
まず、図2に示すような実験装置を用意した。より具体的には、マウンド2’,2”(模型)の上に、ケーソン3’(模型)を載置するとともに、ケーソン3’の背後に消波ブロックの模型を積み上げて消波工4’(模型)を形成した。尚、ケーソン3’及び消波工4’の左右両側に側壁10,10をそれぞれ配置し、ケーソン3’の両側面にそれぞれ固定した。
The contents and results of experiments conducted by the inventors of the present invention will be described below.
First, an experimental apparatus as shown in FIG. 2 was prepared. More specifically, a caisson 3 ′ (model) is placed on the mounds 2 ′, 2 ″ (model), and a model of a wave-dissipating block is stacked behind the caisson 3 ′ to dissipate the wave-dissipating work 4 ′. In addition, the side walls 10 and 10 were arrange | positioned at the both right and left sides of the caisson 3 'and the wave-dissipating work 4', respectively, and were fixed to the both sides of the caisson 3 '.

そして、図示しないウインチを用いて、ケーソン3’(模型)及び消波工4’をワイヤー9で水平に(図2において右方向へ)牽引することで載荷し、荷重とケーソン3’の変位を測定するとともに、消波工4’を形成せずに、ケーソン3’のみを牽引した場合の荷重と変位の測定を行った。尚、牽引する高さ位置は、ケーソン3’の底面から天端面までの高さの1/3の位置とし、牽引速度は、1.5cm/sとした。また、ケーソン3’の下のマウンド2”は、木製の土台とし、地盤に固定した。これは、ケーソン3’とマウンドの摩擦力のバラツキを小さくするためと、牽引時にケーソンを水平に保つためである。また、実験時に捨石マウンドが地盤上を滑ることを防ぐため、地盤にワイヤーメッシュを設置した。   Then, using a winch (not shown), the caisson 3 ′ (model) and the wave-dissipating work 4 ′ are loaded by pulling horizontally with the wire 9 (to the right in FIG. 2), and the load and the displacement of the caisson 3 ′ are changed. In addition to the measurement, the load and displacement were measured when only the caisson 3 ′ was pulled without forming the wave-dissipating work 4 ′. The height position to be pulled was set to a position of 1/3 of the height from the bottom surface of the caisson 3 'to the top end surface, and the pulling speed was 1.5 cm / s. The mound 2 ″ under the caisson 3 ′ is a wooden base and fixed to the ground. This is to reduce the variation in frictional force between the caisson 3 ′ and the mound and to keep the caisson horizontal when towing. In addition, a wire mesh was installed on the ground to prevent the rubble mound from sliding on the ground during the experiment.

図3は、実験装置の断面図である。模型縮尺は、1/50を想定しており、図中には、現地量に換算した値を併記している。消波工4’に使用した消波ブロック模型の諸元は、空隙率50%、密度2359kg/m、空中単位体積重量11.56kN/mである。マウンド2’に使用した捨石模型の諸元は、空隙率39.3%、密度2656kg/m、空中単位体積重量15.80kN/mである。 FIG. 3 is a cross-sectional view of the experimental apparatus. The model scale is assumed to be 1/50, and the value converted into the local quantity is also shown in the figure. The specifications of the wave-dissipating block model used for the wave-dissipating work 4 ′ are a porosity of 50%, a density of 2359 kg / m 3 , and an air unit volume weight of 11.56 kN / m 3 . The specifications of the rubble model used for the mound 2 ′ are a porosity of 39.3%, a density of 2656 kg / m 3 , and an air unit volume weight of 15.80 kN / m 3 .

牽引時の経過を観察したところ、消波工4’とマウンド2’との境界で滑りが生じ、消波工4’全体が、設置時の形状をほぼ保ちながら滑動する様子が確認された。   As a result of observing the progress at the time of towing, it was confirmed that slipping occurred at the boundary between the wave-dissipating work 4 'and the mound 2', and the entire wave-dissipating work 4 'slid while substantially maintaining the shape at the time of installation.

消波工4’あり、無しでのケーソン3’の変位と滑動抵抗力との関係(測定結果に基づく解析結果)を図4に示す。消波工4’ありの場合、変位が大きくなるにつれて抵抗が増大する傾向があり、変位が15mm程度の時点で最大値を示した。この理由としては、消波ブロックと捨石とのかみ合いが次第に進行したことと、ブロック間の空隙が次第に詰まったことが考えられる。消波工4’とマウンド2’との境界を滑り面と仮定し、消波工4’全体の重量と滑動抵抗力の測定値から摩擦係数を逆算したものを図5に示す。摩擦係数は、動き出しの時点で0.6程度、最大で1.2程度であった。   FIG. 4 shows the relationship between the displacement of the caisson 3 ′ with and without the wave-dissipating work 4 ′ and the sliding resistance (analysis result based on the measurement result). In the case of the wave-dissipating work 4 ', the resistance tends to increase as the displacement increases, and the maximum value is shown when the displacement is about 15 mm. The reason for this is considered that the meshing between the wave-dissipating block and the rubble gradually progressed and the gaps between the blocks gradually clogged. Assuming that the boundary between the wave-dissipating work 4 ′ and the mound 2 ′ is a sliding surface, FIG. 5 shows the friction coefficient calculated backward from the measured values of the weight of the wave-dissipating work 4 ′ and the sliding resistance force. The coefficient of friction was about 0.6 at the start of movement and about 1.2 at the maximum.

以上の実験結果から、消波工とマウンドとの摩擦係数μ2は、「0.6」という数値となることが判明し、従って、消波工とマウンドとの摩擦係数μ2を「0.6」として計算することにより、想定される津波力Pに対してケーソン(及び消波工)の抵抗力を拮抗させるために必要となる港内側の消波工の重量W2を求めることができる。そして、総重量が当該閾値(W2の値)以上となる量の消波ブロックをケーソンの港内側に積み上げて消波工を形成することにより、想定される津波に対し十分な滑動抵抗力を有する防波堤を構築することができる。   From the above experimental results, it has been found that the friction coefficient μ2 between the wave-dissipating work and the mound is “0.6”, and therefore the friction coefficient μ2 between the wave-dissipating work and the mound is “0.6”. By calculating as above, the weight W2 of the wave-dissipating work inside the harbor necessary to antagonize the resistance force of the caisson (and the wave-dissipating work) against the assumed tsunami force P can be obtained. And it has sufficient sliding resistance with respect to the assumed tsunami by stacking the wave-dissipating blocks of the total weight equal to or greater than the threshold value (the value of W2) inside the caisson port to form the wave-dissipating work. Breakwater can be built.

1:防波堤、
1’:防波堤(模型)
2:マウンド、
2’,2”:マウンド(模型)、
3:ケーソン、
3’:ケーソン(模型)
4:消波工(港内側)、
4’:消波工(模型)、
5:消波ブロック、
6:消波工(港外側)
7:変位計、
8:ロードセル、
9:ワイヤー、
10:側壁
1: Breakwater,
1 ': Breakwater (model)
2: Mound,
2 ', 2 ": mound (model),
3: Caisson,
3 ': Caisson (model)
4: Wavebreaker (inside the harbor),
4 ': Dissipation (model),
5: Wave-dissipating block,
6: Wavebreaker (outside the port)
7: Displacement meter
8: Load cell,
9: Wire,
10: Side wall

Claims (1)

ケーソンの港内側に多数の消波ブロックを積み上げて防波堤を構築する方法であって、
一つのケーソンの重量の値W1にケーソンとマウンドとの摩擦係数の値μ1を乗じて算出されるケーソンの滑動抵抗力の値R1と、当該ケーソンの港内側に積み上げる消波ブロックの総重量の値W2に消波工とマウンドとの摩擦係数の値μ2を乗じて算出される滑動抵抗力の値R2と、を加算して算出される滑動抵抗力の値Rを、想定される津波力Pと一致させるために必要となる値W2を、前記消波工とマウンドとの摩擦係数の値μ2を0.6として求め、
総重量が値W2以上となる量の消波ブロックを、前記一つのケーソンの港内側に積み上げることを特徴とする防波堤の構築方法。
A method of building a breakwater by stacking many wave-dissipating blocks inside the caisson port,
The caisson sliding resistance value R1 calculated by multiplying the caisson weight value W1 by the caisson-mound friction coefficient value μ1 and the total weight of the wave-dissipating block stacked inside the caisson port The value R2 of the sliding resistance calculated by multiplying W2 by the friction coefficient value μ2 between the wave-dissipating work and the mound, and the value R of the sliding resistance calculated by adding the value R2 to the expected tsunami force P A value W2 required for matching is obtained by setting a friction coefficient value μ2 between the wave-dissipating work and the mound as 0.6 ,
A breakwater building method characterized by stacking wave-dissipating blocks whose total weight is greater than or equal to the value W2 inside the port of the one caisson.
JP2016017354A 2016-02-01 2016-02-01 Breakwater construction method Active JP6392258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017354A JP6392258B2 (en) 2016-02-01 2016-02-01 Breakwater construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017354A JP6392258B2 (en) 2016-02-01 2016-02-01 Breakwater construction method

Publications (2)

Publication Number Publication Date
JP2017137631A JP2017137631A (en) 2017-08-10
JP6392258B2 true JP6392258B2 (en) 2018-09-19

Family

ID=59565745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017354A Active JP6392258B2 (en) 2016-02-01 2016-02-01 Breakwater construction method

Country Status (1)

Country Link
JP (1) JP6392258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610144B (en) * 2020-05-27 2023-02-14 交通运输部天津水运工程科学研究所 Gravity type structural stability test bottom friction coefficient calibration system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067045Y2 (en) * 1988-04-26 1994-02-23 清水建設株式会社 Structure of dam
ES2013151A6 (en) * 1989-04-06 1990-04-16 Medina Folgado Jose Ramon Mound breakwater.
JP5983436B2 (en) * 2013-01-30 2016-08-31 新日鐵住金株式会社 Gravity breakwater
JP5949643B2 (en) * 2013-04-08 2016-07-13 Jfeエンジニアリング株式会社 Reinforcement structure of caisson type hybrid bank and method for constructing the reinforcement structure

Also Published As

Publication number Publication date
JP2017137631A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP5071930B2 (en) Ground liquefaction prevention method and liquefaction resistant ground and building base structure
JP5787172B2 (en) Lifting method of breakwater
JP5471797B2 (en) Seismic reinforcement structure of revetment structure and existing revetment structure
JP6392258B2 (en) Breakwater construction method
Diwedar et al. Wave parameters influence on breakwater stability
JP6760760B2 (en) Embankment structure
Medina et al. Influence of armor unit placement on armor porosity and hydraulic stability
JP2018204335A (en) Construction method of retaining wall for natural ground slope, and retaining wall
JP6015950B2 (en) Embankment structure with improved seismic performance of multi-tiered concrete blocks
CN109492255B (en) Design method for submarine cable burying depth
JP5681988B2 (en) Breakwater reinforcement method and reinforced breakwater
JP6923282B2 (en) Rubble stone structure and its construction method
JP5949643B2 (en) Reinforcement structure of caisson type hybrid bank and method for constructing the reinforcement structure
Chen et al. Design and testing of scour protection for Adriatic LNG GBS
JP5872797B2 (en) High stability type breakwater
JP5234415B2 (en) Sea area control structure
Jayaratne et al. Laboratory Modelling of Scour on Seawalls
Oikawa et al. Stability of a Breakwater with Steel Pipe Piles under Tsunami Overflow
JP2013213352A (en) Dam body structure having enhanced earthquake resistance and vibration control property
JP5948665B2 (en) Gravity pier structure
Tomiczek et al. Application and modification of Goda formulae for nonimpulsive wave forces on elevated coastal structures
Kim et al. Experimental Study on Hydraulic Performance of Tiecell Caisson Breakwater with Wave Chamber
Minaev Features of calculating stability of retaining wall with significant horizontal load on base soil
JP6333106B2 (en) Offshore structure foundation block, manufacturing method thereof, and foundation structure construction method
JP6944151B2 (en) How to install the tsunami fence and the tsunami fence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6392258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250