CN116964963A - 信号处理电路和装置 - Google Patents

信号处理电路和装置 Download PDF

Info

Publication number
CN116964963A
CN116964963A CN202180070831.4A CN202180070831A CN116964963A CN 116964963 A CN116964963 A CN 116964963A CN 202180070831 A CN202180070831 A CN 202180070831A CN 116964963 A CN116964963 A CN 116964963A
Authority
CN
China
Prior art keywords
signal
circuit
pass filter
frequency
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180070831.4A
Other languages
English (en)
Inventor
周鑫
苏雷
张宇翔
黎美琪
廖风云
齐心
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Voxtech Co Ltd
Original Assignee
Shenzhen Voxtech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Voxtech Co Ltd filed Critical Shenzhen Voxtech Co Ltd
Publication of CN116964963A publication Critical patent/CN116964963A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/304Switching circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/313Input circuits therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/305Common mode rejection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H2011/0488Notch or bandstop filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本申请实施例公开了一种信号处理电路。该信号处理电路包括模拟电路。所述模拟电路用于对其接收的初始信号进行处理,所述初始信号包括目标信号和噪声信号。所述模拟电路包括第一处理电路和与所述第一处理电路相连接的第二处理电路。第一处理电路用于提高所述目标信号与所述噪声信号之间的比值,输出第一处理信号。第二处理电路用于对所述第一处理信号进行放大处理,所述第二处理电路对所述第一处理信号的增益倍数随所述第一处理信号的频率变化而变化。所述第一处理电路包括共模信号抑制电路、低通滤波电路和高通滤波电路。所述共模信号抑制电路用于抑制所述初始信号中的共模信号。

Description

信号处理电路和装置
交叉引用
本申请要求2020年12月31日提交的申请号为PCT/CN2020/142529的国际专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请一般涉及电路设计领域,尤其涉及一种用于处理生理信号的电路和装置。
背景技术
随着人们对科学运动和生理健康的关注与日俱增,对生理信号监测装置的需求也越来越多。有些生理信号(例如,用户运动时的肌电信号)的强度较弱,在存在噪声的情况下,一般的信号处理电路很难在剔除噪声后保留有效的生理信号。因此,期望提供一种适用于生理信号监测装置的信号处理电路,可以针对性地对特定的生理信号进行处理。
发明内容
本申请实施例提供了一种信号处理电路。该信号处理电路可以包括模拟电路。模拟电路可以用于对其接收的初始信号进行处理。所述初始信号可以包括目标信号和噪声信号。所述模拟电路可以包括第一处理电路和与所述第一处理电路相连接的第二处理电路。所述第一处理电路可以用于提高所述初始信号的信噪比,以输出第一处理信号。所述第二处理电路可以用于对所述第一处理信号进行放大处理,所述第二处理电路对所述第一处理信号的增益倍数随所述第一处理信号的频率变化而变化。所述第一处理电路可以包括共模信号抑制电路、低通滤波电路和高通滤波电路。所述共模信号抑制电路可以用于抑制所述初始信号中的共模信号。
在一些实施例中,所述共模信号抑制电路可以包括差分放大器。
在一些实施例中,所述低通滤波电路可以包括在所述差分放大器的输入端形成的桥式电路结构。
在一些实施例中,所述差分放大器的输入阻抗大于10MΩ。
在一些实施例中,所述低通滤波电路的截止频率点可以在100Hz-1000Hz的频率范围之内。
在一些实施例中,所述高通滤波电路的截止频率点在5Hz-200Hz的频率范围之内。
在一些实施例中,所述第一处理电路可以包括陷波电路,所述陷波电路用于抑制工频信号。
在一些实施例中,所述陷波电路可以包括级联陷波电路,所述级联陷波电路还用于抑制工频信号的谐波。
在一些实施例中,所述陷波电路可以包括双T有源型陷波电路。
在一些实施例中,所述第一处理电路还可以包括压控低通滤波电路,所述压控低通滤波电路用于在其目标频率附近提供增益,并与所述低通滤波电路相结合以补偿所述低通滤波电路的衰减。
在一些实施例中,所述第一处理电路在提高所述目标信号与所述噪声信号之间的比值的过程中,可以包括对所述目标信号进行第一放大倍数的放大处理,以及对所述噪声信号进行衰减处理。
在一些实施例中,所述第二处理电路可以包括放大电路、反馈电路和跟随器。所述放大电路可以用于对所述第一处理信号进行第二放大倍数的放大处理,所述第二放大倍数大于所述第一放大倍数。所述跟随器可以用于隔绝所述信号处理电路输出端的影响。
在一些实施例中,所述第二处理电路对所述第一处理信号在第一频率范围的增益响应大于在所述第一频率范围之外的增益响应。
在一些实施例中,所述第一频率范围可以包括20Hz-140Hz。
在一些实施例中,所述初始信号可以包括肌电信号。
在一些实施例中,所述的信号处理电路还可以包括控制电路、开关电路以及至少两个信号采集电路。所述至少两个信号采集电路可以用于采集至少两路初始信号。所述开关电路可以用于控制所述至少两个信号采集电路与所述模拟电路的导通,使得在同一时间所述至少两个信号采集电路中仅有部分信号采集电路采集的初始信号传输至所述模拟电路。所述控制电路可以用于接收经模拟电路处理后的目标信号,并对所述经过处理的目标信号进行采样。
在一些实施例中,所述开关电路可以包括多个输入通道,所述至少两个信号采集电路中每个信号采集电路单独连接一个输入通道,在同一时间,所述开关电路基于所述控制电路的控制信号选择一个输入通道导通。
本申请实施例提供了一种信号处理装置。该信号处理装置包括信号处理电路。该信号处理电路可以包括模拟电路。模拟电路可以用于对其接收的初始信号进行处理。所述初始信号可以包括目标信号和噪声信号。所述模拟电路可以包括第一处理电路和与所述第一处理电路相连接的第二处理电路。所述第一处理电路可以用于提高所述初始信号的信噪比,以输出第一处理信号。所述第二处理电路可以用于对所述第一处理信号进行放大处理,所述第二处理电路对所述第一处理信号的增益倍数随所述第一处理信号的频率变化而变化。所述第一处理电路可以包括共模信号抑制电路、低通滤波电路和高通滤波电路。所述共模信号抑制电路可以用于抑制所述初始信号中的共模信号。
附加的特征将在下面的描述中部分地阐述,并且对于本领域技术人员来说,通过查阅以下内容和附图将变得显而易见,或者可以通过实例的产生或操作来了解。本发明的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
根据示例性实施例可以进一步描述本申请。参考附图可以详细描述所述示例性实施例。所述实施例并非限制性的示例性实施例,其中相同的附图标记代表附图的几个视图中相似的结构,并且其中:
图1是根据本申请的一些实施例所示的信号采集装置的示例性电路的示意图;
图2是根据本申请的一些实施例所示的信号处理方法的示例性流程图;
图3A是根据本申请的一些实施例所示的示例性信号处理电路的示意框图;
图3B是根据本申请一些实施例所示的多种级联陷波电路的频响曲线图;
图4A-4C是根据本申请的一些实施例所示的示例性低通滤波电路的结构示意图;
图4D是图4A、图4B和图4C中的低通滤波电路的频响曲线图;
图5A-5B是根据本申请的一些实施例所示的低通滤波电路的结构示意图;
图5C是图5A和图5B中的低通滤波电路的频响曲线图;
图6A是根据本申请的一些实施例所示的阻容低通滤波电路的结构示意图;
图6B是二阶分布式低通滤波电路和图6A中的阻容低通滤波电路的频响曲线图;
图7A是根据本申请的一些实施例所示的压控低通滤波电路的结构示意图;
图7B是二阶低通滤波电路和图7A中的压控低通滤波电路的频响曲线图;
图8A是根据本申请的一些实施例所示的示例性低通滤波电路的结构示意图;
图8B是图8A中的低通滤波电路的频响曲线图;
图9A-9B是根据本申请的一些实施例所示的示例性高通滤波电路的结构示意图;
图9C是图9A-9B中的高通滤波电路的频响曲线图;
图10A是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图;
图10B是图10A中信号处理电路的频响曲线;
图11是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图;
图12A是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图;
图12B是图12A中信号处理电路的频响峰为80Hz时的频响曲线;
图12C是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图;
图12D是图12C中信号处理电路的频响峰为80Hz时的频响曲线;
图13是根据本申请的一些实施例所示的不同时间测量得到的信号处理电路的频响曲线与仿真频响曲线的对比图;以及
图14是根据本申请的一些实施例所示的利用信号处理电路进行二头弯举实验时采集的肌电信号。
具体实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。图中各电子器件的相同标号可以表示不同的电子器件,其仅用于区分相同实施例中的各个器件。例如,相同的标号R1可以代表不同的阻值的电阻器。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、
“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示 包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
应当理解,本文使用的术语“数据块”、“系统”、“引擎”、“单元”、“组件”、“模块”和/或“块”是用以区分不同级别的不同组件、元件、部件、部分或组件的一种方法。然而,如果其他词语可以实现相同的目的,则可通过其他表达来替换所述词语。
使用各种术语描述元素之间(例如,层之间)的空间和功能关系,包括“连接”、
“接合”、“接口”和“耦合”。除非明确描述为“直接”,否则在本申请中描述第一和第二元素之间的关系时,该关系包括在第一和第二元素之间不存在其他中间元素的直接关系,以及在第一和第二元素之间存在(空间或功能上)一个或以上中间元素的间接关系。相反,当元件被称为“直接”连接、接合、接口或耦合到另一元件时,不存在中间元件。另外,可以以各种方式实现元件之间的空间和功能关系。例如,两个元件之间的机械连接可包括焊接连接、键连接、销连接、过盈配合连接等,或其任何组合。用于描述元素之间关系的其他词语应以类似的方式解释(例如,“之间”、“与......之间”、“相邻”与“直接相邻”等)。
本申请实施例中描述的信号处理电路和方法可以应用于需要采集一路或多路信号源的信号监测装置,特别是生理信号的监测装置,例如智能穿戴设备。在一些实施例中,所述智能穿戴设备(例如,服装、护腕、肩带等)可以设置在人体各个部位(例如,小腿、大腿、腰、后背、胸部、肩部、颈部等),用于采集用户在不同状态时其身体各个部位的生理信号,后续还可以进一步对采集的信号进行处理。在一些实施例中,所述生理信号为可以被检测的能够体现身体状态的信号,例如,可以包括呼吸信号、心电信号(ECG)、肌电信号、血压信号、温度信号等多种信号。在一些实施例中,所述生理信号的频率范围可以包括0.05Hz~2kHz,其中,所述心电信号的频率范围可以包括0.05Hz~100Hz,所述肌电信号的范围可以包括5Hz~2kHz。
在一些实施例中,为了在处理过程中有效地保留所采集的信号中的目标信号(例如,肌电信号),可以在噪声信号达到饱和前,预先对所采集的信号进行降噪处理以防止后续噪声被放大至饱和状态而造成目标信号丢失。此外,对所采集的信号进行先降噪后放大的处理,还可以对目标信号留有更多的处理裕度。
本申请实施例提供了一种信号处理电路。该信号处理电路可以包括模拟电路。模拟电路可以用于对其接收的初始信号进行处理。初始信号可以包括目标信号和噪声信号。所 述模拟电路可以包括第一处理电路和与所述第一处理电路相连接的第二处理电路。所述第一处理电路可以用于提高所述初始信号的信噪比,以输出第一处理信号。所述第二处理电路可以用于对所述第一处理信号进行放大处理,所述第二处理电路对所述第一处理信号的增益倍数随所述第一处理信号的频率变化而变化。所述第一处理电路可以包括共模信号抑制电路、低通滤波电路和/或高通滤波电路。所述共模信号抑制电路可以用于抑制所述输入信号中的共模信号。
在一些实施例中,若在生理信号采集过程中出现异常现象,则采集的信号中的噪声信号可能会在信号处理过程中(例如,放大处理)湮没有效的生理信号。如果在剔除掉噪声信号之前对采集到的信号进行例如,放大处理,则可能造成电路饱和而无法有效地提取出生理信号。例如,在采集肌电信号的过程中可能会引入工频信号(噪声)。由于工频信号的强度远大于肌电信号的强度(前者可达十伏级别,后者只有毫伏级别),若在采集肌电信号过程中采集电极出现异常(例如,电极脱落、电极被掀起部分等),则可能造成最终采集的信号中肌电信号被工频信号湮没。因此,根据本申请的一些实施例,首先通过第一处理电路对生理信号进行降噪处理后,再由第二处理电路对降噪后的生理信号进行放大处理,可以防止在生理信号采集过程中出现异常现象而导致处理过程中电路饱和,从而获得准确的高质量的生理信号。
图1是根据本申请的一些实施例所示的信号采集装置的示例性电路100的示意图。信号采集装置的电路100可以实现对多路生理信号的采集和处理。相比于多通道方案,电路100采用分时复用方案,在保证多路信号源采集和处理的情况下,可以达到节约空间和经济成本,节省ADC等硬件资源,防串扰等目的。具体地,如图1所述,电路100可以包括至少两个信号采集电路(例如,信号采集电路112、114、116和118)、开关电路120、模拟电路130以及控制电路140。
开关电路120可以设置在多路信号采集电路和模拟电路130之间,其可以用来控制每路信号采集电路和模拟电路130的导通状态。例如,在某一时间点,开关电路120可以导通一路信号采集电路和模拟电路130。在一定时间范围内,开关电路120可以以周期性的方式循环导通各路信号采集电路和模拟电路130。当开关电路120导通某路信号采集电路和模拟电路130时,该路信号采集电路所采集的信号(例如,肌电信号)就可以传递给模拟电路130进行处理(例如,降噪、放大等),且处理后的信号会传递给控制电路140进行信号 分析。可以理解的是,通过在多路信号采集电路与模拟电路130之间设置开关电路120,可以实现同一个模拟电路在不同时间点分别对不同信号采集电路采集的信号进行处理,这样可以有效降低使用多个模拟电路的复杂性和成本,同时也减少了后续模拟电路和控制电路之间的信号传递的通道数量。需要知道的是,图1中所示出的开关电路120和模拟电路130仅作为说明的目的,在实际的使用中,多路信号采集电路和控制电路140之间也可以采用不止一个开关电路或模拟电路,这些开关电路或模拟电路仍然可以实现类似上述描述的过程。
在一些实施例中,所述至少两个信号采集电路可以用于采集至少两路目标信号。所述目标信号可以是能够体现用户身体状态的生理信号,例如,呼吸信号、心电信号(ECG)、肌电信号、血压信号、温度信号等中的一种或多种。仅作为示例,不同的信号采集电路可以分别包括一个或多个与用户身体接触的电极,通过电极可以采集用户身体表面的肌电信号。不同的信号采集电路可以布置在用户身体的不同位置,用于采集同种或不同种用户的生理信号。例如,分别布置在用户大腿不同侧的信号采集电路可以都用来采集大腿处的肌电信号。再例如,布置在用户小臂处的信号采集电路可以用来采集小臂处的肌电信号,而布置在用户心脏部位的信号采集电路可以用来采集用户的心电信号。需要知道的是,在一定的场景下,电路100或与其类似的电路可以用来采集并处理上述同种或不同种生理信号,本申请对此不作限制。在一些实施例中,所述至少两个信号采集电路可以仅包括两个信号采集电路,也可以包括三个信号采集电路、四个信号采集电路或者更多个信号采集电路。在一些实施例中,所述生理信号的频率范围可以包括0.05Hz~2kHz,其中,所述心电信号的频率范围可以包括0.05Hz~100Hz,所述肌电信号的范围可以包括5Hz~2kHz。
控制电路140会对模拟电路130处理后的信号进行采样。在一些实施例中,控制电路140的采样频率与信号采集电路的数量、对开关电路120的控制策略和目标频率有关。例如,控制电路140对每路信号的采样频率不低于其目标频率的2倍。仅仅作为示例,对于肌电信号而言,假设其对应的目标频率在1000Hz以内,控制电路140则可以采用2000Hz的采样频率对该肌电信号进行采样。对于整个电路100而言,假定有4个采集肌电信号的信号采集电路,则需要控制电路140提供8000Hz的总采样频率,这样才能保证对每路肌电信号的采样率达到2000Hz。再例如,如本申请中其它地方提到的,控制电路140可以采用完全重构型策略和强度表征策略来控制开关电路120的切换。在完全重构型策略中,所述采样频率与信号采集电路的数量、单个通道的上升沿和下降沿时间等有关,其中单个通道的上升 沿和下降沿时间与模拟电路130的输出电压幅值(其与放大倍数和输入电压幅值相关)及电路元件的压摆率相关联。
在一些实施例中,所述开关电路120可以用于控制所述至少两个信号采集电路与所述模拟电路130的导通,使得在同一时间所述至少两个信号采集电路中仅有部分信号采集电路采集的目标信号传输至所述模拟电路130。所述开关电路120的输入端可以与所述至少两个信号采集电路相连接,所述开关电路120的输出端可以与所述模拟电路130相连接。在一些实施例中,所述开关电路120可以包括多个输入通道,所述至少两个信号采集电路中每个信号采集电路可以单独连接一个输入通道,在同一时间,所述开关电路120可以基于所述控制电路140的控制信号选择一个输入通道导通。
在一些实施例中,开关电路120可以选用具有多通道及双路输出的开关芯片,例如,型号为TMUX1209的开关芯片。仅作为示例,所述开关电路120可以通过3个控制引脚实现4通道的分时复用,其中1个引脚EN被标记为使能作用,另外两个引脚A1和A0被标记为选择通道。所述开关电路120的四个输入通道分别用于连接信号采集电路以采集目标信号,所述开关电路120的输出口连接模拟电路130。在一些实施例中,可以通过控制引脚(EN,A1,A0)的数值来控制开关芯片的选通。例如,当输入(1,0,0)时,表示选通通道A,当输入(1,0,1)时,表示选通通道B,当输入(1,1,0)时,表示选通通道C,当输入(1,1,1)时,表示选通通道D。仅仅作为示例,当控制电路140选通开关电路120的通道A后,通道A对应的目标信号会被连通至模拟电路130,并最终被控制电路140采样。当本次采样成功后,控制电路140会给出新的控制指令,例如可以给出指令(1,0,1)用于选通通道B,则通道B的目标信号会被连接至模拟电路130并最终被控制电路140采样,以此类推。也就是说,控制电路140可以控制开关电路120在多个信号采集电路之间循环切换,从而达到分时复用的作用,即可以通过一路模拟电路130分时处理多路信号源,从而节约空间成本,降低硬件要求。
在不同的情况下,控制电路140可以基于不同的策略控制开关电路120的切换。例如,为了使得后续采样数据能够完整保留每路目标信号的信息(即,控制电路140可以基于采样数据重构每路目标信号),控制电路140可以采用完全重构型策略来控制开关电路120的切换。在完全重构型策略下,控制电路140可以根据其提供的总采样频率来切换开关电路120的输入通道。例如,开关电路120切换输入通道的频率可以等于控制电路140提供 的采样频率。这种情况下,开关电路120每切换一次输入通道,即每导通一个信号采集电路,控制电路140就会对该信号采集电路采集的目标信号进行一次采样。而且,由于控制电路140对每路目标信号的采样频率在目标频率的2倍以上,完全重构型策略可以保证每路目标信号在每个周期内都具有至少两个采样点。更多关于完全重现型控制策略的内容可以参见图2的详细描述。
再例如,考虑到控制电路140可能无法在开关通道快速切换的过程中获取有效的采样数据(由于下文中提到的开关通道的切换会导致控制电路140所接收到的信号存在一定的上升沿以及下降沿),控制电路140可以采用强度表征型策略来控制开关电路120的切换。在强度表征型策略下,控制电路140可以基于预设频率来切换开关电路120的输入通道。所述预设频率可以和用户实施某个动作的周期有关。例如,为了对用户做力量训练时肌肉产生的肌电信号进行分析,所述预设频率可以是用户实施特定动作(例如,卧推)的频率的一定倍数,使得在用户实施该特定动作的一个周期内,开关电路120可以多次导通每一个信号采集电路,从而控制电路140可以分别对每一路目标信号进行多次采样。在强度表征型策略下,控制电路140可以基于采样结果获取每路目标信号的强度信息。更多关于强度表征型策略的内容可以参见图2的详细描述。
所述模拟电路130用于对其接收的目标信号进行处理。在一些实施例中,由于信号采集电路直接采集到的原始目标信号的幅值非常小,并且有大量的噪声,因此需要使用模拟电路130对该原始目标信号进行滤波、差分放大、放大、负反馈消噪等处理。在一些实施例中,模拟电路130也可以称为信号处理电路。在一些实施例中,所述模拟电路130可以包括差分放大器,用于对其接收的目标信号进行抑制共模信号和放大处理。在一些实施例中,所述模拟电路130可以包括多级放大电路,用于对其接收的目标信号进行多级放大处理。所述多级放大电路中不同级放大电路对其输入信号可以具有不同的放大增益。例如,在模拟电路130的多级放大电路中,位于前级的放大电路的放大增益可以小于位于后级的放大增益。在一些实施例中,所述模拟电路130可以包括滤波电路,用于对其接收的目标信号进行滤波处理。示例性的滤波处理包括高通滤波、低通滤波、带通滤波、或者滤除特定频率成分的滤波等。所述滤波处理可以发生在所有放大处理之前,或者所述多级放大处理之间。在一些实施例中,所述模拟电路130可以包括右腿驱动电路,用于对其接收的目标信号中的共模信号进行提取,反向放大后反馈回信号源,主要可以抑制信号源中的工频。在一些实施例中,所 述模拟电路130可以同时包括差分放大器、多级放大器、滤波电路和右腿驱动电路,或仅包括其中一种或几种。更多关于信号处理电路的描述可以参见本申请其他地方(例如,图3A-12C及其描述)。
如上所述,所述控制电路140可以用于接收经模拟电路130处理后的目标信号,并对所述经过处理的目标信号进行采样。在一些实施例中,所述控制电路140可以包括多个模数转换通道(即,ADC通道),每个ADC通道都可以用于将接收的经模拟电路130处理后的目标信号转换为数字信号进行读取和处理。在一些实施例中,所述控制电路140还可以连接显示装置,以对读取的数字信号进行显示,从而直观的体现生理信号的情况。在一些实施例中,基于所述采样,控制电路140可以对目标信号进行读取、存储、处理分析等,可选地,所述控制电路140还可以根据采样的数据发出相应的指令。
在一些实施例中,所述控制电路140对经过处理的每路目标信号的采样发生在所述控制电路140开始接收所述经过处理的每路目标信号的一段时间之后。也就是说,在开关电路120切换导通通道后,控制电路140不会立即对新导通的目标信号进行采样,或者即使控制电路140对新导通的目标信号进行了采样,也不会立即将采样的结果作为目标信号的组成部分。当使用分时复用方式采集多路信号源的目标信号时,开关通道的切换会导致控制电路140所接收到的信号存在一定的上升沿以及下降沿。上升沿对应输入端信号变化引起输出端信号上升直到达到稳定状态所需要的时间。下降沿对应输入端从一个信号变化引起输出端的信号下降直到达到稳定所需要的时间。所述上升沿和下降沿会受到多个因素的共同影响,包含开关电路120的响应稳定速度、电路中芯片的压摆、电路中电容等器件的充放电等。因此,为了保证控制电路140读取到的目标信号真实有效,对目标信号的采样会在信号稳定之后再进行,即在开关电路120切换导通通道后,控制电路140在上升沿时间中不对信号进行采样。若是不等待足够的时间就开始采样,那么控制电路140最终读到的数值将会是一个中间的过渡值。可以理解的是,如果上升沿时间固定,那么即使等待时间不足,但最终得到的过渡值相对于真实值比例一致,也可以用于后续的处理和分析。然而,当上升沿时间与电压变化大小有关时,如果未稳定就读数,控制电路140每次读取的值与真实值的比例不固定,无法用于后续的处理。另外可以理解的是,如果考虑清楚过渡值和稳定值之间的关系,或者可以接受过渡值和稳定值之间的误差,那么即使等待时间不足,也可以用于后续的处理和分析。综上所述,应该考虑目标信号的强度和电路的增益,以此获得最大的上升沿时间,作为 控制电路140等待时间的参考。具体来说,可以设定不小于最大的上升沿时间的参考时间,所述控制电路140对每路目标信号的采样发生在所述控制电路140开始接收所述目标信号的参考时间之后,或者控制电路140对目标信号的采样发生在每次开关电路切换导通通道的参考时间之后。
图2是根据本申请的一些实施例所示的信号处理方法的示例性流程图。在一些实施例中,流程200可以由电路100实现。
步骤210,通过至少两个信号采集电路采集至少两路目标信号。在一些实施例中,步骤210可以由电路100中的至少两个信号采集电路(例如,信号采集电路112、114、116和118)实现。
在一些实施例中,所述至少两个信号采集电路可以用于采集至少两路目标信号。所述目标信号可以是能够体现用户身体状态的生理信号,例如,呼吸信号、心电信号(ECG)、肌电信号、血压信号、温度信号等中的一种或多种。仅作为示例,不同的信号采集电路可以分别包括一个或多个与用户身体接触的电极,通过电极可以采集用户身体表面的肌电信号。不同的信号采集电路可以布置在用户身体的不同位置,用于采集同种或不同种用户的生理信号。例如,分别布置在用户大腿不同侧的信号采集电路可以都用来采集大腿处的肌电信号。再例如,布置在用户小臂处的信号采集电路可以用来采集小臂处的肌电信号,而布置在用户心脏部位的喜好采集电路可以用来采集用户的心电信号。需要知道的是,在一定的场景下,电路100或与其类似的电路可以用来采集并处理上述同种或不同种生理信号,本申请对此不作限制。在一些实施例中,所述至少两个信号采集电路可以仅包括两个信号采集电路,也可以包括三个信号采集电路、四个信号采集电路或者更多个信号采集电路。在一些实施例中,所述生理信号的频率范围可以包括0.05Hz~2kHz,其中,所述心电信号的频率范围可以包括0.05Hz~100Hz,所述肌电信号的范围可以包括5Hz~2kHz。
步骤220,通过开关电路控制至少两个信号采集电路与模拟电路的导通,使得在同一时间至少两个信号采集电路中仅有部分信号采集电路采集的目标信号传输至模拟电路。在一些实施例中,步骤220可以由电路100中的开关电路120实现。
在一些实施例中,开关电路的输入端可以与所述至少两个信号采集电路相连接,开关电路的输出端可以与模拟电路(例如,模拟电路130)相连接。在一些实施例中,开关电路可以包括多个输入通道,所述至少两个信号采集电路中每个信号采集电路单独连接一个 输入通道,在同一时间,所述开关电路可以基于控制电路(例如,控制电路140)的控制信号选择一个输入通道导通。
在一些实施例中,开关电路可以基于控制电路的控制指令实施信号采集电路与模拟电路的导通。以上文中所描述的4通道的分时复用为例,当控制电路140选通开关电路120的通道A后,通道A对应的目标信号会被连通至模拟电路130,并最终被控制电路140采样。当本次采样成功后,控制电路140会给出新的控制指令,例如可以给出指令用于选通通道B,则通道B的目标信号会被连接至模拟电路130并最终被控制电路采样,以此类推。也就是说,控制电路140可以控制开关电路120在多个信号采集电路之间循环切换,从而达到分时复用的作用,即可以通过一路模拟电路130分时处理多路信号源,从而节约空间成本,降低硬件要求。
步骤230,通过模拟电路对其接收的目标信号进行处理。在一些实施例中,步骤230可以由电路100中的模拟电路130实现。
在一些实施例中,由于信号采集电路直接采集到的原始目标信号的幅值非常小,并且有大量的噪声,因此需要使用模拟电路130对该原始目标信号进行滤波、差分放大、放大、负反馈消噪等处理。在一些实施例中,所述模拟电路130可以包括差分放大器,用于对其接收的目标信号进行抑制共模信号和放大处理。在一些实施例中,所述模拟电路130可以包括多级放大电路,用于对其接收的目标信号进行放大处理。在一些实施例中,所述模拟电路130可以包括滤波电路,用于对其接收的目标信号进行滤波处理。在一些实施例中,所述模拟电路130可以包括右腿驱动电路,用于对其接收的目标信号中的共模信号进行提取,反向放大后反馈回信号源,主要可以抑制信号源中的工频。在一些实施例中,所述模拟电路130可以同时包括差分放大器、多级放大器、滤波电路和右腿驱动电路,或仅包括其中一种或几种。
在一些实施例中,考虑到可能存在基线漂移的情况,可以通过降低模拟电路对目标信号的增益(即降低模拟电路中的放大倍数),和/或选用具有高精度ADC通道的控制芯片,和/或选择利用电阻来调整参考电位从而解决基线漂移的问题,和/或选择在模拟电路130中增加高通滤波的方法滤除基线漂移。
步骤240,通过控制电路接收经模拟电路处理后的目标信号,并对所述经过处理的目标信号进行采样。在一些实施例中,步骤240可以由电路100中的控制电路140实现。
在一些实施例中,所述控制电路140包括多个ADC通道,每个ADC通道都可以用于将接收的经模拟电路130处理后的目标信号转换为数字信号进行读取和处理。在一些实施例中,所述控制电路140还可以连接显示装置,以对读取的数字信号进行显示,从而直观的体现生理信号的情况。在一些实施例中,基于所述采样,控制电路140可以对目标信号进行读取,存储,处理分析等,可选的,所述控制电路140还可以根据采样的数据发出相应的指令。
在一些实施例中,所述控制电路140对经过处理的每路目标信号的采样发生在所述控制电路140开始接收所述经过处理的每路目标信号的一段时间之后。也就是说,在开关电路120切换导通通道后,控制电路140不会立即对新导通的目标信号进行采样,或者即使控制电路140对新导通的目标信号进行了采样,也不会立即将采样的结果作为目标信号的组成部分。
在一些实施例中,控制电路140的采样频率与信号采集电路的数量、目标信号的类型和目标频率有关。例如,控制电路140对每路信号的采样频率不低于其目标频率的2倍。仅仅作为示例,对于肌电信号而言,假设其对应的目标频率在1000Hz以内,控制电路则可以采用2000Hz的采用频率对该肌电信号进行采样。对于整个信号处理电路而言,假定有4个采集肌电信号的采集电路,则需要控制电路140提供8000Hz的总采样频率,这样才能保证对每路肌电信号的采样率达到2000Hz。
在不同的情况下,控制电路140可以基于不同的策略控制开关电路120的切换。
在一些实施例中,为了使得后续采样数据能够完整保留每路目标信号的信息(即,控制电路140可以基于采样数据重构每路目标信号),控制电路140可以采用完全重构型策略来控制开关电路120的切换。在完全重构型策略下,控制电路140可以根据其提供的总采样频率来切换开关电路120的输入通道。例如,开关电路120切换输入通道的频率可以等于控制电路140提供的采样频率。这种情况下,开关电路120每切换一次输入通道,即每导通一个信号采集电路,控制电路140就会对该信号采集电路采集的目标信号进行一次采样。而且,由于控制电路140对每路目标信号的采样频率在目标频率的2倍以上,完全重构型策略可以保证每路目标信号在每个周期内都具有至少两个采样点。
继续以上述四个采集肌电信号的信号采集电路为例,假设每路肌电信号的目标频率为都在1kHz以内,控制电路为每路肌电信号提供2kHz的采样频率。对控制电路而言, 总共提供8kHz的采样频率。开关电路同样以8kHz的频率在4个信号采集电路之间切换,其在每125微秒切换一次,开关电路的每两次相邻切换之间,控制电路对接收到的肌电信号进行一次采样。
进一步地,在完全重构策略下,控制电路可以基于获得的采样数据完全复现对应的多路目标信号。例如,控制电路可以重构每路目标信号,并进一步分析每路目标信号中的频率、相位、强度(幅值)等信息。可选地,控制电路可以将获得的采样数据或者重构的目标信号通过有线或无线的方式发送给外部处理电路进行分析。
在一些实施例中,开关电路120切换输入通道的频率还可以等于控制电路140提供的采样频率的一半或其它分数值。这种情况下,开关电路120每切换一次输入通道,即每导通一个信号采集电路,控制电路140可以对该信号采集电路采集的目标信号进行两次采样。继续以上述四个采集肌电信号的信号采集电路为例,假设每路肌电信号的目标频率为都在1kHz以内,控制电路为每路肌电信号提供2kHz的采样频率。对控制电路而言,总共提供8kHz的采样频率。开关电路仅需要以4kHz的频率在4个信号采集电路之间切换,其在每250微秒内切换一次,开关电路的每两次相邻切换之间,控制电路对接收到的肌电信号进行两次采样。这种方式采集的目标信号相对于开关电路每两次相邻切换之间仅进行一次采样的情况而言,由于每路信号的采样时间点不够均匀,基于采样数据重构的每路目标信号可能存在一定的偏差。
需要知道的是,在上述完全重构型策略下,控制电路采用分时复用方式所能处理的通道数量会受到目标信号的上升沿和下降沿的时间的影响。仅作为示例,若目标信号的频率为500Hz,控制电路要为单通道提供大于1kHz的采样频率,此时,实现4通道的分时复用时开关的切换速度需要达到4kHz,开关电路在单个通道的停留时间只有250微秒,而实现8通道的分时复用时开关的切换速度需要达到8kHz,开关电路在单个通道的停留时间只有125微秒。考虑到上升沿与下降沿的影响,开关电路在每个通道的停留时间不能太小。例如,若上升沿和下降沿均为50微秒,那这种情况下,最多可以实现16通道的分时复用。因此,通常会综合考虑上升沿下降沿时间,通道数量和目标信号频率范围等,从而选择合适的通道数量以及对应的通道切换时间。
在另一些实施例中,考虑到控制电路140可能无法在开关通道快速切换的过程中获取有效的采样数据(即,上述信号的上升沿和下降沿导致开关电路在单个通道的停留时间 过长,控制电路无法在目标信号的周期内采集至少两次有效数据点),控制电路140可以采用强度表征型策略来控制开关电路120的切换。在强度表征型策略下,控制电路140可以基于预设频率来切换开关电路120的输入通道。所述预设频率可以和用户实施某个动作的周期有关。例如,为了对用户做力量训练时肌肉产生的肌电信号进行分析,所述预设频率可以是用户实施特定动作(例如,卧推)的频率的一定倍数,使得在用户实施该特定动作的一个周期内,开关电路120可以多次导通每一个信号采集电路,从而控制电路140可以分别对每一路目标信号进行多次采样。
继续以四个采集肌电信号的信号采集电路为例,假设用户以1秒1次的速度执行某个动作,若保证一个动作下控制电路对每路目标信号采样10次,则开关电路的切换速度为每秒40次,每切换到一个信号采集电路,控制电路先等待信号稳定,再进行连续采样,直到该路信号的25ms时间结束。在这种情况下,所述开关电路的切换速度与控制电路的总采样频率无关。控制电路可以用较高的总采样频率,达到采集目标信号中高频信号的效果。
进一步地,在强度表征策略下,控制电路可以基于获得的采样数据获取目标信号的强度信息。例如,在强度表征策略下,控制电路在一段时间内对单个信号采集电路产生的目标信号进行连续地采样。控制电路可以基于这些连续采样的数据计算出这段时间该信号采集电路采集的目标信号的强度,例如,计算这些连续采样的数据的平均值等。当然,控制电路也可以基于所有与该信号采集电路对应的采样数据计算出目标信号的强度。再进一步地,当控制电路计算出同一个信号采集电路在不连续的多个时间段所分别对应的目标信号的强度,控制电路可以基于这些信号强度以及其对应的时间,生成目标的信号强度和时间的变化关系,以此提取出该目标信号的特定频率信息。
在一些实施例中,所述强度表征型策略可以在采集强度信息的同时采集部分频率信息。在该策略下,由于没有完整采集所有时间段的信号,会丢失部分信号信息,因此会损失部分频率信息。仅作为示例,以40Hz的总频率控制开关电路进行切换,在4个信号采集电路的情况下,每个输入通道的采集时间长度为25ms,此时,对于信号频率小于40Hz的低频信号的采集会有一定损失。但是,如果将每一段采集到的信号(即单次切换通道后多次采样的信号)处理为一个代表值(例如,从每25ms采集的信号中提取一个平均值),单通道的1s时间内有10个代表值,则可以利用完全重构型策略的处理方式,重构5Hz频率以下的信号。
在一些实施例中,强度表征策略下分时复用的能力与用户动作的频率以及对用户动作的监测精度要求有关,由于单通道采集持续时间较长,其受到上升沿和下降沿的影响较弱。在一些实施例在,此种策略下目标信号频率过低会导致分时复用的路数有限制,因此与目标信号的频率也有关。由于需要对目标信号的频率和强度信息进行提取,对低频信号,例如40Hz以下频率的信号,难以进行采集在这种情况下可以降低分时复用的路数,即降低信号采集电路的路数。
在一些实施例中,控制电路140可以根据实际情况调整具体的开关控制策略。例如,控制电路140可以在完全重构型策略和强度表征型策略之间进行切换。对于完全重构型策略和强度表征型策略之间的选择或切换可以根据对电路的延迟时间(例如,上升沿时间和下降沿时间)和电路的信噪比需求进行判断。例如,当电路的延迟时间较长且无法改变目标信号频率和信号采集电路的数量、模拟电路的放大倍数时,控制电路140可以选择强度表征型策略。再例如,当模拟电路中加入合适的滤波电路以提高信噪比时,考虑到滤波电路会造成延迟时间变长,控制电路140可以选择强度表征型策略。反之,当电路的延迟时间较短或对信噪比的需求不高时,控制电路140可以选择完全重构型策略。在一些实施例中,控制电路140可以根据环境因素或者用户指示来调整开关控制策略。例如,假设不同的开关控制策略对应不同的电量消耗速度,控制电路140可以根据电源(例如,电池)的电量状况实施对开关控制策略进行调整,当电源电量较低时,选择电量消耗速度较低的开关控制策略。再例如,控制电路140可以根据用户的输入指令来调整开关控制策略,以满足用户的不同需求。
应当注意的是,上述有关流程200的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程200进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
图3A是根据本申请的一些实施例所示的示例性信号处理电路的示意框图。如图3A所示,信号处理电路300可以包括第一处理电路310和与该第一处理电路310连接的第二处理电路320。信号处理电路300可以用于对其接收的初始信号进行处理。初始信号可以是前述信号采集电路采集的信号。在一些实施例中,初始信号可以包括目标信号和噪声信号。在一些实施例中,第一处理电路310和第二处理电路320可以统称为模拟电路(例如,模拟电路130)。
第一处理电路310可以用于提高初始信号的信噪比,并输出第一处理信号。例如,第一处理电路310可以对初始信号中的目标信号进行第一放大处理以及对初始信号中的噪声信号进行衰减处理。又例如,第一处理电路310可以同时对目标信号和噪声信号进行放大处理,其中,其对目标信号的放大倍数大于其对噪声信号的放大倍数,从而提高信号的信噪比。初始信号中的目标信号可以是能够体现用户身体状态的生理信号,例如,呼吸信号、心电信号(ECG)、肌电信号、血压信号、温度信号等中的一种或多种。为方便描述,本申请中将以肌电信号作为生理信号的示例。需要理解的是,以下针对肌电信号特性而描述的数据,并不限制本申请的范围。例如,当目标信号为心电信号时,其对应的强度(幅值)范围和/或频率范围可以与心电信号的数据值相对应。具体地,心电信号的幅值范围可以在10μV-4mV范围之内;频率范围可以在0.05Hz~100Hz范围之内。对于本领域技术人员来说,在本申请的指导下可以对信号处理电路300进行各种修正和改变,以适应心电信号的处理。
在一些实施例中,不同肌肉(例如,胸大肌、肱二头肌等)、不同个体(例如,成人、小孩等)的肌电信号的幅值和/或频率可以不同。例如,肱二头肌和斜方肌可以较为容易达到毫伏级别,而背阔肌和腹肌一般只能达到百微伏级别。又例如,对于爆发式发力和持续式发力得到的肌电信号的频率分布可以不同。再例如,肌电信号的幅值和频率还会受到肌肉疲劳程度的影响,肌肉疲劳后得到的肌电信号的幅值会变大,频率分布会红移。在一些实施例中,肌电信号的幅值可以在5μV-100mV的范围之内。在一些实施例中,肌电信号的频率可以在10Hz-1000Hz范围之内。在一些实施例中,肌电信号的频率可以在10Hz-700Hz范围之内。在一些实施例中,肌电信号的频率可以在10Hz-500Hz范围之内。在一些实施例中,肌电信号的频率可以在20Hz-500Hz范围之内。在一些实施例中,肌电信号的频率可以在20Hz-140Hz范围之内。在一些实施例中,为了对肌肉的运动进行准确分析,需要获得的肌电信号具有信噪比高、稳定性好等特点。但是由于肌电信号中的噪声信号复杂,不同个体、不同肌肉的肌电信号不同,想要获得完整的肌电信号(例如,10Hz-1000Hz的肌电信号)非常困难。由于不同的肌电信号的主要频率成分(例如,总频率成分的80%、90%等)在频域上的分布相对集中(例如,主要分布在20Hz~140Hz内),且对主要频率成分的肌电信号进行分析的分析结果也可以反映出准确的肌肉运动情况,因此,在对采集的肌电信号进行处理时,可以只提取主要频率成分(也称为目标频段)内的肌电信号即可 获得高质量的肌电信号。为方便描述,本申请中将以20Hz~140Hz作为目标频段的示例,其并不限制本申请的范围。需要注意的是,当目标频段发生变化时,本申请中信号处理电路的一个或多个参数也可以相应改变,使得信号处理电路可以适用于变化后的目标频段。
在一些实施例中,噪声信号可以包括运动伪迹噪声(Motion Artifacts,MA)、工频信号、工频谐波信号(即工频信号的谐波信号)、混叠噪音、白噪声等中的一种或多种。例如,当初始信号是通过信号采集电路(例如,信号采集电路112)采集的信号时,除了采集肌电信号,信号采集电路(例如,电极)还可能同时采集到工频信号、工频谐波信号、MA等。需要注意的是,在众多噪声信号中,由于工频信号和/或工频谐波信号的强度远高于其他噪声信号,对目标信号的分析带来麻烦。在某些情况下,工频信号和/或工频谐波信号可能使得信号处理电路的输出达到饱和,若不对其进行处理,则可能导致目标信号丢失。在本申请的一些实施例中,初始信号可以先由第一处理电路310对其中的噪声信号(例如,MA、工频信号及工频谐波信号)进行噪声衰减处理同时对其中的目标信号进行第一放大处理,再由第二处理电路320对经噪声衰减处理的信号进行第二放大处理,以此来抑制噪声信号对目标信号的干扰。在一些实施例中,信号处理电路300可以与数字电路连接,以将经第二处理电路320处理后的信号转换为数字信号并进行读取和处理。需要知道的是,通过第二处理电路320对经处理后的信号做进一步的放大处理可以具有以下好处:(1)当数字电路有噪音时,第二处理电路320可以提高整体信噪比;(2)通过设置第二处理电路320可以降低对数字电路的ADC精度要求。
工频信号的产生来源于供电系统。在一些实施例中,工频信号的频率可以为50Hz、60Hz等。在本申请中将以工频噪声为50Hz作为示例进行说明。在一些实施例中,供电系统还可能产生工频谐波信号。工频谐波信号的强度可以弱于工频信号的强度。工频谐波信号可以包括工频奇次谐波信号和工频偶次谐波信号。也就是说,工频谐波信号的频率可以包括100Hz、150Hz、200Hz、250Hz、300Hz、350Hz、400Hz等。在一些实施例中,当发电系统的三相绕组不对称时和/或供电系统的铁心的磁化曲线处于非线性的饱和状态时,非正弦的周期性信号的出现就会产生工频谐波信号。在这种情况下产生的工频谐波信号中奇次谐波可以占主体地位。也就是说,工频谐波信号的频率可以主要包括150Hz、250Hz、350Hz、450Hz等。
由于工频信号的频率为50Hz,这个频率处在肌电信号的目标频段(例如,20Hz-140Hz)内,而且工频信号的强度可达伏级别,因此,工频信号的存在会对肌电信号(信号强度达毫伏级)产生严重影响。此外,由于工频信号极强而肌电信号很弱,因此,即便工频谐波信号的强度弱于工频信号的强度,工频谐波信号仍然可能对肌电信号产生巨大的影响。因此,为了抑制工频信号及工频谐波信号对肌电信号的影响,需要对工频信号及工频谐波信号进行处理。需要知道的是,对于肌电信号(例如,其目标频段为20Hz-140Hz)中的工频信号(频率为50Hz),不能单独依赖高通滤波器,因为要滤除50Hz频率的高通滤波器会牺牲较多的肌电信号(如,频率在20~40Hz范围内的肌电信号)。此外,由于工频频率在目标频段的范围内,为了更好保留目标频段的信号,需要采用过渡带极窄的高通滤波器,但过渡带极窄的高通滤波器需要较多级,对资源的耗费较高。
在本申请的一些实施例中,可以利用第一处理电路310中的共模信号抑制电路312对工频信号进行处理。共模信号抑制电路312可以用于抑制初始信号中的共模信号。在本申请中,共模信号可以指相位和幅值都相同的信号。由于工频信号来源于供电系统以及人体可看作是良导体,因此工频信号的相位和幅值都相同,即,工频信号为共模信号。因此,工频信号可以利用共模信号抑制电路312对其加以抑制。在一些实施例中,共模信号抑制电路312可以包括差分放大器、仪用放大器等,或其任意组合。例如,共模信号抑制电路312可以为长尾式差分放大器。具体地,差分放大器或仪用放大器可以利用其两个输入端的初始信号的共模性质,使两个输入端的信号相互抵消达到对共模信号的抑制作用。
在一些实施例中,以差分放大器为例(如图10A中差分放大器U1),当电极与人体的接触发生变化时(例如,信号采集电路中的一个电极接触良好,一个电极脱落或半脱落),换句话说,当信号采集电路的输入两端不一致时,差分放大器的输入端的输入信号相当于由共模信号变成差模信号,此时,差分放大器无法有效抑制工频信号。例如,对于肌电服,由于其与人体的结合是依靠压力贴合,因此,其与人体之间的接触不稳定。人体在运动的过程中,容易引起错移、悬空(即,电极脱落)等,从而造成工频信号无法被差分放大器抑制。由于人体肌肉、皮肤、电极、信号处理电路300等连接在一些相当于串联电路,每个环节都可以分压,因此,当电极与皮肤的接触发生变化时,会导致差分放大器两端的输入不一致。而大输入阻抗具有电路分压优势和抗输入信号波动的能力,从而当差分放大器的输入信号发生变化时,不会引起其输出信号较大的信号波动。在本申请中,分压优势可以指当接 触阻抗等变大(例如,电极脱落),电路依然可以分压得到足够强度的肌电信号。抗输入信号波动的能力可以指当接触阻抗等波动时,大输入阻抗可以减小输入信号波动的影响。因此,为了尽可能地抑制工频信号,获得强的肌电信号,差分放大器的输入阻抗可以尽可能地大以减小因为差分输入端不均衡导致的噪声。在一些实施例中,差分放大器的输入阻抗可以大于或等于10MΩ。例如,差分放大器的输入阻抗可以为50MΩ、100MΩ、500MΩ、1GΩ、1.5GΩ、2GΩ、2.5GΩ、3GΩ、5GΩ、10GΩ等。
在一些实施例中,第一处理电路310还可以包括陷波电路。陷波电路可以用于抑制特定频率的信号,例如工频信号。例如,陷波电路的陷波点频率可以设置为50Hz。在本申请中,陷波电路的陷波点频率可以指陷波电路的谐振频率。在一些实施例中,为了尽可能地使陷波电路具有高的品质因数(即,Q值),陷波电路可以包括具有较高Q值的双T有源型陷波电路(如图12A中陷波电路1214)。在一些实施例中,可以引入正反馈和/或调节陷波电路的参数值,使陷波电路的陷波谷的半高宽小于半高宽阈值,从而得到较高的品质因数Q,提高陷波电路的Q值和陷波能力。例如,可以通过调节陷波电路中的电阻、电容等的值和/或精度,使得陷波谷的半高宽在半高宽阈值之内。在一些实施例中,半高宽阈值可以为5Hz、4Hz、3Hz、1Hz、0.5Hz等。
在一些实施例中,由于MA信号与工频信号的乘法效应可以产生例如50Hz±2Hz的干扰噪声,因此需要展宽陷波器半高宽。在这种情况下,陷波电路可以包括级联陷波电路。
图3B是根据本申请一些实施例所示的多种级联陷波电路的频响曲线图。如图3B所示,曲线l1表示双T有源型陷波电路的频响曲线。曲线l2表示错位双陷波电路的频响曲线。曲线l3表示同位双陷波电路的频响曲线。曲线l4表示双同双错位陷波电路的频响曲线。在本申请中,错位双陷波电路可以指两个双T有源型陷波电路串联连接,其中一个双T有源型陷波电路的陷波点频率可以设置为第一频率(例如,48.5Hz),另一个双T有源型陷波电路的陷波点频率可以设置为与第一频率不同的第二频率(例如,50Hz)。在一些实施例中,第一频率和第二频率可以位于特定频率附近,且两者的频率差值可以在4Hz,3Hz,2Hz,或1Hz以内。同位双陷波电路可以指两个陷波点频率均在特定频率点(例如50Hz)的有源双T陷波器进行串联连接的电路。双同双错位陷波电路可以指将四个双T有源型陷波电路进行串联连接的电路,其陷波点频率可以分别设置为例如,48.5Hz、50Hz、 50Hz、51.5Hz。从图3B中可以看出,双同双错位陷波电路的频响(即,曲线l4)具有其独特的优势,例如,较深的陷波能力同时保证其半高宽可控且不影响非目标陷波区域信号。在实际的应用中,可以根据需要滤除的信号的频率值以及其强度分布,选择合适的级联陷波电路,例如,可以根据实际需求,自由级联任意级数的同位和/或错位陷波电路以达成目的。
在一些实施例中,当共模信号抑制电路312和/或陷波电路对初始信号进行处理后,可以发现第一处理信号还包括较多的工频谐波信号。例如,初始信号为当人体穿着肌电服做大幅度耸肩、高抬手等动作时采集的肌电信号,经共模信号抑制电路312和/或陷波电路处理后还含有工频谐波信号,尤其是工频奇次谐波信号。在本申请的一些实施例中,为了抑制工频谐波信号,陷波电路还可以包括多级联陷波电路。具体地,多级联陷波电路可以包括至少两个级联陷波子电路。至少两个级联陷波子电路可以串联连接。各个级联陷波子电路之间可以具有不同的陷波点频率。例如,各个级联陷波子电路的陷波点频率可以分别设置为50Hz、100Hz、150Hz、200Hz、250Hz等。需要指出的是,多级联陷波电路可以抑制工频信号及工频谐波信号,但是每个工频谐波信号都需要至少一级陷波电路。
在一些实施例中,为了节约成本,可以根据肌电信号的共性(即,目标频段为20Hz-140Hz的肌电信号即可满足分析需求),在信号处理电路300中设置低通滤波电路314将较高频段的工频谐波信号直接滤除。在一些实施例中,信号处理电路300可以包括一个或以上低通滤波电路314。低通滤波电路314可以对高于其上限截止频率的信号进行衰减。在本申请中,低通滤波电路的上限截止频率可以指其增益相对于低频通带下降第一特殊强度值的位置所对应的频率。在一些实施例中,第一特征强度值可以大于或等于10dB,例如,可以为15dB、20dB、30dB、40dB等。在一些实施例中,上限截止频率可以在100Hz-1000Hz的频率范围之内。在一些实施例中,上限截止频率可以在100Hz-800Hz的频率范围之内。在一些实施例中,上限截止频率可以在100Hz-600Hz的频率范围之内。在一些实施例中,上限截止频率可以在100Hz-400Hz的频率范围之内。在一些实施例中,上限截止频率可以在120Hz-400Hz的频率范围之内。在一些实施例中,上限截止频率可以在140Hz-400Hz的频率范围之内。具体地,上限截止频率可以为900Hz、700Hz、500Hz、300Hz、250Hz、200Hz、150Hz、140Hz、130Hz、120Hz、110Hz等。在一些实施例中,当目标频段为20Hz-140Hz时,上限截止频率可以高于目标频段的高频点,例如,可以为140Hz、150Hz等。在一些实施例中,由于混叠噪音是其他噪声信号(例如,工频谐波信号和 白噪声)的混合,其主要位于高频段(例如,高于500Hz),因此,低通滤波电路314的上限截止频率设置较低(例如,140Hz)时,低通滤波电路314在滤除高次工频谐波信号的同时还可以滤除混叠噪声。而由于白噪声的强度与信号带宽正相关,此时,白噪声也可以相对降低。
在一些实施例中,低通滤波电路314可以设置在信号处理电路300中的任意位置,在此处不做限定,只要其能对信号进行低通滤波即可。例如,低通滤波电路314可以设置在第一处理电路310中。具体地,低通滤波电路314可以设置在差分放大器的输入端。如图12C所示,在差分放大器U1的输入端可以设置由电阻R1与电容C1构成的低通滤波器和由电阻R2和电容C3构成的低通滤波器。又例如,低通滤波电路314还可以设置在第二处理电路320中。具体地,低通滤波电路314可以设置在第二处理电路320中的放大电路的输入端。如图12C所示,第二处理电路1220还可以包括含有低通滤波器的阻容低通滤波放大电路1224。在一些实施例中,低通滤波电路314可以包括一阶低通滤波电路、二阶低通滤波电路、高阶滤波电路(高于二阶的滤波电路,如三阶低通滤波电路)等,或其任意组合。更多关于低通滤波电路的描述可以参见本申请其他地方(例如,图4A-4C及其描述)。
在一些实施例中,为了充分利用资源,尽可能地少使用电子器件而更有效地抑制高频率信号(即,高于上限截止频率的信号),低通滤波电路314可以包括设置为桥式电路结构的低通滤波器(也可以称为桥式低通滤波电路)。例如,如图12A中,只需要在差分放大器U1的两个输入端之间加入一个电容C2,则可以将低通滤波电路设计成桥式电路结构(虚线框1212中的电路)。需要知道的是,当初始信号中存在射频信号时,射频信号可以通过电容C2到达差分放大器U1的两个输入端,从而被其抑制,因此,桥式低通滤波电路还可以进一步抑制射频信号。此外,电阻R1、电阻R2和电容C2也可以构成一级低通滤波器,有助于使滤波器过渡带变窄。在一些实施例中,桥式低通滤波器设置在差分放大器的输入端时,桥式低通滤波器与差分放大器可以统称为桥式低通滤波放大电路。在一些实施例中,信号处理电路300也可以不包括桥式低通滤波电路。更多关于桥式低通滤波放大电路的描述可以参见本申请其他地方(例如,图5A-5C及其描述)。
运动伪迹噪声可以指由运动造成的噪声。不同对象(例如,胸大肌、肱二头肌等)的运动可以引起不同的MA。在一些实施例中,MA可以包括基线漂移、毛刺等。例 如,当运动造成采集信号的两端的角质层电势波动时,可能会引起基线漂移。通常情况下,MA的频率可以在较低频率范围之内,例如,0Hz-20Hz范围之内。MA的强度可以在0mV-40mV的范围之内。在本申请的一些实施例中,由于MA所处频段位于目标频段之外,可以通过构建高通滤波电路316对MA进行处理。在一些实施例中,由于基线漂移存在极限值,还可以通过降低信号处理电路300(例如,第二处理电路320)对目标信号的增益,和/或选用具有高精度ADC通道的控制芯片,和/或选择利用电阻来调整参考电位从而解决基线漂移的情况。例如,当目标信号传输至第二处理电路320时,第二处理电路320会对该目标信号进行放大处理,为解决基线漂移的问题,可以适当降低第二处理电路320对目标信号的放大倍数,使得放大后的信号不发生失真。又例如,当基线漂移使得信号接近饱和电压上限时,可以程控控制参考电位降低,反之,当基线漂移使得信号接近电压下限时,可以程控控制参考点位升高。在一些实施例中,MA的频率范围可以很宽,例如,可以在0-1000Hz范围之内存在毛刺。在这种情况下,可以借助于信号幅值和频率进行处理。
在一些实施例中,信号处理电路300可以包括一个或以上高通滤波电路316。高通滤波电路316可以对低于其下限截止频率的信号进行衰减。在本申请中,高通滤波电路的下限截止频率可以指其增益相对于高频通带下降第二特殊强度值的位置所对应的频率。在一些实施例中,第二特殊强度值可以大于或等于10dB,例如,可以为15dB、20dB、30dB、40dB等。在一些实施例中,第二特殊强度值与第一特殊强度值可以相同或不同。在一些实施例中,下限截止频率可以在5Hz-200Hz的频率范围之内。在一些实施例中,下限截止频率可以在7Hz-180Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-160Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-100Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-80Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-60Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-40Hz的频率范围之内。在一些实施例中,下限截止频率可以在10Hz-20Hz的频率范围之内。具体地,下限截止频率可以为190Hz、150Hz、100Hz、70Hz、50Hz、30Hz、20Hz、17Hz、15Hz、13Hz、12Hz、10Hz、5Hz等。
在一些实施例中,下限截止频率可以根据信号处理电路300中是否存在针对工频信号的陷波电路而不同。当存在陷波点为工频频率的陷波电路时,由于工频信号的干扰可以被陷波电路有效抑制,此时,高通滤波电路316的下限截止频率可以较不存在陷波电路时的 下限截止频率低。例如,当第一处理电路310包括陷波电路时,下限截止频率可以在10Hz-40Hz的频率范围之内。具体地,当第一处理电路310包括陷波电路时,下限截止频率可以为35Hz、30Hz、25Hz、20Hz、10Hz等。又例如,当第一处理电路310不包括陷波电路时,下限截止频率可以在10Hz-160Hz的频率范围之内。具体地,当第一处理电路310不包括陷波电路时,下限截止频率可以为80Hz、60Hz、50Hz、20Hz等。在一些实施例中,可以根据目标频段,设置高通滤波电路316的下限截止频率。例如,若目标频段为20Hz-140Hz,则下限截止频率可以设置为20Hz。若目标频段为5Hz-200Hz,则下限截止频率可以设置为5Hz。
在一些实施例中,高通滤波电路316可以设置在信号处理电路300中的任意位置,在此处不做限定,只要其能对信号进行高通滤波即可。例如,高通滤波电路316可以设置在第一处理电路310中。具体地,在如图10A所示的信号处理电路1000中,在第一处理电路1010中的差分放大器U1的输出端可以设置有高通滤波器1014。又例如,高通滤波电路316还可以设置在第二处理电路320中。具体地,在如图12A所示信号处理电路1200A中,在第二处理电路1220中可以设置有包括高通滤波器的阻容高通滤波器放大电路1222。在一些实施例中,高通滤波电路316可以包括一阶高通滤波电路、二阶高通滤波电路、三阶高通滤波电路等,或其任意组合。更多关于高通滤波电路的描述可以参见本申请其他地方(例如,图9A-9C及其描述)。
在一些实施例中,为了使信号处理电路300的频响通带更为平坦(即,带宽内的信号波动不超过某一数值例如,10dB、20dB等),信号处理电路300还可以包括压控低通滤波电路。压控低通滤波电路可以包括压控峰(如图7B中曲线d2的峰712)。压控低通滤波电路可以用于在目标频率附近提供增益,并与低通滤波电路314相结合以补偿低通滤波电路314的衰减,以此来获得更为平坦的频响通带。在本说明书中,目标频率附近可以指距离在目标频段中的某一频率一定范围(例如,10Hz、20Hz等)以内。在一些实施例中,通过设置压控低通滤波电路的参数和/或其压控峰的参数,还可以使得频响通带在特定频率点具有较高峰值(即,在特定频率位置提供较大增益)。例如,可以通过调节压控低通滤波电路中的电阻、电容参数来调节压控低通滤波电路的截止频率和/或调节其压控峰的高度、宽度、位置等,使得信号处理电路300的频响通带在例如,80Hz具有最高强度。在一些实施例中,压控低通滤波电路的下降速度可以大于20dB/十倍频。在一些实施例中,压控低通滤 波电路的下降速度可以大于30dB/十倍频。在一些实施例中,压控低通滤波电路的下降速度可以大于40dB/十倍频。在一些实施例中,压控低通滤波电路的下降速度可以大于60dB/十倍频。在一些实施例中,压控低通滤波电路的下降速度可以大于80dB/十倍频。具体地,压控低通滤波电路的下降速度可以为25dB/十倍频、35dB/十倍频、45dB/十倍频、55dB/十倍频、65dB/十倍频、75dB/十倍频等。
在一些实施例中,压控低通滤波电路可以设置在信号处理电路300中的任意位置,在此处不做限定,只要其能对信号进行调控即可。例如,压控低通滤波电路可以设置在第一处理电路310中。具体地,在如图12C所示的信号处理电路1200C中,压控低通滤波电路1226可以设置在第一处理电路1210中的陷波电路1214之后。又例如,压控低通滤波电路还可以设置在第二处理电路320中。具体地,在如图12A所示的信号处理电路1200A中,压控低通滤波电路1226可以设置在第二处理电路1220中的跟随器1229之前。更多关于压控低通滤波电路的描述可以参见本申请其他地方(例如,图7A-7B及其描述)。
第二处理电路320可以用于对第一处理信号进行放大处理。第二处理电路320可以包括放大电路(例如,放大器)。在一些实施例中,可以将放大电路中反馈网络的电阻替换为电阻与电容并联连接,从而构成的电路可以称为阻容放大电路,其反馈网络可以称为阻容反馈网络。例如,在如图6A所示,由放大器U2B与其反馈网络中电阻R12和电容C7可以组成的阻容放大电路,并联的电阻R12和电容C7可以称为阻容反馈网络。需要知道的是,由于电容的阻抗随交流信号频率变化而变化,因此,阻容放大电路的增益也可以随信号的频率变化而变化。因此,第二处理电路320对第一处理信号的增益倍数可以随第一处理信号的频率变化而变化。具体地,以图6A中放大器U2B的反馈网络620(也可以称为阻容反馈网络)为例,由于放大器U2B的反馈网络620上存在电容C7。根据电容的阻抗随交流信号频率变化的性质,信号频率的越大,从电容C7分路直接流至放大器U2B的输出端的电流信号越多。当信号频率足够大时,电阻R12的作用会被削弱,此时,电流信号主要从电容C7分路直接流至放大器U2B的输出端,最终导致电路增益衰减甚至没有增益。换句话说,相对于高频信号,低频信号更易通过放大器U2B被放大。最终表现出阻容放大电路具有低通滤波电路的效果。因此,在本申请中可以通过在放大电路中构建阻容反馈网络,利用尽可能少的放大器达到更好的高频低频抑制效果,降低了电路的制作成本。在一些实施例中,阻容放大电路也可以称为阻容低通滤波电路。更多关于阻容低通滤波电路的描述可以参见本申 请其他地方(例如,图6A-6B及其描述)。在一些实施例中,当阻容放大电路连接高通滤波电路或低通滤波电路时,其组合电路也可以称为阻容高通滤波电路或阻容低通滤波电路。
在一些实施例中,可以通过调节放大电路中反馈网络的电阻和电容的值来调节放大电路(或第二处理电路320)的对目标频段信号的增益。在一些实施例中,第二处理电路320可以对第一频率范围内的信号具有较大增益,而对第一频率范围之外的信号具有较小增益。换句话说,第二处理电路320对第一处理信号的处理可以实现带通的效果。例如,第二处理电路320可以对目标频段(例如,20Hz-140Hz)内的信号具有100倍以上的增益,而对于目标频段之外的信号具有100倍以下的增益,其中,越远离目标频段,其对应的增益越小。
在一些实施例中,第二处理电路320可以用于对所述第一处理信号进行第二放大倍数的放大处理。在一些实施例中,第二处理电路320的第二放大倍数也可以指第二处理电路320中各个放大器对信号进行放大处理的总放大倍数。在一些实施例中,第二放大倍数可以为15倍、20倍、50倍、100倍、200倍、300倍、500倍等。在一些实施例中,为了使特定频段(例如,带通频段)的信号具有更大的增益,放大电路可以包括多级放大电路。在一些实施例中,第二放大倍数可以与第一处理信号中的噪声信号、数字电路的ADC精度等相关。例如,当第一处理信号中存在基线漂移时,可以适当减小第二放大倍数和/或选用更高精度ADC的控制电路,以控制基线漂移不超过信号处理电路300的输出能力,从而不发生失真的情况。
需要说明的是,由于第一处理电路310中包括一个或多个放大器(例如,差分放大器),第一处理电路310的第一放大倍数可以指第一处理电路310中各个放大器对信号进行放大处理的总放大倍数。在一些实施例中,为了对初始信号中的噪声信号进行优先处理,可以将第一处理电路310的第一放大倍数设置为小于20倍。例如,第一放大倍数可以为20倍、15倍、10倍、9倍、7倍、5倍等。在一些实施例中,第二处理电路320的第二放大倍数可以大于、小于或等于第一处理电路310的第一放大倍数。例如,第一放大倍数可以为20倍,第二放大倍数可以为200倍。又例如,第一放大倍数可以为20倍,第二放大倍数可以为15倍。再例如,第一放大倍数和第二放大倍数都可以为20倍。
在一些实施例中,根据信号处理电路300(例如,第二处理电路320)对信号的增益随频率变化的特性,为了尽可能地抑制工频信号,可以将信号处理电路300的频响峰设置 在尽可能远离工频信号的频率50Hz的位置。例如,可以将信号处理电路300的频响峰设置为80Hz、90Hz、100Hz、110Hz、120Hz等。因为在这种情况下,即使信号处理电路300的频响峰在例如120Hz,信号处理电路300可以对120Hz的信号具有最大增益,而对远离120Hz的信号增益较小,相当于对工频信号进一步进行抑制。而此时,信号处理电路300的增益在80Hz-100Hz依然很强,满足对肌电信号的分析要求。总的来说,可以通过调整信号处理电路300的频响增益的峰值位置,使其远离待抑制噪声频率,从而达到对噪声的衰减目标。例如,为了减轻工频谐波信号中的三次谐波的影响,可以将信号处理电路300的频响峰设置为远离150Hz(例如,80Hz)。
在一些实施例中,第二处理电路320还可以包括跟随器。跟随器可以用于隔绝所述信号处理电路300输出端与后端电路的相互影响。
在一些实施例中,信号处理电路300还可以包括负反馈电路。负反馈电路可以用于调节所述放大电路的第二放大倍数。在一些实施例中,信号处理电路300还可以包括反馈电路。反馈电路可以用于改善或控制信号处理电路300的性能指标,例如,抑制干扰和噪声等。更多关于信号处理电路的描述可以参见本申请其他地方(例如,图10、图11、图12A和图12C及其描述)。
应当注意的是,上述有信号处理电路300的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对信号处理电路300进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,经信号处理电路300处理后的信号还可以利用降噪算法进行处理。在一些实施例中,算法降噪处理可以包括滤波算法、谱减算法、自适应算法、最小均方误差估计算法等,或其任意组合。
图4A、图4B和图4C是根据本申请的一些实施例所示的示例性低通滤波电路的结构示意图。图4D是图4A、图4B和图4C中的低通滤波电路的频响曲线图。
如图4A所示,低通滤波电路400A可以包括由电阻R9和电容C1构成的第一低通滤波器和放大器U2B。第一低通滤波器可以与放大器U2B的输入端相连。在一些实施例中,低通滤波电路400A也可以称为一阶有源低通滤波电路。
如图4B所示,相对于低通滤波电路400A,低通滤波电路400B还可以包括由电阻R1和电容C2构成的第二低通滤波器。第一低通滤波器可以与第二低通滤波器直接相 连。在一些实施例中,如低通滤波电路400B所示的通过两级低通滤波器直接相连而构成的二阶低通滤波电路也可以称为二阶级联低通滤波电路。
如图4C所示,相对于低通滤波电路400A,低通滤波电路400C还可以包括由电阻R3和电容C2构成的第三低通滤波器、放大器U1B、电阻R1和电阻R2。第三低通滤波器可以与放大器U2B的输出端以及放大器U1B的输入端相连。在一些实施例中,如低通滤波电路400C所示的通过两个一阶有源低通滤波电路直接相连而构成的二阶低通滤波电路也可以称为二阶分布式低通滤波电路。
如图4D所示,a1表示一阶有源低通滤波电路(即,低通滤波电路400A)的频响曲线。曲线a2表示二阶级联低通滤波电路(即,低通滤波电路400B)的频响曲线。曲线a3表示二阶分布式低通滤波电路(即,低通滤波电路400C)的频响曲线。从图4D可以看出,不同结构的低通滤波电路可以具有不通的频率响应。一阶有源低通滤波电路400A(对应曲线a1)可以达到15dB/十倍频的衰减速度(100Hz到1kHz),二阶级联低通滤波电路400B(对应曲线a2)可以达到30dB/十倍频的衰减速度(100Hz到1KHz),二阶分布式低通滤波电路400C(对应曲线a3)可以达到34dB/十倍频的衰减速度(100Hz到1KHz)。
在一些实施例中,当1KHz处达到了相同的抑制效果时,为了保留更多的低频信号(例如,120Hz内的信号),可以优选高阶(例如,二阶)滤波电路。需要注意的是,二阶级联低通滤波电路和二阶分布式低通滤波电路之间存在区别的原因,可以理解为二阶级联低通滤波电路的第二级对第一级产生了影响。当电流流过第一级的电阻后,在下个节点看来,是第一级中的电容与第二级电路的并联,实际上是增加了总电容值,导致二阶级联低通滤波电路频响截止点变小,滤除了更多的低频信号。
图5A和图5B是根据本申请的一些实施例所示的低通滤波电路的结构示意图。图5C是图5A和图5B中的低通滤波电路的频响曲线图。
如图5A和图5B所示,低通滤波电路500A和低通滤波电路500B均可以包括两个低通滤波器(例如,由电阻R1和电容C8构成的低通滤波器、由电阻R2和电容C12构成的低通滤波器)和差分放大器U1。低通滤波电路500A和低通滤波电路500B的不同之处在于低通滤波电路500B中的差分放大器U1的输入端通过加入电容C11(虚线圆圈部分)而组成桥式电路结构(电阻R1和电容C8之间为第一节点,电阻R2和电容C12之间为第 二节点,电容C11的两端分别连到第一节点和第二节点)。在一些实施例中,低通滤波电路500A也可以称为一阶有源低通滤波电路。低通滤波电路500B也可以称为桥式低通滤波电路。需要知道的是,当其输入端信号中存在射频信号时,射频信号可以通过电容C11到达差分放大器U1的两个输入端,从而被差分放大器U1的共模抑制能力抑制,因此,桥式低通滤波电路还可以进一步抑制射频信号。此外,电阻R1、电阻R2和电容C11也可以构成一级低通滤波器,有助于使滤波器过渡带变窄。
如图5C所示,曲线b1表示一阶有源低通滤波电路(即,低通滤波电路500A)的频响曲线。曲线b2表示桥式低通滤波电路(即,低通滤波电路500B)的频响曲线。从图5C可以看出,通过在差分放大器U1的输入端增加一个电容C11构建桥式电路结构,可以增强低通滤波电路对高频的抑制作用。例如,在1KHz处,低通滤波电路500A的频响强度比低通滤波电路500B的频响强度强6dB。需要理解的是,桥式电路结构的原理可以理解为,通过额外的电容(即,电容C11)可以使得某些频率的交流信号从一条输入通道穿过该电容到达另一个输入通道,最后到达差分放大器U1,被共模抑制后达到衰减的效果,调节该电容的大小可以控制能穿过这个电容的交流信号的频率。
图6A是根据本申请的一些实施例所示的阻容低通滤波电路的结构示意图。图6B是二阶分布式低通滤波电路和图6A中的阻容低通滤波电路的频响曲线图。
如图6A所示,阻容低通滤波电路600可以包括二阶分布式阻容低通滤波电路,其与二阶分布式低通滤波电路(例如,二阶分布式低通滤波电路400C)的区别在于:将二阶分布式低通滤波电路中低通滤波器中的电容移除;此外,还将二阶分布式低通滤波电路中反馈网络中的电阻替换为电阻和电容的并联,即构建阻容反馈网络。例如,在如图6A中,若在电阻R4之后接入一个与参考电位/地相接的电容且在U2A的输出端串联一个电阻,并接入一个与参考电位/地相接的电容,并将阻容反馈网络610和620中的电容移除,得到的电路则为二阶分布式低通滤波电路。在一些实施例中,二阶分布式阻容低通滤波电路也可以称为二阶分布式阻容放大电路。
需要知道的是,由于电容的阻抗随交流信号频率变化而变化,因此,二阶分布式阻容低通滤波电路的增益也可以随信号的频率变化而变化。具体地,以图6A中放大器U2B的阻容反馈网络620为例,由于放大器U2B的阻容反馈网络620上存在电容C7。根据电容的阻抗随交流信号频率变化的性质,随着信号频率的增大,从电容C7分路直接流至放大器 U2B的输出端的电流信号逐渐增多。当信号频率足够大时,电阻R12的作用会被削弱,此时,电流信号主要从电容C7分路直接流至放大器U2B的输出端,最终导致电路增益衰减甚至没有增益。因此,可以通过调节电阻R12和电容C7的值来调节放大器U2B的对目标频段信号的增益。同理可知,可以调节设置电阻R7和电容C3的值来调节放大器U2A的对目标频段信号的增益。
如图6B所示,曲线c1表示二阶分布式低通滤波电路(例如,低通滤波电路400C)的频响曲线。曲线c2表示二阶分布式阻容低通滤波电路(即,低通滤波电路600)的频响曲线。从图6B中可以看出,二阶分布式阻容低通滤波电路(对应曲线c2)与二阶分布式低通滤波电路(对应曲线c1)具有变化趋势一致的频响。二阶分布式阻容低通滤波电路与二阶分布式低通滤波电路是可以兼容的。在一些实施例中,为了不额外增加放大器个数,且对高频有强的抑制能力,优选地可以选择二阶分布式阻容低通滤波电路。
图7A是根据本申请的一些实施例所示的压控低通滤波电路的结构示意图。图7B是二阶低通滤波电路和图7A中的压控低通滤波电路的频响曲线图。
如图7A所示,压控低通滤波电路700可以具有与二阶级联低通滤波电路400B相似的结构。二者区别在于在压控低通滤波电路700中,其第一级低通滤波器的电容(即,电容C14)与放大器的输出端直接连接,形成一个输出电压的反馈循环。在一些实施例中,压控低通滤波电路700也可以称为压控电压源二阶低通滤波电路。
通过设计压控低通滤波电路700,可以使得某个频率的响应达到较大的值,从而使得压控低通滤波电路700的频响曲线可以包括一个凸峰。如图7B所示,曲线d1表示二阶级联低通滤波电路的频响曲线。曲线d2表示的压控电压源二阶低通滤波电路(即,压控低通滤波电路700)的频响曲线。
这是因为频率过低时候,图7A中电容C13和C14相当于开路,电容C14没有起反馈的作用。当频率逐渐提高可以使得电容C14的反馈作用逐渐生效。但是当频率特别高时,电容C13会把输入端信号和反馈信号都大量导入虚拟地,使得输出降低。因此,可以控制不同的电容C13和C14的值,来设计反馈以及留住较高频率信号。在一些实施例中,电容C13和C14的具体的值的定量计算依赖于传递函数。
设置图7A中R17=R18=R,C13=C14=C,输入端信号为Ui,输出信号为Uo,开环增益(即低频增益)为Aop(s)=1+R16/R10,实际增益为A(s)=Uo/Ui。需要知道的是,这里只是用了相同值的电容C13和C14,事实上可以使用不同的值来提供更多的设计空间。
A点的电流方程如方程(1)所示:
B点的电流方程如方程(2)所示:
此外,放大器U2C的负输入端有如方程(3)所示的关系:
联立以上三式可得传递函数如公式(4)所示:
其中,以上式子中s=jw。设定f0=1/(2πRC)。因此,增益A或者开环增益Aop都是关于s的式子,尽管电路图7A中的Aop(s)是一个电阻的比值,但可以通过使用电容而设计出跨阻带通,从而可以对电路进行进一步频响设计。
因为w=2πf,当f=f0,则s=j/RC,当f=f0时,增益可以如式(5)所示:
增益大小与Aop(s)直接相关。例如,当开环增益Aop(s)=2.9,那么f=f0时,增益A=29。当开环增益Aop(s)<2时,增益A会小于开环增益,得不到凸型频响曲线。在本申请的一些实施例中,可以设计f0=100Hz,开环增益Aop(s)=2.9,实现了f0处比开环增益(低频增益)大20dB的效果。在100Hz和1KHz之间达到60dB/十倍频的效果。
图8A是根据本申请的一些实施例所示的示例性低通滤波电路的结构示意图。图8B是图8A中的低通滤波电路的频响曲线图。
如图8A所示,低通滤波电路800可以包括压控低通滤波电路810、桥式低通滤波电路820和四阶低通滤波电路830。在一些实施例中,低通滤波电路800也可以称为门限式 低通滤波电路。在一些实施例中,四阶低通滤波电路830可以通过两级放大器(例如,放大器U2A和U2B)实现。具体地,四阶低通滤波电路830可以由二阶分布式低通滤波电路和二阶阻容低通滤波电路实现。
如图8B所示,曲线e1表示压控低通滤波电路810的频响曲线。曲线e2表示桥式低通滤波电路820与四阶低通滤波电路830进行串联连接的电路的频响曲线。曲线e3表示低通滤波电路800的频响曲线。在一些实施例中,通过对压控低通滤波电路810的增益和频响峰进行调节,可以得到如曲线e1的曲线,其可以包含有频响峰812。将曲线e1对应的电路(即,压控低通滤波电路810)和曲线e2对应的电路(即,桥式低通滤波电路820与四阶低通滤波电路830的串联电路)相结合,则可以得到充分保留低频信号的门限式低通滤波电路(对应曲线e3)。从图8B中可以看出,桥式低通滤波电路820与四阶低通滤波电路830进行串联连接的电路(对应曲线e2)在200Hz处相对于100Hz的抑制能力为20dB,而门限式低通滤波电路800(对应曲线e3)在200Hz处相对于100Hz的抑制能力约为50dB,相当于抑制能力提升了31.6倍。
图9A-9B是根据本申请的一些实施例所示的示例性高通滤波电路的结构示意图。图9C是图9A-9B中的高通滤波电路的频响曲线图。
如图9A所示,高通滤波电路900A可以包括由电阻R4和电容C1构成的高通滤波器910和放大器U2B。第一高通滤波器910可以与放大器U2A的输入端相连。在一些实施例中,第一高通滤波器910可以位于信号通路上。在一些实施例中,包含一个高通滤波器且其位于信号通路上的高通滤波电路900A也可以称为一阶主路高通滤波电路。
如图9B所示,高通滤波电路900B的结构可以与高通滤波电路900A相似。两者的区别在于,高通滤波电路900B中的高通滤波器920未位于信号通路上。在一些实施例中,包含一个高通滤波器且其未位于信号通路上的高通滤波电路900B也可以称为一阶旁路高通滤波电路。
需要知道的是,类似于低通滤波电路,本说明书中的高通滤波电路还可以包括二阶、三阶高通滤波电路或更高阶的高通滤波电路,例如,二阶级联主路高通滤波电路或二阶分布式旁路高通滤波电路。在一些实施例中,高阶高通滤波电路可以包括至少一个一阶主路高通滤波电路或至少一个旁路高通滤波电路。在一些实施例中,包括至少一个一阶主路高通滤波电路和至少一个旁路高通滤波电路也可以称为高阶混合高通滤波电路。
如图9C所示,曲线f1表示第一二阶分布式主路高通滤波电路的频响曲线。曲线f2表示第一二阶分布式旁路高通滤波电路的频响曲线。曲线f3表示第二二阶分布式旁路高通滤波电路的频响曲线,其中,第二二阶分布式旁路高通滤波电路的参数与第一二阶分布式旁路高通滤波电路的参数不同。曲线f4表示二阶分布式混合高通滤波电路的频响曲线。曲线f5表示第二二阶分布式主路高通滤波电路的频响曲线,其中,第二二阶分布式主路高通滤波电路的参数与第一二阶分布式主路高通滤波电路的参数不同。从图9C可以看出,不同结构和/或参数的高通滤波电路可以具有不通的频率响应。第一二阶分布式主路高通滤波电路(对应曲线f1)对极低频信号(例如,1Hz内的信号)的抑制作用很强,但其对低频信号(例如,高于1Hz的信号)的抑制作用有限。第一二阶分布式旁路高通滤波电路(对应曲线f2)和第二二阶分布式旁路高通滤波电路(对应曲线f3)对低频信号的抑制作用有限。二阶分布式混合高通滤波电路(对应曲线f4)对极低频信号具有极大抑制。例如,二阶分布式混合高通滤波电路对1Hz内信号的抑制强于第一二阶分布式旁路高通滤波电路(对应曲线f2)和第二二阶分布式旁路高通滤波电路(对应曲线f3)。此外,二阶分布式混合高通滤波电路(对应曲线f4)对5Hz内信号也具有较大抑制能力(强于第一二阶分布式主路高通滤波电路(对应曲线f1)和第二二阶分布式主路高通滤波电路(对应曲线f5))。
应当注意的是,上述对各个电路的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对电路进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。在一些实施例中,由于各个示例性电路中还包括有放大器,因此,上述各个示例性电路除对信号进行对应处理外,还可以对信号进行放大处理。例如,低通滤波电路400A除了对信号进行低通滤波处理外,还可以对滤波后的信号进行放大。因此,低通滤波电路400A也可以称为低通滤波放大电路。此外,若低通滤波放大电路中的放大器包括阻容反馈网络,则该低通滤波放大电路又可称为阻容低通滤波放大电路。同理,例如,高通滤波电路900A除了对信号进行高通滤波外,还可以对滤波后的信号进行放大。因此,高通滤波电路900A也可以称为低通滤波放大电路。此外,若高通滤波放大电路中的放大器包括阻容反馈网络,则该高通滤波放大电路又可称为阻容低高滤波放大电路。在一些实施例中,各个放大器对信号的放大倍数可以相同或不同。例如,放大器对信号的放大倍数可以为2倍、4倍、10倍、20倍、100倍、300倍、500倍、1000倍等。
图10A是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图。图10B是图10A中信号处理电路的频响曲线。如图10A所示,信号处理电路1000可以包括第一处理电路1010和第二处理电路1020。第二处理电路1020可以与第一处理电路1010直接相连。
第一处理电路1010可以包括桥式低通滤波电路1012、差分放大器U1和高通滤波器1014。在一些实施例中,桥式低通滤波电路1012可以连接在差分放大器U1的输入端。高通滤波器1014可以连接在差分放大器U1的输出端。
第一处理电路1010可以对初始信号(例如,电极采集的初始信号)中的噪声信号进行衰减并对初始信号中的目标信号进行放大,输出第一处理信号。具体地,桥式低通滤波电路1012可以对初始信号进行低通滤波处理。例如,桥式低通滤波电路1012的上限截止频率可以在100Hz-1000Hz频率范围内。又例如,桥式低通滤波电路1012的上限截止频率可以为140Hz。经桥式低通滤波电路1012处理的信号可以进一步由差分放大器U1进行处理。例如,差分放大器U1可以抑制经滤波处理的信号中的共模信号(例如,工频信号)。又例如,差分放大器U1可以对经滤波处理的信号进行放大处理。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于10倍。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于7倍。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于5倍。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于4倍。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于3倍。在一些实施例中,差分放大器U1对信号的放大倍数可以不大于2倍。在如图10A的信号处理电路中,由于第一处理电路1010只包含一个放大器(即,差分放大器U1),因此,差分放大器U1的放大倍数称为第一处理电路1010的第一放大倍数。
高通滤波器1014可以对差分放大器U1处理后的信号进行高通滤波处理。例如,高通滤波器1014的下限截止频率可以在5Hz-200Hz频率范围内。又例如,高通滤波器1014的上限截止频率可以为20Hz。在图10A中,经高通滤波器1014处理的信号则为第一处理信号。
第二处理电路1020可以用于对第一处理信号进行放大处理。在一些实施例中,第二处理电路1020可以包括放大电路1022、负反馈电路1024和跟随器1026。在一些实施例中,放大电路1022中可以包括阻容反馈网络(如图6A中由电阻R7和电容C3构成)(即 放大电路1022也可以称为阻容放大电路),第二处理电路1020对所述第一处理信号的增益倍数可以随第一处理信号的频率变化而变化。第二处理电路1020可以对第一处理信号进行第二倍数的放大处理。在一些实施例中,第二处理电路1020包括多个放大器,第二放大倍数可以是多个放大器的总放大倍数。在一些实施例中,第二放大倍数可以大于第一放大倍数。例如,第二放大倍数可以大于30倍、50倍、100倍、200倍、500倍等。负反馈电路1024可以用于利用滑动变阻器R5实现大范围的增益(即,放大倍数)可调。例如,可以实现增益从0-A的增益变化,其中,A为放大器1022的增益。在一些实施例中,滑动变阻器R5也可以称为分压电阻器。跟随器1026可以用于隔绝输出端对信号处理电路1000的影响。
如图10B所示,当信号处理电路1000的总增益较高时,信号处理电路1000在处理200Hz-400Hz范围内的信号时易达到饱和,且信号处理电路1000对高频信号的抑制不足。在一些实施例中,可以通过调节放大电路1022中阻容反馈网络中电阻值和电容值来优化信号处理电路1000的频响(即,带通效果)。例如,可以将阻容反馈网络中的电阻扩大2倍和将电容的值缩小2倍。在一些实施例中,为了优化信号处理电路1000中的高通滤波器1014的频率响应,可以非比例调节高通滤波器1014中的电阻和电容的值,扩大电容的影响(例如,只增大电容的值),但此时,也会同时增益了非目标频段的信号。
在一些实施例中,由于提高电路的阶数可以提高电路的频响陡度(即,只大增益目标频段的信号,而抑制非目标频段的信号),因此,为了提高信号处理电路1000的频响陡度,可以在信号处理电路1000的基础上设计更高阶数的信号处理电路。具体描述可以参见图11及其描述,此处不再赘述。
图11是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图。如图11所示,信号处理电路1100可以包括与信号处理电路1000相同的第一处理电路1010。信号处理电路1100还可以包括第二处理电路1120。
第二处理电路1120可以包括放大电路1122、阻容高通滤波放大电路1124、负反馈电路1126和跟随器1128。在电路架构上,信号处理电路1100中的第二处理电路1120相比于信号处理电路1000中的第二处理电路1020可以进一步包括阻容高通滤波放大电路1124,其可以高通滤波器,从而对信号起到高通滤波的作用。阻容高通滤波放大电路1124中还可以包括由电容和电阻并联设置于放大器的输入端和输出端之间的阻容反馈网络。在一 些实施例中,信号处理电路1100也可以称为二阶滤波肌电处理电路。进一步地,相比第二处理电路1020,在第二处理电路1120中,第二处理电路1020中的滑动变阻器R5替换为电阻R5和R6。
在一些实施例中,为了优化频率响应(例如,对1Hz、50Hz的抑制更强,且保持频响峰在500Hz内,增益400-600倍),可以调节放大电路1122的参数来改变第二处理电路1120对信号的增益。例如,可以将电阻R7和电容C8同比例减小。
图12A是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图。图12B是图12A中信号处理电路的频响峰为80Hz时的频响曲线。
如图12A所示,信号处理电路1200可以包括第一处理电路1210和第二处理电路1220。第二处理电路1220可以与第一处理电路1210直接相连。
在一些实施例中,第一处理电路1210可以包括桥式低通滤波电路1212、差分放大器U1和陷波电路1214。桥式低通滤波电路1212和差分放大器U1可以与信号处理电路1000中的桥式低通滤波电路1012和差分放大器U1结构相同。陷波电路1214可以包括双T有源型陷波电路。在一些实施例中,陷波电路1214的陷波点频率可以设置为工频信号的频率(例如,50Hz)。在一些实施例中,陷波电路1214还可以包括级联陷波电路。进一步地,陷波电路1214可以包括多级联陷波电路。多级联陷波电路中的各级联陷波电路的陷波点频率可以分别设置为50Hz、100Hz、150Hz、250Hz等。
第二处理电路1220可以包括阻容高通滤波放大电路1222、阻容低通滤波放大电路1224、压控低通滤波电路1226、负反馈电路1128和跟随器1229。阻容高通滤波放大电路1222、阻容低通滤波放大电路1224、压控低通滤波电路1226、跟随器1229可以依次串联连接。阻容高通滤波放大电路1222可以对信号进行高通滤波和放大处理。阻容低通滤波放大电路1224可以对信号进行低通滤波和放大处理。阻容高通滤波放大电路1222中放大器和阻容低通滤波放大电路1224中放大器对信号的放大能力可以相同或不同。在一些实施例中,放大器对信号的放大倍数可以大于10倍。在一些实施例中,放大器对信号的放大倍数可以大于30倍。在一些实施例中,放大器对信号的放大倍数可以大于100倍。在一些实施例中,放大器对信号的放大倍数可以大于500倍。压控低通滤波电路1226可以与桥式低通滤波遍历1212和/或阻容低通滤波放大电路1224相结合以补偿桥式低通滤波遍历1212和/或阻容低通滤波放大电路1224的在其上限截止频率附近的衰减,使通带更平坦。在第二处理 电路1220中,电阻R5和电阻R6也可以称为分压电阻。通过调节分压电阻的阻值可以调节信号处理电路1200A的频率响应。例如,可以增大分压电阻的阻值以防止信号饱和(尤其是噪声信号饱和)而造成的目标信号丢失。
如图12B所示,曲线g0表示传统的信号处理产品的频响曲线。曲线g1表示分压电阻为第一阻值时信号处理电路1200的频响曲线,曲线g2表示分压电阻为第二阻值时信号处理电路1200的频响曲线,其中,第二阻值大于第一阻值。从图12B中可以看出,由于针对工频信号(50Hz)的陷波电路1214的存在,曲线g1和曲线g2在50Hz处存在凹陷,即工频信号被极大抑制。当信号处理电路1200的频响峰设置为80Hz时,相对于传统信号处理产品,信号处理电路1200包含更少的噪声信号,且在高频范围内的信号被有效抑制。
在一些实施例中,本着对工频信号、工频谐波信号、MA等优先处理,再进行较大增益的原则,可以对信号处理电路1200A进行调整,如图12C所示。
图12C是根据本申请的一些实施例所示的示例性信号处理电路的电路架构示意图。图12D是图12C中信号处理电路的频响峰为80Hz时的频响曲线。如图12C所示,第二处理电路1220中的压控低通滤波电路1226可以连接在阻容高通滤波放大电路1222之前,而阻容低通滤波放大电路1224可以与负反馈电路1228直接连接。在一些实施例中,当压控低通滤波电路1226紧接着设置在陷波电路1214之后时,压控低通滤波电路1226也可以视为设置在第一处理电路中。
如图12D所示,曲线h1表示当分压电阻R5=R6=100Ω时,信号处理电路1200C的频响曲线。曲线h2表示当分压电阻R5=R6=1kΩ时,信号处理电路1200C的频响曲线。从图12D中可以看出,当分压电阻R5和R6的阻值升高时(例如,从100Ω升高至1kΩ时),可以降低信号处理电路1200C的频响峰强度,此外,还可以使得信号处理电路1200C的频响峰向高频移动。
图13是根据本申请的一些实施例所示的不同时间测量得到的信号处理电路的频响曲线与仿真频响曲线的对比图。在一些实施例中,为了测试本申请实施例中的信号处理电路的稳定性,可以在采集肌电信号时将采集电路中的一个电极掀起一半(即,电极半脱落)或全部掀起(即,电极完全脱落)。
如图13所示,时间1曲线、时间2曲线是在不同时间、不同电极脱落条件下测得的。在获得时间1曲线的过程中,可将信号采集电极掀起一半,而在获得时间2曲线的过程 中,可以不将电极掀起。从图13中可以看出,利用同一信号处理电路,在不同时间(例如,时间1和时间2)、不同条件(电极半脱落与未脱落)下所测量得到的该信号处理电路的频响曲线一致性高,且与仿真信号之间的差异较小,没有信号饱和问题发生。因此,本申请实施例中的信号处理电路的稳定性强、准确性高,可以应对在测试过程中较大程度的电极脱落问题。
图14是根据本申请的一些实施例所示的利用信号处理电路进行二头弯举实验时采集的肌电信号。图14从上到下分别显示了对肱二头肌、斜方肌和胸大肌采集的信号数据。在进行二头弯举实验过程中,被试者的动作可以依次为两个正常的二头弯举动作、两个耸肩动作和两个夹胸动作。从图14可以看出,经信号处理电路处理的信号信噪比高(信噪比可达到500级别),工频及其谐波被极大抑制,肌电信号成分变简单(主要包含目标频段的信号)。因此,本申请实施例中的信号处理电路可以顺利完成二头弯举运动中的肌电信号的高质量采集。
本申请实施例可能带来的有益效果包括但不限于:(1)通过采用分时复用的方法,在保证多路信号源采集和处理的情况下,可以达到节约空间成本,降低硬件要求的目的;(2)当多个输入通道同时具有信号时,可以减小各个输入通道之间的串扰;(3)完全重构型策略可以基于获得的采样数据完全复现对应的多路目标信号;(4)在强度表征型策略下可以基于获得的采样数据获取目标信号的强度信息和部分频率信息;(5)通过小增益高精度ADC、程控基线及添加高通滤波电路的方法解决可能出现的基线漂移的问题;(6)通过先处理工频信号及工频谐波信号等强度较大的噪声信号,再进行较大增益,可以防止信号过饱和而造成目标信号丢失;(7)通过将电路的频响峰设置在远离工频信号频率的位置,可以进一步抑制工频信号;(8)通过在反馈放大电路中的反馈网络中增加一个与电阻并联的电容,可以使反馈放大电路对信号的增益随频率变化而变化。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能 会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请处理元素和序列的顺序、数字字母的使用或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例 中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (18)

  1. 一种信号处理电路,包括模拟电路,所述模拟电路用于对其接收的初始信号进行处理,所述初始信号包括目标信号和噪声信号,其中,所述模拟电路包括:
    第一处理电路,用于提高所述目标信号与所述噪声信号之间的比值,输出第一处理信号;以及
    与所述第一处理电路相连接的第二处理电路,用于对所述第一处理信号进行放大处理,所述第二处理电路对所述第一处理信号的增益倍数随所述第一处理信号的频率变化而变化,其中:
    所述第一处理电路包括共模信号抑制电路、低通滤波电路和高通滤波电路,
    所述共模信号抑制电路用于抑制所述初始信号中的共模信号。
  2. 如权利要求1所述的信号处理电路,其中,所述共模信号抑制电路包括差分放大器。
  3. 如权利要求2所述的信号处理电路,其中,所述低通滤波电路包括在所述差分放大器的输入端形成的桥式电路结构。
  4. 如权利要求2所述的信号处理电路,其中,所述差分放大器的输入阻抗大于10MΩ。
  5. 如权利要求1所述的信号处理电路,其中,所述低通滤波电路的上限截止频率点在100Hz-1000Hz的频率范围之内。
  6. 如权利要求1所述的信号处理电路,其中,所述高通滤波电路的下限截止频率点在5Hz-200Hz的频率范围之内。
  7. 如权利要求1所述的信号处理电路,其中,所述第一处理电路包括陷波电路,所述陷波电路用于抑制工频信号。
  8. 如权利要求7所述的信号处理电路,其中,所述陷波电路包括级联陷波电路,所述级联陷波电路还用于抑制工频信号的谐波。
  9. 如权利要求7所述的信号处理电路,其中,所述陷波电路包括双T有源型陷波电路。
  10. 如权利要求1所述的信号处理电路,其中,所述第一处理电路还包括压控低通滤波电路,所述压控低通滤波电路用于在其目标频率附近提供增益,并与所述低通滤波电路相结合以补偿所述低通滤波电路的衰减。
  11. 如权利要求1所述的信号处理电路,其中,所述第一处理电路在提高所述目标信号与所述噪声信号之间的比值的过程中,包括:
    对所述目标信号进行第一放大倍数的放大处理;以及
    对所述噪声信号进行衰减处理。
  12. 如权利要求11所述的信号处理电路,其中,所述第二处理电路包括放大电路、反馈电路和跟随器,
    所述放大电路用于对所述第一处理信号进行第二放大倍数的放大处理,所述第二放大倍数大于所述第一放大倍数;以及
    所述跟随器用于隔绝所述信号处理电路输出端的影响。
  13. 如权利要求1所述的信号处理电路,其中,所述第二处理电路对所述第一处理信号在第一频率范围的增益响应大于在所述第一频率范围之外的增益响应。
  14. 如权利要求13所述的信号处理电路,其中,所述第一频率范围包括20Hz-140Hz。
  15. 如权利要求1所述的信号处理电路,其中,所述初始信号包括肌电信号。
  16. 如权利要求1所述的信号处理电路,还包括:控制电路、开关电路以及至少两个信号采集电路,其中,
    所述至少两个信号采集电路用于采集至少两路初始信号;
    所述开关电路用于控制所述至少两个信号采集电路与所述模拟电路的导通,使得在同一时间所述至少两个信号采集电路中仅有部分信号采集电路采集的初始信号传输至所述模拟电路;以及
    所述控制电路用于接收经模拟电路处理后的目标信号,并对所述经过处理的目标信号进行采样。
  17. 如权利要求16所述的信号处理电路,其中,所述开关电路包括多个输入通道,所述至少两个信号采集电路中每个信号采集电路单独连接一个输入通道,在同一时间,所述开关电路基于所述控制电路的控制信号选择一个输入通道导通。
  18. 一种信号处理装置,包括:如权利要求1~17中任一项所述的信号处理电路。
CN202180070831.4A 2020-12-31 2021-06-28 信号处理电路和装置 Pending CN116964963A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/142529 2020-12-31
PCT/CN2020/142529 WO2022141583A1 (zh) 2020-12-31 2020-12-31 信号处理电路和方法
PCT/CN2021/102851 WO2022142205A1 (zh) 2020-12-31 2021-06-28 信号处理电路和装置

Publications (1)

Publication Number Publication Date
CN116964963A true CN116964963A (zh) 2023-10-27

Family

ID=82135992

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202080106657.XA Pending CN116584045A (zh) 2020-12-31 2020-12-31 信号处理电路和方法
CN202180070831.4A Pending CN116964963A (zh) 2020-12-31 2021-06-28 信号处理电路和装置
CN202110723207.1A Pending CN114680905A (zh) 2020-12-31 2021-06-28 肌电信号处理电路和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080106657.XA Pending CN116584045A (zh) 2020-12-31 2020-12-31 信号处理电路和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110723207.1A Pending CN114680905A (zh) 2020-12-31 2021-06-28 肌电信号处理电路和装置

Country Status (6)

Country Link
US (2) US20230216486A1 (zh)
EP (2) EP4206834A4 (zh)
JP (2) JP2023548122A (zh)
KR (2) KR20230084550A (zh)
CN (3) CN116584045A (zh)
WO (2) WO2022141583A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055212A1 (zh) * 2022-09-14 2024-03-21 深圳市韶音科技有限公司 一种信号测量装置
CN116196020A (zh) * 2023-03-24 2023-06-02 苏州海臻医疗器械有限公司 一种基于表面肌电信号的患者肌肉疲劳度评估系统及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8079953B2 (en) * 1996-06-17 2011-12-20 Cybernet Systems Corporation General-purpose medical instrumentation
KR100286277B1 (ko) * 1999-06-07 2001-03-15 윤종용 다채널시스템의 입출력제어장치
WO2005094674A1 (en) * 2004-03-29 2005-10-13 Neuronetrix, Inc. Active, multiplexed digital electrodes for eeg, ecg and emg applications
CN2938573Y (zh) * 2006-08-03 2007-08-22 深圳达实智能股份有限公司 多通道模数转换装置
CN101119115B (zh) * 2006-08-03 2011-06-01 深圳达实智能股份有限公司 多通道模数转换装置及方法
AU2008267762B2 (en) * 2007-06-22 2014-01-16 Wenco International Mining Systems Limited Scalp potential measuring method and apparatus
WO2012135028A1 (en) * 2011-03-25 2012-10-04 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
WO2014197794A1 (en) * 2013-06-07 2014-12-11 Indiana University Research And Technology Corporation Digitally invertible universal amplifier for recording and processing of bioelectric signals
KR102198953B1 (ko) * 2014-03-12 2021-01-05 삼성전자주식회사 병렬 생체 신호 프로세서 및 병렬 생체 신호 프로세서의 제어 방법
JP6261774B2 (ja) * 2014-05-27 2018-01-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 同期を伴う人体結合通信デバイス
EP3193704B1 (en) * 2014-09-16 2019-04-10 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder
CN106301659B (zh) * 2015-06-05 2018-05-15 华东师范大学 一种磁共振多通道数字传输系统及其数据传输方法
CN105125211A (zh) * 2015-09-28 2015-12-09 李继有 一种肌电采集和显示装置
US10813594B2 (en) * 2016-07-12 2020-10-27 Shenzhen Dansha Technology Co., Ltd. Circuits for wearable ECG system
CN106419880A (zh) * 2016-11-09 2017-02-22 广东千山医疗器械科技有限公司 穿戴式血压监测装置
CN106872849B (zh) * 2017-02-24 2019-12-31 今创科技有限公司 设备内部io采样方法、装置以及系统
US20180263521A1 (en) * 2017-03-17 2018-09-20 Tribe Private Company System and method for emg signal acquisition
EP3545823A1 (en) * 2018-03-28 2019-10-02 Koninklijke Philips N.V. Apparatus for use with a wearable cuff
US10873354B2 (en) * 2018-07-20 2020-12-22 Purdue Research Foundation System and method for signal interference rejection using human body communication
CN111317456A (zh) * 2018-12-14 2020-06-23 深圳迈瑞生物医疗电子股份有限公司 多通道监测系统、参数测量模块、监护仪和血氧监测系统
WO2020236147A1 (en) * 2019-05-20 2020-11-26 Hewlett-Packard Development Company, L.P. Signal combination of physiological sensor signals

Also Published As

Publication number Publication date
JP2023548122A (ja) 2023-11-15
US20230216486A1 (en) 2023-07-06
EP4206834A1 (en) 2023-07-05
EP4203345A1 (en) 2023-06-28
KR20230084550A (ko) 2023-06-13
EP4203345A4 (en) 2024-03-27
CN114680905A (zh) 2022-07-01
CN116584045A (zh) 2023-08-11
US20230218236A1 (en) 2023-07-13
EP4206834A4 (en) 2023-11-01
JP2023547159A (ja) 2023-11-09
WO2022142205A1 (zh) 2022-07-07
WO2022141583A1 (zh) 2022-07-07
KR20230070281A (ko) 2023-05-22

Similar Documents

Publication Publication Date Title
Kher Signal processing techniques for removing noise from ECG signals
Zhang et al. A low-power ECoG/EEG processing IC with integrated multiband energy extractor
US20230216486A1 (en) Signal processing circuits and devices
Kadam et al. Reduction of power line interference in ECG signal using FIR filter
Gosselin et al. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants
Lütkenhöner et al. Possibilities and limitations of weighted averaging
Bertrand et al. Motion artifact reduction in EEG recordings using multi-channel contact impedance measurements
Rehman et al. Performance comparison of various adaptive filter algorithms for ECG signal enhancement and baseline wander removal
CA3092001A1 (en) Apparatus for treating neurological disorders by electro-stimulation and method for processing neural signals collected by the said apparatus
JP2016538037A (ja) バンド幅可変ecgハイパスフィルタ
Wang et al. A bio-realistic analog CMOS cochlea filter with high tunability and ultra-steep roll-off
CN105263450A (zh) 后期听觉诱发电位中的单通道人工耳蜗植入伪迹衰减
Rieger et al. Double-differential recording and AGC using microcontrolled variable gain ASIC
Saxena et al. Denoising of ECG signals using FIR & IIR filter: A performance analysis
Burgess Filtering of neurophysiologic signals
Islam et al. Performance study of adaptive filtering algorithms for noise cancellation of ECG signal
Bansal Design of 50 Hz notch filter circuits for better detection of online ECG
WO2023029677A1 (zh) 闭环深部脑刺激决策方法、装置、系统及电子设备
Chavan et al. Design of ECG instrumentation and implementation of digital filter for noise reduction
CN208851487U (zh) 基于多阶滤波的肌电信号采集装置及系统
Neycheva et al. Intuitive Approach to active digital filter design. Part II: Principle of higher-order low-pass filters
Torres et al. Cancellation of powerline interference from biomedical signals using an improved affine projection algorithm
Jiang et al. Comparison of different shielding methods in acquisition of physiological signals
Sinha et al. A 22nm±0.95 V CMOS OTA-C front-end with 50/60 Hz notch for biomedical signal acquisition
Yazdanpanah et al. Design and comparison of digital IIR filters for reduction of artifacts from electrocardiogram waveform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination