JP6385625B1 - Accelerator and particle beam therapy system - Google Patents

Accelerator and particle beam therapy system Download PDF

Info

Publication number
JP6385625B1
JP6385625B1 JP2018524498A JP2018524498A JP6385625B1 JP 6385625 B1 JP6385625 B1 JP 6385625B1 JP 2018524498 A JP2018524498 A JP 2018524498A JP 2018524498 A JP2018524498 A JP 2018524498A JP 6385625 B1 JP6385625 B1 JP 6385625B1
Authority
JP
Japan
Prior art keywords
rotating
electrode
accelerator
charged particles
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524498A
Other languages
Japanese (ja)
Other versions
JPWO2019123617A1 (en
Inventor
智行 岩脇
智行 岩脇
裕次 宮下
裕次 宮下
大士 永友
大士 永友
裕介 坂本
裕介 坂本
啓 井上
啓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6385625B1 publication Critical patent/JP6385625B1/en
Publication of JPWO2019123617A1 publication Critical patent/JPWO2019123617A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Abstract

回転方向ごとに異なる出射エネルギーに対応させて高周波電場の周波数変調を行うことが可能な回転コンデンサー備えた加速器を提供する。加速器は、荷電粒子を加速させる加速電極(4)と、加速電極(4)に電力を供給し、高周波電場を発生させる加速空洞(5)と、加速空洞(5)の共振周波数を変調させる回転コンデンサー(10)とを備える。回転コンデンサー(10)は、順方向及び逆方向の双方に回転し、回転方向ごとに異なる静電容量の時間変化をとる。回転方向ごとに異なる静電容量の時間変化をそれぞれ異なる出射エネルギーに対応させて周波数変調を行う。Provided is an accelerator equipped with a rotating capacitor capable of performing frequency modulation of a high-frequency electric field corresponding to different emission energy for each rotation direction. The accelerator supplies an acceleration electrode (4) for accelerating charged particles, an acceleration cavity (5) for supplying electric power to the acceleration electrode (4) and generating a high-frequency electric field, and a rotation for modulating the resonance frequency of the acceleration cavity (5). A capacitor (10). The rotating capacitor (10) rotates both in the forward direction and in the reverse direction, and takes a time change in capacitance that differs depending on the rotation direction. Frequency modulation is performed in such a manner that the change in capacitance with time in each rotation direction corresponds to different emission energy.

Description

本発明は、回転コンデンサーを備えた加速器及び粒子線治療装置に関する。  The present invention relates to an accelerator including a rotating condenser and a particle beam therapy system.

近年、陽子線や炭素線等の粒子線を腫瘍に照射して治療する粒子線治療が注目されている。粒子線治療では、粒子線を発生させるために、荷電粒子を高エネルギーまで加速する加速器が用いられる。加速器は、荷電粒子の周回周波数に同期した高周波電場を形成し、荷電粒子を所定のエネルギーまで加速させる。荷電粒子を所定のエネルギーまで加速させるには、高周波電場の周波数変調を行い、荷電粒子の周回周波数に一致させることが必要である。そこで、高周波電場の周波数変調を行う回転コンデンサーを備えた加速器が開発されている。特許文献1には、渦電流を抑制して発熱を低減することが可能な回転コンデンサーを備えた加速器が開示されている。  In recent years, particle beam therapy in which a tumor is irradiated with a particle beam such as a proton beam or a carbon beam has attracted attention. In particle beam therapy, an accelerator that accelerates charged particles to high energy is used to generate a particle beam. The accelerator forms a high-frequency electric field synchronized with the circulating frequency of the charged particles, and accelerates the charged particles to a predetermined energy. In order to accelerate the charged particles to a predetermined energy, it is necessary to perform frequency modulation of the high-frequency electric field so as to match the frequency of the charged particles. Therefore, an accelerator equipped with a rotating capacitor that performs frequency modulation of a high-frequency electric field has been developed. Patent Document 1 discloses an accelerator including a rotating condenser capable of suppressing eddy currents and reducing heat generation.

特開2013−157556号公報JP 2013-157556 A

しかしながら、荷電粒子を所定のエネルギーまで加速させるには、エネルギーの大きさに応じて適した周波数変調を行う必要があり、従来の回転コンデンサーでは異なるエネルギーに対応させて高周波電場の周波数変調を行うことが困難であるという課題があった。  However, in order to accelerate charged particles to a predetermined energy, it is necessary to perform frequency modulation suitable for the magnitude of energy, and conventional rotary capacitors perform frequency modulation of the high-frequency electric field corresponding to different energies. There was a problem that it was difficult.

本発明は、上述のような課題を解決するためになされたもので、荷電粒子の異なるエネルギーに対応させて高周波電場の周波数変調を行うことが可能な回転コンデンサー備えた加速器を提供することを目的とする。また、加速器を備えた粒子線治療装置を提供することを目的とする。  The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an accelerator including a rotating capacitor capable of performing frequency modulation of a high-frequency electric field corresponding to different energy of charged particles. And Moreover, it aims at providing the particle beam therapy apparatus provided with the accelerator.

本発明に係る加速器は、荷電粒子を加速する加速電極と、加速電極に電力を供給し、高周波電場を発生させる加速空洞と、順方向及び逆方向の双方に回転する回転電極、回転電極に対向して配置された固定電極を有し、順方向の回転により荷電粒子の第1の出射エネルギーに応じた高周波電場の周波数変調を行い、逆方向の回転により荷電粒子の第2の出射エネルギーに応じた高周波電場の周波数変調を行う回転コンデンサーとを備える。  The accelerator according to the present invention is opposed to an acceleration electrode that accelerates charged particles, an acceleration cavity that supplies electric power to the acceleration electrode and generates a high-frequency electric field, a rotating electrode that rotates in both forward and reverse directions, and the rotating electrode. The fixed electrode is arranged in such a manner that the frequency modulation of the high-frequency electric field corresponding to the first emission energy of the charged particles is performed by the forward rotation, and the second emission energy of the charged particles is adjusted by the reverse rotation. And a rotating capacitor that performs frequency modulation of the high-frequency electric field.

また、本発明に係る粒子線治療装置は、順方向及び逆方向の回転方向ごとに出射エネルギーに応じて周波数変調を行う回転コンデンサーを有する加速器と、加速器で出射された粒子線を輸送するビーム輸送部と、ビーム輸送部から供給された粒子線を照射野に成形して被照射体に照射する照射部とを備える。  The particle beam therapy system according to the present invention includes an accelerator having a rotating capacitor that performs frequency modulation in accordance with the output energy for each of the forward and reverse rotation directions, and beam transport for transporting the particle beam emitted by the accelerator. And an irradiation unit for forming the particle beam supplied from the beam transport unit into an irradiation field and irradiating the irradiated object.

本発明に係る加速器によれば、回転方向ごとに異なる出射エネルギーに対応させて高周波電場の周波数変調を行う回転コンデンサーを備えることで、異なるエネルギーの粒子線を効率的に出射することが可能となる。また、本発明に係る粒子線治療装置によれば、異なるエネルギーの粒子線を出射できる加速器を備えることで、腫瘍の種類や位置ごとに適したエネルギーの粒子線を照射することができる。  According to the accelerator according to the present invention, it is possible to efficiently emit particle beams having different energies by including a rotating capacitor that performs frequency modulation of a high-frequency electric field corresponding to different emission energies for each rotation direction. . Moreover, according to the particle beam therapy system according to the present invention, it is possible to irradiate a particle beam having an energy suitable for each tumor type and position by providing an accelerator capable of emitting a particle beam having a different energy.

本発明の実施の形態1に係る加速器の概略平面断面図である。1 is a schematic plan cross-sectional view of an accelerator according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る加速器の概略側断面図である。It is a schematic sectional side view of the accelerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転コンデンサーの概略構成図である。It is a schematic block diagram of the rotary capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転電極の概略構成図である。It is a schematic block diagram of the rotating electrode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る固定電極の概略構成図である。It is a schematic block diagram of the fixed electrode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転コンデンサーの回転角に対する静電容量の変化を示す関係図である。It is a related figure which shows the change of the electrostatic capacitance with respect to the rotation angle of the rotary capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転コンデンサーの静電容量の時間変化を示す関係図である。It is a relationship figure which shows the time change of the electrostatic capacitance of the rotary capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転コンデンサーの形状を決定する工程の一例を示す工程図である。It is process drawing which shows an example of the process of determining the shape of the rotation capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る軌道半径と磁場強度の関係を示す関係図である。It is a relationship figure which shows the relationship between the orbit radius and magnetic field intensity which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る加速時間と周回周波数の関係を示す関係図である。It is a relationship diagram which shows the relationship between the acceleration time which concerns on Embodiment 1 of this invention, and a circulation frequency. 本発明の実施の形態1に係る加速時間と静電容量の関係を示す関係図である。It is a relationship diagram which shows the relationship between the acceleration time which concerns on Embodiment 1 of this invention, and an electrostatic capacitance. 本発明の実施の形態1に係る回転コンデンサーを説明するための説明図である。It is explanatory drawing for demonstrating the rotary capacitor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る加速時間と対向面積の時間変化率の関係を示す関係図である。It is a relationship figure which shows the relationship between the acceleration time which concerns on Embodiment 1 of this invention, and the time change rate of an opposing area. 本発明の実施の形態1に係る固定電極を示す概略構成図である。It is a schematic block diagram which shows the fixed electrode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転電極を示す概略構成図である。It is a schematic block diagram which shows the rotating electrode which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る固定電極を示す概略構成図である。It is a schematic block diagram which shows the fixed electrode which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る加速器の概略構成図である。It is a schematic block diagram of the accelerator which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る回転コンデンサーの静電容量の時間変化を示す概略構成図である。It is a schematic block diagram which shows the time change of the electrostatic capacitance of the rotary capacitor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る粒子線治療装置の概略構成図である。It is a schematic block diagram of the particle beam therapy apparatus which concerns on Embodiment 3 of this invention.

本発明に係る実施の形態を、図面を参照して説明する。以下では、加速器としてシンクロサイクロトロン(以下、単に加速器と記す)を例に説明する。  Embodiments according to the present invention will be described with reference to the drawings. Hereinafter, a synchrocyclotron (hereinafter simply referred to as an accelerator) will be described as an example of the accelerator.

実施の形態1.
図1は、本発明を実施するための実施の形態1に係る加速器の概略平面断面図である。図2は、本発明を実施するための実施の形態1に係る加速器の概略側断面図である。図1、図2に示すように、加速器1は、一対のコイル2a、2bと、一対の磁極3a、3bと、加速電極4と、加速空洞5と、出射ダクト6と、回転コンデンサー10とを備える。
Embodiment 1 FIG.
FIG. 1 is a schematic plan sectional view of an accelerator according to Embodiment 1 for carrying out the present invention. FIG. 2 is a schematic cross-sectional side view of the accelerator according to Embodiment 1 for carrying out the present invention. As shown in FIGS. 1 and 2, the accelerator 1 includes a pair of coils 2 a and 2 b, a pair of magnetic poles 3 a and 3 b, an acceleration electrode 4, an acceleration cavity 5, an exit duct 6, and a rotating capacitor 10. Prepare.

加速器1は、コイル2a、2bに電流が印加されることにより、互いに離間して配置された磁極3a、3bの間に磁場を発生させる。また、加速空洞5を介して加速電極4に高周波電力が供給されることにより、高周波電場を発生させる。発生した磁場により、イオン源7(図示せず)から入射された荷電粒子は、磁極3a、3bの間をらせん状の周回軌道8で周回運動する。荷電粒子は、加速電極4のギャップ41を通過するたびに、荷電粒子の周回周波数に同期した高周波電場により加速され、エネルギーを増大させる。荷電粒子はエネルギーの増大に伴い、周回軌道8の半径が徐々に大きくなり、所定のエネルギーに到達すると、粒子線として出射ダクト6から出射される。  The accelerator 1 generates a magnetic field between the magnetic poles 3a and 3b that are spaced apart from each other when a current is applied to the coils 2a and 2b. Further, a high frequency electric field is generated by supplying high frequency power to the acceleration electrode 4 through the acceleration cavity 5. Due to the generated magnetic field, charged particles made incident from the ion source 7 (not shown) circulate around the magnetic poles 3a and 3b in a spiral orbit 8. Each time the charged particles pass through the gap 41 of the accelerating electrode 4, the charged particles are accelerated by a high-frequency electric field synchronized with the circulating frequency of the charged particles to increase energy. As the energy of the charged particles increases, the radius of the orbit 8 gradually increases, and when the charged particles reach a predetermined energy, they are emitted from the emission duct 6 as a particle beam.

加速空洞5は、内導体5aと、同軸上に配置された円筒状の外導体5bとを有する。内導体5aは、加速電極4に電気的に接続され、高周波電源9(図示せず)からの高周波電力を加速電極4に供給する。加速空洞5は、固有の共振周波数を有し、加速電極4に高周波電力を供給することにより、共振周波数に応じた高周波電場を内部に発生させる。加速空洞5の共振周波数frは、加速空洞5のインダクタンスLと静電容量Cにて式(1)より定まる。  The acceleration cavity 5 has an inner conductor 5a and a cylindrical outer conductor 5b arranged coaxially. The inner conductor 5 a is electrically connected to the acceleration electrode 4 and supplies high-frequency power from a high-frequency power source 9 (not shown) to the acceleration electrode 4. The accelerating cavity 5 has a specific resonance frequency, and generates a high-frequency electric field corresponding to the resonance frequency by supplying high-frequency power to the acceleration electrode 4. The resonance frequency fr of the acceleration cavity 5 is determined by the equation (1) by the inductance L and the capacitance C of the acceleration cavity 5.

Figure 0006385625
・・・式(1)
Figure 0006385625
... Formula (1)

荷電粒子は、加速されるにしたがって、相対論効果により質量が増加し、周回周波数が低下する。加速空洞5は、周回周波数の低下に合わせて、回転コンデンサー10により静電容量を増加させることで、共振周波数を低下させる。  As the charged particles are accelerated, the mass increases due to the relativistic effect, and the circulation frequency decreases. The acceleration cavity 5 decreases the resonance frequency by increasing the electrostatic capacity by the rotating capacitor 10 in accordance with the decrease in the circulation frequency.

回転コンデンサー10は、回転電極11と、固定電極12と、回転軸13とを備える。回転電極11は加速空洞5の内導体5aに、固定電極12は外導体5bに、それぞれ電気的に接続される。回転コンデンサー10は、回転電極11及び固定電極12を少なくとも1組有し、回転軸13の軸方向に交互に積層して配置される。回転コンデンサー10は、回転電極11が連続的に高速回転することにより、荷電粒子の周回周波数に同期した加速空洞5の共振周波数を得るように静電容量を周期的に変化させる。  The rotating capacitor 10 includes a rotating electrode 11, a fixed electrode 12, and a rotating shaft 13. The rotating electrode 11 is electrically connected to the inner conductor 5a of the acceleration cavity 5, and the fixed electrode 12 is electrically connected to the outer conductor 5b. The rotating capacitor 10 has at least one set of the rotating electrode 11 and the fixed electrode 12 and is alternately stacked in the axial direction of the rotating shaft 13. The rotating capacitor 10 periodically changes the capacitance so as to obtain the resonance frequency of the accelerating cavity 5 synchronized with the circulating frequency of the charged particles by continuously rotating the rotating electrode 11 at a high speed.

図3は、本発明を実施するための実施の形態1に係る回転コンデンサーの概略構成図である。図3は、図1、2のAA’面からみた回転コンデンサーである。図3に示すように、回転電極11及び固定電極12は、それぞれ少なくとも1枚の羽根を有し、互いに対向して配置される。回転電極11は、モーター14によって駆動され、回転軸13を介して、順方向15及び逆方向16の双方にそれぞれ連続的に高速回転する。モーター14は、制御部(図示せず)からの信号によって、回転方向及び回転速度が制御される。  FIG. 3 is a schematic configuration diagram of the rotating capacitor according to the first embodiment for carrying out the present invention. FIG. 3 shows the rotating condenser as viewed from the AA 'plane of FIGS. As shown in FIG. 3, each of the rotating electrode 11 and the fixed electrode 12 has at least one blade and is disposed to face each other. The rotary electrode 11 is driven by a motor 14 and continuously rotates at a high speed in both the forward direction 15 and the reverse direction 16 via the rotary shaft 13. The rotation direction and rotation speed of the motor 14 are controlled by a signal from a control unit (not shown).

図4は、本発明を実施するための実施の形態1に係る回転コンデンサーの回転電極の概略構成図である。図4に示すように、回転電極11は、回転軸13から径方向外側に放射状に伸びるように設けられる。回転電極11の羽根は、回転中心111から径方向外側の先端部112の中心位置を通る中心軸113(以下、単に中心軸と記す)に対して非対称となるように形成される。例えば、羽根の先端部112の一端から径方向内側に向かって伸びる側辺11aが、向かい合う他方の側辺11bに向かって湾曲するように形成される。  FIG. 4 is a schematic configuration diagram of the rotating electrode of the rotating capacitor according to the first embodiment for carrying out the present invention. As shown in FIG. 4, the rotating electrode 11 is provided so as to extend radially outward from the rotating shaft 13 in the radial direction. The blades of the rotary electrode 11 are formed so as to be asymmetric with respect to a central axis 113 (hereinafter simply referred to as a central axis) that passes through the center position of the distal end portion 112 radially outward from the rotation center 111. For example, the side 11a extending radially inward from one end of the tip 112 of the blade is formed to bend toward the other side 11b facing each other.

図5は、本発明を実施するための実施の形態1に係る回転コンデンサーの固定電極の概略構成図である。図5に示すように、固定電極12は、例えば回転中心111と同心の円形状の外周を有し、外周から径方向内側に伸びるように設けられる。固定電極12の羽根は、外周の一部をなす先端部121と、先端部121の両端から径方向内側に向かって伸びる側辺12a、12bとを有する。  FIG. 5 is a schematic configuration diagram of the fixed electrode of the rotating capacitor according to the first embodiment for carrying out the present invention. As shown in FIG. 5, the fixed electrode 12 has, for example, a circular outer periphery concentric with the rotation center 111 and is provided so as to extend radially inward from the outer periphery. The blade of the fixed electrode 12 has a tip 121 that forms part of the outer periphery, and side sides 12 a and 12 b that extend radially inward from both ends of the tip 121.

ここで図3、図4、図5では、回転電極11及び固定電極12の羽根を4枚である例を示したが、羽根の枚数は適宜変更してもよい。  Here, FIGS. 3, 4, and 5 show examples in which the blades of the rotating electrode 11 and the fixed electrode 12 are four, but the number of blades may be changed as appropriate.

図6は、本発明を実施するための実施の形態1に係る回転コンデンサーの回転角と静電容量の関係を示す関係図である。ここで回転電極11及び固定電極12は、それぞれ1枚の羽根で構成されているとする。また順方向15に回転するとし、回転角は、回転電極11の羽根の向かい合う側辺11a、11bのうち、回転方向正側の側辺11aと、固定電極12の向かいあう側辺12a、12bのうち、回転方向負側の側辺12bとが重なり始める位置を基準の0度とする。  FIG. 6 is a relationship diagram showing the relationship between the rotation angle and the capacitance of the rotating capacitor according to the first embodiment for carrying out the present invention. Here, it is assumed that each of the rotating electrode 11 and the fixed electrode 12 is composed of one blade. Further, when rotating in the forward direction 15, the rotation angle is between the side 11 a and 11 b facing the blades of the rotating electrode 11, the side 11 a on the positive side in the rotation direction, and the side 12 a and 12 b facing the fixed electrode 12. The position at which the side 12b on the negative side in the rotational direction begins to overlap is defined as 0 degrees as a reference.

図6に示すように、回転コンデンサー10は、回転角が増加するにしたがって、回転電極11の羽根と固定電極12の羽根との対向面積が増加し、それに伴い静電容量が増加する。回転コンデンサー10の静電容量は、例えば、回転角θ1で最大となり、対向面積が減少するにしたがって減少する。回転電極11の羽根の向かい合う側辺11a、11bのうち、回転方向負側の側辺11bと、固定電極12の羽根の向かい合う側辺12a、12b、回転方向正側の側辺12aとが外れる回転角θ2で静電容量は最小となる。  As shown in FIG. 6, in the rotating capacitor 10, as the rotation angle increases, the facing area between the blades of the rotating electrode 11 and the fixed electrode 12 increases, and the capacitance increases accordingly. For example, the electrostatic capacitance of the rotating capacitor 10 is maximized at the rotation angle θ1 and decreases as the facing area decreases. Rotation in which the side 11b on the negative side in the rotation direction, the side 12a, 12b on the fixed electrode 12 facing each other, and the side 12a on the positive side in the rotation direction are out of the sides 11a and 11b facing the blades of the rotation electrode 11. The electrostatic capacitance is minimized at the angle θ2.

図7(a)は、本発明を実施するための実施の形態1に係る回転コンデンサーを所定の回転速度で順方向に1回転させた場合の静電容量の時間変化である。また、図7(b)は、本発明を実施するための実施の形態1に係る回転コンデンサーを図7(a)と同じ回転速度で逆方向に1回転させた場合の静電容量の時間変化である。図7(a)、図7(b)に示すように、回転電極11の羽根が中心軸113に対して非対称に形成されることにより、回転コンデンサー10は、順方向15と逆方向16とで異なる静電容量の時間変化をとることができる。これにより、順方向15と逆方向16とで異なる静電容量の時間変化を、それぞれ異なる出射エネルギーに対応させて周波数変調を行うことができる。  FIG. 7 (a) shows a change in capacitance with time when the rotating capacitor according to Embodiment 1 for carrying out the present invention is rotated once in the forward direction at a predetermined rotational speed. FIG. 7B shows the change in capacitance with time when the rotating capacitor according to the first embodiment for carrying out the present invention is rotated once in the reverse direction at the same rotational speed as in FIG. 7A. It is. As shown in FIGS. 7A and 7B, the rotating capacitor 11 is formed asymmetrically with respect to the central axis 113, so that the rotating capacitor 10 has a forward direction 15 and a reverse direction 16. It is possible to take time changes of different capacitances. As a result, it is possible to perform frequency modulation by making the time changes of the capacitances different in the forward direction 15 and the reverse direction 16 correspond to different emission energies.

荷電粒子を出射エネルギーE1で出射させる場合、加速器1は回転コンデンサー10を順方向15に回転させ、荷電粒子の入射時t1から出射時t2にかけて静電容量を増加させて高周波電場の周波数変調を行う。また、荷電粒子を出射エネルギーE2で出射させる場合、加速器1は回転コンデンサー10を逆方向16に回転させ、荷電粒子の入射時t'1から出射時t'2にかけて、静電容量を増加させて高周波電場の周波数変調を行う。  When the charged particles are emitted with the emission energy E1, the accelerator 1 rotates the rotating capacitor 10 in the forward direction 15 to increase the capacitance from the time t1 when the charged particles are incident to the time t2 when the charged particles are emitted, thereby performing frequency modulation of the high-frequency electric field. . When the charged particles are emitted with the emission energy E2, the accelerator 1 rotates the rotating capacitor 10 in the reverse direction 16 to increase the capacitance from the charged particle incident time t′1 to the outgoing time t′2. Performs frequency modulation of the high-frequency electric field.

このように、回転コンデンサー10が、順方向15及び逆方向16に回転し、回転方向ごとに異なる出射エネルギーに応じた静電容量の時間変化をとることで、加速器1は異なる出射エネルギーの粒子線を効率的に出射することが可能となる。  In this way, the rotating condenser 10 rotates in the forward direction 15 and the reverse direction 16 and takes time change of the electrostatic capacity according to the different output energy for each rotation direction, so that the accelerator 1 has a particle beam with different output energy. Can be efficiently emitted.

次に、回転方向ごとに異なる出射エネルギーに適した静電容量の時間変化をとるように、回転コンデンサー10の形状を決定する方法の一例について説明する。図8は、本発明を実施するための実施の形態1に係る回転コンデンサーの形状を決定する工程の一例を示す工程図である。回転コンデンサー10は、例えば、順方向15の回転が出射エネルギー215MeVに、逆方向16の回転が出射エネルギー160MeVに、それぞれ適した静電容量の時間変化をとるとする(ステップS1)。  Next, an example of a method for determining the shape of the rotating capacitor 10 so as to change the capacitance with time corresponding to different output energy for each rotation direction will be described. FIG. 8 is a process diagram showing an example of a process for determining the shape of the rotating capacitor according to the first embodiment for carrying out the present invention. For example, it is assumed that the rotating capacitor 10 takes a time-varying capacitance suitable for rotation in the forward direction 15 to output energy 215 MeV and rotation in the reverse direction 16 to output energy 160 MeV, respectively (step S1).

加速器1の最大磁場強度が6Tであると仮定し、出射エネルギーごとに軌道半径に対する磁場分布を定める(ステップS2)。加速器1の磁場強度は、荷電粒子を安定的に加速させるために、弱収束の原理に基づき、軌道半径が増加するにしたがって減少するように分布させる。図9は、本発明を実施するための実施の形態1に係る軌道半径に対する磁場強度である。図9に示すように、軌道半径に対する磁場強度は、出射エネルギー215MeVより、出射エネルギー160MeVの方が小さく設定される。磁場強度は、例えば、コイル2a、2bに印加される電流によって調整される。  Assuming that the maximum magnetic field strength of the accelerator 1 is 6T, a magnetic field distribution with respect to the orbit radius is determined for each emission energy (step S2). The magnetic field strength of the accelerator 1 is distributed so as to decrease as the orbit radius increases based on the principle of weak convergence in order to stably accelerate charged particles. FIG. 9 shows the magnetic field strength with respect to the orbit radius according to the first embodiment for carrying out the present invention. As shown in FIG. 9, the magnetic field strength with respect to the orbit radius is set to be smaller for the outgoing energy 160 MeV than for the outgoing energy 215 MeV. The magnetic field strength is adjusted by, for example, a current applied to the coils 2a and 2b.

設定した磁場分布より、加速時間に対する周回周波数を算出する(ステップS3)。ここで加速時間とは、加速器1に荷電粒子が入射されてから出射されるまでにかかる時間である。荷電粒子を陽子、加速初期の軌道半径をrとすると、加速時間Tにおける荷電粒子の周回周波数は、式(2)−式(6)より定まる。  From the set magnetic field distribution, the orbital frequency with respect to the acceleration time is calculated (step S3). Here, the acceleration time is the time taken for charged particles to enter and exit from the accelerator 1. When the charged particle is a proton and the orbit radius at the initial stage of acceleration is r, the orbital frequency of the charged particle at the acceleration time T is determined by the equations (2) to (6).

Figure 0006385625
・・・式(2)
Figure 0006385625
・・・式(3)
Figure 0006385625
・・・式(4)
Figure 0006385625
・・・式(5)
Figure 0006385625
・・・式(6)
Figure 0006385625
... Formula (2)
Figure 0006385625
... Formula (3)
Figure 0006385625
... Formula (4)
Figure 0006385625
... Formula (5)
Figure 0006385625
... Formula (6)

ただし、Eは荷電粒子のエネルギー、dEは1周する毎に増加するエネルギー、Mは加速初期の荷電粒子の質量、B(r)は加速初期における磁場強度、B(r')は軌道半径r'における磁場強度、E(r')は軌道半径r'における荷電粒子のエネルギー、f(r')は軌道半径r’での周回周波数、t(r’)は軌道半径r’における周回周期、T(r’)は軌道半径r’における加速時間である。Where E is the energy of the charged particles, dE is the energy that increases with each round, M 0 is the mass of the charged particles in the early stage of acceleration, B (r) is the magnetic field strength in the early stage of acceleration, and B (r ′) is the orbital radius. The magnetic field strength at r ′, E (r ′) is the energy of the charged particle at the orbit radius r ′, f (r ′) is the orbiting frequency at the orbit radius r ′, and t (r ′) is the orbiting period at the orbit radius r ′. , T (r ′) is the acceleration time at the orbit radius r ′.

加速初期の軌道半径をrに基づいて、式(2)より荷電粒子のエネルギーEを算出する。式(3)より増大する荷電粒子のエネルギーEに基づいて、軌道半径r’を算出する。式(4)より軌道半径r’での周回周波数f(r’)を求める。式(5)より1周にかかる時間を算出する。加速初期から軌道半径r’に対する時間T(r’)を式(4)と式(6)から算出する。このようにして、加速時間Tにおける周回周波数を求めることができる。  Based on r as the orbit radius in the initial stage of acceleration, the energy E of the charged particles is calculated from the equation (2). The orbit radius r 'is calculated based on the energy E of the charged particles that increases from the equation (3). An orbital frequency f (r ') at the orbit radius r' is obtained from the equation (4). The time required for one round is calculated from equation (5). The time T (r ') with respect to the orbit radius r' from the initial stage of acceleration is calculated from the equations (4) and (6). In this way, the circulation frequency at the acceleration time T can be obtained.

図10は、本発明を実施するための実施の形態1に係る加速時間に対する周回周波数である。図10に示すように、荷電粒子の出射エネルギーを215MeVとする場合、周回周波数は、加速初期に89MHz、出射時に67MHzとなり、必要な周波数変調幅は22Hzである。また、出射エネルギーを160MeVとする場合、周回周波数は加速初期に78MHz、出射時に62MHzとなり、必要な周波数変調幅は16MHzである。  FIG. 10 shows the orbital frequency with respect to the acceleration time according to Embodiment 1 for carrying out the present invention. As shown in FIG. 10, when the emission energy of charged particles is 215 MeV, the orbital frequency is 89 MHz at the beginning of acceleration, 67 MHz at the time of emission, and the necessary frequency modulation width is 22 Hz. When the emission energy is 160 MeV, the circulation frequency is 78 MHz at the initial stage of acceleration, 62 MHz at the time of emission, and the necessary frequency modulation width is 16 MHz.

算出した加速時間に対する周回周波数及び式(1)より、加速時間に対する静電容量を算出する(ステップS4)。図11は、本発明を実施するための実施の形態1に係る加速時間に対する静電容量である。図11に示すように、回転コンデンサー10は、順方向15に回転した場合、22Hzの周波数変調を行い、逆方向16に回転した場合、16MHzの周波数変調を行うように、静電容量を加速時間に対して増加させる。  The electrostatic capacity with respect to the acceleration time is calculated from the circulation frequency with respect to the calculated acceleration time and the equation (1) (step S4). FIG. 11 shows the capacitance with respect to the acceleration time according to Embodiment 1 for carrying out the present invention. As shown in FIG. 11, the rotating capacitor 10 accelerates the capacitance so that when rotating in the forward direction 15, frequency modulation of 22 Hz is performed, and when rotating in the reverse direction 16, frequency modulation of 16 MHz is performed. Increase against.

算出した加速時間に対する静電容量から、加速時間に対する回転コンデンサー10の回転電極11及び固定電極12の対向面積の時間変化率を算出する(ステップS5)。ここで、図12に示すように、回転コンデンサー10の回転速度7500rpm、回転電極11及び固定電極12の回転軸方向の積層数を5組、羽根の枚数をそれぞれ4枚、回転電極11と固定電極12の電極間隔を2mmとする。回転コンデンサー10の静電容量Cは、回転電極11及び固定電極12の対向面積S、電極間距離d、真空の誘電率εにて式(7)より定まる。From the capacitance with respect to the calculated acceleration time, the time change rate of the facing area of the rotating electrode 11 and the fixed electrode 12 of the rotating capacitor 10 with respect to the acceleration time is calculated (step S5). Here, as shown in FIG. 12, the rotational speed of the rotating capacitor 10 is 7500 rpm, the number of layers of the rotating electrode 11 and the stationary electrode 12 in the direction of the rotational axis is five, the number of blades is four, the rotating electrode 11 and the stationary electrode, respectively. The electrode interval of 12 is 2 mm. The capacitance of the rotating condenser 10 C is facing area S of the rotating electrode 11 and the fixed electrode 12, the inter-electrode distance d, a dielectric constant epsilon 0 of the vacuum is determined from the equation (7).

Figure 0006385625
・・・式(7)
Figure 0006385625
... Formula (7)

式(7)より、図11で示した加速時間に対する静電容量を、加速時間に対する対向面積の時間変化率で表すことができる。図13は、本発明を実施するための実施の形態1に係る回転コンデンサーの加速時間に対する対向面積の時間変化率である。  From the equation (7), the capacitance with respect to the acceleration time shown in FIG. 11 can be expressed by the time change rate of the facing area with respect to the acceleration time. FIG. 13 is a time change rate of the facing area with respect to the acceleration time of the rotating capacitor according to the first embodiment for carrying out the present invention.

図13に示した加速時間に対する対向面積の時間変化率に基づいて、回転電極11及び固定電極12の形状を決定する(ステップS6)。  Based on the time change rate of the facing area with respect to the acceleration time shown in FIG. 13, the shapes of the rotating electrode 11 and the fixed electrode 12 are determined (step S6).

一例として、図14に示すように、固定電極12の羽根が、回転電極11の回転中心111から固定電極12の羽根の先端部121の中心位置を通る中心軸123に対して対称である場合の回転電極11の形状を決定する。固定電極12が中心軸123に対して対称である場合、対向面積Sの時間変化率dS/dtは、回転電極11の回転中心111から回転電極11の羽根の先端部112までの長さl、回転速度ωにて式(8)より定まる。  As an example, as shown in FIG. 14, the blade of the fixed electrode 12 is symmetric with respect to the central axis 123 passing through the center position of the tip 121 of the blade of the fixed electrode 12 from the rotation center 111 of the rotating electrode 11. The shape of the rotating electrode 11 is determined. When the fixed electrode 12 is symmetric with respect to the central axis 123, the time change rate dS / dt of the facing area S is the length l from the rotation center 111 of the rotating electrode 11 to the tip 112 of the blade of the rotating electrode 11, It is determined from equation (8) at the rotational speed ω.

Figure 0006385625
・・・式(8)
Figure 0006385625
... Formula (8)

式(8)より、対向面積の時間変化率から、回転電極11の回転中心111から先端部112までの長さを決定することができる。図15(a)は、本発明を実施するための実施の形態1に係る回転電極の一例を示す概略構成図である。図15(b)は、本発明を実施するための実施の形態1に係る回転電極の1枚の羽根の形状の一例を示す概略構成図である。図15(a)、(b)に示すように、回転電極11は、回転中心111から先端部112までの長さが、加速時間に対する対向面積の時間変化率を満たすように、回転方向に対して変化する形状となる。  From equation (8), the length from the rotation center 111 to the tip 112 of the rotating electrode 11 can be determined from the time change rate of the facing area. FIG. 15A is a schematic configuration diagram showing an example of a rotating electrode according to Embodiment 1 for carrying out the present invention. FIG. 15B is a schematic configuration diagram showing an example of the shape of one blade of the rotating electrode according to Embodiment 1 for carrying out the present invention. As shown in FIGS. 15 (a) and 15 (b), the rotating electrode 11 has a rotation direction so that the length from the rotation center 111 to the tip 112 satisfies the time change rate of the facing area with respect to the acceleration time. The shape changes.

回転電極11の羽根の先端部112は、中心軸113に対して、非対称となるように径方向内側に向かって湾曲される。回転電極11は、例えば、中心軸113に対して一方の側の先端部112aが、出射エネルギー215MeVの対向面積の時間変化率を満たすように湾曲される。また、中心軸113に対して他方の側の先端部112bが出射エネルギー160MeVの対向面積の時間変化率を満たすように湾曲される。  The blade tip 112 of the rotating electrode 11 is curved radially inward with respect to the central axis 113 so as to be asymmetric. The rotating electrode 11 is curved so that, for example, the tip 112a on one side with respect to the central axis 113 satisfies the time change rate of the facing area of the emission energy 215MeV. Further, the tip 112b on the other side with respect to the central axis 113 is curved so as to satisfy the time change rate of the facing area of the emission energy 160 MeV.

このように回転電極11が形成されることで、加速器1は、215MeVの粒子線を出射する場合、回転電極11を順方向15に回転させ、回転電極11の中心軸113に対して一方の側の先端部112aを利用して周波数変調を行い、160MeVの粒子線を出射する場合、回転電極11を逆方向16に回転させ、中心軸113に対して他方の側の先端部112bを利用して周波数変調を行うことが可能となる。  By forming the rotating electrode 11 in this way, the accelerator 1 rotates the rotating electrode 11 in the forward direction 15 when emitting a particle beam of 215 MeV, so that one side of the rotating electrode 11 with respect to the central axis 113 is rotated. When a 160 MeV particle beam is emitted by performing frequency modulation using the front end portion 112a, the rotating electrode 11 is rotated in the reverse direction 16, and the front end portion 112b on the other side with respect to the central axis 113 is used. It becomes possible to perform frequency modulation.

ここで、固定電極12を中心軸123に対して対称、回転電極11を中心軸113に対して非対称としたが、回転電極11の羽根の形状を対称、固定電極12の羽根の形状を非対称としてもよい。図16(a)は、本発明を実施するための実施の形態1に係る固定電極の一例を示す概略構成図である。図16(b)は、本発明を実施するための実施の形態1に係る固定電極の1枚の羽根の形状の一例を示す概略構成図である。図16(a)、図16(b)に示すように、固定電極12は、回転電極11の回転中心111から固定電極12の内周部122までの長さが、加速時間に対する対向面積の時間変化率を満たすように、回転方向に対して変化する形状となる。  Here, the fixed electrode 12 is symmetric with respect to the central axis 123 and the rotating electrode 11 is asymmetric with respect to the central axis 113, but the blade shape of the rotating electrode 11 is symmetric and the blade shape of the fixed electrode 12 is asymmetric. Also good. FIG. 16A is a schematic configuration diagram showing an example of a fixed electrode according to Embodiment 1 for carrying out the present invention. FIG.16 (b) is a schematic block diagram which shows an example of the shape of one blade | wing of the fixed electrode which concerns on Embodiment 1 for implementing this invention. As shown in FIGS. 16 (a) and 16 (b), the fixed electrode 12 has a length from the rotation center 111 of the rotating electrode 11 to the inner peripheral portion 122 of the fixed electrode 12 that is the time of the facing area with respect to the acceleration time. The shape changes with respect to the rotation direction so as to satisfy the rate of change.

例えば、固定電極12の羽根の内周部122は、中心軸123に対して、非対称となるように径方向外側に向かって湾曲される。固定電極12は、例えば、中心軸123に対して一方の側の内周部122aが、出射エネルギー215MeVの対向面積の時間変化率を満たすように湾曲される。また、中心軸123に対して他方の側の内周部122bが出射エネルギー160MeVを満たすように湾曲される。  For example, the inner peripheral portion 122 of the blade of the fixed electrode 12 is curved outward in the radial direction so as to be asymmetric with respect to the central axis 123. For example, the fixed electrode 12 is curved so that the inner peripheral portion 122a on one side with respect to the central axis 123 satisfies the time change rate of the facing area of the emission energy 215MeV. Further, the inner peripheral portion 122b on the other side with respect to the central axis 123 is curved so as to satisfy the emission energy 160 MeV.

このように固定電極12が形成されることで、加速器1は、215MeVの粒子線を出射する場合、回転電極11を順方向15に回転させ、固定電極12の中心軸123に対して一方の側の内周部122aを利用して周波数変調を行い、160MeVの粒子線を出射する場合、回転電極11を逆方向16に回転させ、中心軸123に対して他方の側の内周部122bを利用して周波数変調を行うことが可能となる。  By forming the fixed electrode 12 in this way, when the accelerator 1 emits a particle beam of 215 MeV, the accelerator 1 rotates the rotating electrode 11 in the forward direction 15 to one side with respect to the central axis 123 of the fixed electrode 12. When the frequency modulation is performed by using the inner peripheral portion 122a of the laser beam and the particle beam of 160 MeV is emitted, the rotating electrode 11 is rotated in the reverse direction 16 and the inner peripheral portion 122b on the other side with respect to the central axis 123 is used. Thus, frequency modulation can be performed.

ここで、回転電極11又は固定電極12が中心軸113、123に対して対称となる例を示したが、回転コンデンサー10は、回転方向ごとに異なる出射エネルギーに対応した静電容量の時間変化を満たすように形成されればよく、回転電極11及び固定電極12が、中心軸113、123に対してそれぞれ非対称としてもよい。  Here, although the example in which the rotating electrode 11 or the fixed electrode 12 is symmetric with respect to the central axes 113 and 123 is shown, the rotating capacitor 10 changes the capacitance with time according to the output energy that differs in each rotation direction. The rotating electrode 11 and the fixed electrode 12 may be asymmetric with respect to the central axes 113 and 123, respectively.

上述のように、本実施の形態に係る加速器1は、順方向15及び逆方向16に回転し、回転方向ごとに荷電粒子の異なる出射エネルギーに対応して静電容量が時間的に変化する回転コンデンサー10を備える構成とした。この構成により、加速器1は、異なるエネルギーの粒子線を効率的に発生させることが可能となる。  As described above, the accelerator 1 according to the present embodiment rotates in the forward direction 15 and the reverse direction 16 and rotates in such a manner that the capacitance changes with time in response to different emission energy of charged particles in each rotation direction. The capacitor 10 is provided. With this configuration, the accelerator 1 can efficiently generate particle beams having different energies.

なお、回転コンデンサー10の回転電極11の形状は、高速回転に対する機械的な安定性が考慮されるように形成されるとより好ましい。例えば、図6に示した静電容量が最大となるまでの回転角θ1と、静電容量が最大となる回転角θ1及び静電容量が最小となる回転角θ2がなす角度θ2−θ1との差が、0<|θ2−1|/θ1|≦10%となるように形成される。これにより、加速空洞5の共振周波数を変調させるために、回転電極11が例えば、1000rpm以上で高速回転される場合でも、安定性を保ちながら回転を行うことが可能となる。  In addition, it is more preferable that the shape of the rotating electrode 11 of the rotating capacitor 10 is formed so that mechanical stability against high-speed rotation is taken into consideration. For example, the rotation angle θ1 until the capacitance shown in FIG. 6 reaches the maximum, and the angle θ2−θ1 formed by the rotation angle θ1 that maximizes the capacitance and the rotation angle θ2 that minimizes the capacitance. The difference is formed such that 0 <| θ2-1 | / θ1 | ≦ 10%. Thereby, in order to modulate the resonance frequency of the accelerating cavity 5, even when the rotating electrode 11 is rotated at a high speed of, for example, 1000 rpm or more, it is possible to perform rotation while maintaining stability.

実施の形態2.
本発明を実施するための実施の形態2に係る加速器1について説明する。ここで、実施の形態1に係る加速器1と重複する説明は、適宜簡略化又は省略している。本実施の形態では、実施の形態1の構成に、入射制御装置17をさらに備えた構成とした。
Embodiment 2. FIG.
An accelerator 1 according to Embodiment 2 for carrying out the present invention will be described. Here, the description which overlaps with the accelerator 1 which concerns on Embodiment 1 is simplified or abbreviate | omitted suitably. In the present embodiment, the incident control device 17 is further provided in the configuration of the first embodiment.

図17は、本発明を実施するための実施の形態2に係る加速器の概略構成図である。入射制御装置17は、イオン源7から荷電粒子を加速器1に入射するタイミングを制御する。入射制御装置17は、例えば、回転コンデンサー10の静電容量を検知することにより、荷電粒子の入射から出射にかけて静電容量が増加するように、荷電粒子を入射する信号をイオン源7に出力する。  FIG. 17 is a schematic configuration diagram of an accelerator according to Embodiment 2 for carrying out the present invention. The incident control device 17 controls the timing at which charged particles are incident on the accelerator 1 from the ion source 7. The incident control device 17 outputs, for example, a signal for entering charged particles to the ion source 7 so that the capacitance increases from incident to emission of charged particles by detecting the capacitance of the rotating capacitor 10. .

図18(a)、図18(b)は、本発明を実施するための実施の形態2に係る回転コンデンサーをそれぞれ順方向、逆方向に回転させた場合の静電容量の時間変化を示す関係図である。図18(a)に示すように、回転コンデンサー10が出射エネルギーE1に応じて順方向15に連続的に回転する場合、回転コンデンサー10の静電容量が、加速初期の周回周波数に対応する静電容量C1となるたびに、荷電粒子を入射する信号Aを出力する。また、図18(b)に示すように、回転コンデンサー10が出射エネルギーE2に応じて逆方向16に連続的に回転する場合、回転コンデンサー10の静電容量が、加速初期の周回周波数に対応する静電容量C2となるたびに、荷電粒子を入射する信号Aを出力する。このように、入射制御装置17は、回転方向ごとに出射エネルギーに応じて、加速に適したタイミングで周期的に荷電粒子を加速器1に入射させる。  18 (a) and 18 (b) are relationships showing changes in capacitance with time when the rotating capacitor according to the second embodiment for carrying out the present invention is rotated in the forward direction and the reverse direction, respectively. FIG. As shown in FIG. 18A, when the rotating condenser 10 continuously rotates in the forward direction 15 according to the emission energy E1, the electrostatic capacity of the rotating condenser 10 corresponds to the electrostatic frequency corresponding to the initial rotation frequency. Whenever the capacity C1 is reached, a signal A for entering charged particles is output. Further, as shown in FIG. 18B, when the rotating condenser 10 continuously rotates in the reverse direction 16 according to the emission energy E2, the capacitance of the rotating condenser 10 corresponds to the circulation frequency at the initial stage of acceleration. Each time the capacitance C2 is reached, a signal A for entering charged particles is output. As described above, the incident control device 17 causes the charged particles to periodically enter the accelerator 1 at a timing suitable for acceleration according to the emission energy for each rotation direction.

ここで、入射タイミングを設定する方法として、回転コンデンサー10の静電容量を検知する例を示したが、その他、回転コンデンサー10の回転角、加速空洞5の静電容量、加速空洞5の共振周波数等を検知してもよい。  Here, as an example of the method for setting the incident timing, an example in which the electrostatic capacitance of the rotating capacitor 10 is detected has been shown. In addition, the rotation angle of the rotating capacitor 10, the electrostatic capacitance of the accelerating cavity 5, and the resonance frequency of the accelerating cavity 5 are shown. Etc. may be detected.

このような構成においても、実施の形態1と同様に、加速器1は、回転方向ごとに荷電粒子の出射エネルギーに応じた周波数変調を行う回転コンデンサー10を備えることで、異なるエネルギーの粒子線を出射させることができる。さらに本実施の形態では、入射制御装置17を備える構成とすることで、出射エネルギーの大きさに応じて加速に適したタイミングで荷電粒子を周期的に入射させることができ、異なるエネルギーの粒子線をより効率的に出射させることが可能となる。また、パルス状の荷電粒子を連続的に加速に適したタイミングで入射させることができ、十分な線量の粒子線を発生させることができる。  Even in such a configuration, as in the first embodiment, the accelerator 1 includes the rotating capacitor 10 that performs frequency modulation in accordance with the emission energy of the charged particles for each rotation direction, and emits particle beams having different energies. Can be made. Furthermore, in the present embodiment, the configuration including the incident control device 17 allows charged particles to be periodically incident at a timing suitable for acceleration according to the magnitude of the output energy, and particle beams having different energies. Can be emitted more efficiently. Further, pulsed charged particles can be continuously incident at a timing suitable for acceleration, and a sufficient dose of particle beam can be generated.

実施の形態3.
本発明を実施するための実施の形態3に係る粒子線治療装置100について説明する。本実施の形態では、実施の形態1又は2に係る加速器1を、粒子線治療装置100に適用する構成とした。実施の形態1及び2に係る加速器1と重複する説明は、適宜簡略化又は省略している。
Embodiment 3 FIG.
A particle beam therapy system 100 according to Embodiment 3 for carrying out the present invention will be described. In the present embodiment, the accelerator 1 according to the first or second embodiment is configured to be applied to the particle beam therapy system 100. The description overlapping with the accelerator 1 according to the first and second embodiments is appropriately simplified or omitted.

図19は、本発明を実施するための実施の形態3に係る粒子線治療装置の概略構成図である。図19に示すように、粒子線治療装置100は、加速器1と、加速器1で出射された粒子線を輸送するビーム輸送部20と、ビーム輸送部20から供給された粒子線を照射野に成形して被照射体に照射する照射部30とを備える。  FIG. 19 is a schematic configuration diagram of a particle beam therapy system according to Embodiment 3 for carrying out the present invention. As shown in FIG. 19, the particle beam therapy system 100 forms an accelerator 1, a beam transport unit 20 that transports the particle beam emitted by the accelerator 1, and a particle beam supplied from the beam transport unit 20 in an irradiation field. And an irradiation unit 30 for irradiating the irradiated object.

加速器1は、高周波電源9より高周波電力が供給され、内部に高周波電場を形成する。加速器1は、所定の出射エネルギーに応じて回転コンデンサー10の回転方向を決定し、高周波電場の周波数を変調させる。イオン源7から入射された荷電粒子は、回転コンデンサー10によって周波数変調された高周波電場により所定のエネルギーまで加速され、粒子線として出射される。  The accelerator 1 is supplied with high frequency power from a high frequency power source 9 and forms a high frequency electric field therein. The accelerator 1 determines the rotation direction of the rotating capacitor 10 according to predetermined emission energy, and modulates the frequency of the high-frequency electric field. Charged particles incident from the ion source 7 are accelerated to a predetermined energy by a high-frequency electric field that is frequency-modulated by the rotating condenser 10 and are emitted as a particle beam.

加速器1により出射された粒子線は、ビーム輸送部20へと出射される。ビーム輸送部20は、粒子線の輸送経路となる真空ダクトと、粒子線のビーム軌道を所定角度に偏向する偏向電磁石とを有する。照射部30は、ビーム輸送部20から供給された粒子線を治療する腫瘍の大きさや深さに応じた照射野に成形して被照射体に照射する。  The particle beam emitted by the accelerator 1 is emitted to the beam transport unit 20. The beam transport unit 20 includes a vacuum duct serving as a particle beam transport path and a deflection electromagnet that deflects the beam trajectory of the particle beam to a predetermined angle. The irradiation unit 30 shapes the particle beam supplied from the beam transport unit 20 into an irradiation field corresponding to the size and depth of the tumor to be treated, and irradiates the irradiated object.

本実施の形態に係る粒子線治療装置100によれば、順方向15及び逆方向16の回転方向ごとに出射エネルギーに応じた周波数変調を行う回転コンデンサー10を有する加速器1を備えることで、治療する腫瘍の大きさや深さに応じて、適したエネルギーの粒子線を効率的に照射することができる。加速器1で異なるエネルギーの粒子線を出射できる構成としたことで、一度発生させた高エネルギーの粒子線を加速器1外で強制的に低下させる場合に比べ、エネルギーの無駄を省き、効率的に粒子線を照射することができる。さらに、患者への放射線の被爆量を低減でき、患者の負担を軽減することが可能となる。  According to the particle beam therapy system 100 according to the present embodiment, treatment is provided by including the accelerator 1 having the rotating capacitor 10 that performs frequency modulation according to the emission energy for each of the forward direction 15 and the reverse direction 16 in the rotational direction. Depending on the size and depth of the tumor, it is possible to efficiently irradiate a particle beam with suitable energy. By adopting a configuration that allows the accelerator 1 to emit particle beams of different energies, energy waste is reduced and particles are efficiently generated compared to when the high-energy particle beam once generated is forcibly reduced outside the accelerator 1. Can be irradiated. Furthermore, the amount of radiation exposure to the patient can be reduced, and the burden on the patient can be reduced.

なお、実施の形態1から3では、加速器1としてシンクロサイクロトロンを例に説明したが、その他の円形加速器であってもよい。  In the first to third embodiments, a synchrocyclotron has been described as an example of the accelerator 1, but other circular accelerators may be used.

1 加速器、2a,2b コイル、3a,3b 磁極、4 加速電極、5 加速空洞、6 出射ダクト、7 イオン源、8 周回軌道、9 高周波電源、10 回転コンデンサー、11 回転電極、12 固定電極、13 回転軸、14 モーター、15 順方向、16 逆方向、111 回転中心、112 先端部、113 中心軸、121 先端部、122 内周部、123 中心軸、17 入射制御装置、100 粒子線治療装置、20
ビーム輸送部、30、照射部。
DESCRIPTION OF SYMBOLS 1 Accelerator, 2a, 2b coil, 3a, 3b Magnetic pole, 4 Acceleration electrode, 5 Acceleration cavity, 6 Outlet duct, 7 Ion source, 8 orbit, 9 High frequency power supply, 10 Rotation capacitor, 11 Rotation electrode, 12 Fixed electrode, 13 Rotation axis, 14 motor, 15 forward direction, 16 reverse direction, 111 center of rotation, 112 tip, 113 center axis, 121 tip, 122 inner circumference, 123 center axis, 17 incident control device, 100 particle beam therapy device, 20
Beam transport section 30, irradiation section.

Claims (5)

荷電粒子を加速する加速電極と、
前記加速電極に電力を供給し、高周波電場を発生させる加速空洞と、
順方向及び逆方向の双方に回転する回転電極、前記回転電極に対向して配置された固定電極を有し、前記順方向の回転により前記荷電粒子の第1の出射エネルギーに応じた前記高周波電場の周波数変調を行い、前記逆方向の回転により前記荷電粒子の第2の出射エネルギーに応じた前記高周波電場の周波数変調を行う回転コンデンサーと
を備えることを特徴とする加速器。
An acceleration electrode for accelerating charged particles;
An accelerating cavity for supplying electric power to the accelerating electrode and generating a high-frequency electric field;
The high-frequency electric field having a rotating electrode rotating in both the forward direction and the reverse direction, and a fixed electrode arranged to face the rotating electrode, and corresponding to the first emission energy of the charged particles by the rotation in the forward direction And a rotating capacitor that performs frequency modulation of the high-frequency electric field according to second emission energy of the charged particles by rotating in the reverse direction.
前記回転コンデンサーの前記回転電極は、少なくとも1枚の羽根を有し、回転中心から前記回転電極の前記羽根の先端部の中心位置を通る中心軸に対して非対称に形成されることを特徴とする請求項1に記載の加速器。The rotating electrode of the rotating capacitor has at least one blade, and is formed asymmetrically with respect to a central axis passing from a rotation center to a center position of a tip portion of the blade of the rotating electrode. The accelerator according to claim 1. 前記回転コンデンサーの前記固定電極は、少なくとも1枚の羽根を有し、前記回転中心から前記固定電極の前記羽根の先端部の中心位置を通る中心軸に対して非対称に形成されることを特徴とする請求項1又は2に記載の加速器。The fixed electrode of the rotating capacitor has at least one blade, and is formed asymmetrically with respect to a central axis passing from the rotation center to a center position of a tip portion of the blade of the fixed electrode. The accelerator according to claim 1 or 2. 前記回転コンデンサーの静電容量、回転角、前記加速空洞の静電容量、共振周波数の少なくともいずれかを検知し、前記荷電粒子の入射のタイミングを制御する入射制御装置を備えることを特徴とする請求項1から3のいずれか一項に記載の加速器。An incident control device is provided that detects at least one of a capacitance, a rotation angle, a capacitance of the acceleration cavity, and a resonance frequency of the rotating capacitor, and controls an incident timing of the charged particles. Item 4. The accelerator according to any one of items 1 to 3. 前記順方向及び前記逆方向の回転方向ごとに出射エネルギーに応じて周波数変調を行う前記回転コンデンサーを有する請求項1から4のいずれか一項に記載の加速器と、
前記加速器で出射された粒子線を輸送するビーム輸送部と、
前記ビーム輸送部から供給された前記粒子線を照射野に成形して被照射体に照射する照射部と
を備えることを特徴とする粒子線治療装置。
The accelerator according to any one of claims 1 to 4, comprising the rotating condenser that performs frequency modulation in accordance with emission energy for each of the forward and reverse rotation directions;
A beam transport unit for transporting the particle beam emitted by the accelerator;
A particle beam therapy system comprising: an irradiation unit configured to form the particle beam supplied from the beam transport unit into an irradiation field and irradiate an irradiated object.
JP2018524498A 2017-12-21 2017-12-21 Accelerator and particle beam therapy system Active JP6385625B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045997 WO2019123617A1 (en) 2017-12-21 2017-12-21 Accelerator and particle beam therapy device

Publications (2)

Publication Number Publication Date
JP6385625B1 true JP6385625B1 (en) 2018-09-05
JPWO2019123617A1 JPWO2019123617A1 (en) 2019-12-19

Family

ID=63444239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524498A Active JP6385625B1 (en) 2017-12-21 2017-12-21 Accelerator and particle beam therapy system

Country Status (3)

Country Link
JP (1) JP6385625B1 (en)
TW (1) TWI678222B (en)
WO (1) WO2019123617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035467A (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Circular accelerator, particle beam treatment system, and operation method of circular accelerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104850A (en) * 1977-02-25 1978-09-12 Mitsumi Electric Co Ltd Variable capacitor
JPS6046018A (en) * 1983-08-23 1985-03-12 前田 清 Air varialbe capacitor
JP2013157556A (en) * 2012-01-31 2013-08-15 Sumitomo Heavy Ind Ltd Rotation capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286618A (en) * 2004-03-29 2005-10-13 Nihon Koshuha Co Ltd Uninterruptible radiowave switching device
EP2901820B1 (en) * 2012-09-28 2021-02-17 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
EP3581242B1 (en) * 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Adjusting energy of a particle beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104850A (en) * 1977-02-25 1978-09-12 Mitsumi Electric Co Ltd Variable capacitor
JPS6046018A (en) * 1983-08-23 1985-03-12 前田 清 Air varialbe capacitor
JP2013157556A (en) * 2012-01-31 2013-08-15 Sumitomo Heavy Ind Ltd Rotation capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035467A (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Circular accelerator, particle beam treatment system, and operation method of circular accelerator
JP7319144B2 (en) 2019-08-30 2023-08-01 株式会社日立製作所 Circular Accelerator, Particle Beam Therapy System, Operation Method of Circular Accelerator

Also Published As

Publication number Publication date
TW201927366A (en) 2019-07-16
WO2019123617A1 (en) 2019-06-27
TWI678222B (en) 2019-12-01
JPWO2019123617A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP3705091B2 (en) Medical accelerator system and operating method thereof
US8841866B2 (en) Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
JP6434051B2 (en) Accelerator and particle beam irradiation device
US8384053B2 (en) Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
JP6215450B2 (en) Accelerator and particle beam irradiation device
JP6452721B2 (en) Accelerator and particle beam irradiation device
CN104971443B (en) The method of operation of charged particle beam irradiation system and charged particle beam irradiation system
JP5944940B2 (en) Apparatus and method for extracting a positively charged particle beam
JP6385625B1 (en) Accelerator and particle beam therapy system
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
JP5542703B2 (en) Charged particle beam irradiation system and operation method of circular accelerator
JP6535705B2 (en) Particle therapy equipment
JP6144214B2 (en) Negative ion source device
JP2000124000A (en) Charged particle beam emitting method
JP7359702B2 (en) Particle beam therapy system, ion beam generation method, and control program
JP6663618B2 (en) Accelerator and particle beam irradiation device
JP2005129548A (en) Emitting method of charged particle beam
JP2023127939A (en) Accelerator and particle beam therapy device
JP2023084781A (en) Circular accelerator and particle beam treatment system
JP2022152591A (en) Particle beam medical treatment device and accelerator
JP6342140B2 (en) Heavy ion radiotherapy device and synchrotron accelerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180511

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180807

R151 Written notification of patent or utility model registration

Ref document number: 6385625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250