JP5542703B2 - Charged particle beam irradiation system and operation method of circular accelerator - Google Patents

Charged particle beam irradiation system and operation method of circular accelerator Download PDF

Info

Publication number
JP5542703B2
JP5542703B2 JP2011005782A JP2011005782A JP5542703B2 JP 5542703 B2 JP5542703 B2 JP 5542703B2 JP 2011005782 A JP2011005782 A JP 2011005782A JP 2011005782 A JP2011005782 A JP 2011005782A JP 5542703 B2 JP5542703 B2 JP 5542703B2
Authority
JP
Japan
Prior art keywords
acceleration
charged particle
frequency
particle beam
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011005782A
Other languages
Japanese (ja)
Other versions
JP2011198748A (en
Inventor
博文 田中
克久 吉田
久 原田
賢悟 菅原
延是 春名
和男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011005782A priority Critical patent/JP5542703B2/en
Publication of JP2011198748A publication Critical patent/JP2011198748A/en
Application granted granted Critical
Publication of JP5542703B2 publication Critical patent/JP5542703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、円形加速器により加速した荷電粒子を荷電粒子ビームとして取り出して照射対象に照射する荷電粒子ビーム照射システムに関する。   The present invention relates to a charged particle beam irradiation system that takes out charged particles accelerated by a circular accelerator as a charged particle beam and irradiates an irradiation target.

シンクロトロン等の円形加速器で荷電粒子を周回加速させ、高エネルギーまで加速された荷電粒子をその周回軌道から取り出し、ビーム状となった荷電粒子(荷電粒子ビーム、粒子線とも称する)をビーム輸送系で輸送して所望の対象物に照射する物理実験や、癌の治療などの医療用として利用されている。シンクロトロンは、荷電粒子ビームを長時間周回させるための真空ダクト、周回軌道や荷電粒子ビームサイズを制御するための偏向磁場や収束磁場を発生する電磁石群、周回周期に同期した高周波電圧(加速電圧とも称する)でビームを加速する高周波加速装置、真空ダクトに荷電粒子を導入する入射装置、荷電粒子を円形加速器外に取り出す出射装置を備える。上記構成要素の中で、高周波加速装置は、加速電圧を発生する高周波源、この高周波源を制御する高周波源制御装置と、加速電圧を印加する高周波加速空洞(加速空洞とも呼ぶ)と、周回ビームの軌道及び強度を検出するビームモニタ、加速空洞に発生する高周波電圧を検出する電圧ピックアップ等を備える。   A charged particle is accelerated by a circular accelerator such as a synchrotron, and the charged particle accelerated to high energy is taken out from its orbit, and a beam-shaped charged particle (also called a charged particle beam or particle beam) is used as a beam transport system. It is used for medical experiments such as physical experiments for transporting and irradiating desired objects and cancer treatment. The synchrotron is a vacuum duct that circulates a charged particle beam for a long period of time, a circular orbit and an electromagnet group that generates a converging magnetic field for controlling the charged particle beam size, and a high-frequency voltage (acceleration voltage) synchronized with the circulatory period. A high-frequency accelerator for accelerating the beam, an incident device for introducing charged particles into the vacuum duct, and an extraction device for extracting charged particles out of the circular accelerator. Among the above-described components, the high-frequency accelerator includes a high-frequency source that generates an acceleration voltage, a high-frequency source controller that controls the high-frequency source, a high-frequency acceleration cavity (also referred to as an acceleration cavity) that applies the acceleration voltage, and a circular beam. A beam monitor for detecting the trajectory and intensity of the beam, a voltage pickup for detecting a high-frequency voltage generated in the acceleration cavity, and the like.

円形加速器の運転は、入射、加速、出射で構成される。高周波加速装置は、入射では時間的に一様分布の入射ビームに加速電圧を印加することで安定加速領域上にビームの塊(
バンチ)を形成する。加速では、加速空洞に印加する加速電圧の周波数を増加させる。円
形加速器の一種であるシンクロトロン(円形加速器は周回半径が一定であるシンクロトロンの他に、周回半径が加速とともに大きくなるサイクロトロン等がある)では、ビームの周回半径を一定にするため、高周波加速装置は偏向電磁石による偏向磁場強度にあわせて加速電圧周波数を制御する。最高エネルギーまで加速されたビームは、最後に出射装置から円形加速器外へ取り出す。
The operation of a circular accelerator consists of incident, acceleration, and emission. A high-frequency accelerator is a mass of beams on a stable acceleration region by applying an acceleration voltage to an incident beam with a uniform distribution in time.
Bunch). In acceleration, the frequency of the acceleration voltage applied to the acceleration cavity is increased. Synchrotrons, which are a type of circular accelerator (in addition to synchrotrons whose circular radii are constant, there are cyclotrons whose circular radii increase with acceleration), in order to make the circular radii constant, high-frequency acceleration The apparatus controls the acceleration voltage frequency in accordance with the strength of the deflection magnetic field generated by the deflection electromagnet. The beam accelerated to the maximum energy is finally taken out of the circular accelerator from the extraction device.

従来円形加速器からビームを取り出すとき、その出射ビーム強度(単位時間当たりに出射する荷電粒子の量、出射電流とも呼ぶ)を変更するためには、出射機器の1つであるRFノックアウト電極で周回ビームに高周波電圧を与えて出射を行なう(例えば特許文献1
)。印加する高周波電圧に対する出射ビーム強度の関係は前もって実験等で求めておき、制御データを予めパターンデータとして制御コンピュータ等に格納しておく。出射は荷電粒子の共鳴現象を利用しておこなっている為、出射ビーム強度の調整パラメータは0.1%レベルの非常に高精度が要求される。
Conventionally, when a beam is extracted from a circular accelerator, its output beam intensity (the amount of charged particles emitted per unit time, also referred to as emission current) is changed by using an RF knockout electrode which is one of the emission devices. A high frequency voltage is applied to the laser beam to emit light (for example, Patent Document 1)
). The relationship of the emitted beam intensity with respect to the applied high-frequency voltage is obtained in advance by experiments or the like, and the control data is stored in advance in a control computer or the like as pattern data. Since the emission is performed using the resonance phenomenon of charged particles, the adjustment parameter of the emission beam intensity is required to have a very high accuracy of 0.1% level.

一方、シンクロトロンで加速できる荷電粒子の量、すなわち加速電流を最大化するために、高周波加速電圧の波形を最適化する技術が知られている(例えば特許文献2)。   On the other hand, a technique for optimizing the waveform of a high-frequency acceleration voltage in order to maximize the amount of charged particles that can be accelerated by the synchrotron, that is, the acceleration current is known (for example, Patent Document 2).

特開2007−260193号公報JP 2007-260193 A 特開2002−75698号公報JP 2002-75698 A

以上のような円形加速器を用いた荷電粒子ビーム照射システムには、以下の様な問題点があった。荷電粒子の出射時には共鳴出射という手法で粒子線(荷電粒子ビーム)を取り
出すが、その制御パラメータは0.1%レベルの高精度の調整が必要であり、スキャニング照射等で多くのエネルギーの粒子線が必要であり、且つ、出射電流を変更する必要がある場合には長時間の調整時間が必要であった。
本発明では、上記の課題を解決し、スキャニング照射等で必要な粒子線の出射電流を簡便な制御機器で安定に変更可能な荷電粒子ビーム照射システムを提供することを目的とする。
The charged particle beam irradiation system using the circular accelerator as described above has the following problems. The particle beam (charged particle beam) is taken out by the method of resonance emission when the charged particle is emitted, but the control parameter needs to be adjusted with high accuracy of 0.1% level. When it is necessary to change the emission current, a long adjustment time is required.
An object of the present invention is to solve the above problems and to provide a charged particle beam irradiation system capable of stably changing the emission current of a particle beam necessary for scanning irradiation or the like with a simple control device.

この発明に係る荷電粒子ビーム照射システムは、荷電粒子を周回軌道に沿って周回させて荷電粒子ビームを形成する偏向電磁石と、荷電粒子を加速するための高周波加速空洞と、この高周波加速空洞に高周波を入射させる高周波源と、荷電粒子ビームを収束させるための収束用電磁石と、周回軌道に共鳴を励起するための六極電磁石と、荷電粒子を周回軌道から取り出すための出射装置とを備えた円形加速器と、周回軌道から出射された荷電粒子ビームを輸送するビーム輸送系と、このビーム輸送系により輸送された荷電粒子ビームを対象物に照射するビーム照射系と、対象物に照射する荷電粒子ビームを制御するためのビーム照射制御装置とを備えた荷電粒子ビーム照射システムにおいて、高周波源が発生する高周波を制御する高周波源制御装置を備え、この高周波源制御装置は、ビーム照射制御装置から送られてくる、ビーム照射系が必要とする荷電粒子ビームのビーム強度の信号に基づいて、少なくとも、荷電粒子の入射時から加速開始初期の所定時間までの間、高周波源が発生する高周波の周波数、振幅および位相の少なくとも一を、荷電粒子の加速の最適値から偏移させるようにしたものである。
A charged particle beam irradiation system according to the present invention includes a deflection electromagnet that forms a charged particle beam by rotating charged particles along a circular orbit, a high-frequency acceleration cavity for accelerating the charged particles, and a high-frequency wave in the high-frequency acceleration cavity. A circular shape including a high-frequency source for injecting a beam, a focusing electromagnet for converging a charged particle beam, a hexapole electromagnet for exciting resonance in a circular orbit, and an extraction device for extracting charged particles from the circular orbit Accelerator, beam transport system for transporting charged particle beam emitted from circular orbit, beam irradiation system for irradiating target object with charged particle beam transported by this beam transport system, and charged particle beam for irradiating target object In a charged particle beam irradiation system including a beam irradiation control device for controlling the frequency, a high frequency source control for controlling a high frequency generated by the high frequency source is provided. Equipped with a device, the high-frequency source controller is sent from the beam irradiation controller, based on the signal of the beam intensity of the charged particle beam beam irradiation system requires at least starting acceleration from the time of incidence of the charged particles During the period up to an initial predetermined time, at least one of the frequency, amplitude and phase of the high frequency generated by the high frequency source is shifted from the optimum value of acceleration of the charged particles .

この発明によれば、簡便な制御方法と制御機器で安定に粒子線の出射電流を変更でき、対象物に必要な粒子線強度が安定に得られる荷電粒子ビーム照射システムが得られる。   According to the present invention, a charged particle beam irradiation system can be obtained in which the emission current of a particle beam can be changed stably with a simple control method and control device, and the particle beam intensity required for an object can be stably obtained.

本発明の実施の形態1による荷電粒子ビーム照射システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the charged particle beam irradiation system by Embodiment 1 of this invention. 本発明の実施の形態1による荷電粒子ビーム照射システムの動作を説明する模式的な線図である。It is a typical diagram explaining operation | movement of the charged particle beam irradiation system by Embodiment 1 of this invention. 本発明の実施の形態1による荷電粒子ビーム照射システムの動作を説明する別の模式的な線図である。It is another schematic diagram explaining operation | movement of the charged particle beam irradiation system by Embodiment 1 of this invention. 本発明の実施の形態1による荷電粒子ビーム照射システムの加速パターンの一例を示す線図である。It is a diagram which shows an example of the acceleration pattern of the charged particle beam irradiation system by Embodiment 1 of this invention. 本発明の実施の形態1による荷電粒子ビーム照射システムの加速電流と出射電流の関係の一例を示す線図である。It is a diagram which shows an example of the relationship between the acceleration current of the charged particle beam irradiation system by Embodiment 1 of this invention, and an emitted current. 従来の荷電粒子ビーム照射システムの加速電流と出射電流の関係の一例を示す線図である。It is a diagram which shows an example of the relationship between the acceleration current of a conventional charged particle beam irradiation system, and an emitted current. 患者の患部に粒子線を照射するときの模式図である。It is a schematic diagram when irradiating a patient's affected part with a particle beam. 本発明の実施の形態2による荷電粒子ビーム照射システムの動作を説明する模式的な線図である。It is a typical diagram explaining operation | movement of the charged particle beam irradiation system by Embodiment 2 of this invention. 本発明の実施の形態2による荷電粒子ビーム照射システムの動作を説明する別の模式的な線図である。It is another schematic diagram explaining operation | movement of the charged particle beam irradiation system by Embodiment 2 of this invention. 本発明の実施の形態3による荷電粒子ビーム照射システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the charged particle beam irradiation system by Embodiment 3 of this invention. 本発明の実施の形態3による荷電粒子ビーム照射システムの動作の一例を示す線図である。It is a diagram which shows an example of operation | movement of the charged particle beam irradiation system by Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1による荷電粒子ビーム照射システムの概略構成を示すブ
ロック図である。図1において、1はシンクロトロンである円形加速器で概略以下の構成要素で構成される。すなわち、円形加速器1は、前段加速器2、荷電粒子ビームを長時間周回させるための真空ダクト3、前段加速器2からの荷電粒子を真空ダクト3に入射させるための入射装置4、荷電粒子が真空ダクト3内の周回軌道に沿って周回して荷電粒子ビームを形成するよう荷電粒子の軌道を偏向させるための偏向電磁石5a、5b、5c、5d(これらをまとめて偏向電磁石5とも称する)、周回軌道上に形成された荷電粒子ビームが発散しないように収束させる収束用電磁石6a、6b、6c、6d(これらをまとめて収束用電磁石6とも称する)、周回する荷電粒子に同期した高周波電圧を与えて加速する高周波加速空洞7、円形加速器内の荷電粒子ビームを円形加速器1外に取り出すための出射装置8、荷電粒子ビームの周回軌道に共鳴を励起して出射装置8から荷電粒子を出射させるための六極電磁石9、高周波加速空洞7に高周波電圧を供給するための高周波源10、高周波源10を制御する高周波制御装置11、発生する磁場を制御するため偏向電磁石の励磁電流を制御する偏向電磁石制御装置12、高周波制御装置11、偏向電磁石制御装置12や収束用電磁石6などその他のコンポーネントを制御して円形加速器1全体を制御する円形加速器制御装置13などにより構成されている。本発明では、高周波源制御装置11は内部に高周波源10が発生する高周波電圧のパラメータの一つである波形を制御する高周波電圧波形制御部110を備えている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of a charged particle beam irradiation system according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a circular accelerator which is a synchrotron, and is composed of the following components. That is, the circular accelerator 1 includes a front accelerator 2, a vacuum duct 3 for circulating a charged particle beam for a long time, an incident device 4 for causing charged particles from the front accelerator 2 to enter the vacuum duct 3, and a charged particle being a vacuum duct. Deflection electromagnets 5a, 5b, 5c, 5d (collectively referred to as deflection electromagnets 5) for deflecting the trajectory of the charged particles so as to form a charged particle beam by circling along the circular trajectory in 3; Converging electromagnets 6a, 6b, 6c, 6d that converge so that the charged particle beam formed above does not diverge (these are collectively referred to as converging electromagnet 6), and a high-frequency voltage synchronized with circulating charged particles is applied. The high-frequency accelerating cavity 7 to be accelerated, the emission device 8 for taking out the charged particle beam in the circular accelerator out of the circular accelerator 1, and the resonance of the circular orbit of the charged particle beam A hexapole electromagnet 9 for raising and emitting charged particles from the emission device 8, a high frequency source 10 for supplying a high frequency voltage to the high frequency acceleration cavity 7, a high frequency control device 11 for controlling the high frequency source 10, and a generated magnetic field Circular accelerator control for controlling the entire circular accelerator 1 by controlling other components such as the deflection electromagnet control device 12, the high frequency control device 11, the deflection electromagnet control device 12 and the converging electromagnet 6 for controlling the excitation current of the deflection electromagnet for control. It is comprised by the apparatus 13 grade | etc.,. In the present invention, the high frequency source control device 11 includes a high frequency voltage waveform control unit 110 that controls a waveform that is one of the parameters of the high frequency voltage generated by the high frequency source 10 therein.

また、20は出射装置8から出射した荷電粒子ビームを輸送するビーム輸送系、30はビーム輸送系20により輸送されてきた荷電粒子ビームを照射対象に照射するビーム照射系である。40は照射するビームを制御するビーム照射制御装置で、ビーム照射系30や円形加速器制御装置13を制御する。荷電粒子ビームの照射対象が例えば癌組織である場合、すなわち荷電粒子ビーム照射システムが荷電粒子ビームを利用した粒子線治療システムである場合、ビーム照射制御装置40は、治療計画装置を含み、治療計画にしたがって照射に必要なビームエネルギー、ビーム強度、ビームのON/OFFのタイミングなどの情報をビーム照射系30や円形加速器制御装置13に送り、円形加速器1からビーム照射系30が必要とする荷電粒子ビームを出射させる。   Reference numeral 20 denotes a beam transport system that transports the charged particle beam emitted from the emission device 8, and reference numeral 30 denotes a beam irradiation system that irradiates the irradiation target with the charged particle beam transported by the beam transport system 20. Reference numeral 40 denotes a beam irradiation control device that controls a beam to be irradiated, and controls the beam irradiation system 30 and the circular accelerator control device 13. When the charged particle beam irradiation target is, for example, a cancer tissue, that is, when the charged particle beam irradiation system is a particle beam therapy system using a charged particle beam, the beam irradiation control device 40 includes a treatment planning device, and a treatment plan Accordingly, information such as beam energy, beam intensity, and beam ON / OFF timing required for irradiation is sent to the beam irradiation system 30 and the circular accelerator control device 13, and charged particles required by the beam irradiation system 30 from the circular accelerator 1. The beam is emitted.

上記のように、前段加速器2から入射装置4により真空ダクト3に入射させた荷電粒子を偏向電磁石5によって偏向させて周回軌道を周回させる。その間、荷電粒子は高周波加速空洞7を通過する際に高周波からエネルギーを与えられて加速される。加速するためには周回する荷電粒子の周回周期と同期して高周波加速電圧を与える必要がある。また、偏向電磁石5による磁場が同じであれば荷電粒子の加速に従って荷電粒子の偏向角度が小さくなるため、荷電粒子の加速に従って偏向電磁石5による磁場を増加させて荷電粒子が一定の周回軌道を周回して荷電粒子ビームを形成するように制御する。このとき、荷電粒子ビームの発散状態も変化するので収束用電磁石6の磁場も変化させて荷電粒子ビームが発散しないように制御する。このように、高周波源10の周波数と電圧および偏向電磁石5の励磁電流を制御して荷電粒子が真空ダクト3で形成する通路に合うように周回して荷電粒子ビームを形成するよう制御することにより、荷電粒子が高周波からエネルギーを得て加速される。   As described above, the charged particles incident on the vacuum duct 3 by the incident device 4 from the pre-accelerator 2 are deflected by the deflecting electromagnet 5 to circulate the orbit. Meanwhile, the charged particles are accelerated by being given energy from the high frequency when passing through the high frequency acceleration cavity 7. In order to accelerate, it is necessary to apply a high frequency acceleration voltage in synchronization with the circulation cycle of the charged particles that circulate. In addition, if the magnetic field generated by the deflecting electromagnet 5 is the same, the deflection angle of the charged particle decreases as the charged particle is accelerated. Therefore, the magnetic field generated by the deflecting electromagnet 5 is increased according to the acceleration of the charged particle. And control to form a charged particle beam. At this time, since the divergence state of the charged particle beam also changes, the magnetic field of the focusing electromagnet 6 is also changed so that the charged particle beam does not diverge. In this way, by controlling the frequency and voltage of the high-frequency source 10 and the exciting current of the deflection electromagnet 5, the charged particles are controlled to circulate so as to match the passage formed by the vacuum duct 3 to form a charged particle beam. , Charged particles are accelerated by gaining energy from high frequency.

なお、収束用電磁石6は円形加速器に必ずしも必要ではなく、偏向電磁石の端部のエッジ角度を調整することで収束用電磁石の働きをさせることができるため、収束電磁石を備えない円形加速器もある。   Note that the converging electromagnet 6 is not necessarily required for the circular accelerator. Since the converging electromagnet can be made to function by adjusting the edge angle of the end of the deflection electromagnet, there is a circular accelerator that does not include the converging electromagnet.

このように、偏向電磁石5の励磁電流は、入射時一定の励磁電流を加速時に増加してゆくが、荷電粒子が所定のエネルギーに達したら偏向電磁石5の励磁電流を再度一定にし、共鳴励起用六極電磁石9や出射装置8のパラメータ、すなわち出射パラメータを制御して荷電粒子を出射させる。荷電粒子の出射の終了後は偏向電磁石5の励磁電流を下げる。これを繰り返すことで円形加速器を用いた入射、加速、出射を行う。   As described above, the excitation current of the deflecting electromagnet 5 increases at the time of acceleration from a constant excitation current. However, when the charged particles reach a predetermined energy, the excitation current of the deflection electromagnet 5 is made constant again for resonance excitation. Charged particles are emitted by controlling the parameters of the hexapole electromagnet 9 and the emission device 8, that is, the emission parameters. After the exit of the charged particles, the exciting current of the deflection electromagnet 5 is lowered. By repeating this, incidence, acceleration, and emission are performed using a circular accelerator.

高周波加速空洞7で周回する荷電粒子は、荷電粒子が高周波加速空洞7を通過する際に印加されている高周波加速電圧の位相が加速する位相になっているときに加速される。すなわち、高周波加速電圧と同期して通過する荷電粒子が加速されてゆく。図2(a)、(b)に高周波加速空洞に印加する加速電圧と加速できるビーム電流の時間波形の模式図を示す。図2(a)の波形は、高周波源制御装置11により高周波源10を制御して作成し、高周波加速空洞7に印加する電圧波形を示す。点線が正弦波、実線が非正弦波である。図2(b)が円形加速器で加速できるビーム電流(加速電流)を示す。点線が正弦波を印加したとき、実線が非正弦波を印加したときである。非正弦波を印加すると荷電粒子ビームの時間幅を、正弦波を印加した場合よりも長くすることができる。すなわち非正弦波を印加すると正弦波を印加したときより多くの荷電粒子を加速することができ加速電流を大きくできる。   The charged particles that circulate in the high-frequency acceleration cavity 7 are accelerated when the phase of the high-frequency acceleration voltage applied when the charged particles pass through the high-frequency acceleration cavity 7 is in the accelerating phase. That is, charged particles passing through in synchronization with the high-frequency acceleration voltage are accelerated. FIGS. 2A and 2B are schematic diagrams showing the time waveform of the acceleration voltage applied to the high-frequency acceleration cavity and the beam current that can be accelerated. The waveform shown in FIG. 2A is a voltage waveform created by controlling the high frequency source 10 by the high frequency source control device 11 and applied to the high frequency acceleration cavity 7. The dotted line is a sine wave and the solid line is a non-sine wave. FIG. 2B shows a beam current (acceleration current) that can be accelerated by the circular accelerator. The dotted line is when a sine wave is applied, and the solid line is when a non-sine wave is applied. When a non-sine wave is applied, the time width of the charged particle beam can be made longer than when a sine wave is applied. That is, when a non-sine wave is applied, more charged particles can be accelerated than when a sine wave is applied, and the acceleration current can be increased.

高周波電圧の波形作成は以下の様に実施する。基本波に高調波を加えると非正弦波を作成することができる。図2において、点線が基本波のみの波形、実線が3倍の高調波を印加したときの波形の一例である。ここで基本波と3倍の高調波の加速電圧比が1:0.5迄の時には3倍の高調波が大きいほど加速電流が増加する。図3に、高調波の基本波に対する3倍高調波の比率と加速電流の大きさの関係の模式図を示す。この図から、3倍の高調波の振幅強度を調整することで加速電流の調整が可能であることがわかる。基本波に3倍高調波を加えた高周波加速電圧により加速した場合、基本波のみで加速したときと同じ出射パラメータで出射させれば、加速電流にほぼ比例した出射電流を実現することができる。   The high-frequency voltage waveform is created as follows. A non-sinusoidal wave can be created by adding harmonics to the fundamental wave. In FIG. 2, the dotted line is an example of the waveform of only the fundamental wave, and the solid line is an example of the waveform when a triple harmonic is applied. Here, when the acceleration voltage ratio between the fundamental wave and the triple harmonic is up to 1: 0.5, the acceleration current increases as the triple harmonic increases. FIG. 3 shows a schematic diagram of the relationship between the ratio of the third harmonic to the fundamental harmonic and the magnitude of the acceleration current. From this figure, it can be seen that the acceleration current can be adjusted by adjusting the amplitude intensity of the triple harmonic. When accelerating with a high-frequency accelerating voltage obtained by adding the third harmonic to the fundamental wave, an emission current substantially proportional to the acceleration current can be realized by emitting with the same emission parameters as when accelerating with only the fundamental wave.

なお、加速時には、加速にしたがって、例えば1MHzから10MHzに徐々に基本波
の周波数を増加させてゆく。3倍高調波も基本波の周波数の変化に追随して3MHzから30MHzに変化させる必要がある。3倍高調波は基本波を基に発生させれば、基本波の周波数の変化に追随した3倍高調波の発生は簡単に行える。また、空間電荷(荷電粒子と荷電粒子が反発しあう効果)の影響は低エネルギー時が大きく、高エネルギー時には影響が小さいので、ある加速エネルギー(例えば陽子で20MeV程度)まで3倍の高調波を励
振させ、その後は基本波のみにしても同様の効果を奏する。
At the time of acceleration, the frequency of the fundamental wave is gradually increased from 1 MHz to 10 MHz, for example, according to the acceleration. It is necessary to change the 3rd harmonic from 3 MHz to 30 MHz following the change in the frequency of the fundamental wave. If the third harmonic is generated based on the fundamental wave, it is possible to easily generate the third harmonic that follows the change in the frequency of the fundamental wave. In addition, the effect of space charge (the effect of repulsion between charged particles and charged particles) is large at low energy and small at high energy, so triple harmonics up to a certain acceleration energy (for example, about 20 MeV for protons). The same effect is obtained by exciting only the fundamental wave thereafter.

以上では、基本波に3倍高調波を加えることで非正弦波を作成する例を説明したが、基本波に2倍高調波を加えることでも非正弦波を作成できる。基本波に加える2倍高調波の振幅を変化させることで高周波電圧の波形を変化させることができるので、2倍高調波の振幅により出射電流を制御できる。また、基本波に4倍以上の高調波を加え、加える高調波の振幅を変化させることでも高周波電圧の波形を変化でき、さらに、2倍高調波と3倍高調波といった複数の異なる倍数の高調波を加え、加える高調波の振幅を変化させることでも高周波電圧の波形を変化できる。このように、基本波に2倍以上の高調波を加え、加えた高調波の振幅を変化させることで高周波電圧の波形を変化でき、加速電流を変化させることができる。   In the above, an example in which a non-sinusoidal wave is created by adding a third harmonic to the fundamental wave has been described, but a non-sinusoidal wave can also be created by adding a second harmonic to the fundamental wave. Since the waveform of the high frequency voltage can be changed by changing the amplitude of the second harmonic applied to the fundamental wave, the emission current can be controlled by the amplitude of the second harmonic. Moreover, the waveform of the high-frequency voltage can be changed by adding more than four times higher harmonics to the fundamental wave and changing the amplitude of the added harmonics. Furthermore, the harmonics of a plurality of different multiples such as the second harmonic and the third harmonic are added. The waveform of the high frequency voltage can also be changed by adding a wave and changing the amplitude of the added harmonic. Thus, by adding a harmonic more than twice to the fundamental wave and changing the amplitude of the added harmonic, the waveform of the high frequency voltage can be changed, and the acceleration current can be changed.

このように、高周波源10で発生する高周波電圧の波形を変化させることで加速電流を変化でき、出射パラメータは固定のままで出射電流を変化させることができるので、高周波電圧の波形の制御によりビーム照射系30が必要とするビーム強度を得るための制御ができる。   In this way, the acceleration current can be changed by changing the waveform of the high-frequency voltage generated by the high-frequency source 10, and the emission current can be changed while the emission parameter remains fixed. Therefore, the beam can be controlled by controlling the waveform of the high-frequency voltage. Control for obtaining the beam intensity required by the irradiation system 30 can be performed.

図4(a)、(b)に円形加速器の加速パターン(加速された荷電粒子のエネルギー)と出射電流の関係の一例を示す。荷電粒子はAの期間で必要なエネルギーまで加速された後そのエネルギー、すなわちその速度で円形加速器の周回軌道を周回する。この一定のエネルギーで周回する荷電粒子を、Bの期間で出射装置8から出射するように出射パラメー
タを設定して出射電流として取り出す。本発明では1回の加速毎に高周波電圧の波形を変えて加速電流値を変更し、同じ出射パラメータでビームを取り出す。図4(b)の例では1回の加速で4回のビーム出射を行なっているが、ビーム照射系30からの要求によっては1回連続して出射する場合もある。
4A and 4B show an example of the relationship between the acceleration pattern (accelerated charged particle energy) of the circular accelerator and the emission current. The charged particles are accelerated to the required energy in the period A, and then circulate around the circular orbit of the circular accelerator at the energy, that is, at the speed. The emission parameters are set so that the charged particles that circulate with the constant energy are emitted from the emission device 8 during the period B, and are taken out as an emission current. In the present invention, the acceleration current value is changed by changing the waveform of the high-frequency voltage for each acceleration, and the beam is extracted with the same emission parameters. In the example of FIG. 4B, the beam is emitted four times with one acceleration. However, depending on the request from the beam irradiation system 30, the beam may be emitted once continuously.

図5(a)、(b)に本発明の荷電粒子ビーム照射システムにおける円形加速器1の加
速電流と出射電流の関係を示す。最初の加速では、例えば3倍高調波の基本波に対する比率を0.5として大電流を加速し、大電流のビームを出射する。2回目の加速では例えば3倍高調波の基本波に対する比率を0.25として加速する電流を1回目よりも小さくして、1回目の加速のときと同様の出射パラメータでビームを取り出すと、出射する電流は1回目よりも小電流となる。このようにして、出射パラメータを変えずに3倍高調波の比率を変えることで高周波源10が発生する高周波電圧の波形を変えて出射電流を制御できる。
FIGS. 5A and 5B show the relationship between the acceleration current and the emission current of the circular accelerator 1 in the charged particle beam irradiation system of the present invention. In the first acceleration, for example, the ratio of the third harmonic to the fundamental wave is set to 0.5, a large current is accelerated, and a large current beam is emitted. In the second acceleration, for example, when the ratio of the third harmonic to the fundamental wave is set to 0.25, the acceleration current is made smaller than that in the first acceleration, and the beam is extracted with the same extraction parameters as in the first acceleration. The current to be performed is smaller than the first current. In this way, the emission current can be controlled by changing the waveform of the high frequency voltage generated by the high frequency source 10 by changing the ratio of the third harmonic without changing the emission parameter.

図6(a)、(b)に従来の円形加速器の加速電流と出射電流の関係を示す。加速電流は一定で、出射パラメータを変更することで出射電流強度を変化させている。すなわち、所定のエネルギーまで加速後に円形加速器1の周回軌道を周回している荷電粒子の数は毎回同じで、時間当たりの出射個数が変わるように出射パラメータを変えて出射電流の値を変えていた。これに対して、本発明では、上記したように、高周波加速電圧の波形を変化させることで円形加速器1の周回軌道を周回する荷電粒子の数を変化させ、出射パラメータを変更せずに出射電流の値を変化させるようにした。   6A and 6B show the relationship between the acceleration current and the emission current of a conventional circular accelerator. The acceleration current is constant, and the emission current intensity is changed by changing the emission parameter. That is, the number of charged particles orbiting the circular orbit of the circular accelerator 1 after accelerating to a predetermined energy is the same every time, and the emission parameter is changed so that the number of emitted particles per time changes, and the value of the emission current is changed. . In contrast, in the present invention, as described above, the number of charged particles that circulate around the circular orbit of the circular accelerator 1 is changed by changing the waveform of the high-frequency acceleration voltage, and the emission current is changed without changing the emission parameter. The value of was changed.

ここで、荷電粒子ビーム(粒子線)を粒子線治療装置に用いる例を説明する。図7に、粒子線を円形加速器から取り出し、照射室で患者の患部に照射するときの模式図を示す。粒子線を患部に照射すると、粒子線のエネルギーにより粒子線が停まる深さ方向の距離が変化する。また、照射された粒子線が患部で停止するまでに通過する経路に与えるエネルギー密度すなわち線量は粒子線の停止位置で最大値を有する。   Here, an example in which a charged particle beam (particle beam) is used in a particle beam therapy system will be described. FIG. 7 shows a schematic diagram when the particle beam is taken out from the circular accelerator and irradiated to the affected part of the patient in the irradiation chamber. When the affected part is irradiated with the particle beam, the distance in the depth direction where the particle beam stops depends on the energy of the particle beam. Further, the energy density, that is, the dose given to the path through which the irradiated particle beam passes until it stops at the affected area has a maximum value at the stop position of the particle beam.

このため、直径10mm弱の細い粒子線を走査しながら患部にあわせた形状の照射を行なう手法であるスキャニング照射法では、患部の深さ方向を数層から数10層に分割(図3ではa、b、c、dの4層に分割)し、それぞれの層を細い粒子線で走査し照射していく。深さ方向の調整は粒子線のエネルギーを変更することで行なう。1つの層内でも位置に応じて照射する線量が異なるので、個々のスポットを照射する時間を制御することで線量を所定線量とする制御が必要となる。また、各層はスライス断面の大きさが大きく異なる場合があり、1つの出射ビーム強度で線量を管理する場合以下のような課題がある。低い出射ビーム強度で照射すると、患部全体を照射するとき照射時間を要する。高い出射ビーム高度で照射するとスライス断面が小さいときには非常に速くビームを走査するかOn/Offする必要があり、十分な高精度の照射がむずかしい。よってスライス断面の面積に応じて数種類の出射ビーム強度でビームを照射することにより高精度で短時間の照射を実現することができる。   For this reason, in the scanning irradiation method, which is a method of irradiating a shape according to the affected part while scanning a thin particle beam having a diameter of less than 10 mm, the depth direction of the affected part is divided from several layers to several tens of layers (a in FIG. , B, c, and d), and each layer is scanned with a fine particle beam and irradiated. Adjustment in the depth direction is performed by changing the energy of the particle beam. Since the dose to be irradiated varies depending on the position even within one layer, it is necessary to control the dose to be a predetermined dose by controlling the time to irradiate each spot. In addition, each layer may have a different slice cross-sectional size, and there are the following problems when managing the dose with one outgoing beam intensity. When irradiation is performed with a low emission beam intensity, irradiation time is required when irradiating the entire affected area. When irradiation is performed at a high exit beam height, it is necessary to scan the beam very quickly or turn it on / off when the slice cross section is small, and it is difficult to perform irradiation with sufficiently high accuracy. Therefore, high-precision and short-time irradiation can be realized by irradiating the beam with several kinds of outgoing beam intensities according to the area of the slice cross section.

そこで、患部形状に合わせた照射を行なうようビーム照射制御装置40で次のスライス面のパラメータを生成して円形加速器制御装置13に送り、円形加速器制御装置13が必要な加速電流を決定して高周波源制御装置に送り、この加速電流を得るための高周波電圧波形を高周波源制御装置11の高周波電圧波形制御部110が生成して高周波加源10に電圧波形を送り、高周波加速空洞7で高周波電圧を印加し加速電流を制御する。
このように構成することで、簡便な制御方法と制御機器で安定に粒子線の出射電流を変更できる。
Therefore, the beam irradiation control device 40 generates parameters for the next slice plane so as to perform irradiation in accordance with the shape of the affected part, and sends the parameters to the circular accelerator control device 13. The circular accelerator control device 13 determines the necessary acceleration current and performs high frequency. The high-frequency voltage waveform control unit 110 of the high-frequency source control device 11 generates a high-frequency voltage waveform for obtaining the acceleration current and sends the voltage waveform to the high-frequency source 10. To control the acceleration current.
By comprising in this way, the emission current of a particle beam can be changed stably with a simple control method and control equipment.

実施の形態2.
実施の形態1では、高周波電圧波形の作成を、3倍の高調波の振幅を調整することで行なったが、振幅を一定とし、3倍高調波と基本波間の位相を調整しても高周波電圧の波形を変化させることができる。具体的には3倍の高調波と基本波間の位相を加速電流が最大となる位相(最適位相)に調整し、3倍高調波を最適位相からずらしてゆくと加速電流を減少させていくことが可能となる。出射は基本波のみのときと同じ出射パラメータで実施し、加速電流に概比例した出射電流を実現することが可能となる。
Embodiment 2. FIG.
In the first embodiment, the high-frequency voltage waveform is created by adjusting the amplitude of the triple harmonic. However, even if the amplitude is constant and the phase between the triple harmonic and the fundamental wave is adjusted, the high-frequency voltage waveform is generated. The waveform can be changed. Specifically, the phase between the triple harmonic and the fundamental wave is adjusted to the phase where the acceleration current is maximized (optimal phase), and the acceleration current is decreased by shifting the triple harmonic from the optimal phase. Is possible. The emission is performed with the same emission parameters as in the case of only the fundamental wave, and an emission current roughly proportional to the acceleration current can be realized.

図8および図9に3倍高調波の位相を最適位相からずらしたときの高周波電圧波形と、その波形で加速したときの加速電流を示す。図8(a)の実線で示す波形は、図2(a)に示す実線の波形から3倍高調波の位相を15度ずらしたときの波形である。図8(b)の実線はそのときの加速電流であり、点線で示すのは正弦波(基本波のみ)で加速した時の加速電流である。図2(b)と比較して実線で示す加速電流の位相幅(時間幅に相当する)が狭くなっており、3倍高調波の位相をずらすことにより加速電流が減少していることが分かる。さらに、図9(a)、(b)は3倍高調波の位相をさらに15度、すなわち図2(a)の波形から30度ずらした時の加速電圧の波形とその時の加速電流を示したものである。実線で示す加速電流の時間幅は図8(b)で示す時間幅よりもさらに狭くなっており、加速電流がさらに減少している。このように、3倍高調波の位相を変化させることで加速電流を変化させることができる。また、3倍高調波の位相を変化させて高周波電圧の波形を変化させると、正弦波で加速するよりも加速電流を減少させることもできる。位相に加えて3倍高調波の振幅も変化させることで、加速電流の変化の範囲をさらに広げることができる。   FIG. 8 and FIG. 9 show the high frequency voltage waveform when the phase of the third harmonic is shifted from the optimum phase, and the acceleration current when accelerating with the waveform. The waveform shown by the solid line in FIG. 8A is a waveform when the phase of the third harmonic is shifted by 15 degrees from the waveform of the solid line shown in FIG. The solid line in FIG. 8B represents the acceleration current at that time, and the dotted line represents the acceleration current when accelerating with a sine wave (only the fundamental wave). Compared to FIG. 2B, the phase width (corresponding to the time width) of the acceleration current indicated by the solid line is narrow, and it can be seen that the acceleration current is decreased by shifting the phase of the third harmonic. . Further, FIGS. 9A and 9B show the acceleration voltage waveform and the acceleration current at that time when the phase of the third harmonic is further shifted by 15 degrees, that is, by 30 degrees from the waveform of FIG. Is. The time width of the acceleration current shown by the solid line is further narrower than the time width shown in FIG. 8B, and the acceleration current further decreases. Thus, the acceleration current can be changed by changing the phase of the third harmonic. Further, when the waveform of the high-frequency voltage is changed by changing the phase of the third harmonic, the acceleration current can be reduced rather than accelerating with a sine wave. By changing the amplitude of the third harmonic in addition to the phase, the range of change in the acceleration current can be further expanded.

実施の形態1で説明したように、基本波に2倍高調波を加えることでも非正弦波を作成できる。基本波に加える2倍高調波の位相を変化させることで高周波電圧の波形を変化させることができるので、2倍高調波の位相により出射電流を制御できる。また、基本波に4倍以上の高調波を加え、加える高調波の位相を変化させることでも高周波電圧の波形を変化でき、さらに、2倍高調波と3倍高調波といった複数の異なる倍数の高調波を加え、加える高調波の位相を変化させることでも高周波電圧の波形を変化できる。このように、基本波に2倍以上の高調波を加え、加える高調波の位相を変化させることで高周波電圧の波形を変化でき、加速電流を変化させることができる。また、位相に加えて高調波の振幅も変化させることで、加速電流の変化の範囲をさらに広げることができる。
以上のように、本実施の形態2によれば、簡便な制御方法と制御機器で安定に粒子線の出射電流を変更できる。
As described in Embodiment 1, a non-sinusoidal wave can also be created by adding a second harmonic to the fundamental wave. Since the waveform of the high frequency voltage can be changed by changing the phase of the second harmonic applied to the fundamental wave, the emission current can be controlled by the phase of the second harmonic. Moreover, the waveform of the high frequency voltage can be changed by adding more than 4 times higher harmonics to the fundamental wave and changing the phase of the added harmonics. Furthermore, the harmonics of multiple different multiples such as the 2nd harmonic and the 3rd harmonic are added. The waveform of the high frequency voltage can also be changed by adding a wave and changing the phase of the added harmonic. In this way, the waveform of the high frequency voltage can be changed and the acceleration current can be changed by adding a harmonic more than twice to the fundamental wave and changing the phase of the added harmonic. Further, by changing the amplitude of the harmonic in addition to the phase, the range of change in the acceleration current can be further expanded.
As described above, according to the second embodiment, the emission current of the particle beam can be changed stably with a simple control method and control device.

実施の形態3.
図10は、本発明の実施の形態3による荷電粒子ビーム照射システムの概略構成を示すブロック図である。図10において、図1と同一符号は同一または相当する部分を示す。図10において、図1と異なる部分は、高周波源制御装置11に、高周波電圧波形制御部110に代えて、高周波の周波数、振幅、位相のうち少なくとも一つのパラメータの偏移量を設定する基本波パラメータ偏移量設定部111を設けた点である。実施の形態1および2では、高周波電圧パターン作成で、基本波と高調波を用いていたが、基本波のみを用いてその周波数、振幅、位相のうちの少なくとも一つのパラメータを、最大加速電流が得られる最適値から偏移させることでも加速電流を制御することができる。
Embodiment 3 FIG.
FIG. 10 is a block diagram showing a schematic configuration of a charged particle beam irradiation system according to the third embodiment of the present invention. 10, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. In FIG. 10, the part different from FIG. 1 is a fundamental wave that sets a deviation amount of at least one parameter among a high frequency, amplitude, and phase in the high frequency source controller 11 instead of the high frequency voltage waveform controller 110. The parameter deviation amount setting unit 111 is provided. In the first and second embodiments, the fundamental wave and the harmonic are used in creating the high-frequency voltage pattern. However, the maximum acceleration current is set to at least one of the frequency, amplitude, and phase using only the fundamental wave. The acceleration current can also be controlled by shifting from the optimum value obtained.

従来の円形加速器では、高周波電圧の周波数、振幅、位相を荷電粒子の加速に最適化して変化させることによりできるだけ多くの加速電流を得るようにし、出射電流の制御は出射パラメータを変えることで行っていた。本発明の実施の形態3では、円形加速器制御装置13が要求する出射電流が最大の場合は、従来と同様、高周波電圧の周波数、振幅、位相を荷電粒子の加速に最適化して変化させる。円形加速器制御装置13が要求する出射電流が最大値より小さい場合は、高周波電圧の周波数、振幅、位相のうち少なくとも一つの
パラメータを荷電粒子の加速の最適値からずらすことにより、加速電流を最大値から下げる。基本波パラメータ偏移量設定部111において、ビーム照射制御装置40から送られてくるビーム照射系30が必要とする荷電粒子ビームのビーム強度の信号に基づいて円形加速器制御装置13が要求する出射電流に対応して、高周波電圧の周波数、振幅、位相のうち少なくとも一つのパラメータを最適値からずらす量、すなわち偏移量を決定し、設定する。このようにして、高周波電圧の周波数、振幅、位相のうち少なくとも一つのパラメータにより出射電流を制御する。このように、高周波電圧のパラメータを加速の最適値から偏移させて、要求される出射電流を得る制御方法は、従来発想すらなかった。
In conventional circular accelerators, the frequency, amplitude, and phase of the high-frequency voltage are optimized and changed to accelerate charged particles to obtain as much acceleration current as possible, and the emission current is controlled by changing the emission parameters. It was. In the third embodiment of the present invention, when the emission current required by the circular accelerator control device 13 is the maximum, the frequency, amplitude, and phase of the high-frequency voltage are optimized and changed for acceleration of charged particles, as in the prior art. When the emission current required by the circular accelerator control device 13 is smaller than the maximum value, the acceleration current is set to the maximum value by shifting at least one parameter of the frequency, amplitude, and phase of the high-frequency voltage from the optimum value for acceleration of the charged particles. Lower from. In the fundamental wave parameter deviation amount setting unit 111, the emission current required by the circular accelerator control device 13 based on the signal of the beam intensity of the charged particle beam required by the beam irradiation system 30 sent from the beam irradiation control device 40. Corresponding to the above, the amount by which at least one parameter of the frequency, amplitude, and phase of the high-frequency voltage is shifted from the optimum value, that is, the amount of deviation is determined and set. In this way, the emission current is controlled by at least one parameter among the frequency, amplitude, and phase of the high-frequency voltage. Thus, a control method for obtaining the required emission current by shifting the parameter of the high-frequency voltage from the optimum acceleration value has not been conceived in the past.

図11に基本波の周波数を最適値から偏移させて出射電流を制御する場合の制御性を示す。図11は、入射、加速、出射のどの段階の周波数を制御すれば出射電流を制御できるかに関し、ビーム解析をした結果を示したものである。図11(a)の横軸は時間、縦軸は偏向磁場を示す。図11(a)に示す偏向磁場の変化は、入射した荷電粒子を加速するのに必要な磁場変化であり、図11(a)では、約0.4秒までは荷電粒子を入射させるために必要な、変化させない磁場であり、その後加速を開始するため、加速に対応して磁場を増加させることを示している。この偏向磁場の変化に対し、高周波電圧のパラメータのうち周波数を偏移させた場合の制御性の時間依存性を図11(b)に示す。図11(b)の縦軸は、出射電流の変動割合(制御性)をパーセントで示したものである。制御性とは、基本波の周波数を荷電粒子の加速の最適値から偏移させて出射電流をどの程度制御できるかを表すものであり、加速により得られる最大出射電流からどれだけ出射電流を変動(減少)させることができるか、をパーセントで表したものである。   FIG. 11 shows the controllability when the emission current is controlled by shifting the frequency of the fundamental wave from the optimum value. FIG. 11 shows the result of beam analysis regarding which stage of incidence, acceleration, and emission can be controlled to control the emission current. In FIG. 11A, the horizontal axis represents time, and the vertical axis represents the deflection magnetic field. The change in the deflection magnetic field shown in FIG. 11A is a change in the magnetic field necessary for accelerating the incident charged particles. In FIG. 11A, the charged particles are incident until about 0.4 seconds. This is a necessary magnetic field that does not change and shows that the magnetic field is increased in response to the acceleration in order to start the acceleration thereafter. FIG. 11B shows the time dependency of the controllability when the frequency is shifted among the parameters of the high-frequency voltage with respect to the change in the deflection magnetic field. The vertical axis in FIG. 11 (b) shows the fluctuation rate (controllability) of the emission current in percent. Controllability represents the degree to which the output current can be controlled by shifting the fundamental frequency from the optimum value for acceleration of charged particles, and how much the output current varies from the maximum output current obtained by acceleration. It can be (decreased) expressed as a percentage.

図11(b)は、加速開始後のシンクロトロン振動数が320Hzの場合の解析結果を示しており、この場合、入射時から加速開始後約0.1秒後、すなわち加速開始後のシンクロトロン振動の1周期の時間の30数倍程度の時間までは25%程度の制御性が得られるが、その後は制御性が低下する。このように、入射時から加速開始初期に高い制御性が得られる。この期間は、荷電粒子が全ての加速位相を占めている状態から、安定加速位相(セパラトリクス)内で周回する状態へ遷移している期間であり、微小な基本波の変更により加速電流値に大きな影響を与えることができるからである。このように、入射時から加速開始初期の所定時間以内、好ましくは加速開始後、加速開始時のシンクロトロン振動の1周期の時間の50倍以内の時間で高い制御性が得られる。図11(b)では、高周波の基本波の周波数を偏移させた結果を示したが、振幅や位相を偏移させて出射電流を制御する場合も周波数を遷移させる場合と同様に、入射時から加速開始初期の所定時間以内で高い制御性が得られる。この期間を過ぎると、振幅、周波数、位相を大きく変化させないと出射電流を変化させることが難しく、制御が難しくなり、且つ、制御の応答性が悪くなる。このことより、入射時から加速初期の間を制御するのが効果的であることがわかる。   FIG. 11B shows the analysis result when the synchrotron frequency after the start of acceleration is 320 Hz. In this case, about 0.1 second after the start of acceleration from the time of incidence, that is, the synchrotron after the start of acceleration. Controllability of about 25% can be obtained up to about 30 times the time of one cycle of vibration, but thereafter the controllability decreases. Thus, high controllability can be obtained from the time of incidence to the beginning of acceleration. This period is a period in which the charged particles occupy all the acceleration phases and transition to a state in which they circulate within the stable acceleration phase (separatory), and the acceleration current value is increased by changing the minute fundamental wave. It is because it can influence. As described above, high controllability can be obtained within a predetermined time from the time of incidence to the beginning of acceleration, preferably within 50 times the time of one cycle of the synchrotron oscillation at the time of acceleration after the start of acceleration. In FIG. 11B, the result of shifting the frequency of the high-frequency fundamental wave is shown. However, when the emission current is controlled by shifting the amplitude or phase, as in the case of frequency transition, Therefore, high controllability can be obtained within a predetermined time from the beginning of acceleration. After this period, it is difficult to change the output current unless the amplitude, frequency, and phase are significantly changed, control becomes difficult, and control responsiveness deteriorates. From this, it can be seen that it is effective to control from the time of incidence to the beginning of acceleration.

以上のように、本実施の形態3によれば、簡便な制御方法と制御機器で安定に粒子線の出射電流を変更できる。   As described above, according to the third embodiment, the emission current of the particle beam can be changed stably with a simple control method and control device.

1:円形加速器 2:前段加速器
3:真空ダクト 4:入射装置
5、5a、5b、5c、5d:偏向電磁石
6、6a、6b、6c、6d:収束用電磁石
7:高周波加速空洞 8:出射装置
9:共鳴励起用六極電磁石 10:高周波源
11:高周波源制御装置 12:偏向磁石制御装置
13:円形加速器制御装置 20:ビーム輸送系
30:ビーム照射系 40:ビーム照射制御装置
110:高周波電圧波形制御部 111:基本波パラメータ偏移量設定部
1: Circular accelerator 2: Pre-stage accelerator 3: Vacuum duct 4: Incident device 5, 5a, 5b, 5c, 5d: Bending electromagnet 6, 6a, 6b, 6c, 6d: Converging electromagnet 7: High-frequency acceleration cavity 8: Ejecting device 9: Resonant excitation hexapole magnet 10: High frequency source 11: High frequency source control device 12: Deflection magnet control device 13: Circular accelerator control device 20: Beam transport system 30: Beam irradiation system 40: Beam irradiation control device 110: High frequency voltage Waveform control unit 111: Fundamental parameter deviation amount setting unit

Claims (4)

入射された荷電粒子を周回軌道に沿って周回させて荷電粒子ビームを形成する偏向電磁石と、上記荷電粒子を加速するための高周波加速空洞と、この高周波加速空洞に高周波を入射させる高周波源と、上記荷電粒子ビームを収束させるための収束用電磁石と、上記周回軌道に共鳴を励起するための六極電磁石と、上記荷電粒子を上記周回軌道から取り出すための出射装置とを備えた円形加速器と、
上記周回軌道から出射された上記荷電粒子ビームを輸送するビーム輸送系と、
このビーム輸送系により輸送された上記荷電粒子ビームを対象物に照射するビーム照射系と、
対象物に照射する上記荷電粒子ビームを制御するためのビーム照射制御装置と
を備えた荷電粒子ビーム照射システムにおいて、
上記高周波源が発生する高周波を制御する高周波源制御装置を備え、この高周波源制御装置は、上記ビーム照射制御装置から送られてくる、ビーム照射系が必要とする上記荷電粒子ビームのビーム強度の信号に基づいて、少なくとも、上記荷電粒子の入射時から加速開始初期の所定時間までの間、上記高周波源が発生する高周波の周波数、振幅および位相の少なくとも一を、上記荷電粒子の加速の最適値から偏移させることを特徴とする荷電粒子ビーム照射システム。
A deflecting electromagnet that circulates incident charged particles along a circular orbit to form a charged particle beam, a high-frequency acceleration cavity for accelerating the charged particles, a high-frequency source that causes a high-frequency to enter the high-frequency acceleration cavity, A circular accelerator comprising: a converging electromagnet for converging the charged particle beam; a hexapole electromagnet for exciting resonance in the orbit; and an extraction device for extracting the charged particles from the orbit;
A beam transport system for transporting the charged particle beam emitted from the orbit,
A beam irradiation system for irradiating an object with the charged particle beam transported by the beam transport system;
In a charged particle beam irradiation system comprising a beam irradiation control device for controlling the charged particle beam irradiated to an object,
A high-frequency source control device that controls a high-frequency generated by the high-frequency source, and the high-frequency source control device sends a beam intensity of the charged particle beam required by the beam irradiation system sent from the beam irradiation control device; Based on the signal, at least one of the frequency, amplitude, and phase of the high frequency generated by the high frequency source from the time when the charged particle is incident to a predetermined time at the beginning of acceleration is determined as an optimum value for acceleration of the charged particle. A charged particle beam irradiation system characterized by being shifted from
上記加速開始初期の所定時間は、加速開始後から、加速開始時のシンクロトロン振動の1周期の時間の50倍以内の時間であることを特徴とする請求項に記載の荷電粒子ビーム照射システム。 2. The charged particle beam irradiation system according to claim 1 , wherein the predetermined time at the beginning of acceleration is a time within 50 times the time of one cycle of synchrotron oscillation at the start of acceleration after the start of acceleration. . 入射された荷電粒子を偏向電磁石により偏向させて周回軌道に沿って周回させ荷電粒子ビームを形成し、上記荷電粒子を高周波加速空洞に印加する高周波電圧により加速し、収束用電磁石により上記荷電粒子ビームを収束させ、六極電磁石により上記周回軌道に共鳴を励起し、出射装置により上記荷電粒子を上記周回軌道から取り出す円形加速器の運転方法において、
少なくとも、上記荷電粒子の入射時から加速開始初期の所定時間の間、上記高周波加速空洞に印加する高周波電圧の周波数、振幅および位相の少なくとも一を、上記荷電粒子の加速の最適値から偏移させて、上記周回軌道から取り出す荷電粒子ビームの出射電流を変更
することを特徴とする円形加速器の運転方法。
The incident charged particles are deflected by a deflecting electromagnet and circulated along a circular orbit to form a charged particle beam. The charged particles are accelerated by a high frequency voltage applied to a high frequency accelerating cavity, and the charged particle beam is accelerated by a focusing electromagnet. In the operation method of the circular accelerator, the resonance is excited in the orbit by the hexapole electromagnet and the charged particles are taken out from the orbit by the emission device.
At least one of the frequency, amplitude, and phase of the high-frequency voltage applied to the high-frequency acceleration cavity is shifted from the optimum acceleration value of the charged particles for at least a predetermined time from the time when the charged particles are incident to the beginning of acceleration. And changing the emission current of the charged particle beam extracted from the orbit.
上記加速開始初期の所定時間は、加速開始後から、加速開始時のシンクロトロン振動の1周期の時間の50倍以内の時間であることを特徴とする請求項に記載の円形加速器の運転方法。 The acceleration start initial predetermined time after the start of acceleration, the method of operating a circular accelerator according to claim 3, characterized in that the 50-fold within hours of time of one cycle of the synchrotron oscillation of the acceleration at the start .
JP2011005782A 2010-02-26 2011-01-14 Charged particle beam irradiation system and operation method of circular accelerator Active JP5542703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005782A JP5542703B2 (en) 2010-02-26 2011-01-14 Charged particle beam irradiation system and operation method of circular accelerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010041974 2010-02-26
JP2010041974 2010-02-26
JP2011005782A JP5542703B2 (en) 2010-02-26 2011-01-14 Charged particle beam irradiation system and operation method of circular accelerator

Publications (2)

Publication Number Publication Date
JP2011198748A JP2011198748A (en) 2011-10-06
JP5542703B2 true JP5542703B2 (en) 2014-07-09

Family

ID=44876658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005782A Active JP5542703B2 (en) 2010-02-26 2011-01-14 Charged particle beam irradiation system and operation method of circular accelerator

Country Status (1)

Country Link
JP (1) JP5542703B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341655B2 (en) 2013-12-09 2018-06-13 株式会社東芝 Circular accelerator and heavy ion beam therapy system
JP6568689B2 (en) * 2015-01-28 2019-08-28 株式会社日立製作所 Particle beam therapy system and method for controlling particle beam therapy system
JP7112083B2 (en) * 2018-12-28 2022-08-03 国立大学法人大阪大学 Cyclotron and cyclotron acceleration method
JP7240262B2 (en) * 2019-06-06 2023-03-15 株式会社日立製作所 Accelerator, particle beam therapy system and ion extraction method
CN111720923B (en) * 2020-05-27 2022-08-12 华帝股份有限公司 Control system and control method of kitchen air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943368B2 (en) * 1991-03-20 1999-08-30 三菱電機株式会社 Ring type charged particle accelerator
JP3864581B2 (en) * 1998-10-16 2007-01-10 株式会社日立製作所 Charged particle beam extraction method
JP5066694B2 (en) * 2008-06-20 2012-11-07 独立行政法人放射線医学総合研究所 High frequency acceleration controller

Also Published As

Publication number Publication date
JP2011198748A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5002612B2 (en) Charged particle beam irradiation equipment
JP3705091B2 (en) Medical accelerator system and operating method thereof
JP4339904B2 (en) Particle beam therapy system
JP4633002B2 (en) Beam emission control method for charged particle beam accelerator and particle beam irradiation system using charged particle beam accelerator
JP4988516B2 (en) Particle beam therapy system
US20050231138A1 (en) Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system
JP5597162B2 (en) Circular accelerator and operation method of circular accelerator
JP6200368B2 (en) Charged particle irradiation system and control method of charged particle beam irradiation system
US9776019B2 (en) Particle beam therapy system
JPH11253563A (en) Method and device for charged particle beam radiation
JP4982535B2 (en) Particle beam therapy system
JP5542703B2 (en) Charged particle beam irradiation system and operation method of circular accelerator
WO2013145117A1 (en) Particle beam therapy device and particle beam therapy device operation method
JP6568689B2 (en) Particle beam therapy system and method for controlling particle beam therapy system
JP5998089B2 (en) Particle beam irradiation system and its operation method
JP3864581B2 (en) Charged particle beam extraction method
JP4650382B2 (en) Charged particle beam accelerator and particle beam irradiation system using the charged particle beam accelerator
JP2008272139A (en) Charged particle beam irradiation system and charged particle beam emission method
JP5340131B2 (en) Circular accelerator and operation method of circular accelerator
JP5781421B2 (en) Particle beam therapy system
JP2005129548A (en) Emitting method of charged particle beam
JP6279036B2 (en) Particle beam irradiation system and its operation method
JP2000162391A (en) Device and method for applying charged particle beam
WO2014207852A1 (en) Charged particle beam radiation system and beam emission method
JP2014079300A (en) Charged particle beam irradiation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R151 Written notification of patent or utility model registration

Ref document number: 5542703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250