JP6383416B2 - バンド幅可変ecgハイパスフィルタ、心電図モニタ及び除細動器 - Google Patents

バンド幅可変ecgハイパスフィルタ、心電図モニタ及び除細動器 Download PDF

Info

Publication number
JP6383416B2
JP6383416B2 JP2016528239A JP2016528239A JP6383416B2 JP 6383416 B2 JP6383416 B2 JP 6383416B2 JP 2016528239 A JP2016528239 A JP 2016528239A JP 2016528239 A JP2016528239 A JP 2016528239A JP 6383416 B2 JP6383416 B2 JP 6383416B2
Authority
JP
Japan
Prior art keywords
pass filter
baseline
ecg
low
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016528239A
Other languages
English (en)
Other versions
JP2016538037A5 (ja
JP2016538037A (ja
Inventor
クラーク ハーレイクソン,アール
クラーク ハーレイクソン,アール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016538037A publication Critical patent/JP2016538037A/ja
Publication of JP2016538037A5 publication Critical patent/JP2016538037A5/ja
Application granted granted Critical
Publication of JP6383416B2 publication Critical patent/JP6383416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3987Heart defibrillators characterised by the timing or triggering of the shock

Description

本発明は、概して、心電図(electrocardiogram)(“ECG”)信号のハイパスフィルタリングに関係がある。本発明は、具体的に、診断及び救急医療サービス(emergency medical service)(“EMS”)を目的としたECG信号のバンド幅可変のハイパスフィルタリングに関係がある。
当該技術で知られているように、ECG信号の信号振幅は、通常、1mV程度であるが、−300mVから+300mVまで範囲で変化するDCオフセットを有する。このDCオフセットは、時間及び/又は患者の動きによりドリフトすることがあり、しばしば“ベースラインワンダー”と呼ばれる。加えて、除細動のようなイベントは、ベースラインに対して劇的な効果を有し得る。特に、除細動イベントの後のDCオフセットは、除細動イベント中にECG電極を流れ得る電流に起因して、通常はドリフトしている。
利得のための典型的なECG信号表示設定は、1mVのECG信号が視覚的に明りょうに見えるように、+/−2mVの範囲を有する。潜在的に大きく且つドリフトするDCオフセットに応答して、ハイパスフィルタは、ディスプレイ及びプリンタのビューウィンドウ内にECG信号を保つように、如何なるDCオフセットも取り除くために用いられてきた。特に、ECG信号の重要な診断的測定は、ST部分上昇又は下降である。これは、QRSより前のECG信号のベースラインをQRSの後のベースラインと比較することによって行われる。理想的には、ハイパスフィルタは、QRSの前後のベースラインの相対レベルが影響を及ぼされないように、ベースラインワンダーを除くべきである。
診断品質のECG測定のためのインパルス応答要件について記載するECG標準が確立されている(例えば、EN60601−2−27及びAAMIEC13)。例えば、標準の試験において適用されるインパルスは、100msの存続期間を有して振幅が3mVであり、要件は、ベースラインのずれは100μV未満でなければならず、且つ、ベースラインの傾きはインパルス後に300μV/秒未満でなければならないことである。従って、ECGシステムにおけるハイパスフィルタは、矛盾する目標を有する。
具体的に、ハイパスフィルタが、ディスプレイの中心においてECG信号のベースラインを確かに維持するために、ベースラインワンダーに敏感に反応する場合には、QRSにも反応する可能性があり、それにより、QRSの後のベースラインは、100μVよりも大きくQRSの後にずれる。これは、ECGモニタが、通常、ハイパスフィルタのために幾つかのバンド幅設定を医師に与えるからである。設定は、表示スクリーン上でECG信号を見えたままとするための“モニタ”バンド幅と、そして、診断的ECG測定(例えば、ST部分上昇及び下降)を行うための“診断”バンド幅としばしば呼ばれる。加えて、最小限の時間遅延で実時間においてECG信号を表示したいとの要望も存在する。これは、同期カルディオバージョンのような、タイミングが重要である臨床用途にとって重要である。
歴史的に、幾つかの種類のハイパスフィルタがECGモニタにおいて用いられてきた。
ECGモニタのためのそのようなハイパスフィルタの1つは、計算上実施するのが簡単である無限インパルス応答(infinite impulse response)(“IIR”)ハイパスフィルタである。例えば、二次バターワース・ハイパスフィルタは、最低限の時間遅延によりサンプルごとに5つの乗累算を有して容易に実施される。しかし、IIRハイパスフィルタの欠点は、グループ遅延が周波数に依存することである。これは、ECG信号のひずみをもたらす。言い換えれば、IIRハイパスフィルタは、ECG信号に続いてベースラインを押し下げることによって、正ECG QRS信号に応答する。更には、ひずみを診断のための許容可能なレベルまで最小限とするために、IIRハイパスフィルタのコーナー周波数は、0.05Hz以下の周波数に低減される必要がある。加えて、ランプに適用される一次IIRハイパスフィルタは、DCオフセットをもたらし、ランプに適用される二次IIRハイパスフィルタは、ゼロ(0)DCオフセットをもたらす。このように、除細動イベントの後にドリフトするDCオフセットを除くために、IIRハイパスフィルタは、最低限でも二次フィルタである必要がある。
ECGモニタのための他のタイプのハイパスフィルタは、有限インパルス応答(finite impulse response)(“FIR”)ハイパスフィルタである。FIRハイパスフィルタは、定義により、線形な位相及び一定のグループ遅延を有する。注目すべきは、FIRハイパスフィルタは、一定のグループ遅延によりECG信号のひずみを最小限とし、0.5Hz又は0.67HzのFIRハイパスフィルタは、ECG標準に従う診断品質のECG測定の要件を満足するよう実施されてよい。また、FIRハイパスフィルタは、それが通常は対称であるよう設計されており、ランプに対するFIRハイパスフィルタの適用がゼロ(0)DCオフセットをもたらすので、除細動の後のドリフトするDCオフセットにも応答する。しかし、FIRハイパスフィルタには2つの欠点がある。第1の欠点は時間遅延である。具体的に、全ての周波数について一定の時間遅延を有するために、ハイパスコーナー周波数の上下両方の周波数が同じ時間遅延を受け、典型的な時間遅延は約1秒である。第2の欠点は、必要とされる計算量である。具体的に、1秒の時間遅延を有するFIRハイパスフィルタは、2秒の時刻歴を有する。1000Hzのサンプルレートは、1000Hzサンプルレートで計算される各サンプルごとの2000の乗累算を必要とする。よって、完全な12リード測定に関し、乗累算の数は、FIRハイパスフィルタのためだけに24Mである。
更に、ECGモニタリングは、動かされている患者に対してしばしば実行される。病院の救急医療サービス(“EMS”)の出力は、通常、患者の動きに起因して、ECGの有意なベースラインワンダーを示す。EMSハイパスフィルタは、EMS環境のために設計されたECGシステムのためにしばしば提供される。このハイパスフィルタは、通常、1Hzから2Hzの範囲のコーナー周波数を有する。このような高いコーナー周波数を有する簡単なIIRフィルタは、ECG波形を大いにゆがめる。このようなコーナー周波数を有するFIRフィルタは、ECGのひずみを最小限とするが、計算量の相当の増大を必要とする。
先行技術の欠点に対処するよう、本発明は、診断(例えば、0.67Hz未満のコーナー周波数)のための且つEMS(例えば、1Hzから2Hzの範囲のコーナー周波数)のための可変ECGハイパスフィルタを提供する。ECGハイパスフィルタの一形態は、ベースラインローパスフィルタ、信号遅延部及び信号抽出部を用いる。動作中、ベースラインローパスフィルタは、フィルタ処理されたベースライン信号を出力するようベースラインフィルタ未処理心電図信号に協調してローパスフィルタをかける有限インパルスフィルタ及び無限インパルス応答ローパスフィルタを含む。ベースラインローパスフィルタは、ベースラインフィルタ未処理心電図信号内のいずれかのベースラインワンダーの推定の関数としてベースラインローパスフィルタのコーナー周波数を動的に調整するベースラインワンダー推定器を更に含む。信号遅延部は、遅延されたベースラインフィルタ未処理心電図信号を出力するようベースラインフィルタ未処理心電図信号を時間遅延させ、信号抽出部は、ベースラインフィルタ処理済み心電図信号を出力するよう遅延されたベースラインフィルタ未処理心電図信号からフィルタ処理されたベースライン信号を取り出す。
本発明の第2の形態は、患者の心臓のECG波形を生成する信号プロセッサと、ECG波形(例えば、コンピュータスクリーン上で又はプリントアウトにおいて視覚化されている。)を表示するECGディスプレイとを用いるECGモニタである。信号プロセッサは、診断及び/又はEMSのために、本発明の上記のECGハイパスフィルタを組み込む。
本発明の第3の形態は、患者の心臓のECG波形を生成するECGモニタと、衝撃エネルギを蓄える衝撃源と、ECG波形のQRS解析に応答して患者の心臓への衝撃エネルギの供給を制御する除細動コントローラとを用いる自動又は手動の除細動器である。ECGモニタは、診断及び/又はEMSのために、本発明の上記のECGハイパスフィルタを組み込む。
本発明の上記の形態及び他の形態並びに本発明の様々な特徴及び利点は、添付の図面とともに読まれる本発明の様々な実施形態の以下の詳細な説明から更に明らかになるであろう。詳細な説明及び図面は、限定ではなくむしろ本発明の実例にすぎない。本発明の適用範囲は、添付の特許請求の範囲及びその均等によって定義される。
本発明に従うECGハイパスフィルタを備えた除細動器の例となる実施形態を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となる周波数応答を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となる周波数応答を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となるインパルス応答を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となるインパルス応答を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となる除細動イベント回復を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となるベースラインワンダー応答を表す。 当該技術で知られている2極バターワース・ハイパスフィルタ及び本発明のECGハイパスフィルタの例となるベースラインワンダー応答を表す。 本発明に従うECGハイパスフィルタの第1の例となる実施形態を表す。 本発明に従うECGハイパスフィルタの第2の例となる実施形態を表す。
本発明の理解を助けるよう、本発明の例となる実施形態は、除細動器のためのECGハイパスフィルタを対象としてここでは与えられる。
図1を参照すると、本発明の除細動器20は、一対の電極パッド又はパドル21、任意のECGリード22、ECGモニタ23(内蔵又は外付け)、除細動コントローラ27、及び衝撃源29を用いる。
電極パッド/パドル21は、図1で示されるように前胸部−心尖部(anterior-apex)配置において、あるいは、前胸部−後背部(anterior-posterior)配置(図示せず。)において、患者10に導電適用されるよう、当該技術で知られるように構造上構成される。電極パッド/パドル21は、衝撃源29からの除細動衝撃を患者10の心臓11へ導き、且つ、患者10の心臓11の電気的活動を表すECG信号(図示せず。)をECGモニタ23へ導く。代替的に、又は同時に、ECGリード22は、ECG信号をECGモニタ23へ導くよう、当該技術で知られるように患者10へ接続される。
ECGモニタ23は、ECG信号を処理して、患者10が系統的な心拍状態又は系統的でない心拍状態を経験している表れとして、患者10の心臓11の電気的活動を測定するよう、当該技術で知られるように構造上構成される。系統的な心拍状態を示すECG信号の例は、心臓を拍出することが可能な患者10の心臓11の心室の系統的な収縮を表すECG波形30aである。系統的でない心拍状態を示すECG信号の例は、患者10の心臓11の心室細動を表すECG波形30bである。
このために、ECGモニタ23は、信号プロセッサ24及びECGディスプレイ26を用いる。本発明のために、信号プロセッサ24は、ECG信号を処理する際にECGモニタ23によって必要とされる機能を実行するハードウェア、ソフトウェア、ファームウェア及び/又は回路構成の如何なる構造配置としてもここで広く定義される。一般に、動作中、信号プロセッサ24は、患者10の心臓11の電気的活動を表すECG信号をパッド/パドル21及び/又はECGリード22からアナログ形式で受信するよう、ECG信号を、必要に応じて整え、除細動コントローラ27へストリーミングするよう、且つ、ECGディスプレイ26による表示のためのECG波形を生成するよう構造上構成される。特に、実際上、信号プロセッサ24は、アナログ−デジタルコンバータと、高周波信号にフィルタをかけるコーナー周波数(例えば、≧20Hz)を有するローパスフィルタ、及び特に除細動イベントに起因したベースラインワンダー/ドリフトのような低周波信号にフィルタをかける可変なコーナー周波数(例えば、≦2Hz、特に1.5Hz)を有する本発明のECGハイパスフィルタ25を含む様々なフィルタとを実装してよい。図2乃至6のここでの記載により更に説明されるように、ECGハイパスフィルタ25の構造設計は、ベースラインワンダーの優れた除去により実時間の診断品質ECGを達成する計算上簡単な設計である。ECGハイパスフィルタ25は、除細動イベントの後のベースラインドリフトの優れた除去も有し、上記の性能を最低限の時間遅延(例えば、250ms)しか有さずに達成することで、それをECG信号の実時間モニタリングのために極めて有用なものとする。加えて、ECGハイパスフィルタ25は、医師が、ディスプレイ上で信号を可視的なままとするために、診断品質ECG及びモニタ品質ECTのどちらかを選ぶ必要性を排除する。
本発明のために、ECGディスプレイ26は、コンピュータディスプレイ及びプリンタを制限なしに含む、見るためにECG波形30を提示するよう構造上構成された如何なるデバイスとしてもここで広く定義される。
依然として図1を参照すると、衝撃源29は、除細動コントローラ27によって制御される患者10の心臓11への電極パッド/パドル21を介した除細動衝撃32の供給のための電気エネルギを蓄えるよう、当該技術で知られるように構造上構成される。実際上、除細動衝撃32は、当該技術で知られる如何なる波形も有してよい。そのような波形の例には、制限なしに、図1に示されるような、単相正弦波形(正サイン波)32a及び二相切頭波形32bが含まれる。
一実施形態において、衝撃源29は、チャージボタン28aの押下時に高電圧チャージャ及び電源を介して高電圧を蓄える高電圧キャパシタバンク(図示せず。)を用いる。衝撃源29は、除細動コントローラ27によって制御されるように高電圧キャパシタバンクからの電気エネルギチャージの特定の波形を電極パッド/パドル21に選択的に適用するスイッチング/分離回路(図示せず。)を更に用いる。
除細動コントローラ27は、衝撃ボタン28bを介した手動の同期カルディオバージョン、又は自動の同期カルディオバージョンを実行するよう、当該技術で知られるように構造上構成される。実際上、除細動コントローラ27は、除細動コントローラ27内にソフトウェア/ファームウェアとしてインストールされている手動又は自動の同期カルディオバージョンを実行するハードウェア/回路構成(例えば、プロセッサ、メモリ、など)を用いる。一実施形態において、ソフトウェア/ファームウェアは、除細動衝撃32を患者10の心臓11へ供給する際に衝撃源29を制御する基礎として、ECG信号30のQRS31を検出する。
図2乃至6を参照すると、動作性能及び動作性能を達成するためのフィルタ実施形態に関するECGハイパスフィルタ25の構造設計が、これより、本発明の理解を助けるよう記載される。
具体的に、診断を目的とした動作性能に関して、図2及び3は、既知の2極バターワース型モニタバンド幅ハイパスフィルタ(以降、「先行技術のECG HPフィルタ」)と比較されるECGハイパスフィルタ25の例となる周波数応答及び例となるインパルス応答を夫々与える。夫々のフィルタは、二次周波数応答及び1000Hzの入力ECG信号のサンプルレートを有する。図2A及び2Bに示されるように、ECGハイパスフィルタ25の周波数応答50a及び50bは、夫々0.15Hzから1.535Hzの範囲に及ぶ可変なコーナー周波数を有する。図2A及び2Bには、0.5Hzのコーナー周波数を有する先行技術のECG HPフィルタの周波数応答60も示されている。図3A及び3Bに示されるように、ECGハイパスフィルタ25のインパルス応答51a及び51bは、インパルスの後のベースラインと略同じレベルで、インパルスより前の入力ECG信号のベースラインの値を有する(すなわち、インパルスの前後で等しいベースライン)。一方、先行技術のECG HPフィルタのインパルス応答61a及び61bは、インパルスの後で非常に大きいベースラインシフトを有する。図3Aは、0.15Hzに設定されたコーナー周波数を有する可変ハイパスフィルタ25のインパルス応答を示す。図3Bは、1.535Hzに設定されたコーナー周波数を有する可変ハイパスフィルタ25のインパルス応答を示す。たとえ図示されていないとしても、インパルスの後のベースラインと略同じレベルにあるインパルスより前の入力ECG信号のベースラインの値は、0.15Hzから1.535Hzの間で可変なコーナー周波数の全範囲にわたる。
また、例として、図4は、300mVのオフセット変化及び5秒の時間定数の指数関数的減衰を伴って時間10sで除細動イベントを有するECG信号の入力波形22aを示す。この例に関し、ECGハイパスフィルタ25の除細動回復26aは、先行技術のECG HPフィルタの除細動回復26bと同様の性能を有する。
更なる例として、図5Aは、ECG信号の大きいレベルのベースラインワンダー22bを示す。この例に関し、ECGハイパスフィルタ25によってフィルタをかけられたECG信号のセンター表示26cは、先行技術のECG HPフィルタによってフィルタをかけられたECG信号のセンター表示26dよりも優れた性能を有し且つひずみが小さい。特に、図5Aは、高水準のベースラインワンダーが、0.5Hzの先行技術のECG HPフィルタよりも高いECGハイパスフィルタ25のコーナー周波数をもたらすことを示す。これにより、ベースラインワンダーは、表示範囲内にうまく(例えば、0.5Hzフィルタよりも良く)保たれる。更には、高コーナー周波数によれば、ECGハイパスフィルタ25のECG信号のひずみは、0.5Hzの先行技術のECG HPフィルタよりも小さい。
図5Bは、ECG信号の中程度のベースラインワンダー22cを示す。この例に関し、ECGハイパスフィルタ25によってフィルタをかけられたECG信号のセンター表示26eは、0.5Hzの先行技術のECG HPフィルタによってフィルタをかけられたECG信号の26fのセンター表示及びひずみと比較して、センター表示内にECGを保ちながらECG波形のひずみを最小限とする。特に、中程度のベースラインワンダーにおいて、ECGハイパスフィルタ25のコーナー周波数は、0.5Hzの先行技術のECG HPフィルタのコーナー周波数よりも低いながら、信号は表示範囲内にとどまり、ECGハイパスフィルタ25のより低いコーナー周波数は、ECG波のひずみを最小限にする。
図6A及び6Bを参照すると、図2乃至5に表されているような動作性能を達成するためのECGハイパスフィルタ25の構造上の実施形態は、本発明のベースラインローパスフィルタ40と、当該技術で知られている信号遅延部44と、当該技術で知られている信号抽出部45(例えば、加算器回路)とを含む。ECGハイパスフィルタ25の実施形態25aに関し、ベースラインローパスフィルタ40aは、図6Aに示されるようにベースラインワンダー推定器43によって動的に調整される係数を有するFIRフィルタ41及びIIRローパスフィルタ42の直列接続を用いる。ECGハイパスフィルタ25の実施形態25bに関し、ベースラインローパスフィルタ40bは、図6Bに示されるようにベースラインワンダー推定器43によって動的に調整される係数を有するIIRローパスフィルタ42及びFIRフィルタ41の直列接続を用いる。
両方の実施形態に関し、ECGハイパスフィルタ25は、ベースラインフィルタ未処理心電図信号ECGbu(i)に適用されるフィルタ応答として実装するために、信号遅延部44を備えたフィルタとして動作する。ベースラインフィルタ未処理心電図信号ECGbu(i)は、高周波信号(例えば、≧20Hz)にフィルタをかけるよう前もってローパスフィルタかけられていてよく、且つ、所定のサンプルレート(例えば、1000Hz)を有してよい。更に重要なことには、ベースラインフィルタ未処理心電図信号ECGbu(i)はベースラインワンダー/ドリフトを含んでよい。動作中、ベースラインフィルタ未処理心電図信号ECGbu(i)は、ベースラインローパスフィルタ40及び信号遅延部44に入力される。如何なるベースラインワンダー/ドリフトも表すフィルタ処理されたベースライン信号BSE(i)は、ベースラインローパスフィルタ40によって出力され、信号抽出部45によって、遅延されたベースラインフィルタ未処理心電図信号ECGdbu(i)から取り出される。遅延されたベースラインフィルタ未処理心電図信号ECGdbu(i)は、実時間ECGモニタリングのために遅延される(例えば、250ms)。取り出しは、ベースラインワンダーが最小限である場合に最低限のひずみを示すベースラインフィルタ処理済み心電図信号ECGbf(i)をもたらす。なお、ECGディスプレイ26上でベースラインフィルタ処理済み心電図信号ECGbf(i)を保つよう、大きいベースラインワンダーは有効に取り除かれる。
実際上、FIRフィルタ41及びIIRローパスフィルタ42は、ベースラインフィルタ未処理心電図信号ECGbu(i)にローパスフィルタをかけるよう協調して構造上設計される。これにより、ベースラインフィルタ処理済み心電図信号ECGb(i)は、ベースラインフィルタ未処理心電図信号ECGbu(i)のランピングに応答せず、且つ/あるいは、ベースラインフィルタ未処理心電図信号ECGbu(i)のR波によるベースラインシフトは、最小限にされる。
FIRフィルタ41の一実施形態において、ボックスカー(boxcar)FIRローパスフィルタが利用される。これにより、ボックスカーFIRローパスフィルタは2つの係数を有する。具体的に、現在の係数fir_coef(1)は、以下の式[1]に従って、ベースラインフィルタ未処理心電図信号ECGbu(i)の現在のサンプルにあり、前の係数fir_coef(delay+1)は、以下の式[2]に従って、フィルタ遅延(例えば、250ms)に等しい時点でベースラインフィルタ未処理心電図信号ECGbu(i)の現在のサンプルより前にある:
fir_coef(1)=0.9/FC_LPF [1]
fir_coef(delay+1)=1-(0.9/FC_LPF) [2]
ここで、FC_LPFは、単位Hzの、IIRローパスフィルタ42の3dBコーナー周波数である。
IIRローパスフィルタ42の一実施形態において、バターワース二次ローパスフィルタが利用される。これにより、バターワース二次ローパスフィルタは、次の式[3]:

H(z)=(b0+b1z-1+b2z-2)/(1+a1z-1+z2z-2) [3]

に従って記述され得るz変換H(z)を有する。
ベースラインローパスフィルタ40a(図6A)のためのバターワース二次ローパスフィルタの例となる実施は、次の式[4]に従う:

y[i]=b0w[i]+b1w[i-1]+b2w[i-2]-a1y[i-1]-a2y[i-2] [4]

ここで、yは、フィルタ処理されたベースライン信号BSEであり、wは、FIRフィルタ41の出力であり、a及びbは、バターワース二次ローパスフィルタのコーナー周波数を設定するためのバターワース二次ローパスフィルタの係数である。
ベースラインローパスフィルタ40b(図6B)のためのバターワース二次ローパスフィルタの例となる実施は、次の式[5]に従う:

y[i]=b0x[i]+b1x[i-1]+b2x[i-2]-a1y[i-1]-a2y[i-2] [5]

ここで、yは、バターワース二次ローパスフィルタの出力であり、xは、ベースラインフィルタ未処理心電図信号ECGbuであり、a及びbは、バターワース二次ローパスフィルタのコーナー周波数を設定するためのバターワース二次ローパスフィルタの係数である。
実際上、ベースラインワンダー推定器43は、当該技術で知られるようにベースラインフィルタ未処理心電図信号ECGbuのベースラインワンダーのレベルを推定し、ベースラインフィルタ未処理心電図信号ECGbuのベースラインワンダーの推定されたレベルに応じてベースラインローパスフィルタ40のコーナー周波数の適切な増減によりFIRフィルタ41及びIIRローパスフィルタ42の係数を動的に調整する。
一実施形態において、ベースラインワンダー推定器43は、ベースラインフィルタ未処理心電図信号ECGbuのベースラインワンダーの推定されたレベルに応じてFIRフィルタ41及びIIRローパスフィルタ42の係数を動的に調整し、FIRフィルタ41及びIIRローパスフィルタ42の動的に調整された係数から夫々成る調整信号AFIR及びAIIRを出力する。
代替の実施形態において、ベースラインワンダー推定器43は、ベースラインフィルタ未処理心電図信号ECGbuのベースラインワンダーの推定されたレベルに応じてIIRローパスフィルタ42のコーナー周波数CFIIRを動的に調整し、動的に調整されたコーナー周波数CFIIRから成る出力調整信号AFIR及びAIIRを出力し、これによって、FIRフィルタ41及びIIRローパスフィルタ42は夫々の係数を動的に調整する。
図1乃至6を参照すると、当業者には、(1)ECG信号を最小限にしかひずませず且つ特に除細動イベントの後のベースラインワンダー/ドリフトの優れた除去を有するECGハイパスフィルタを実装するための計算要求の実質的な低減、及び(2)診断及びEMSの両方を目的として構成可能なECGハイパスフィルタを含むがそれらに制限されない本発明の多数の利点を認識するであろう。
本発明の様々な実施形態が図示及び記載されてきたが、ここで記載される本発明の実施形態は実例であり、同等のものが本発明の適用範囲から逸脱することなしに、様々な変更及び変形が行われてよく、それらの要素に代用されてよいことが、当業者によって理解されるであろう。加えて、多くの変更は、本発明の適用範囲から逸脱することなしに、本発明の教示に適応するよう行われてよい。従って、本発明は、本発明を実行するために考えられる最良のモードとして開示されている特定の実施形態に制限されず、本発明は、添付の特許請求の範囲の適用範囲内にある全ての実施形態を包含するよう意図される。
米国特許第5433208号明細書 米国特許第5357969号明細書

Claims (12)

  1. バンド幅可変心電図ハイパスフィルタであって、
    ベースラインフィルタ未処理心電図(ECG bu 信号にローパスフィルタをかけて、フィルタ処理されたベースライン信号を出力するように構成され且つ動作可能に接続されている有限インパルス応答(FIR)ローパスフィルタ及び無限インパルス応答(IIR)ローパスフィルタを含むベースラインローパスフィルタであって、前FIR及びIIRローパスフィルタ動作可能に接続され、前記ECG bu 信号のベースラインワンダーの推定レベルに応じて前記ベースラインローパスフィルタのコーナー周波数を動的に調整するベースラインワンダー推定器を更に含み、前記FIR及びIIRローパスフィルタのフィルタ係数は前記コーナー周波数に基づいて決定され、前記ベースラインワンダー推定器は、前記ベースラインワンダーの推定レベルが第1レベルである場合には前記コーナー周波数を第1周波数に設定し、前記ベースラインワンダーの推定レベルが前記第1レベルより大きい第2レベルである場合には、前記コーナー周波数を前記第1周波数より高い第2周波数に設定する、ベースラインローパスフィルタと、
    前記ECG bu 信号を時間遅延させて、遅延されたECG bu 信号を出力するよう動作する信号遅延部と、
    前記ベースラインローパスフィルタ及び前記信号遅延部動作可能に接続され、前記遅延されたECG bu から前記フィルタ処理されたベースライン信号を除去することにより、ベースラインフィルタ処理済み心電図信号を出力する信号抽出部と
    を有するバンド幅可変心電図ハイパスフィルタ。
  2. 前記FIR及びIIRローパスフィルタのフィルタ係数は、前記FIRローパスフィルタのフィルタ係数が前記IIRローパスフィルタのコーナー周波数の逆数の一次関数となるように決定される、
    請求項1に記載のバンド幅可変心電図ハイパスフィルタ。
  3. 前記IIRローパスフィルタは、バタワース二次ローパスフィルタである、
    請求項2に記載のバンド幅可変心電図ハイパスフィルタ。
  4. 前記FIRローパスフィルタの現在より前のサンプル係数は、定数から現在のサンプル係数を引いたものである、
    請求項2に記載のバンド幅可変心電図ハイパスフィルタ。
  5. 患者の心臓の心電図波形を生成するよう動作する信号プロセッサと、
    前記心電図波形を表示するよう前記信号プロセッサ動作可能に接続される心電図ディスプレイと
    を有し、
    前記信号プロセッサは、
    ベースラインフィルタ未処理心電図(ECG bu 信号にローパスフィルタをかけて、フィルタ処理されたベースライン信号を出力するよう動作する有限インパルス応答(FIR)ローパスフィルタ及び無限インパルス応答(IIR)ローパスフィルタを含むベースラインローパスフィルタであって、前FIR及びIIRローパスフィルタ動作可能に接続され、前記ECG bu 信号のベースラインワンダーの推定レベルに応じて前記ベースラインローパスフィルタのコーナー周波数を動的に調整するベースラインワンダー推定器を更に含み、前記FIR及びIIRローパスフィルタのフィルタ係数は前記コーナー周波数に基づいて決定され、前記ベースラインワンダー推定器は、前記ベースラインワンダーの推定レベルが第1レベルである場合には前記コーナー周波数を第1周波数に設定し、前記ベースラインワンダーの推定レベルが前記第1レベルより大きい第2レベルである場合には、前記コーナー周波数を前記第1周波数より高い第2周波数に設定する、ベースラインローパスフィルタと、
    前記ECG bu 信号を時間遅延させて、遅延されたECG bu 信号を出力するよう動作する信号遅延部と、
    前記ベースラインローパスフィルタ及び前記信号遅延部動作可能に接続され、前記遅延されたECG bu 信号から前記フィルタ処理されたベースライン信号を除去することにより、ベースラインフィルタ処理済み心電図信号を出力する信号抽出部と
    を含む、心電図モニタ。
  6. 前記FIR及びIIRローパスフィルタのフィルタ係数は、前記FIRローパスフィルタのフィルタ係数が前記IIRローパスフィルタのコーナー周波数の逆数の一次関数となるように決定される、
    請求項に記載の心電図モニタ。
  7. 前記IIRローパスフィルタは、バタワース二次ローパスフィルタである、
    請求項に記載の心電図モニタ。
  8. 前記FIRローパスフィルタの現在より前のサンプル係数は、定数から現在のサンプル係数を引いたものである、
    請求項に記載の心電図モニタ。
  9. 患者の心臓の心電図波形を生成するよう動作する心電図モニタと、
    衝撃エネルギを蓄えるよう動作する衝撃源と、
    前記心電図モニタ及び前記衝撃源動作可能に接続され、前記心電図波形のQRS解析に応じて前記患者の心臓への前記衝撃エネルギの供給を制御する除細動コントローラと
    を有し、
    前記心電図モニタは、
    ベースラインフィルタ未処理心電図(ECG bu 信号にローパスフィルタをかけて、フィルタ処理されたベースライン信号を出力するよう動作する有限インパルス応答(FIR)ローパスフィルタ及び無限インパルス応答(IIR)ローパスフィルタを含むベースラインローパスフィルタであって、前FIR及びIIRローパスフィルタ動作可能に接続され、前記ECG bu 号のベースラインワンダーの推定レベルに応じて前記ベースラインローパスフィルタのコーナー周波数を動的に調整するベースラインワンダー推定器を更に含み、前記FIR及びIIRローパスフィルタのフィルタ係数は前記コーナー周波数に基づいて決定され、前記ベースラインワンダー推定器は、前記ベースラインワンダーの推定レベルが第1レベルである場合には前記コーナー周波数を第1周波数に設定し、前記ベースラインワンダーの推定レベルが前記第1レベルより大きい第2レベルである場合には、前記コーナー周波数を前記第1周波数より高い第2周波数に設定する、前記ベースラインローパスフィルタと、
    前記ECG bu 信号を時間遅延させて、遅延されたECG bu 信号を出力するよう動作する信号遅延部と、
    前記ベースラインローパスフィルタ及び前記信号遅延部動作可能に接続され、前記遅延されたECG bu 信号から前記フィルタ処理されたベースライン信号を除去することにより、ベースラインフィルタ処理済み心電図信号を出力する信号抽出部と
    を含む、除細動器。
  10. 前記FIR及びIIRローパスフィルタのフィルタ係数は、前記FIRローパスフィルタのフィルタ係数が前記IIRローパスフィルタのコーナー周波数の逆数の一次関数となるように決定される、
    請求項に記載の除細動器。
  11. 前記IIRローパスフィルタは、バタワース二次ローパスフィルタである、
    請求項10に記載の除細動器。
  12. 前記FIRローパスフィルタの現在より前のサンプル係数は、定数から現在のサンプル係数を引いたものである、
    請求項10に記載の除細動器。
JP2016528239A 2013-11-08 2014-10-10 バンド幅可変ecgハイパスフィルタ、心電図モニタ及び除細動器 Active JP6383416B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361901491P 2013-11-08 2013-11-08
US61/901,491 2013-11-08
PCT/IB2014/065206 WO2015068066A1 (en) 2013-11-08 2014-10-10 Variable bandwidth ecg high pass filter.

Publications (3)

Publication Number Publication Date
JP2016538037A JP2016538037A (ja) 2016-12-08
JP2016538037A5 JP2016538037A5 (ja) 2017-10-12
JP6383416B2 true JP6383416B2 (ja) 2018-08-29

Family

ID=52003007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016528239A Active JP6383416B2 (ja) 2013-11-08 2014-10-10 バンド幅可変ecgハイパスフィルタ、心電図モニタ及び除細動器

Country Status (5)

Country Link
US (1) US10194815B2 (ja)
EP (1) EP3065821B1 (ja)
JP (1) JP6383416B2 (ja)
CN (1) CN105899258B (ja)
WO (1) WO2015068066A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
WO2017180342A1 (en) * 2016-04-12 2017-10-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback and noise reference sensor
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
TWI640294B (zh) * 2018-02-27 2018-11-11 國立臺北科技大學 Method for analyzing physiological characteristics in real time in video
US11246538B2 (en) 2019-03-20 2022-02-15 Zoll Medical Corporation Single channel and dual channel noise detection systems and techniques
CN112966566B (zh) * 2021-02-05 2023-07-07 武汉中旗生物医疗电子有限公司 一种心电信号基线滤除方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472785A (en) * 1980-10-13 1984-09-18 Victor Company Of Japan, Ltd. Sampling frequency converter
DE4106858A1 (de) 1991-03-04 1992-09-10 Siemens Ag Anordnung zum herausfiltern von grundlinienschwankungen aus physiologischen messsignalen
US5269313A (en) 1991-09-09 1993-12-14 Sherwood Medical Company Filter and method for filtering baseline wander
US5357969A (en) * 1993-03-18 1994-10-25 Hewlett-Packard Company Method and apparatus for accurately displaying an ECG signal
SE9302432D0 (sv) 1993-07-16 1993-07-16 Siemens-Elema Ab Anordning foer filtrering av ekg-signaler
US6041250A (en) 1997-05-21 2000-03-21 Quinton Instruments Company Adaptive line noise canceler and detector for ECG signals
US6280391B1 (en) * 1999-02-08 2001-08-28 Physio-Control Manufacturing Corporation Method and apparatus for removing baseline wander from an egg signal
AU2006299844A1 (en) 2005-10-04 2007-04-19 Welch Allyn, Inc. Method and apparatus for removing baseline wander from an ECG signal
US20070078353A1 (en) 2005-10-04 2007-04-05 Welch Allyn, Inc. Method and apparatus for removing baseline wander from an ECG signal
EP2566190A4 (en) 2010-04-26 2013-10-16 Toa Corp SPEAKER AND FILTER COEFFICIENT GENERATOR
EP2675359B1 (en) * 2011-02-18 2019-08-07 Koninklijke Philips N.V. Imaging system subject support motion algorithm(s)

Also Published As

Publication number Publication date
CN105899258B (zh) 2019-07-16
US10194815B2 (en) 2019-02-05
CN105899258A (zh) 2016-08-24
EP3065821B1 (en) 2017-12-20
EP3065821A1 (en) 2016-09-14
US20160262645A1 (en) 2016-09-15
JP2016538037A (ja) 2016-12-08
WO2015068066A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP6383416B2 (ja) バンド幅可変ecgハイパスフィルタ、心電図モニタ及び除細動器
US6249696B1 (en) Method and apparatus for increasing the low frequency dynamic range of a digital ECG measuring system
JP4025926B2 (ja) Eeg信号から心臓関連人工要素を抽出するシステム
US7894885B2 (en) Coherent signal rejection in ECG
JP5719564B2 (ja) 区分ステッチング適合アルゴリズムによる心肺蘇生中の正確なecg測定装置および方法
EP1079310A2 (en) System for reducing signal disturbances in ECG, which disturbances are caused by cardio-pulmonary resuscitation
US5503160A (en) Dynamic filter for real-time artifact removal from waveforms
Romero et al. Adaptive filtering in ECG denoising: A comparative study
JPH0852117A (ja) 患者モニタ
WO2014138269A1 (en) Single channel cochlear implant artifact attenuation in late auditory evoked potentials
US6823209B2 (en) Electrocardiogram filter
JP6560206B2 (ja) 心電図ハイパスフィルタ、心電図モニタ及び除細動器
EP2767224B1 (en) A method for the detection of subcutaneous cardiac signals and a cardiac device for use in detecting subcutaneous cardiac signals
CN116964963A (zh) 信号处理电路和装置
van Boxtel Filters for optimal smoothing of acoustic and electric blink reflex EMG responses to determine blink response magnitude
Nakamura et al. Design and validation of front-end voltage follower for capacitive electrocardiogram measurement using bootstrapping technique
WO2001022878A1 (en) Analytical signal method for analysis of t-wave alternans
CN113164060A (zh) 用于心电图应用的滤波单元
RU2491883C2 (ru) Устройство предварительной обработки электрокардиосигнала
RU2251968C1 (ru) Способ устранения дрейфа изолинии электрокардиосигнала и устройство для его осуществления
Svensson et al. Effects of Low-Frequency Components and Analog Filtering on Auditory Brainstem Responses A Comparison of Analog and Digital Filtering
Piatkowski et al. Multiparameters method for atrial signal-averaged ECG
JPH07275218A (ja) 心電測定機能を有する便座装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170830

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6383416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250