JP6388953B2 - Organic light emitting device and anode material - Google Patents

Organic light emitting device and anode material Download PDF

Info

Publication number
JP6388953B2
JP6388953B2 JP2016548861A JP2016548861A JP6388953B2 JP 6388953 B2 JP6388953 B2 JP 6388953B2 JP 2016548861 A JP2016548861 A JP 2016548861A JP 2016548861 A JP2016548861 A JP 2016548861A JP 6388953 B2 JP6388953 B2 JP 6388953B2
Authority
JP
Japan
Prior art keywords
graphene film
organic light
light emitting
anode
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016548861A
Other languages
Japanese (ja)
Other versions
JPWO2016043123A1 (en
Inventor
侑揮 沖川
侑揮 沖川
水谷 亘
亘 水谷
正統 石原
正統 石原
雅考 長谷川
雅考 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016043123A1 publication Critical patent/JPWO2016043123A1/en
Application granted granted Critical
Publication of JP6388953B2 publication Critical patent/JP6388953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、グラフェン膜からなる陽極を有する有機発光素子とその陽極材料に関する。   The present invention relates to an organic light-emitting device having an anode made of a graphene film and an anode material thereof.

有機発光素子は、有機材料に電流を注入して発光させる現象(有機エレクトロルミネセンス)を利用する。有機発光素子は、陽極と、有機層と、陰極とが積層された基本構造を有している。陽極は透明な基板上に設けられた透明な導電性膜から構成される。有機層は有機発光材料からなる発光層を含む。陰極は金属膜から構成される。有機発光素子に使用される透明電極(陽極)には、酸化インジウムスズ(ITO:Indium Tin Oxide)がこれまで使用されていた。フレキシブル性の観点から、ITOに代わる新しい電極材料が求められている。   The organic light emitting element utilizes a phenomenon (organic electroluminescence) in which an electric current is injected into an organic material to emit light. The organic light emitting device has a basic structure in which an anode, an organic layer, and a cathode are stacked. The anode is composed of a transparent conductive film provided on a transparent substrate. The organic layer includes a light emitting layer made of an organic light emitting material. The cathode is composed of a metal film. Conventionally, indium tin oxide (ITO) has been used for a transparent electrode (anode) used in an organic light emitting device. From the viewpoint of flexibility, there is a demand for a new electrode material that replaces ITO.

炭素のみで構成され、ハニカム構造を有するグラフェンは、高移動度、高いフレキシブル性、および高熱導電性を有する材料であるため、上記課題を解決する電極材料として期待されている。また、有機発光素子の陽極には低抵抗かつ高い透過率が求められる。これらの要求に応じて、グラフェン膜の高品質化を目的とする研究が盛んに進められてきた(特許文献1、特許文献2、および非特許文献1)。   Graphene composed of only carbon and having a honeycomb structure is a material having high mobility, high flexibility, and high thermal conductivity, and thus is expected as an electrode material that solves the above problems. Further, the anode of the organic light emitting device is required to have low resistance and high transmittance. In response to these requirements, research aimed at improving the quality of graphene films has been actively pursued (Patent Document 1, Patent Document 2, and Non-Patent Document 1).

一方、グラフェンを用いた有機発光素子の高輝度化と低電圧駆動化のため、主に化学ドーピング材料を用いて、グラフェンの仕事関数の増大化と低抵抗化を図ってきた。しかしながら、化学ドーピング材料は大気中であまり安定しない上、ドーピング材料が凝集して粒子となる場合があり、凝集した粒子がリーク電流の原因になる可能性がある。このため、化学ドーピング材料を使わないで、有機発光素子の高輝度化や低電圧駆動化が求められている。   On the other hand, in order to increase the brightness of organic light-emitting elements using graphene and to drive at a low voltage, the work function of graphene has been increased and the resistance has been reduced mainly by using chemical doping materials. However, the chemical doping material is not very stable in the atmosphere, and the doping material may agglomerate into particles, and the agglomerated particles may cause a leakage current. For this reason, there is a demand for higher brightness and lower voltage driving of organic light-emitting elements without using chemical doping materials.

また、一般的な有機発光素子は、陽極と有機発光材料の間に、ポリエチレンジオキシチオフェンとポリスルフォン酸の混合物(PEDOT:PSS)などの導電性ポリマーをホール注入層として挿入し、ホール注入効率を向上させている。このホール注入層の挿入は、グラフェン膜を陽極に用いる場合にも適用できると考えられる。グラフェン膜上にホール注入層を設ける場合は、グラフェン膜にホール注入層を均一に被覆する必要がある。   In general organic light emitting devices, a conductive polymer such as a mixture of polyethylenedioxythiophene and polysulfonic acid (PEDOT: PSS) is inserted as a hole injection layer between the anode and the organic light emitting material to improve the hole injection efficiency. Has improved. This insertion of the hole injection layer is considered to be applicable when a graphene film is used for the anode. When providing a hole injection layer on a graphene film, it is necessary to coat | cover a hole injection layer uniformly on a graphene film.

なお、特許文献3では、 陽極(透明電極)と、有機膜(ホール輸送層+有機発光層)と、陰極とから構成される有機発光素子において、陽極と有機膜の間に炭素膜を設けることにより、陽極と有機膜の界面で起きるダークスポットを抑制して、発光特性を向上させることを提案している。そして、ラマン分光測定で1550cm-1付近と1350cm-1付近にピークを持つラマンスペクトルを示し、高波数側の面積強度に対する低波数側の面積強度の相対強度の比が1.0以上3.0以下のアモルファスカーボンが、この炭素膜として用いられている。In Patent Document 3, in an organic light-emitting device composed of an anode (transparent electrode), an organic film (hole transport layer + organic light-emitting layer), and a cathode, a carbon film is provided between the anode and the organic film. Therefore, it has been proposed to suppress the dark spots generated at the interface between the anode and the organic film and improve the light emission characteristics. Then, it shows a Raman spectrum having a peak near 1550 cm -1 and near 1350 cm -1 in Raman spectroscopy, the ratio of the relative intensity of the area strength of the low frequency side with respect to the integrated intensity of the high frequency side is 1.0 to 3.0 The following amorphous carbon is used as this carbon film.

特開2012−162442号公報JP 2012-162442 A 特願2014−117973号Japanese Patent Application No. 2014-117773 特開2001−167890号公報JP 2001-167890 A

2014年第61回応用物理学会春季学術講演会20a-2E-122014 61st JSAP Spring Meeting, 20a-2E-12

これまで、ITO透明電極に代わる材料として、低抵抗かつ高い透過率を有するグラフェン膜に関する研究が進められていた。ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さいグラフェン膜は、この要求を満たす結晶性の良い高品質なグラフェン膜であることが判明している(非特許文献1参照)。しかしながら、グラフェン膜を高品質にすればするほど仕事関数が減少する等、グラフェンの表面状態が変わり、有機発光素子のホール注入の効率が悪くなるおそれがあることが判明した。   Until now, research on a graphene film having a low resistance and a high transmittance has been advanced as a material to replace the ITO transparent electrode. It has been found that a graphene film having a D band intensity smaller than that of a G band in a Raman spectrum is a high-quality graphene film with good crystallinity that satisfies this requirement (see Non-Patent Document 1). However, it has been found that the higher the quality of the graphene film, the lower the work function, and the surface state of the graphene changes, which may deteriorate the hole injection efficiency of the organic light emitting device.

本発明はこうした現状に鑑みてなされたものであり、透明導電膜としてグラフェン膜を用いた有機発光素子において、化学ドーピング材料なしで低抵抗かつ高仕事関数を有するグラフェン膜を提供することを目的とする。   The present invention has been made in view of the current situation, and aims to provide a graphene film having a low resistance and a high work function without a chemical doping material in an organic light emitting device using a graphene film as a transparent conductive film. To do.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、これまでの高品質グラフェン上に、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい第2のグラフェン膜を重ねることで、グラフェン膜自体の低抵抗を維持しつつ、グラフェンの仕事関数を増大させることができるという知見を得た。   As a result of intensive studies to achieve the above object, the inventors of the present invention superimpose a second graphene film whose D band intensity is higher than that of the G band in the Raman spectrum on the conventional high quality graphene. Thus, it was found that the work function of graphene can be increased while maintaining the low resistance of the graphene film itself.

本発明はこれらの知見に基づいて完成に至ったものであり、以下の発明が提供される。
[1]透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子であって、陽極と、ホール注入層と、有機発光層と、陰極とが、透明基材上にこの順で積層されており、陽極がグラフェン膜からなり、グラフェン膜が、第1のグラフェン膜と、第1のグラフェン膜の上に形成された第2のグラフェン膜とを備え、第2のグラフェン膜のシートキャリア密度が、第1のグラフェン膜のシートキャリア密度より大きい有機発光素子。
The present invention has been completed based on these findings, and the following inventions are provided.
[1] An organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode, wherein the anode, the hole injection layer, the organic light emitting layer, and the cathode are transparent. Laminated on the base material in this order, the anode is composed of a graphene film, the graphene film includes a first graphene film and a second graphene film formed on the first graphene film, An organic light emitting device in which the sheet carrier density of the second graphene film is larger than the sheet carrier density of the first graphene film.

[2]透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子であって、陽極と、ホール注入層と、有機発光層と、陰極とが、透明基材上にこの順で積層されており、陽極がグラフェン膜からなり、グラフェン膜が、第1のグラフェン膜と、第1のグラフェン膜の上に形成された第2のグラフェン膜とを備え、第2のグラフェン膜の仕事関数が、第1のグラフェン膜の仕事関数より大きい有機発光素子。 [2] An organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode, wherein the anode, the hole injection layer, the organic light emitting layer, and the cathode are transparent. Laminated on the base material in this order, the anode is composed of a graphene film, the graphene film includes a first graphene film and a second graphene film formed on the first graphene film, An organic light-emitting element in which the work function of the second graphene film is larger than that of the first graphene film.

[3]上記[1]または[2]において、第1のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さく、第2のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい有機発光素子。 [3] In the above [1] or [2], the first graphene film has a D-band intensity smaller than the G-band intensity in the Raman spectrum, and the second graphene film has a D-band intensity in the Raman spectrum. An organic light emitting device having an intensity greater than that of the G band.

[4]透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子の陽極材料であって、グラフェン膜からなり、グラフェン膜が、第1のグラフェン膜と第2のグラフェン膜が積層されており、第2のグラフェン膜のシートキャリア密度が、第1のグラフェン膜のシートキャリア密度より大きい有機発光素子の陽極材料。 [4] An anode material for an organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode, comprising a graphene film, and the graphene film is formed of a first graphene film An anode material for an organic light-emitting element in which a second graphene film is stacked and a sheet carrier density of the second graphene film is larger than a sheet carrier density of the first graphene film.

[5]透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子の陽極材料であって、グラフェン膜からなり、グラフェン膜が、第1のグラフェン膜と第2のグラフェン膜が積層されており、第2のグラフェン膜の仕事関数が、第1のグラフェン膜の仕事関数より大きい有機発光素子の陽極材料。 [5] An anode material for an organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode, comprising a graphene film, and the graphene film is formed of a first graphene film An anode material of an organic light-emitting element in which a second graphene film is stacked and a work function of the second graphene film is larger than that of the first graphene film.

[6]上記[4]または[5]において、第1のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さく、第2のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい有機発光素子の陽極材料。 [6] In the above [4] or [5], the first graphene film has a D band intensity smaller than the G band intensity in the Raman spectrum, and the second graphene film has a D band intensity in the Raman spectrum. An anode material for an organic light emitting device having an intensity greater than that of the G band.

本発明によれば、有機発光素子の輝度が高くなる。炭素原子が多数抜けている(格子欠陥)グラフェン膜、またはグラフェンのドメインサイズが小さい膜を、グラファイト膜上に機能性グラファイト膜として形成したので、有機発光素子の透明電極の仕事関数が増大し、ホール注入層が均一に塗布できたと考えられる。   According to the present invention, the luminance of the organic light emitting device is increased. Since a graphene film with many carbon atoms missing (lattice defects) or a film with a small graphene domain size is formed as a functional graphite film on the graphite film, the work function of the transparent electrode of the organic light emitting device is increased. It is considered that the hole injection layer was uniformly applied.

本発明の有機発光素子の構造を模式的に示す断面図。Sectional drawing which shows the structure of the organic light emitting element of this invention typically. 実施例で得られた高品質グラフェン膜のラマンスペクトルを示す図。The figure which shows the Raman spectrum of the high quality graphene film obtained in the Example. 実施例で得られた機能性グラフェン膜のラマンスペクトルを示す図。The figure which shows the Raman spectrum of the functional graphene film obtained in the Example. グラフェン膜の透明基板への転写方法を示す図。The figure which shows the transfer method of the graphene film to the transparent substrate. 実施例で得られた有機発光素子の輝度−電圧測定結果を示す図。The figure which shows the luminance-voltage measurement result of the organic light emitting element obtained in the Example. 比較例で得られた有機発光素子の輝度−電圧測定結果を示す図。The figure which shows the luminance-voltage measurement result of the organic light emitting element obtained by the comparative example. グラフェン膜のGバンド強度に対するDバンド強度の比と、シートキャリア密度の関係を示す図。The figure which shows the ratio of D band intensity with respect to G band intensity of a graphene film, and the relationship of a sheet carrier density.

以下、本発明の有機発光素子と陽極材料について、実施形態と実施例に基づいて説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれる。   Hereinafter, the organic light-emitting device and the anode material of the present invention will be described based on embodiments and examples. In addition, duplication description is abbreviate | omitted suitably. In addition, when “˜” is described between two numerical values to represent a numerical range, these two numerical values are also included in the numerical range.

図1に、本発明の実施形態に係る有機発光素子の断面を示す。図1に示すように、本実施形態の有機発光素子は、下から順番に透明基材101、陽極、ホール注入層104、有機発光層105、および陰極106で構成されている。陽極と陰極106の間に電圧を印加することで、陽極からはホールを、陰極106からは電子を有機発光層105に注入して発光させる。陽極はグラフェン膜からなり、第1のグラフェン膜(以下、「高品質グラフェン膜」ということがある)102と、第1のグラフェン膜102の上に形成された第2のグラフェン膜(以下、「機能性グラフェン膜」ということがある)103が積層されている。 FIG. 1 shows a cross section of an organic light emitting device according to an embodiment of the present invention. As shown in FIG. 1, the organic light-emitting device of this embodiment includes a transparent substrate 101, an anode, a hole injection layer 104, an organic light-emitting layer 105, and a cathode 106 in order from the bottom. By applying a voltage between the anode and the cathode 106, positive electrode or colleagues holes, from the cathode 106 to emit light by injecting electrons into the organic light-emitting layer 105. The anode is made of a graphene film, and includes a first graphene film (hereinafter sometimes referred to as “high-quality graphene film”) 102 and a second graphene film (hereinafter referred to as “the graphene film”) formed on the first graphene film 102. 103) (sometimes referred to as “functional graphene film”).

第2のグラフェン膜103のシートキャリア密度は、第1のグラフェン膜102のシートキャリア密度より大きい。これに代えて、またはこれと併せて、第2のグラフェン膜103の仕事関数が、第1のグラフェン膜102の仕事関数より大きくてもよい。さらに、本実施形態では、第1のグラフェン膜102は、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さく、第2のグラフェン膜103は、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい。   The sheet carrier density of the second graphene film 103 is larger than the sheet carrier density of the first graphene film 102. Instead of or in combination with this, the work function of the second graphene film 103 may be larger than the work function of the first graphene film 102. Further, in the present embodiment, the first graphene film 102 has a D-band intensity smaller than the G-band intensity in the Raman spectrum, and the second graphene film 103 has a D-band intensity in the Raman spectrum of the G-band intensity. Greater than.

高品質グラフェン膜102は、プラズマ処理を用いた以下の方法によって作製される (特許文献2参照)。すなわち、基板を加熱しながら、プラズマにより生成された荷電粒子や電子のエネルギーで基板中の炭素成分を活性化するとともに、基板や周囲に存在する炭素源を用いてグラフェンを生成する。炭素源としては、炭素が溶けにくい金属である銅、イリジウム、白金、またはこれらの金属との炭素アロイからなる基板に含まれている炭素成分、反応容器内に付着した微量の炭素成分、またはプラズマ処理に用いるガス中に含まれる微量の炭素成分などが挙げられる。   The high-quality graphene film 102 is manufactured by the following method using plasma treatment (see Patent Document 2). That is, while heating the substrate, the carbon component in the substrate is activated by the energy of charged particles and electrons generated by the plasma, and graphene is generated using a carbon source existing in the substrate and the surroundings. Carbon sources include copper, iridium, platinum, which are metals that are difficult to dissolve carbon, or carbon components contained in substrates made of carbon alloys with these metals, trace amounts of carbon components attached to the reaction vessel, or plasma. The trace amount carbon component contained in the gas used for a process is mentioned.

この方法によれば、従来の熱CVD法や樹脂炭化法と比較して、より短時間でグラフェン形成が可能である。金属製基板の炭素含有量は4ppm〜10000ppmであることが望ましい、また、基板の表面粗さRaは200nm〜0.095nmであることが望ましい。さらに、900℃以下で基板を加熱することが望ましい。   According to this method, it is possible to form graphene in a shorter time compared with the conventional thermal CVD method and resin carbonization method. The carbon content of the metal substrate is desirably 4 ppm to 10000 ppm, and the surface roughness Ra of the substrate is desirably 200 nm to 0.095 nm. Furthermore, it is desirable to heat the substrate at 900 ° C. or lower.

一方、機能性グラフェン膜103は、プラズマCVD合成装置を用いた以下の方法によって作製される(特許文献1参照)。すなわち、炭素含有ガス、または炭素含有ガスと不活性ガスの混合ガスを原料ガスとして用いて、基板の温度を低温にした状態でプラズマ処理する。炭素含有ガスとしては、メタン、エチレン、アセチレン、エタノール、アセトン、またはメタノールなどが挙げられる。不活性ガスとしては、ヘリウム、ネオン、アルゴンなどが挙げられる。CVD処理時の基板温度は、例えば500℃以下であり、好ましくは200℃〜450℃である。   On the other hand, the functional graphene film 103 is manufactured by the following method using a plasma CVD synthesis apparatus (see Patent Document 1). That is, plasma treatment is performed in a state where the temperature of the substrate is lowered using a carbon-containing gas or a mixed gas of a carbon-containing gas and an inert gas as a source gas. Examples of the carbon-containing gas include methane, ethylene, acetylene, ethanol, acetone, or methanol. Examples of the inert gas include helium, neon, and argon. The substrate temperature at the time of CVD processing is 500 degrees C or less, for example, Preferably it is 200 to 450 degreeC.

なお、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さいグラフェン膜が得られれば、高品質グラフェン膜102の作製方法は特に制限がない。また、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きいグラフェン膜が得られれば、機能性グラフェン膜103の作製方法は特に制限がない。高品質グラフェンの他の作製方法としては、例えば熱CVD法が挙げられる。また、機能性グラフェンの他の作製方法としては、例えば低温での熱CVD法が挙げられる。   Note that there is no particular limitation on the method for manufacturing the high-quality graphene film 102 as long as a graphene film with a lower D-band intensity than a G-band intensity is obtained in the Raman spectrum. There is no particular limitation on the method for manufacturing the functional graphene film 103 as long as a graphene film with a higher D band intensity than a G band intensity is obtained in the Raman spectrum. As another method for producing high-quality graphene, for example, a thermal CVD method can be given. Another method for producing functional graphene is, for example, a thermal CVD method at a low temperature.

図2Aは、後述する実施例において得られた高品質グラフェン膜ラマンスペクトルを示している。図2Bは、後述する実施例において得られた機能性グラフェン膜のラマンスペクトルを示している。なお、ラマン分光測定では、波長638nmのレーザー光を使用した。図2Aでは、Dバンド(〜1350cm-1)の強度(ID)がGバンド(〜1585cm-1)の強度(IG)より小さく(ID<IG)、強い2Dピークが出ているのが特徴である。一方、図2Bでは、Dバンドの強度がGバンドの強度より大きい(ID>IG)。2Dバンドが小さいことも特徴であるが、本発明では2Dバンドの強度を問わない。 FIG. 2A shows the Raman spectrum of the high-quality graphene film obtained in the examples described later. FIG. 2B shows the Raman spectrum of the functional graphene film obtained in the examples described later. In the Raman spectroscopic measurement, a laser beam having a wavelength of 638 nm was used. In FIG. 2A, the intensity (ID) of the D band (˜1350 cm −1 ) is smaller than the intensity (IG) of the G band (˜1585 cm −1 ) (ID <IG), and a strong 2D peak appears. is there. On the other hand, in FIG. 2B, the intensity of the D band is greater than the intensity of the G band (ID> IG). Although the 2D band is small, the strength of the 2D band is not limited in the present invention.

Dバンドは、格子欠陥の数、ドメインサイズ、またはグラフェンのエッジ構造を反映していると考えられている。特にID/IGはグラフェンのドメインサイズを見積もるときに使われている。ドメインサイズを見積もる計算式は、La(nm)=(2.4×10-104(ID/IG)-1で与えられており、λはラマン分光測定に用いるレーザー光の波長である(APL 88,163106(2006))。ID/IG=1の場合、ドメインサイズは約40nmとなる。これらの見積もりから、高品質グラフェン膜は、平均ドメインサイズ40nm以上のフレークが集まった膜であると換言できる。また、機能性グラフェン膜は、平均ドメインサイズ40nm以下のフレークが集まった膜であると換言できる。The D band is thought to reflect the number of lattice defects, the domain size, or the graphene edge structure. In particular, ID / IG is used to estimate the domain size of graphene. The calculation formula for estimating the domain size is given by La (nm) = (2.4 × 10 −10 ) λ 4 (ID / IG) −1 , where λ is the wavelength of the laser beam used for Raman spectroscopic measurement. (APL 88, 163106 (2006)). In the case of ID / IG = 1, the domain size is about 40 nm. From these estimates, it can be said that the high-quality graphene film is a film in which flakes having an average domain size of 40 nm or more are collected. In other words, the functional graphene film is a film in which flakes having an average domain size of 40 nm or less are collected.

本発明では、機能性グラフェン膜の仕事関数の増大は、シートキャリア密度の増大によると考えられる。グラフェン膜に多数の欠陥が存在すれば、結合していないボンド(ダングリングボンド)が多数存在しており、それに起因するキャリアが多く生成されている。多数のキャリアが存在することで、理想的なグラフェンのフェルミレベルが変化する。なお、本実施形態の有機発光素子は、機能性グラフェン膜の仕事関数の増大以外にも、次の要因で有機発光特性が向上した可能性がある。まず、ドメインサイズが数十nm以下の機能性グラフェン膜による表面プラズモン効果や、この構造に起因した光乱反射効果が考えられる。また、機能性グラフェン膜を用いることで、陽極表面の濡れ性が向上し、ホール注入層の膜厚均一性が向上したことも考えられる。   In the present invention, the increase in the work function of the functional graphene film is considered to be due to the increase in the sheet carrier density. If there are a large number of defects in the graphene film, there are a large number of unbonded bonds (dangling bonds), and many carriers are generated due to the bonds. The presence of a large number of carriers changes the ideal Fermi level of graphene. In addition to the increase in the work function of the functional graphene film, the organic light emitting device of the present embodiment may have improved organic light emitting characteristics due to the following factors. First, a surface plasmon effect due to a functional graphene film having a domain size of several tens of nanometers or less and a diffused light reflection effect due to this structure can be considered. It is also conceivable that the use of the functional graphene film improves the wettability of the anode surface and improves the film thickness uniformity of the hole injection layer.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(高品質グラフェン膜の製造)
まず、厚さ10μm程度の銅箔を触媒金属として準備し、表面波プラズマCVDチャンバー中にセットした。つぎに、通電加熱で銅箔の温度を約900℃に維持しながら、水素(200sccm) 雰囲気でプラズマを45秒間銅箔に照射して高品質グラフェン膜を得た。図2Aに、得られた高品質グラフェン膜のラマンスペクトルを示す。
(Manufacture of high quality graphene film)
First, a copper foil having a thickness of about 10 μm was prepared as a catalyst metal and set in a surface wave plasma CVD chamber. Next, the copper foil was irradiated with plasma in a hydrogen (200 sccm) atmosphere for 45 seconds while maintaining the temperature of the copper foil at about 900 ° C. by energization heating to obtain a high-quality graphene film. FIG. 2A shows a Raman spectrum of the obtained high quality graphene film.

(機能性グラフェン膜の製造)
機能性グラフェン膜の製造方法は、以下の通りである。
まず、銅箔を触媒金属として準備し、表面波プラズマCVDチャンバー中にセットした。つぎに、水素ヘリウム(H2/He=50sccm/10sccm)雰囲気でプラズマを20分間銅箔に照射し、銅箔の表面をクリーニングした。そして、メタン水素ヘリウム(CH4/H2/He=50sccm/10sccm/20sccm)を導入し、プラズマを2分間銅箔に照射して機能性グラフェン膜を得た。なお、意図的な加熱は行っていない。図2Bに、得られた機能性グラフェン膜のラマンスペクトルを示す。
(Manufacture of functional graphene film)
The manufacturing method of the functional graphene film is as follows.
First, a copper foil was prepared as a catalyst metal and set in a surface wave plasma CVD chamber. Next, the copper foil was irradiated with plasma in an atmosphere of hydrogen helium (H 2 / He = 50 sccm / 10 sccm) for 20 minutes to clean the surface of the copper foil. Then, helium methane hydrogen (CH 4 / H 2 / He = 50 sccm / 10 sccm / 20 sccm) was introduced, and plasma was irradiated to the copper foil for 2 minutes to obtain a functional graphene film. Intentional heating is not performed. FIG. 2B shows a Raman spectrum of the obtained functional graphene film.

(有機発光素子の製造)
透明な基板として40mm×40mmのPET基板を用意し、以下のようにして、高品質グラフェン膜と機能性グラフェン膜をPET基板上に剥離・転写した。図3は、グラフェン膜を銅箔から剥離させ、透明基板に転写する手順を示している。まず、図3(a)に示すように、銅箔107上に形成した高品質グラフェン膜102を、熱剥離シート108(日東電工社製、リバアルファー)に貼り合わせた。つぎに、0.5mol/Lの過硫酸アンモニウムを用いて銅箔107をエッチングした後、流水で洗浄して高品質グラフェン膜付き熱剥離シートを得た。同様にして、図3(b)に示すように、機能性グラフェン膜付き熱剥離シートを得た。そして、高品質グラフェン膜付き熱剥離シートの高品質グラフェン膜の面を透明基板101に貼り付けた後、加熱により熱剥離シートを剥離して、図3(c) に示すように、透明基板101上に高品質グラフェン膜102を形成した。
(Manufacture of organic light emitting devices)
A 40 mm × 40 mm PET substrate was prepared as a transparent substrate, and a high-quality graphene film and a functional graphene film were peeled and transferred onto the PET substrate as follows. FIG. 3 shows a procedure for peeling the graphene film from the copper foil and transferring it to the transparent substrate. First, as shown in FIG. 3A, the high-quality graphene film 102 formed on the copper foil 107 was bonded to a heat release sheet 108 (manufactured by Nitto Denko Corporation, Riba Alpha). Next, after etching the copper foil 107 with 0.5 mol / L ammonium persulfate, the copper foil 107 was washed with running water to obtain a high-quality graphene film-attached thermal release sheet. Similarly, as shown in FIG.3 (b), the thermal peeling sheet | seat with a functional graphene film was obtained. Then, after the surface of the high quality graphene film of the high quality graphene film-attached heat release sheet is attached to the transparent substrate 101, the heat release sheet is peeled off by heating, and as shown in FIG. A high quality graphene film 102 was formed thereon.

さらに、同様にして、高品質グラフェン膜102上に、機能性グラフェン膜付き熱剥離シートを重ねた。そして、図3(d)に示すように、熱剥離シートを除去することで、透明基板101上に2種類のグラフェン膜102,103が積層した透明導電膜を作製した。4端子測定によって、得られた透明導電膜のシート抵抗を測定した。4か所測定したときのシート抵抗の平均値は約1000Ωであった。なお、あらかじめ高品質グラフェン膜102と機能性グラフェン膜103を貼り合わせてもよい。高品質グラフェン膜102と機能性グラフェン膜103を貼り合わせた積層体は、有機発光素子の陽極材料として流通できる。   Further, in the same manner, a heat release sheet with a functional graphene film was stacked on the high-quality graphene film 102. Then, as shown in FIG. 3 (d), by removing the thermal release sheet, a transparent conductive film in which two types of graphene films 102 and 103 were laminated on the transparent substrate 101 was produced. The sheet resistance of the obtained transparent conductive film was measured by 4-terminal measurement. The average value of the sheet resistance when measuring four places was about 1000Ω. Note that the high-quality graphene film 102 and the functional graphene film 103 may be attached in advance. A stacked body in which the high-quality graphene film 102 and the functional graphene film 103 are bonded can be distributed as an anode material of the organic light-emitting element.

そして、ホール注入層に対する濡れ性を向上させるために、UVオゾン処理装置(Filgen社製)を用いて、UVオゾンを透明導電膜に20分間照射した。なお、別実験で、透明導電膜のシート抵抗と、UVオゾンをこの透明導電膜に20分間照射した後のシート抵抗を測定したが、シート抵抗はほとんど変化がなかった。透明導電膜にUVオゾン処理を行った後、有機発光素子に関する材料を積層していった。まず、スピンコートによりホール注入層の材料であるPEDOT:PSSを塗布した後、プリベークによってホール注入層104を形成した。   And in order to improve the wettability with respect to a hole injection layer, UV ozone was irradiated to the transparent conductive film for 20 minutes using UV ozone processing apparatus (made by Filgen). In another experiment, the sheet resistance of the transparent conductive film and the sheet resistance after irradiating the transparent conductive film with UV ozone for 20 minutes were measured, but the sheet resistance hardly changed. After the UV ozone treatment was performed on the transparent conductive film, materials related to the organic light emitting device were laminated. First, PEDOT: PSS, which is a material for the hole injection layer, was applied by spin coating, and then the hole injection layer 104 was formed by pre-baking.

つぎに、有機発光材料(MERCK社製、SUPER YELLOW) のトルエン溶液をスピンコートした後、プリベークによって有機発光層105を形成した。そして、真空蒸着装置を用いて、有機発光層105にLiF/Alを蒸着して陰極106を形成した。つぎに、可能な限り有機発光材料が劣化しないように有機発光素子を封止した。すなわち、乾燥剤(SAES Getters社製、DryPaste)を陰極106上に載せた後、周囲から有機発光素子に湿気が入らないように、有機発光素子をフッ素樹脂テープ(日東電工株式会社製、テフロンテープ)で覆った。   Next, after spin-coating a toluene solution of an organic light emitting material (manufactured by MERCK, SUPER YELLOW), the organic light emitting layer 105 was formed by pre-baking. Then, using a vacuum deposition apparatus, LiF / Al was deposited on the organic light emitting layer 105 to form the cathode 106. Next, the organic light emitting device was sealed so that the organic light emitting material was not deteriorated as much as possible. That is, after placing a desiccant (SAES Getters, Dry Paste) on the cathode 106, the organic light-emitting element is made of a fluororesin tape (manufactured by Nitto Denko Corporation, Teflon tape so that moisture does not enter the organic light-emitting element from the surroundings. ).

(電流−電圧測定および輝度測定)
ソースメータ(ケースレー社製、2400)を用いて、5つの有機発光素子の電流−電圧測定を行った。また、輝度計(TOPCON社製、BM9) を用いて、これら5つの有機発光素子の輝度測定を行った。これらの測定に基づいた輝度−電圧測定結果を図4Aに示す。図4Aに示すように、15Vの電圧を印加したとき、250cd/m2〜550cd/m2の輝度を示した。
(Current-voltage measurement and brightness measurement)
Using a source meter (manufactured by Keithley, 2400), current-voltage measurements of five organic light emitting devices were performed. Moreover, the luminance measurement of these five organic light emitting elements was performed using the luminance meter (Topcon company make, BM9). FIG. 4A shows the luminance-voltage measurement results based on these measurements. As shown in FIG. 4A, when a voltage is applied to the 15V, it indicates the luminance of 250cd / m 2 ~550cd / m 2 .

(比較例)
機能性グラフェン膜の有用性を確かめるため、陽極が高品質グラフェン膜のみからなる、すなわち陽極に機能性グラフェン膜がない有機発光素子を比較例として作製した。比較例の有機発光素子の作製手順と評価項目は、実施例の有機発光素子とほぼ同じである。比較例の透明導電膜のシート抵抗は約1000Ωであり、実施例の透明導電膜のシート抵抗と同程度の値を示した。比較例の5つの有機発光素子の輝度−電圧測定結果を図4Bに示す。15Vの電圧を印加したとき、75cd/m2〜150cd/m2の輝度を示した。実施例と比較例の評価結果から、陽極に機能性グラフェン膜を使用することで、有機発光素子の輝度を数倍に増大できる可能性を示した。
(Comparative example)
In order to confirm the usefulness of the functional graphene film, an organic light-emitting device in which the anode is composed of only a high-quality graphene film, that is, the functional graphene film is not provided on the anode, was manufactured as a comparative example. The production procedure and evaluation items of the organic light emitting device of the comparative example are substantially the same as those of the organic light emitting device of the example. The sheet resistance of the transparent conductive film of the comparative example was about 1000Ω, which was the same value as the sheet resistance of the transparent conductive film of the example. The brightness-voltage measurement results of the five organic light emitting devices of the comparative examples are shown in FIG. 4B. When a voltage of 15 V was applied, the luminance was 75 cd / m 2 to 150 cd / m 2 . From the evaluation results of the examples and comparative examples, it was shown that the luminance of the organic light-emitting element can be increased several times by using a functional graphene film for the anode.

(シートキャリア密度の測定)
グラフェンのシートキャリア密度は仕事関数(フェルミレベル)を反映した値となっている。そこで、高品質グラフェン膜と機能性グラフェン膜のシートキャリア密度をホール効果測定により見積もった。測定には、フォトリソグラフィを用いて作製したグラフェンデバイス(van der Pauw素子)を用いた。また、同一デバイスのラマン分光測定を行い、DバンドとGバンドの強度比を求め、グラフェンの品質を評価した。測定に用いた高品質グラフェン膜と機能性グラフェン膜は、上記の「高品質グラフェン膜の製造」と「機能性グラフェン膜の製造」と同様の方法で、基板加熱温度、ガス流量、合成時間を変えて作製した。
(Measurement of sheet carrier density)
The sheet carrier density of graphene reflects the work function (Fermi level). Therefore, the sheet carrier density of high-quality graphene film and functional graphene film was estimated by Hall effect measurement. For the measurement, a graphene device (van der Pauw element) manufactured using photolithography was used. In addition, Raman spectroscopic measurement of the same device was performed, the intensity ratio of the D band and G band was obtained, and the quality of graphene was evaluated. The high-quality graphene film and functional graphene film used for the measurement are the same as the above-mentioned `` manufacturing high-quality graphene film '' and `` manufacturing functional graphene film ''. Made by changing.

図5は、Gバンドの強度に対するDバンドの強度の比と、シートキャリア密度の関係を示す。高品質グラフェン膜では、Gバンドの強度に対するDバンドの強度の比が0.6以下で、シートキャリア密度が0.5×1012 1/cm〜1.5×1013 1/cmであった。一方、機能性グラフェン膜では、Gバンドの強度に対するDバンドの強度の比が1.0以上で、シートキャリア密度が2.5×1013 1/cm〜4.4×1013 1/cmであった。高品質グラフェンは、Gバンドの強度に対するDバンドの強度の比が低く、キャリア密度が低い傾向にある。一方、機能性グラフェン膜は、Gバンドの強度に対するDバンドの強度の比が高く、シートキャリア密度が高い。この結果によれば、機能性グラフェン膜の仕事関数は、高品質グラフェン膜の仕事関数より増大していると推測される。FIG. 5 shows the relationship between the ratio of the intensity of the D band to the intensity of the G band and the sheet carrier density. In the high quality graphene film, the ratio of the intensity of the D band to the intensity of the G band is 0.6 or less, and the sheet carrier density is 0.5 × 10 12 1 / cm 2 to 1.5 × 10 13 1 / cm 2 . there were. On the other hand, in the functional graphene film, the ratio of the intensity of the D band to the intensity of the G band is 1.0 or more, and the sheet carrier density is 2.5 × 10 13 1 / cm 2 to 4.4 × 10 13 1 / cm. 2 . High-quality graphene has a low ratio of the intensity of the D band to the intensity of the G band and tends to have a low carrier density. On the other hand, the functional graphene film has a high ratio of D band intensity to G band intensity and a high sheet carrier density. According to this result, it is presumed that the work function of the functional graphene film is higher than the work function of the high-quality graphene film.

本発明によれば、高品質グラフェン膜と機能性グラフェン膜をそれぞれ選択することにより、シートキャリア密度や仕事関数が自由に変えられる陽極を有機発光素子に形成できる。このため、本発明は有機発光素子の製造に有用である。   According to the present invention, an anode whose sheet carrier density and work function can be freely changed can be formed in an organic light emitting device by selecting a high-quality graphene film and a functional graphene film, respectively. For this reason, this invention is useful for manufacture of an organic light emitting element.

Claims (6)

透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子であって、
前記陽極と、前記ホール注入層と、前記有機発光層と、前記陰極とが、前記透明基材上にこの順で積層されており、
前記陽極がグラフェン膜からなり、
前記グラフェン膜が、第1のグラフェン膜と、前記第1のグラフェン膜の上に形成された第2のグラフェン膜とを備え、
前記第2のグラフェン膜が、平均ドメインサイズ40nm以下のフレークが集まったグラフェンの膜であり、
前記第2のグラフェン膜のシートキャリア密度が、前記第1のグラフェン膜のシートキャリア密度より大きい有機発光素子。
An organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode,
And the anode, and the hole injection layer, and the organic light emitting layer, and the cathode are laminated in this order on the transparent substrate,
The anode comprises a graphene film;
The graphene film includes a first graphene film and a second graphene film formed on the first graphene film,
The second graphene film is a graphene film in which flakes having an average domain size of 40 nm or less are collected,
An organic light emitting device in which a sheet carrier density of the second graphene film is larger than a sheet carrier density of the first graphene film.
透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子であって、
前記陽極と、前記ホール注入層と、前記有機発光層と、前記陰極とが、前記透明基材上にこの順で積層されており、
前記陽極がグラフェン膜からなり、
前記グラフェン膜が、第1のグラフェン膜と、前記第1のグラフェン膜の上に形成された第2のグラフェン膜とを備え、
前記第2のグラフェン膜が、平均ドメインサイズ40nm以下のフレークが集まったグラフェンの膜であり、
前記第2のグラフェン膜の仕事関数が、前記第1のグラフェン膜の仕事関数より大きい有機発光素子。
An organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode,
And the anode, and the hole injection layer, and the organic light emitting layer, and the cathode are laminated in this order on the transparent substrate,
The anode comprises a graphene film;
The graphene film includes a first graphene film and a second graphene film formed on the first graphene film,
The second graphene film is a graphene film in which flakes having an average domain size of 40 nm or less are collected,
An organic light emitting device in which a work function of the second graphene film is larger than a work function of the first graphene film.
請求項1または2において、
前記第1のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さく、
前記第2のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい有機発光素子。
In claim 1 or 2,
In the Raman spectrum, the first graphene film has a D band intensity smaller than a G band intensity,
The organic light-emitting element in which the second graphene film has a D-band intensity greater than a G-band intensity in a Raman spectrum.
透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子の陽極材料であって、
グラフェン膜からなり、
前記グラフェン膜が、第1のグラフェン膜と第2のグラフェン膜が積層されており、
前記第2のグラフェン膜が、平均ドメインサイズ40nm以下のフレークが集まったグラフェンの膜であり、
前記第2のグラフェン膜のシートキャリア密度が、前記第1のグラフェン膜のシートキャリア密度より大きい有機発光素子の陽極材料。
An anode material of an organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode,
Made of graphene film,
The graphene film is formed by laminating a first graphene film and a second graphene film,
The second graphene film is a graphene film in which flakes having an average domain size of 40 nm or less are collected,
An anode material for an organic light emitting device, wherein a sheet carrier density of the second graphene film is larger than a sheet carrier density of the first graphene film.
透明基材と、陽極と、ホール注入層と、有機発光層と、陰極とを有する有機発光素子の陽極材料であって、
グラフェン膜からなり、
前記グラフェン膜が、第1のグラフェン膜と第2のグラフェン膜が積層されており、
前記第2のグラフェン膜が、平均ドメインサイズ40nm以下のフレークが集まったグラフェンの膜であり、
前記第2のグラフェン膜の仕事関数が、前記第1のグラフェン膜の仕事関数より大きい有機発光素子の陽極材料。
An anode material of an organic light emitting device having a transparent substrate, an anode, a hole injection layer, an organic light emitting layer, and a cathode,
Made of graphene film,
The graphene film is formed by laminating a first graphene film and a second graphene film,
The second graphene film is a graphene film in which flakes having an average domain size of 40 nm or less are collected,
An anode material of an organic light emitting element, wherein a work function of the second graphene film is larger than a work function of the first graphene film.
請求項4または5において、
前記第1のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より小さく、
前記第2のグラフェン膜が、ラマンスペクトルにおいてDバンドの強度がGバンドの強度より大きい有機発光素子の陽極材料。
In claim 4 or 5,
In the Raman spectrum, the first graphene film has a D band intensity smaller than a G band intensity,
The second graphene film is an anode material for an organic light-emitting element in which the intensity of the D band is greater than the intensity of the G band in the Raman spectrum.
JP2016548861A 2014-09-16 2015-09-10 Organic light emitting device and anode material Active JP6388953B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014188104 2014-09-16
JP2014188104 2014-09-16
PCT/JP2015/075753 WO2016043123A1 (en) 2014-09-16 2015-09-10 Organic light-emitting element and positive electrode material thereof

Publications (2)

Publication Number Publication Date
JPWO2016043123A1 JPWO2016043123A1 (en) 2017-07-13
JP6388953B2 true JP6388953B2 (en) 2018-09-12

Family

ID=55533161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016548861A Active JP6388953B2 (en) 2014-09-16 2015-09-10 Organic light emitting device and anode material

Country Status (2)

Country Link
JP (1) JP6388953B2 (en)
WO (1) WO2016043123A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225736A1 (en) * 2017-06-07 2018-12-13 国立研究開発法人産業技術総合研究所 Method for improving electrical conductivity of graphene sheet and electrode structure which uses graphene sheet having improved electrical conductivity
JP7558569B2 (en) 2021-04-15 2024-10-01 国立研究開発法人産業技術総合研究所 Graphene laminate and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG184904A1 (en) * 2010-05-05 2012-11-29 Univ Singapore Hole doping of graphene
KR101237351B1 (en) * 2011-05-27 2013-03-04 포항공과대학교 산학협력단 Electrode and electronic device comprising the same
JP2013211212A (en) * 2012-03-30 2013-10-10 Toshiba Corp Laminated electrode, manufacturing method therefor and photoelectric conversion element
JP2013249530A (en) * 2012-06-04 2013-12-12 National Institute Of Advanced Industrial Science & Technology Method for producing graphene and graphene

Also Published As

Publication number Publication date
WO2016043123A1 (en) 2016-03-24
JPWO2016043123A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
Kim et al. High performance flexible transparent electrode via one‐step multifunctional treatment for Ag nanonetwork composites semi‐embedded in low‐temperature‐processed substrate for highly performed organic photovoltaics
Zhang et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
Frey et al. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes
Singh et al. Molecular n-doping of chemical vapor deposition grown graphene
Lee et al. Alternating‐current MXene polymer light‐emitting diodes
Sanders et al. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics
US8969115B2 (en) Transparent conductive electrode stack containing carbon-containing material
Zhu et al. The application of single-layer graphene modified with solution-processed TiOx and PEDOT: PSS as a transparent conductive anode in organic light-emitting diodes
Yang et al. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping
TW201622196A (en) Solar cell
Ji et al. Layer‐number‐dependent electronic and optoelectronic properties of 2D WSe2‐organic hybrid heterojunction
JP6388953B2 (en) Organic light emitting device and anode material
Kwon et al. Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes
Kwon et al. Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants
Rafique et al. Moderately reduced graphene oxide via UV-ozone treatment as hole transport layer for high efficiency organic solar cells
KR101802946B1 (en) Process for formation of metal oxide film on graphene
JP6725122B2 (en) Method for improving conductivity of graphene sheet and electrode structure using graphene sheet with improved conductivity
KR101798720B1 (en) Method for manufacturing graphene using pre-doping and multy-layer graphene manufactured by the same
Lock et al. Dry graphene transfer print to polystyrene and ultra-high molecular weight polyethylene− Detailed chemical, structural, morphological and electrical characterization
KR101781837B1 (en) Methods of manufacturing and reducing graphene oxide film, organic electro-luminescent device using the graphene oxide film as a hole injection layer
JP6663142B2 (en) Organic electroluminescent device
Kwang Cho et al. Electrical, electronic and optical characterization of multilayer graphene films for transparent electrodes
Moon et al. Large area organic light emitting diodes with multilayered graphene anodes
KR101613558B1 (en) Method for doping graphene layer
KR101461977B1 (en) Method for doping graphene layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250