JP6382135B2 - Wireless sensor terminal and wireless transmission method - Google Patents

Wireless sensor terminal and wireless transmission method Download PDF

Info

Publication number
JP6382135B2
JP6382135B2 JP2015048664A JP2015048664A JP6382135B2 JP 6382135 B2 JP6382135 B2 JP 6382135B2 JP 2015048664 A JP2015048664 A JP 2015048664A JP 2015048664 A JP2015048664 A JP 2015048664A JP 6382135 B2 JP6382135 B2 JP 6382135B2
Authority
JP
Japan
Prior art keywords
voltage
current
wireless transmission
time
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015048664A
Other languages
Japanese (ja)
Other versions
JP2016170527A (en
Inventor
浩尚 岡田
浩尚 岡田
伊藤 寿浩
寿浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015048664A priority Critical patent/JP6382135B2/en
Publication of JP2016170527A publication Critical patent/JP2016170527A/en
Application granted granted Critical
Publication of JP6382135B2 publication Critical patent/JP6382135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

本発明は無線センサ端末及び無線送信方法に係り、特に被測定信号を測定するセンサ機能と測定結果を無線送信する無線送信機能とを有する無線センサ端末及び無線送信方法に関する。   The present invention relates to a wireless sensor terminal and a wireless transmission method, and more particularly, to a wireless sensor terminal and a wireless transmission method having a sensor function for measuring a signal under measurement and a wireless transmission function for wirelessly transmitting a measurement result.

近年、省エネルギーの対策のため、工場、研究所、学校、病院、商業施設、オフィス、公共施設などの大電力消費施設における消費電力を管理するシステムが注目されている。同様に、一般住宅においても各部屋毎あるいは電力消費機器毎に消費電力を管理するための無線センサネットワークシステムが注目されつつある。この無線センサネットワークシステムでは、例えば、住宅内の各部屋に電力を供給する配電盤に接続された複数の電力線に流れる電流を複数の無線センサ端末により別々に測定し、その測定結果を所定位置に設けた受信装置へ無線送信する。受信装置では、受信信号を解析し、各部屋毎の消費電力の監視や管理、電力消費機器の稼働状況の監視などを行う。   In recent years, systems for managing power consumption in large power consumption facilities such as factories, research institutes, schools, hospitals, commercial facilities, offices, and public facilities have attracted attention for energy saving measures. Similarly, wireless sensor network systems for managing power consumption for each room or for each power consuming device are also drawing attention in general houses. In this wireless sensor network system, for example, currents flowing through a plurality of power lines connected to a switchboard that supplies power to each room in a house are separately measured by a plurality of wireless sensor terminals, and the measurement results are provided at predetermined positions. Wirelessly transmitted to the receiving device. The receiving device analyzes the received signal, and monitors and manages the power consumption for each room, monitors the operating status of the power consuming device, and the like.

この種の無線センサネットワークシステムに使用される無線センサ端末としては、電源としてバッテリーを搭載し、その端末自身の識別情報に、測定した電流量のデジタル値や消費電力のデジタル値をそのまま含めたフォーマットの送信信号を所定の時間間隔で管理センターへ無線送信する構成のものが一般的である。しかしながら、無線センサ端末は電源としてバッテリーを搭載しているため、バッテリーが劣化して所要の電源電圧が得られなくなる度に、バッテリーを新しいものと交換する必要があり、コスト的及び作業的に問題である。   As a wireless sensor terminal used in this type of wireless sensor network system, a battery is installed as a power source, and the terminal's own identification information includes the digital value of the measured current amount and the digital value of the power consumption as it is. The transmission signal is generally wirelessly transmitted to the management center at predetermined time intervals. However, since the wireless sensor terminal is equipped with a battery as a power supply, it is necessary to replace the battery with a new one every time the battery deteriorates and the required power supply voltage cannot be obtained. It is.

そこで、バッテリー交換を不要とするために、バッテリーを搭載せずに自立電源を備える所謂無給電型の無線センサ端末が知られている。無給電型の無線センサ端末によれば、例えば、配電盤に接続された電力線に取り付けて、電力線に流れる交流電流により誘起される電磁誘導電流を検出し、その電磁誘導電流を直流電圧に整流した後蓄電し、その蓄電した直流電圧を端末各部の電源電圧とする。   Therefore, in order to eliminate the need for battery replacement, a so-called non-powered wireless sensor terminal that is equipped with a self-supporting power source without a battery is known. According to a non-feed type wireless sensor terminal, for example, after being attached to a power line connected to a switchboard, detecting an electromagnetic induction current induced by an alternating current flowing through the power line, and rectifying the electromagnetic induction current into a direct voltage The stored DC voltage is used as the power supply voltage for each part of the terminal.

しかし、微小レベルである電磁誘導電流を高圧な直流電圧に変換して蓄電し、その蓄電した直流電圧を電源電圧として用いて、所定の時間間隔で確実に無線送信を実行できるようにするためには、無線送信時の消費電力が少ないことが望ましい。ところが、無線送信の際の消費電力は、送信信号の総データ量(総電文量)に比例するため、測定した電流量のデジタル値や消費電力のデジタル値をそのまま含めたフォーマットの送信信号を無線送信する従来の無線センサ端末では、送信信号の総データ量が多いために消費電力が大きいという問題がある。   However, to convert electromagnetic induction current, which is a minute level, into a high-voltage DC voltage and store it, and to use that stored DC voltage as a power supply voltage to reliably execute wireless transmission at predetermined time intervals It is desirable that power consumption during wireless transmission is low. However, since the power consumption during wireless transmission is proportional to the total amount of data (total amount of telegrams) of the transmission signal, a transmission signal in a format that directly includes the digital value of the measured current amount and the digital value of the power consumption The conventional wireless sensor terminal for transmission has a problem that power consumption is large because the total amount of data of the transmission signal is large.

このような消費電力が大きい無給電型の無線センサ端末では、所要の電源電圧を得るためには、長期間にわたって蓄電しなければならず、実用に堪えないという問題がある。あるいは、送信信号の総データ量が多いために、蓄電電圧を電源電圧としたときに、送信信号のデータ量のすべての送信を完了する前に、電源電圧が送信に必要な電圧値未満に低下し、送信が完了できないおそれがある。したがって、電磁誘導電流を直流電圧に整流した後蓄電し、その蓄電した直流電圧を無線センサ端末の自立電源として用いることは極めて困難である。   In such a non-feeding type wireless sensor terminal with high power consumption, in order to obtain a required power supply voltage, there is a problem that power must be stored for a long period of time, which is unpractical. Alternatively, because the total amount of data in the transmission signal is large, when the storage voltage is set as the power supply voltage, the power supply voltage drops below the voltage value required for transmission before completing the transmission of the entire data amount of the transmission signal. However, transmission may not be completed. Therefore, it is extremely difficult to store the electromagnetic induction current after being rectified to a DC voltage and use the stored DC voltage as a self-sustained power source for the wireless sensor terminal.

そこで、本発明者は、送信する電流センサで検出した電流の電流量は送信信号のデータに含めず、送信信号の送信間隔を変化させて受信側で受信信号の受信間隔を電流値に換算させる構成とした無給電型の無線センサ端末を提案した(例えば、特許文献1参照)。この無給電型の無線センサ端末によれば、検出電流の電流量を送信信号のデータに含めないため、送信信号のデータ量を最小限とすることができ、よって無線センサ端末の消費電力を極力低減化することができ、整流後蓄電した直流電圧を自立電源として用いた無給電型無線センサ端末を実用に供することができる。   Therefore, the present inventor does not include the current amount of the current detected by the transmitting current sensor in the transmission signal data, and changes the transmission interval of the transmission signal to convert the reception interval of the reception signal into a current value on the reception side. A non-feeding type wireless sensor terminal having a configuration has been proposed (for example, see Patent Document 1). According to this non-powered wireless sensor terminal, since the amount of detected current is not included in the data of the transmission signal, the amount of data of the transmission signal can be minimized, thereby reducing the power consumption of the wireless sensor terminal as much as possible. A non-feed type wireless sensor terminal using a DC voltage stored after rectification as a self-sustained power source can be practically used.

特開2014−096017号公報JP 2014-096017 A

しかしながら、特許文献1記載の無給電型無線センサ端末は、測定する電力線の電流値が大きくなると、例えば0.5秒に1回などのように送信頻度が高くなるため、同じキャリア周波数の送信信号を使用している別の無給電型無線センサ端末が近くに存在すると、送信信号が衝突することが頻繁に起こり、無線センサネットワークシステムが成り立たなくなる。なお、特許文献1記載の無給電型無線センサ端末において、電磁誘導電流を整流して得た直流電圧を蓄電するコンデンサの容量を大きくすることで送信の時定数を大きくすれば、送信頻度を少なくでき、それにより送信信号の衝突の確率を低減できるが、容量が大きなコンデンサとして形状が大きい電解コンデンサを使用する必要があり、端末の小型化が困難になる。   However, the non-feed-type wireless sensor terminal described in Patent Document 1 increases the transmission frequency, for example, once every 0.5 seconds when the current value of the power line to be measured increases. When there is another parasitic wireless sensor terminal using the wireless communication terminal, transmission signals frequently collide, and the wireless sensor network system does not hold. In the non-feed-type wireless sensor terminal described in Patent Document 1, if the time constant of transmission is increased by increasing the capacity of the capacitor that stores the DC voltage obtained by rectifying the electromagnetic induction current, the transmission frequency is reduced. Thus, the probability of collision of transmission signals can be reduced, but it is necessary to use an electrolytic capacitor having a large shape as a capacitor having a large capacity, which makes it difficult to reduce the size of the terminal.

本発明は以上の点に鑑みなされたもので、被測定電流の電流値が大きくても送信頻度が高くならず、かつ、小型な無給電型の無線センサ端末及び無線送信方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a small non-feed-type wireless sensor terminal and wireless transmission method that does not increase the transmission frequency even when the current value of the current to be measured is large. Objective.

上記の目的を達成するため、本発明の無線センサ端末は、電流測定手段と、電流測定手段により測定された被測定電流の電流値に応じた直流電圧を生成する直流電圧生成手段と、直流電圧生成手段により生成された直流電圧により充電されてこれを保持する蓄電用コンデンサと、蓄電用コンデンサに並列に接続された電流制限用抵抗及び閾値判断用コンデンサからなる直列回路と、被測定電流の電流値に応じた、電流制限用抵抗及び閾値判断用コンデンサの接続点の電圧を抵抗分圧する抵抗分圧回路と、抵抗分圧回路により得られた抵抗分圧電圧が基準電圧以上であるか否かを検出する電圧比較手段と、端末IDを含むデータで予め割り当てられた無線周波数を変調した送信信号を無線送信する無線送信手段と、電圧比較手段により抵抗分圧電圧が基準電圧以上になったことを検出した時刻より所定期間、接続点の電圧を無線送信手段へ動作用電源電圧として印加し、所定期間経過後は動作用電源電圧の無線送信手段への印加を停止する電源電圧印加手段とを備え、
所定期間経過時点の無線送信手段の動作停止時刻から電圧比較手段により抵抗分圧電圧が基準電圧以上になったことを検出した時刻までの、無線送信手段の動作停止期間である送信間隔を被測定電流の電流値に応じて可変するとともに、送信間隔を、直流電圧生成手段により生成された直流電圧と抵抗分圧電圧が基準電圧以上になったことを検出した時刻における接続点の電圧との第1の差分値、及び直流電圧と所定期間経過時点の無線送信手段の動作停止時刻における接続点の電圧との第2の差分値の比と、電流制限用抵抗及び閾値判断用コンデンサの各値の積とに基づいて設定することを特徴とする。
In order to achieve the above object, a wireless sensor terminal according to the present invention includes a current measuring unit, a DC voltage generating unit that generates a DC voltage corresponding to the current value of the current to be measured measured by the current measuring unit, and a DC voltage. A storage capacitor that is charged and held by the DC voltage generated by the generation means, a series circuit including a current limiting resistor and a threshold determination capacitor connected in parallel to the storage capacitor, and a current of the current to be measured A resistance voltage dividing circuit that resistance-divides the voltage at the connection point of the current limiting resistor and the threshold judgment capacitor according to the value, and whether or not the resistance divided voltage obtained by the resistance voltage dividing circuit is equal to or higher than the reference voltage Voltage comparison means for detecting the signal, wireless transmission means for wirelessly transmitting a transmission signal obtained by modulating a radio frequency pre-assigned with data including the terminal ID, and resistance voltage division by the voltage comparison means The voltage at the connection point is applied as the operating power supply voltage to the wireless transmission means for a predetermined period from the time when the pressure is detected to be higher than the reference voltage, and the operating power supply voltage is applied to the wireless transmission means after the predetermined period has elapsed. Power supply voltage applying means for stopping
Measure the transmission interval, which is the operation stop period of the wireless transmission means, from the operation stop time of the wireless transmission means when the predetermined period has elapsed until the time when the voltage comparison means detects that the resistance divided voltage is equal to or higher than the reference voltage. The transmission interval varies between the DC voltage generated by the DC voltage generating means and the voltage at the connection point at the time when the resistance divided voltage is detected to be equal to or higher than the reference voltage. A difference value of 1 and a ratio of the second difference value between the DC voltage and the voltage at the connection point at the operation stop time of the wireless transmission means at the time when the predetermined period has elapsed, and each value of the current limiting resistor and the threshold judging capacitor It sets based on a product, It is characterized by the above-mentioned.

また、上記目的を達成するため、本発明の無線センサ端末は、上記直流電圧生成手段により生成された直流電圧をVp、抵抗分圧電圧が基準電圧以上になったことを検出した時刻における接続点の電圧をVth、所定期間経過時点の無線送信手段の動作停止時刻における接続点の電圧をVmin、電流制限用抵抗及び閾値判断用コンデンサの各値の積をKとしたとき、送信間隔は
K・loge{(Vp−Vmin)/(Vp−Vth)}
で表されることを特徴とする。
In order to achieve the above object, the wireless sensor nodes of the present invention, the connection at the time it is detected that the DC voltage generated by the DC voltage generating means V p, resistance divided voltage is equal to or higher than the reference voltage When the voltage at the point is V th , the voltage at the connection point at the operation stop time of the wireless transmission means when a predetermined period has elapsed is V min , and the product of each value of the current limiting resistor and the threshold judging capacitor is K, the transmission interval the K · log e {(V p -V min) / (V p -V th)}
It is represented by.

また、上記の目的を達成するため、本発明の無線送信方法は、電流測定手段により測定された被測定電流の電流値に応じた直流電圧を生成する直流電圧生成ステップと、直流電圧生成ステップにより生成された直流電圧により蓄電用コンデンサに充電して保持させる充電ステップと、蓄電用コンデンサに並列に接続された直列回路を構成する電流制限用抵抗及び閾値判断用コンデンサの接続点の、被測定電流の電流値に応じた電圧を抵抗分圧する抵抗分圧ステップと、抵抗分圧ステップにより得られた抵抗分圧電圧が基準電圧以上であるか否かを検出する電圧比較ステップと、電圧比較ステップにより抵抗分圧電圧が基準電圧以上になったことを検出した時刻より所定期間、接続点の電圧を無線送信手段へ動作用電源電圧として印加して端末IDを含むデータで無線周波数を変調した送信信号を無線送信させ、所定期間経過後は接続点の電圧の無線送信手段への印加を停止する無線送信手段制御ステップとを含み、
所定期間経過時点の無線送信手段の動作停止時刻から電圧比較ステップにより抵抗分圧電圧が基準電圧以上になったことを検出した時刻までの、無線送信手段の動作停止期間である送信間隔を被測定電流の電流値に応じて可変するとともに、送信間隔を、直流電圧生成ステップにより生成された直流電圧と抵抗分圧電圧が基準電圧以上になったことを検出した時刻における接続点の電圧との第1の差分値、及び直流電圧と所定期間経過時点の無線送信手段の動作停止時刻における接続点の電圧との第2の差分値の比と、電流制限用抵抗及び閾値判断用コンデンサの各値の積とに基づいて設定することを特徴とする。
In order to achieve the above object, the wireless transmission method of the present invention includes a DC voltage generating step for generating a DC voltage corresponding to the current value of the current to be measured measured by the current measuring means, and a DC voltage generating step. The charging current step for charging and holding the storage capacitor with the generated DC voltage, and the current to be measured at the connection point of the current limiting resistor and the threshold judgment capacitor constituting the series circuit connected in parallel to the storage capacitor A resistance voltage dividing step for dividing the voltage according to the current value by resistance, a voltage comparing step for detecting whether or not the resistance divided voltage obtained by the resistance voltage dividing step is equal to or higher than a reference voltage, and a voltage comparing step. Apply the voltage at the connection point as a power supply voltage for operation to the wireless transmission means for a predetermined period from the time when it is detected that the resistance divided voltage is equal to or higher than the reference voltage. The transmission signal modulated radio frequency data containing D is wirelessly transmitted, after a predetermined period of time includes a radio transmitting unit control step of stopping the application of the radio transmission unit of the voltage at the connection point,
Measure the transmission interval, which is the operation stop period of the wireless transmission means, from the operation stop time of the wireless transmission means when the predetermined period has elapsed until the time when the resistance comparison voltage is detected to be equal to or higher than the reference voltage by the voltage comparison step. The transmission interval varies between the DC voltage generated by the DC voltage generation step and the voltage at the connection point at the time when the resistance divided voltage is detected to be equal to or higher than the reference voltage. A difference value of 1 and a ratio of the second difference value between the DC voltage and the voltage at the connection point at the operation stop time of the wireless transmission means at the time when the predetermined period has elapsed, and each value of the current limiting resistor and the threshold judging capacitor It sets based on a product, It is characterized by the above-mentioned.

本発明によれば、被測定電流の電流値が大きくても送信間隔が短くならず、送信頻度が高くない、小型な無給電型の無線センサ端末を実現できる。   According to the present invention, even if the current value of the current to be measured is large, it is possible to realize a small non-feed type wireless sensor terminal in which the transmission interval is not shortened and the transmission frequency is not high.

本発明に係る無線センサ端末の一実施形態の回路図である。It is a circuit diagram of one embodiment of a wireless sensor terminal concerning the present invention. 本発明に係る無線送信方法の一実施形態のフローチャートである。5 is a flowchart of an embodiment of a wireless transmission method according to the present invention. 図1の動作説明用タイミングチャートである。2 is a timing chart for explaining the operation of FIG. 1. 本発明における無線送信信号の一例のフォーマット及び送信間隔を説明する模式図である。It is a schematic diagram explaining the format and transmission interval of an example of the radio | wireless transmission signal in this invention.

次に、本発明の一実施形態について図面を参照して説明する。
図1は、本発明に係る無線センサ端末の一実施形態の回路図を示す。本実施形態の無線センサ端末10は、電流変換器CT(Current Transformer)、電流測定・蓄電回路部11、電源制御部12、及び無線送信部13より構成されている。電流測定・蓄電回路部11は、電流を測定して得た被測定電流の値に応じた直流電圧を発生して電源電圧として蓄電する回路部で、電流変換器CTの2次巻線に接続された負荷抵抗R0と、コッククロフト・ウォルトン回路111と、ツェナーダイオードDZ0と、蓄電用コンデンサCpと、電流制限用抵抗Rlim及び閾値判断用コンデンサC0とから構成されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a circuit diagram of an embodiment of a wireless sensor terminal according to the present invention. The wireless sensor terminal 10 of this embodiment includes a current transformer CT (Current Transformer), a current measurement / storage circuit unit 11, a power supply control unit 12, and a wireless transmission unit 13. The current measurement / storage circuit unit 11 is a circuit unit that generates a DC voltage corresponding to the value of the measured current obtained by measuring the current and stores it as a power supply voltage, and is connected to the secondary winding of the current converter CT. The load resistor R 0 , the Cockcroft-Walton circuit 111, the Zener diode DZ 0 , the storage capacitor C p , the current limiting resistor R lim, and the threshold determination capacitor C 0 are included.

トランスである電流変換器CTは、1次巻線側に例えば公知の構造のクランプ機構を備え、例えば配電盤の電力線をクランプ機構でクランプすることにより、リング状コアを形成し、そのコアに巻回された2次巻線に、電力線に流れる電流(被測定電流)に応じた値の電磁誘導電流を誘起する。電流変換器CTの2次巻線に接続された負荷抵抗R0には、上記電力線に流れる電流である被測定電流に応じた値の電磁誘導電流により交流電圧が発生する。 The current converter CT, which is a transformer, includes a clamp mechanism having a known structure on the primary winding side, for example, forms a ring-shaped core by clamping the power line of the switchboard with the clamp mechanism, and is wound around the core. An induced electromagnetic current having a value corresponding to the current flowing through the power line (current to be measured) is induced in the secondary winding. An alternating voltage is generated in the load resistor R 0 connected to the secondary winding of the current converter CT by an electromagnetic induction current having a value corresponding to the current to be measured which is a current flowing through the power line.

コッククロフト・ウォルトン回路111は、コンデンサとダイオードとを多段に接続した回路で、入力交流電圧を高電圧の直流電圧に整流する低消費電力の公知の昇圧及び整流回路である。コッククロフト・ウォルトン回路111は、微小レベルの入力交流電圧を昇圧及び整流して高電圧の直流電圧Vpを生成し、その直流電圧Vpをコッククロフト・ウォルトン回路111の正側及び負側の二つの出力端子間に接続された、ツェナーダイオードDZ0及び蓄電用コンデンサCpの並列回路と、この並列回路に並列に接続された電流制限用抵抗Rlim及び閾値判断用コンデンサC0からなる直列回路と、コンパレータU0及びU1と、アナログスイッチ121にそれぞれ印加する。ツェナーダイオードDZ0は、素子の破壊を防ぐためのものである。蓄電用コンデンサCpは、コッククロフト・ウォルトン回路111の出力電圧Vpにより充電され、その充電電圧を保持(蓄電)する。従って、蓄電用コンデンサCpの端子電圧は、コッククロフト・ウォルトン回路111に入力された交流電圧の値に対応した電圧値Vpである。 The Cockcroft-Walton circuit 111 is a circuit in which capacitors and diodes are connected in multiple stages, and is a known booster and rectifier circuit with low power consumption that rectifies an input AC voltage into a high-voltage DC voltage. The Cockcroft-Walton circuit 111 boosts and rectifies a very low level input AC voltage to generate a high-voltage DC voltage V p , and the DC voltage V p is divided into two values on the positive side and the negative side of the Cockcroft-Walton circuit 111. A parallel circuit of a Zener diode DZ 0 and a storage capacitor C p connected between the output terminals, and a series circuit of a current limiting resistor R lim and a threshold determination capacitor C 0 connected in parallel to the parallel circuit; , Applied to the comparators U 0 and U 1 and the analog switch 121, respectively. The Zener diode DZ 0 is for preventing element destruction. The storage capacitor C p is charged by the output voltage V p of the Cockcroft-Walton circuit 111 and holds (stores) the charged voltage. Therefore, the terminal voltage of the storage capacitor C p is a voltage value V p corresponding to the value of the AC voltage input to the Cockcroft-Walton circuit 111.

本実施形態は、特許文献1に記載の無線センサ端末における蓄電用コンデンサを、蓄電用コンデンサCpと閾値判断用コンデンサC0に分割すると共に、電流制限用抵抗Rlim及び閾値判断用コンデンサC0からなる直列回路を、蓄電用コンデンサCpに並列接続し、電流制限用抵抗Rlimにより閾値判断用コンデンサC0への電力の流入を制御する構成に特徴がある。通常、電流変換器CTからの出力交流電圧は、ある電圧値で飽和するため、その飽和電圧値と電流制限用抵抗Rlim及び閾値判断用コンデンサC0から最小送信間隔を設定することができる。 In the present embodiment, the storage capacitor in the wireless sensor terminal described in Patent Document 1 is divided into a storage capacitor C p and a threshold determination capacitor C 0 , and a current limiting resistor R lim and a threshold determination capacitor C 0. Is characterized in that a series circuit consisting of is connected in parallel to the storage capacitor C p and the inflow of power to the threshold judgment capacitor C 0 is controlled by the current limiting resistor R lim . Usually, since the output AC voltage from the current converter CT is saturated at a certain voltage value, the minimum transmission interval can be set from the saturation voltage value, the current limiting resistor R lim and the threshold judging capacitor C 0 .

電源制御部12は、アナログスイッチ121、閾値判断用コンデンサC0に並列接続された抵抗R1及びR2による抵抗分圧回路、この抵抗分圧回路で分圧された電圧V1と基準電圧Vrefとを比較する第1のコンパレータU0、第1のコンパレータU0から出力される信号を遅延するタイマ回路122、タイマ回路122から出力される電圧V2と基準電圧Vrefとを電圧比較する第2のコンパレータU1から構成されている。アナログスイッチ121は、コンパレータU1の出力信号によりスイッチング制御され、オンの期間は電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点から出力される直流電圧V0を無線送信部13に電源電圧として印加し、オフの期間は上記直流電圧V0の無線送信部13への印加を遮断する。 Power supply control unit 12, an analog switch 121, a resistor divider by the parallel-connected resistors R 1 and R 2 to the threshold determination for the capacitor C 0, voltages V 1 was divided by the resistor divider and the reference voltage V first comparator U for comparing the ref 0, the timer circuit 122 for delaying the signal output from the first comparator U 0, the voltage V 2 output from the timer circuit 122 and the reference voltage V ref to the voltage comparator It consists of a second comparator U 1 . The analog switch 121 is switching-controlled by the output signal of the comparator U 1 , and the DC voltage V 0 output from the connection point of the current limiting resistor R lim and the threshold judging capacitor C 0 is supplied to the wireless transmitter 13 during the ON period. The power supply voltage is applied, and the application of the DC voltage V 0 to the wireless transmission unit 13 is cut off during the off period.

タイマ回路122は、コンパレータU0の出力端子にアノードが接続されたダイオードD0と、ダイオードD0のカソードとコンパレータU1の非反転入力端子との接続点とGNDとの間に接続されたコンデンサC1及び抵抗R3からなる。コンパレータU0及びU1はコッククロフト・ウォルトン回路111から電源電圧が印加される。また、抵抗R1及びR2による抵抗分圧回路は、電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点から出力される直流電圧V0を抵抗分圧し、得られた抵抗分圧電圧V1をコンパレータU0の非反転入力端子に印加する。 Capacitor timer circuit 122 includes a diode D 0 whose anode is connected to the output terminal of the comparator U 0, which is connected between the connection point and the GND the non-inverting input terminal of the cathode and the comparator U 1 of the diode D 0 consisting of C 1 and a resistor R 3. The power supply voltage is applied to the comparators U 0 and U 1 from the Cockcroft-Walton circuit 111. Further, the resistance voltage dividing circuit using the resistors R 1 and R 2 divides the DC voltage V 0 output from the connection point of the current limiting resistor R lim and the threshold value judging capacitor C 0 , and the obtained resistance voltage dividing circuit. A voltage V 1 is applied to the non-inverting input terminal of the comparator U 0 .

無線送信部13は、マイクロコントロールユニット(MCU:Micro Control Unit)131及び無線IC(RFIC:Radio Frequency Integrated Circuit)132からなり、アナログスイッチ121により選択された電圧V0が動作用電源電圧として印加されることにより動作を開始し、所定のフォーマットの送信信号で予め定められたキャリア周波数を変調して送信する。なお、後述するように、タイマ回路122は無線送信部13が送信動作を完了するまで、アナログスイッチ121が電圧V0を選択出力し続けるために設けられている。 The wireless transmission unit 13 includes a micro control unit (MCU) 131 and a radio IC (RFIC: radio frequency integrated circuit) 132, and a voltage V 0 selected by the analog switch 121 is applied as an operation power supply voltage. Then, the operation is started, and a predetermined carrier frequency is modulated with a transmission signal of a predetermined format and transmitted. As will be described later, the timer circuit 122 is provided so that the analog switch 121 continues to selectively output the voltage V 0 until the wireless transmission unit 13 completes the transmission operation.

次に、図1に示す本実施形態の無線センサ端末10の動作の概要について、図2のフローチャート等を併せ参照して説明する。
まず、電流変換器CTにより電力線に流れる電流が検出されたかどうか判定される(ステップS101)。電流が検出されると、検出されたその被測定電流に応じた値の電磁誘導電流が電流変換器CTの一次巻線に誘起され、それにより負荷抵抗R0に微小レベルの交流電圧が発生する。コッククロフト・ウォルトン回路111は、負荷抵抗R0からの微小レベルの交流電圧を昇圧及び整流して高電圧の直流電圧Vpを生成し(ステップS102)、その直流電圧VPを蓄電用コンデンサCpに印加して、Cp、C0、Rlimの各値により決まる充電時定数に従って充電する(ステップS103)。
Next, an outline of the operation of the wireless sensor terminal 10 of the present embodiment shown in FIG. 1 will be described with reference to the flowchart of FIG.
First, it is determined whether or not the current flowing through the power line is detected by the current converter CT (step S101). When the current is detected, an electromagnetic induction current having a value corresponding to the detected current to be measured is induced in the primary winding of the current converter CT, thereby generating a minute level AC voltage in the load resistor R 0. . The Cockcroft-Walton circuit 111 boosts and rectifies a minute level AC voltage from the load resistor R 0 to generate a high-voltage DC voltage V p (step S102), and uses the DC voltage V P as a storage capacitor C p. And charging according to a charging time constant determined by each value of C p , C 0 , and R lim (step S103).

続いて、電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点の電圧V0を抵抗R1及びR2による抵抗分圧回路により抵抗分圧して得られた電圧V1が所定の基準電圧Vref以上になったかどうかが判定される(ステップS104)。電圧V1が所定の基準電圧Vref以上になったときは、アナログスイッチ121をオンとする(ステップS105)。これにより、上記電圧V0がアナログスイッチ121を通して無線送信部13に電源電圧として印加されるため、無線送信部13が送信信号を無線送信する(ステップS106)。 Subsequently, the voltage V 1 obtained by dividing the voltage V 0 at the connection point of the current limiting resistor R lim and the threshold judging capacitor C 0 by the resistor voltage dividing circuit using the resistors R 1 and R 2 is a predetermined reference. It is determined whether or not the voltage is equal to or higher than V ref (step S104). When voltage V 1 is equal to or greater than a predetermined reference voltage V ref turns on the analog switch 121 (step S105). Accordingly, the voltage V 0 is applied as a power supply voltage to the wireless transmission unit 13 through the analog switch 121, so that the wireless transmission unit 13 wirelessly transmits a transmission signal (step S106).

この無線送信部13の無線送信動作により電力が消費されるため、その電源電圧V0が低下し始める。また、電圧V1が所定の基準電圧Vref以上になった時点からタイマ回路122の出力電圧V2が低下し始め、基準電圧Vref未満にまで低下したことが検出されると(ステップS107)、アナログスイッチ121がオフとされる(ステップS108)。これにより、無線送信部13に電源電圧が印加されなくなるため、無線送信部13は無線送信を停止する(ステップS109)。 Since power is consumed by the wireless transmission operation of the radio transmission section 13, it starts to drop its power source voltage V 0. Further, when the voltages V 1 output voltage V 2 of the timer circuit 122 from the time becomes equal to or larger than a predetermined reference voltage V ref is detected to have dropped to be started, to less than the reference voltage V ref decreases (step S107) The analog switch 121 is turned off (step S108). Thereby, since the power supply voltage is not applied to the wireless transmission unit 13, the wireless transmission unit 13 stops the wireless transmission (step S109).

一方、コッククロフト・ウォルトン回路111は、生成した直流電圧VPを引き続き蓄電用コンデンサCpに印加して充電している(ステップS103)。以下、上記のステップS104〜S109の動作が繰り返される。ここで、上記の無線送信部13が無線送信動作を継続して行う期間は、タイマ回路122のタイマ時間により決まるが、そのタイマ時間は送信信号の無線送信が終了しないうちに無線動作が終了しないような値に設定されている。また、後述するように、電流制限用抵抗Rlim及び閾値判断用コンデンサC0を設けることで、無線送信動作停止時点から次の無線送信動作開始時点までの送信間隔は同じ被測定電流値に対して従来よりも大幅に長くなるようにされている。 On the other hand, the Cockcroft-Walton circuit 111 continues to apply the generated DC voltage V P to the storage capacitor C p for charging (step S103). Thereafter, the operations in steps S104 to S109 are repeated. Here, the period during which the wireless transmission unit 13 continues the wireless transmission operation is determined by the timer time of the timer circuit 122, but the timer operation is not completed before the wireless transmission of the transmission signal is completed. It is set to such a value. Further, as will be described later, by providing the current limiting resistor R lim and the threshold value determining capacitor C 0 , the transmission interval from the wireless transmission operation stop time to the next wireless transmission operation start time is the same as the measured current value. Therefore, it is made to be much longer than before.

次に、本実施形態の無線センサ端末10の動作について、図3のタイミングチャートを併せ参照して詳細に説明する。
例えば、配電盤に接続された電力線に、コアにコイルが巻回された構造の電流変換器CTを図3に示す時刻t0で装着したものとすると、電力線に流れる電流(被測定電流)に応じた値の電磁誘導電流が電流変換器CTの2次巻線に流れ、更に負荷抵抗R0により微小レベルの交流電圧に変換されて、コッククロフト・ウォルトン回路111に印加される。コッククロフト・ウォルトン回路111は、負荷抵抗R0からの微小レベルの交流電圧を昇圧及び整流して、高電圧の直流電圧を生成してコンデンサCpに印加して、Cp、C0、Rlimの各値により決まる充電時定数に従って充電(蓄電)する。これにより、コンデンサCpの端子電圧は図3(A)にVpで示すように、時刻t0からコッククロフト・ウォルトン回路111の出力直流電圧値に向かって急峻に立ち上がる。この端子電圧Vpは、被測定電流の電流値に応じた値である。
Next, the operation of the wireless sensor terminal 10 of this embodiment will be described in detail with reference to the timing chart of FIG.
For example, assuming that a current converter CT having a structure in which a coil is wound around a core is attached to a power line connected to a switchboard at time t 0 shown in FIG. 3, the current flowing through the power line (current to be measured) An electromagnetic induction current having a predetermined value flows in the secondary winding of the current converter CT, is further converted into a very low level AC voltage by the load resistance R 0 , and is applied to the Cockcroft-Walton circuit 111. The Cockcroft-Walton circuit 111 boosts and rectifies a minute level AC voltage from the load resistor R 0 , generates a high DC voltage, and applies it to the capacitor C p , C p , C 0 , R lim The battery is charged (accumulated) according to a charging time constant determined by each value. As a result, the terminal voltage of the capacitor C p rises steeply from the time t 0 toward the output DC voltage value of the Cockcroft-Walton circuit 111 as indicated by V p in FIG. This terminal voltage V p is a value corresponding to the current value of the current to be measured.

蓄電電圧Vpの上昇に伴って、電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点の電圧V0、及び電圧V0を抵抗R1及びR2による抵抗分圧回路により抵抗分圧して得られた電圧V1が、それぞれ図3(A)に示すように時刻t0から上昇し始める。これらの電圧V0及びV1も被測定電流の電流値に応じた値である。コンパレータU0は電圧V1と基準電圧Vrefとを常時比較しており、電圧V1が基準電圧Vref未満のときはローレベルの電圧(ここでは、GND)を出力しているが、電圧V1が基準電圧Vref以上となった時刻t1でハイレベルの電圧(ここでは、Vpに等しい)を出力する。この時刻t1で電圧V0は図3(A)に示すようにVthに達する。 As the storage voltage V p increases, the voltage V 0 and the voltage V 0 at the connection point of the current limiting resistor R lim and the threshold determining capacitor C 0 are divided by the resistor voltage dividing circuit using the resistors R 1 and R 2. The voltage V 1 obtained by pressing begins to rise from time t 0 as shown in FIG. These voltages V 0 and V 1 are also values according to the current value of the current to be measured. The comparator U 0 constantly compares the voltage V 1 and the reference voltage V ref, and outputs a low level voltage (here, GND) when the voltage V 1 is less than the reference voltage V ref. high-level voltage (here, equal to V p) at time t 1 that V 1 is equal to or larger than the reference voltage V ref and outputs a. At time t 1 , the voltage V 0 reaches V th as shown in FIG.

コンパレータU1はタイマ回路122からの電圧V2と基準電圧Vrefとを常時比較しており、コンパレータU0の出力電圧がハイレベルとなると、その時刻t1でタイマ回路122からコンパレータU1の非反転入力端子に印加される電圧V2も基準電圧Vrefよりも高いハイレベルとなるため、ハイレベルの電圧を出力してアナログスイッチ121をオン状態とする。これにより、時刻t1で電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点の電圧V0が、アナログスイッチ121を通して無線送信部13を構成するMCU131及び無線IC132にそれぞれ動作用電源電圧として印加され、これらの動作を開始させる。 Comparator U 1 is compared with the voltage V 2 and the reference voltage V ref from the timer circuit 122 at all times, the output voltage of the comparator U 0 becomes high level, the timer circuit 122 of the comparator U 1 at that time t 1 Since the voltage V 2 applied to the non-inverting input terminal is also at a high level higher than the reference voltage V ref , a high level voltage is output to turn on the analog switch 121. As a result, the voltage V 0 at the connection point of the current limiting resistor R lim and the threshold value determining capacitor C 0 at time t 1 is supplied to the MCU 131 and the wireless IC 132 constituting the wireless transmission unit 13 through the analog switch 121, respectively. To start these operations.

時刻t1からのMCU131及び無線IC132の動作により電力が消費されるため、電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点の電圧V0が、図3(A)に示すように、C0の放電時定数に従って時刻t1から時間の経過とともに低下していく。すると、それに伴い抵抗分圧電圧V1も時刻t1から低下し始め、図3(A)に示すように時刻t1の直後に電圧V1が基準電圧Vref未満となりコンパレータU0の出力電圧がローレベル(ここではGND)となる。従って、コンパレータU0の出力電圧は、図3(B)に示すように、時刻t1から極めて短時間のみハイレベルであり、そのハイレベル出力期間TINSは、無線送信を完了するには不十分な時間である。 Since power is consumed by the operation of MCU131 and wireless IC132 from time t 1, the voltage V 0 which connection point of the current limiting resistor R lim and threshold value determining capacitor C 0, as shown in FIG. 3 (A) , It decreases with time from time t 1 according to the discharge time constant of C 0 . Accordingly, the resistance divided voltage V 1 starts to decrease from time t 1 , and as shown in FIG. 3A, immediately after time t 1 , the voltage V 1 becomes less than the reference voltage V ref and the output voltage of the comparator U 0 . Becomes a low level (here, GND). Therefore, as shown in FIG. 3B, the output voltage of the comparator U 0 is at a high level only for a very short time from the time t 1 , and the high level output period T INS is not sufficient to complete the radio transmission. It is enough time.

ここで、タイマ回路122が存在しない場合は、コンパレータU0のハイレベル出力期間TINS経過直後にコンパレータU1の出力電圧がローレベルとなり、アナログスイッチ121がオフ状態に切り替わり、その結果、MCU131及び無線IC132には動作用電源電圧の供給が断たれることになり、動作を停止する。この動作停止時点でMCU131及び無線IC132がまだ送信信号の無線送信動作が完了していない場合、問題である。 Here, when the timer circuit 122 does not exist, the output voltage of the comparator U 1 becomes low level immediately after the high-level output period T INS of the comparator U 0 elapses, and the analog switch 121 is switched to the OFF state. The supply of the operation power supply voltage to the wireless IC 132 is cut off, and the operation is stopped. There is a problem if the MCU 131 and the wireless IC 132 have not yet completed the wireless transmission operation of the transmission signal when the operation is stopped.

そこで、本実施形態では、タイマ回路122によりコンパレータU1の出力電圧がローレベルになるまでの時間を遅らせ、MCU131及び無線IC132が送信信号の無線送信動作が完了するのに十分な時間を確保できるようにしている。すなわち、コンパレータU0からハイレベルが出力される時刻t1からタイマ回路122内のダイオードD0が順方向にバイアスされてダイオードD0からの順方向電流によりコンデンサC1が充電され始めるため、その端子電圧V2はC1の充電時定数に従い急激に上昇する。 Therefore, in the present embodiment, the time until the output voltage of the comparator U 1 becomes low level is delayed by the timer circuit 122, and sufficient time for the MCU 131 and the wireless IC 132 to complete the wireless transmission operation of the transmission signal can be secured. I am doing so. That is, since the diode D 0 in the timer circuit 122 is forward-biased from the time t 1 when the high level is output from the comparator U 0 and the capacitor C 1 starts to be charged by the forward current from the diode D 0 , The terminal voltage V 2 increases rapidly according to the charging time constant of C 1 .

ここで、コンパレータU0は及びU1はハイレベルの出力電圧がその電源電圧に等しいタイプのもの(所謂レール・ツウ・レールのコンパレータ)であり、かつ、高電位側電源電圧が蓄電電圧Vpで、低電位側電源電圧がGNDであるものとする。この場合、時刻t1直後からの無線送信部13の動作の開始により図3(A)に示すように、時刻t1の時点よりもコンパレータU0の入力電圧V1が低下し始め、前述したように、時刻t1の直後に電圧V1が基準電圧Vref未満となり、コンパレータU0の出力電圧がローレベルとなる。 Here, the comparators U 0 and U 1 are of a type whose high-level output voltage is equal to the power supply voltage (so-called rail-to-rail comparator), and the high-potential side power supply voltage is the storage voltage V p. Therefore, it is assumed that the low-potential-side power supply voltage is GND. In this case, as shown in FIG. 3A, the input voltage V 1 of the comparator U 0 starts to decrease from the time t 1 as shown in FIG. 3A due to the start of the operation of the wireless transmission unit 13 immediately after time t 1 . Thus, immediately after time t 1 , the voltage V 1 becomes less than the reference voltage V ref, and the output voltage of the comparator U 0 becomes low level.

すると、コンデンサC1の端子電圧がダイオードD0のアノード電位より高くなる。このため、ダイオードD0が逆バイアスされ、コンデンサC1の充電電荷が抵抗R3を介してC1の容量値とR3の抵抗値で定まる放電時定数に従い放電され始める。その結果、電圧V2が図3(A)に示すように時間の経過とともに徐々に低下し始め、時刻t2で基準電圧Vref未満になる。これにより、図3(C)に示すように、コンパレータU1の出力電圧が時刻t2でローレベルとなり、アナログスイッチ121がオフとされ、MCU131及び無線IC132への動作用電源電圧V0の印加を遮断する。ここで、タイマ回路122のC1の放電時定数は、時刻t1から時刻t2までの期間が、MCU131及び無線IC132が送信信号の無線送信動作を完了するのに十分な時間長となるように設定されている。このように、アナログスイッチ121は、図3(D)に示すように、時刻t1からt2までの十分な期間オンとされて、MCU131及び無線IC132に動作用電源電圧V0を出力し、送信動作を継続させることができる。 Then, the terminal voltage of the capacitor C 1 becomes higher than the anode potential of the diode D 0 . For this reason, the diode D 0 is reverse-biased, and the charge of the capacitor C 1 starts to be discharged through the resistor R 3 according to the discharge time constant determined by the capacitance value of C 1 and the resistance value of R 3 . As a result, the voltage V 2 starts to gradually decrease with time as shown in FIG. 3A, and becomes lower than the reference voltage V ref at time t 2 . As a result, as shown in FIG. 3C, the output voltage of the comparator U 1 becomes low level at time t 2 , the analog switch 121 is turned off, and the operation power supply voltage V 0 is applied to the MCU 131 and the wireless IC 132. Shut off. Here, the discharge time constant of C 1 of the timer circuit 122 is such that the period from time t 1 to time t 2 is sufficient for the MCU 131 and the wireless IC 132 to complete the wireless transmission operation of the transmission signal. Is set to Thus, as shown in FIG. 3D, the analog switch 121 is turned on for a sufficient period from time t 1 to time t 2 , and outputs the operation power supply voltage V 0 to the MCU 131 and the wireless IC 132. The transmission operation can be continued.

無線送信動作が開始されると、電力消費により図3(A)に示すように、電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点からの動作用電源電圧V0は低下し始め、時刻t2でVminまで低下する。この時刻t2で前述したようにアナログスイッチ121がオフとされるため、MCU131及び無線IC132への動作用電源電圧V0の印加が遮断されて無線送信動作が停止する。その結果、無線送信動作による電力消費が停止するので、蓄電電圧VPのコンデンサC0への充電により、上記電圧V0が図3(A)に示すようにVminから再び上昇し始め、それに伴い、V0の抵抗分圧電圧V1も上昇し始める。 When the wireless transmission operation is started, as shown in FIG. 3A, the power supply voltage V 0 for operation from the connection point of the current limiting resistor R lim and the threshold judgment capacitor C 0 starts to decrease due to power consumption. decreases in the time t 2 to V min. Since the analog switch 121 is turned off at time t 2 as described above, the application of the operation power supply voltage V 0 to the MCU 131 and the wireless IC 132 is cut off, and the wireless transmission operation is stopped. As a result, power consumption by the wireless transmission operation is stopped, the charging of the capacitor C 0 of the power storage voltage V P, begins to rise again above voltage V 0 from V min as shown in FIG. 3 (A), it Along with this, the resistance divided voltage V 1 of V 0 also starts to rise.

その後、電圧V1が基準電圧Vref以上となった時刻t3で、図3(B)に示すようにコンパレータU0からハイレベルの電圧が出力される。コンパレータU1はコンパレータU0からの基準電圧Vrefより大なるハイレベルの電圧がタイマ回路122を通して印加され、図3(C)に示すように時刻t3直後にハイレベルの電圧を出力し、アナログスイッチ121をオン状態とする。これにより、時刻t3で電流制限用抵抗Rlim及び閾値判断用コンデンサC0の接続点の電圧V0が、アナログスイッチ121を通して無線送信部13を構成するMCU131及びRFIC132にそれぞれ動作用電源電圧として印加され、これらの動作を再び開始させる。 Thereafter, at time t 3 when the voltage V 1 becomes equal to or higher than the reference voltage V ref , a high level voltage is output from the comparator U 0 as shown in FIG. The comparator U 1 is applied with a high-level voltage higher than the reference voltage V ref from the comparator U 0 through the timer circuit 122, and outputs a high-level voltage immediately after time t 3 as shown in FIG. The analog switch 121 is turned on. As a result, the voltage V 0 at the connection point of the current limiting resistor R lim and the threshold judgment capacitor C 0 is supplied to the MCU 131 and the RFIC 132 constituting the wireless transmission unit 13 through the analog switch 121 as operating power supply voltages at time t 3 , respectively. Applied to start these operations again.

時刻t3からタイマ回路122の設定時間経過後の時刻t4で電圧V2が図3(A)に示すように基準電圧Vref未満になる。これにより、図3(C)に示すように、コンパレータU1の出力電圧が時刻t4でローレベルとなり、アナログスイッチ121がオフとされ、MCU131及び無線IC132への動作用電源電圧V0の印加を遮断し、これらの動作を再び停止する。以下、上記と同様の動作が繰り返される。無線送信動作停止時刻t2から次の無線送信動作開始時刻t3までの期間P0が送信間隔である。このように、本実施形態の無線センサ端末10によれば、図3(D)に示すように、電圧V0と接地電位GNDとを動作用電源電圧として、無線送信部13が動作完了に必要な時間以上の所定時間(時刻t1〜t3、時刻t3〜t4)印加して動作させることで、自立電源を備えた無給電型無線センサ端末を実現できる。 The voltage V 2 becomes less than the reference voltage V ref as shown in FIG. 3 (A) from the time t 3 at time t 4 after the setting time of the timer circuit 122. As a result, as shown in FIG. 3C, the output voltage of the comparator U 1 becomes low level at time t 4 , the analog switch 121 is turned off, and the operation power supply voltage V 0 is applied to the MCU 131 and the wireless IC 132. And stop these operations again. Thereafter, the same operation as described above is repeated. A period P 0 from the wireless transmission operation stop time t 2 to the next wireless transmission operation start time t 3 is a transmission interval. As described above, according to the wireless sensor terminal 10 of the present embodiment, as shown in FIG. 3D, the wireless transmission unit 13 is necessary for completing the operation using the voltage V 0 and the ground potential GND as the operation power supply voltage. By applying a predetermined time (time t 1 to t 3 , time t 3 to t 4 ) that is longer than a predetermined time for operation, it is possible to realize a non-powered wireless sensor terminal having a self-sustained power supply.

また、本実施形態では、被測定電流の測定値に応じた送信間隔で無線送信信号を送信する。以下、このことについて、図4を併せ参照して説明する。無線送信部13のMCU131は、例えば図4(A)に模式的に示すように、固定パターンのプリアンブル21、送信内容のデータ22、及び所定ビット数の誤り検出符号23とからなるフォーマットの送信データを生成する。無線IC132はこの送信データで無線センサ端末10に割り当てられた固有の無線周波数をキャリア周波数として所定の変調方式で変調して無線送信信号として送信する。ここで、データ22は、無線センサ端末毎に割り当てられる端末IDである。   In the present embodiment, the wireless transmission signal is transmitted at a transmission interval corresponding to the measured value of the current to be measured. This will be described below with reference to FIG. For example, as schematically shown in FIG. 4A, the MCU 131 of the wireless transmission unit 13 transmits transmission data in a format including a fixed pattern preamble 21, transmission content data 22, and an error detection code 23 having a predetermined number of bits. Is generated. The radio IC 132 modulates the transmission data with a specific radio frequency assigned to the radio sensor terminal 10 using a predetermined modulation method as a carrier frequency, and transmits it as a radio transmission signal. Here, the data 22 is a terminal ID assigned to each wireless sensor terminal.

また、無線送信部13は被測定電流の測定値に応じた送信間隔で図4(B)に模式的に示すように無線送信信号を受信装置へ送信する。図4(B)において、区間T0は図4(A)に示すフォーマットの送信信号が無線送信される期間を示しており、無線送信部13の動作期間(前述した時刻t1〜時刻t2、あるいは時刻t3〜時刻t4の期間に相当)を示し例えば1ms(一定)である。また、隣り合う2つの区間T0の間の区間T1、T2が被測定電流値に応じて可変される送信間隔(図3(D)のP0に相当)を示し、例えば100ms〜300msの範囲内で可変される。なお、図4(B)は、区間T0と区間T1、T2の違いを説明するための図であり、それらの区間の各長さの相対関係は図示の便宜上、実際とは異なって示している。 In addition, the wireless transmission unit 13 transmits a wireless transmission signal to the reception device as schematically illustrated in FIG. 4B at a transmission interval corresponding to the measured value of the current to be measured. 4B, a section T 0 indicates a period during which the transmission signal having the format shown in FIG. 4A is wirelessly transmitted, and the operation period of the wireless transmission unit 13 (from time t 1 to time t 2 described above). Or equivalent to the period from time t 3 to time t 4 ), for example, 1 ms (constant). Further, sections T 1 and T 2 between two adjacent sections T 0 indicate transmission intervals (corresponding to P 0 in FIG. 3D) that are varied according to the measured current value, for example, 100 ms to 300 ms. It can be varied within the range. FIG. 4B is a diagram for explaining the difference between the section T 0 and the sections T 1 and T 2 , and the relative relationship between the lengths of these sections is different from the actual for convenience of illustration. Show.

ここで、被測定電流の測定値が変化すると、それに応じてコッククロフト・ウォルトン回路111の出力直流電圧Vpが変化する。そのため、無線送信動作停止直後の時刻から上昇する、蓄電用コンデンサCp、電流制限用抵抗Rlim、閾値判断用コンデンサC0の各値により決まるRlim及びC0の接続点の電圧V0の立上がりの傾斜と、抵抗分圧電圧V1の立上がりの傾斜が変化する。このため、抵抗分圧電圧V1が基準電圧Vrefに達するまでの時間が変化する。この時間は、被測定電流の測定値に応じた送信間隔である。 Here, when the measured value of the current to be measured changes, the output DC voltage V p of the Cockcroft-Walton circuit 111 changes accordingly. Therefore, the voltage V 0 at the connection point between R lim and C 0 determined by the values of the storage capacitor C p , the current limiting resistor R lim , and the threshold judgment capacitor C 0 increases from the time immediately after the wireless transmission operation is stopped. The rising slope and the rising slope of the resistance divided voltage V 1 change. For this reason, the time until the resistance divided voltage V 1 reaches the reference voltage V ref changes. This time is a transmission interval according to the measured value of the current to be measured.

次に、本実施形態の無線センサ端末10によれば、被測定電流量が大きくても送信間隔が短く(送信頻度が高く)ならないことについて説明する。いま、送信間隔をTintとすると、図1の無線センサ端末10の送信間隔Tintは次式で表される。
int=C0・Rlim・loge{(Vp−Vmin)/(Vp−Vth)} (1)
ただし、上式中、C0は閾値判断用コンデンサC0の容量値、Rlimは電流制限用抵抗Rlimの抵抗値、Vpはコッククロフト・ウォルトン回路111の出力直流電圧、Vminは図3(A)に示した無線送信動作停止時の時刻における電圧V0の値、Vthは図3(A)に示した無線送信動作開始時の時刻における電圧V0の値である。
Next, according to the wireless sensor terminal 10 of the present embodiment, it will be described that the transmission interval does not become short (the transmission frequency is high) even when the amount of current to be measured is large. Now, when the transmission interval and T int, the transmission interval T int of the wireless sensor nodes 10 of FIG. 1 is expressed by the following equation.
T int = C 0 · R lim · log e {(V p −V min ) / (V p −V th )} (1)
In the above equation, C 0 is the capacitance value of the threshold judgment capacitor C 0 , R lim is the resistance value of the current limiting resistor R lim , V p is the output DC voltage of the Cockcroft-Walton circuit 111, and V min is FIG. the value of the voltage V 0 in the radio transmission operation stop time shown in (a), V th is the value of the voltage V 0 in the radio transmission operation starting time shown in Figure 3 (a).

一例として、C0を100μF、Rlimを1MΩであるものとし、被測定電流の電流値が50Aの場合、Vpは7V、Vminは1V、Vthは2Vであり、よってこれらの値を(1)式に代入すると、送信間隔Tintは18sとなる。他方、従来はC0が100μF、Rlimはコッククロフト・ウォルトン回路111の入力抵抗分の1Ω程度であるため、被測定電流の電流値が上記と同じ50Aの場合、Vpは7V、Vminは1V、Vthは2Vであり、よってこれらの値を(1)式に代入すると、送信間隔Tintは18μsとなり、極めて短い。 As an example, when C 0 is 100 μF, R lim is 1 MΩ, and the current value of the current to be measured is 50 A, V p is 7 V, V min is 1 V, and V th is 2 V. Substituting into the equation (1), the transmission interval T int is 18 s. On the other hand, since C 0 is conventionally 100 μF and R lim is about 1Ω of the input resistance of the Cockcroft-Walton circuit 111, when the current value of the measured current is 50 A, V p is 7 V and V min is 1V and Vth are 2V. Therefore, if these values are substituted into the equation (1), the transmission interval T int is 18 μs, which is extremely short.

このように、本実施形態の無線センサ端末10によれば、被測定電流の電流値が50Aのような大きな値であっても、送信間隔Tintを従来に比べて大幅に長くすることができる。このため、同じキャリア周波数の送信信号を使用している別の無給電型無線センサ端末が近くに存在しても、送信信号が衝突する確率を大幅に低減することができる。また、本実施形態の無線センサ端末10によれば、従来と同じ容量の蓄電コンデンサCpを用いることができるため、大容量の大型の電解コンデンサは不要であり、従来と同程度の小型な無給電型の無線センサ端末の構成にできる。 Thus, according to the wireless sensor terminal 10 of the present embodiment, even when the current value of the current to be measured is a large value such as 50 A, the transmission interval T int can be significantly increased compared to the conventional case. . For this reason, even if another parasitic wireless sensor terminal using a transmission signal of the same carrier frequency exists nearby, the probability that the transmission signal collides can be greatly reduced. Further, according to the wireless sensor terminal 10 of the present embodiment, since the storage capacitor C p having the same capacity as that of the conventional one can be used, a large-capacity large electrolytic capacitor is unnecessary, and the size of the capacitor is not as small as that of the conventional one. A power supply type wireless sensor terminal can be configured.

なお、本実施形態の無線センサ端末10は、被測定電流の値に応じて無線送信信号の送信間隔を可変するようにしているので、受信装置側では受信信号の受信間隔から被測定電流の電流値を換算する構成が必要となるが、無線送信信号に被測定電流値を示す情報を含める必要がない。被測定電流値を示す情報量は比較的大きいので、無線送信信号に被測定電流値を示す情報を含めない本実施形態の無線センサ端末10では無線送信信号のデータ量を最小限にすることができ、送信時の消費電力の低減ができる。このことは自立電源の無線センサ端末に適用して好適である。なお、本発明の無線センサ端末10に適用される受信装置は従来と同様であり、また、本発明の要旨とは関係ないので、その説明は省略する。   Note that the wireless sensor terminal 10 of the present embodiment varies the transmission interval of the wireless transmission signal in accordance with the value of the measured current. Therefore, the receiving device side determines the current of the measured current from the reception interval of the received signal. Although a configuration for converting the value is required, it is not necessary to include information indicating the measured current value in the wireless transmission signal. Since the amount of information indicating the measured current value is relatively large, the wireless sensor terminal 10 of the present embodiment that does not include the information indicating the measured current value in the wireless transmission signal can minimize the data amount of the wireless transmission signal. And power consumption during transmission can be reduced. This is suitable for application to a wireless sensor terminal of an independent power source. Note that the receiving device applied to the wireless sensor terminal 10 of the present invention is the same as that of the prior art, and is not related to the gist of the present invention, so that the description thereof is omitted.

10 無線センサ端末
11 電流測定・蓄電回路部
12 電源制御部
13 無線送信部
111 コッククロフト・ウォルトン回路
121 アナログスイッチ
122 タイマ回路
131 マイクロコントロールユニット(MCU)
132 無線IC(RFIC)
CT 電流変換器
0、U1 コンパレータ
0 負荷抵抗
p 蓄電用コンデンサ
0 閾値判断用コンデンサ
lim 電流制限用抵抗
DZ0 ツェナーダイオード
0、T1、T2 送信間隔
DESCRIPTION OF SYMBOLS 10 Wireless sensor terminal 11 Current measurement and electrical storage circuit part 12 Power supply control part 13 Wireless transmission part 111 Cockcroft-Walton circuit 121 Analog switch 122 Timer circuit 131 Micro control unit (MCU)
132 Wireless IC (RFIC)
CT current converter U 0 , U 1 comparator R 0 load resistance C p storage capacitor C 0 threshold judgment capacitor R lim current limiting resistor DZ 0 Zener diode P 0 , T 1 , T 2 transmission interval

Claims (4)

電流測定手段と、
前記電流測定手段により測定された被測定電流の電流値に応じた直流電圧を生成する直流電圧生成手段と、
前記直流電圧生成手段により生成された前記直流電圧により充電されてこれを保持する蓄電用コンデンサと、
前記蓄電用コンデンサに並列に接続された、電流制限用抵抗及び閾値判断用コンデンサからなる直列回路と、
前記被測定電流の電流値に応じた、前記電流制限用抵抗及び前記閾値判断用コンデンサの接続点の電圧を抵抗分圧する抵抗分圧回路と、
前記抵抗分圧回路により得られた抵抗分圧電圧が基準電圧以上であるか否かを検出する電圧比較手段と、
端末IDを含むデータで予め割り当てられた無線周波数を変調した送信信号を無線送信する無線送信手段と、
前記電圧比較手段により前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻より所定期間、前記接続点の電圧を前記無線送信手段へ動作用電源電圧として印加し、前記所定期間経過後は前記接続点の電圧の前記無線送信手段への印加を停止する電源電圧印加手段とを備え、
前記所定期間経過時点の前記無線送信手段の動作停止時刻から前記電圧比較手段により前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻までの、前記無線送信手段の動作停止期間である送信間隔を前記被測定電流の電流値に応じて可変するとともに、前記送信間隔を、前記直流電圧生成手段により生成された前記直流電圧と前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻における前記接続点の電圧との第1の差分値、及び前記直流電圧と前記所定期間経過時点の前記無線送信手段の動作停止時刻における前記接続点の電圧との第2の差分値の比と、前記電流制限用抵抗及び閾値判断用コンデンサの各値の積とに基づいて設定することを特徴とする無線センサ端末。
Current measuring means;
DC voltage generating means for generating a DC voltage corresponding to the current value of the current to be measured measured by the current measuring means;
A storage capacitor charged and held by the DC voltage generated by the DC voltage generating means; and
A series circuit composed of a current limiting resistor and a threshold judging capacitor connected in parallel to the storage capacitor;
A resistance voltage dividing circuit for resistively dividing the voltage at the connection point of the current limiting resistor and the threshold judging capacitor according to the current value of the current to be measured;
Voltage comparison means for detecting whether or not the resistance divided voltage obtained by the resistance voltage dividing circuit is equal to or higher than a reference voltage;
Wireless transmission means for wirelessly transmitting a transmission signal obtained by modulating a radio frequency previously assigned with data including a terminal ID;
The voltage at the connection point is applied as an operation power supply voltage to the wireless transmission unit for a predetermined period from the time when the voltage comparison unit detects that the resistance divided voltage is equal to or higher than the reference voltage, and the predetermined period has elapsed. The power supply voltage application means for stopping the application of the voltage of the connection point to the wireless transmission means after,
In the operation stop period of the wireless transmission means from the operation stop time of the wireless transmission means at the time when the predetermined period has elapsed to the time when the voltage comparison means detects that the resistance divided voltage has become equal to or higher than the reference voltage. The transmission interval is varied according to the current value of the current to be measured, and the DC voltage generated by the DC voltage generation means and the resistance divided voltage are equal to or higher than the reference voltage. And a second difference value between the DC voltage and the voltage at the connection point at the operation stop time of the wireless transmission means when the predetermined period has elapsed. The wireless sensor terminal is set based on the ratio of the current and the product of each value of the current limiting resistor and the threshold judging capacitor.
前記直流電圧生成手段により生成された前記直流電圧をVp、前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻における前記接続点の電圧をVth、前記所定期間経過時点の前記無線送信手段の動作停止時刻における前記接続点の電圧をVmin、前記電流制限用抵抗及び閾値判断用コンデンサの各値の積をKとしたとき、前記送信間隔は
K・loge{(Vp−Vmin)/(Vp−Vth)}
で表されることを特徴とする請求項1記載の無線センサ端末。
The DC voltage generated by the DC voltage generating means is V p , the voltage at the connection point at the time when the resistance divided voltage is detected to be equal to or higher than the reference voltage is V th , and When the voltage at the connection point at the operation stop time of the wireless transmission means is V min and the product of each value of the current limiting resistor and the threshold judging capacitor is K, the transmission interval is K · log e {(V p −V min ) / (V p −V th )}
The wireless sensor terminal according to claim 1, wherein:
前記電源電圧印加手段は、前記所定期間として、前記無線送信手段が無線送信動作を完了するのに十分な時間長に設定していることを特徴とする請求項1又は2記載の無線センサ端末。   3. The wireless sensor terminal according to claim 1, wherein the power supply voltage application unit is set to a time length sufficient for the wireless transmission unit to complete a wireless transmission operation as the predetermined period. 4. 電流測定手段により測定された被測定電流の電流値に応じた直流電圧を生成する直流電圧生成ステップと、
前記直流電圧生成ステップにより生成された前記直流電圧により蓄電用コンデンサに充電して保持させる充電ステップと、
前記蓄電用コンデンサに並列に接続された直列回路を構成する電流制限用抵抗及び閾値判断用コンデンサの接続点の、前記被測定電流の電流値に応じた電圧を抵抗分圧する抵抗分圧ステップと、
前記抵抗分圧ステップにより得られた抵抗分圧電圧が基準電圧以上であるか否かを検出する電圧比較ステップと、
前記電圧比較ステップにより前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻より所定期間、前記接続点の電圧を無線送信手段へ動作用電源電圧として印加して端末IDを含むデータで無線周波数を変調した送信信号を無線送信させ、前記所定期間経過後は前記接続点の電圧の前記無線送信手段への印加を停止する無線送信手段制御ステップとを含み、
前記所定期間経過時点の前記無線送信手段の動作停止時刻から前記電圧比較ステップにより前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻までの、前記無線送信手段の動作停止期間である送信間隔を前記被測定電流の電流値に応じて可変するとともに、前記送信間隔を、前記直流電圧生成ステップにより生成された前記直流電圧と前記抵抗分圧電圧が前記基準電圧以上になったことを検出した時刻における前記接続点の電圧との第1の差分値、及び前記直流電圧と前記所定期間経過時点の前記無線送信手段の動作停止時刻における前記接続点の電圧との第2の差分値の比と、前記電流制限用抵抗及び閾値判断用コンデンサの各値の積とに基づいて設定することを特徴とする無線送信方法。
A DC voltage generating step for generating a DC voltage corresponding to the current value of the current to be measured measured by the current measuring means;
A charging step of charging and holding the capacitor for storage by the DC voltage generated by the DC voltage generation step;
A resistance voltage dividing step of dividing a voltage corresponding to a current value of the current to be measured at a connection point of a current limiting resistor and a threshold judging capacitor constituting a series circuit connected in parallel to the storage capacitor;
A voltage comparison step for detecting whether or not the resistance divided voltage obtained by the resistance voltage division step is equal to or higher than a reference voltage;
Data including the terminal ID by applying the voltage at the connection point as a power supply voltage for operation to the wireless transmission means for a predetermined period from the time when the resistance comparison voltage is detected to be equal to or higher than the reference voltage in the voltage comparison step. A wireless transmission means control step of wirelessly transmitting a transmission signal modulated with a radio frequency, and stopping application of the voltage at the connection point to the wireless transmission means after the predetermined period has elapsed,
In the operation stop period of the wireless transmission means from the operation stop time of the wireless transmission means at the time when the predetermined period has elapsed to the time when the voltage comparison step detects that the resistance divided voltage has become equal to or higher than the reference voltage. The transmission interval is varied according to the current value of the current to be measured, and the transmission interval is set such that the DC voltage generated by the DC voltage generation step and the resistance divided voltage are equal to or higher than the reference voltage. And a second difference value between the DC voltage and the voltage at the connection point at the operation stop time of the wireless transmission means when the predetermined period has elapsed. And a product of each value of the current limiting resistor and the threshold judging capacitor.
JP2015048664A 2015-03-11 2015-03-11 Wireless sensor terminal and wireless transmission method Active JP6382135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015048664A JP6382135B2 (en) 2015-03-11 2015-03-11 Wireless sensor terminal and wireless transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048664A JP6382135B2 (en) 2015-03-11 2015-03-11 Wireless sensor terminal and wireless transmission method

Publications (2)

Publication Number Publication Date
JP2016170527A JP2016170527A (en) 2016-09-23
JP6382135B2 true JP6382135B2 (en) 2018-08-29

Family

ID=56983760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048664A Active JP6382135B2 (en) 2015-03-11 2015-03-11 Wireless sensor terminal and wireless transmission method

Country Status (1)

Country Link
JP (1) JP6382135B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214826A (en) * 1975-07-28 1977-02-04 Matsushita Electric Ind Co Ltd Inverter starting device
JP2008097423A (en) * 2006-10-13 2008-04-24 Yamatake Corp Current monitoring device
JP5979548B2 (en) * 2012-11-09 2016-08-24 国立研究開発法人産業技術総合研究所 CURRENT SENSOR TERMINAL WITH WIRELESS TRANSMITTING FUNCTION, WIRELESS TRANSMITTING METHOD, AND WIRELESS TRANSMITTING / RECEIVING SYSTEM

Also Published As

Publication number Publication date
JP2016170527A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US10700592B2 (en) Load detecting device
JP5374942B2 (en) Flash charging circuit and flash charging control method
US9479046B2 (en) Multi-mode PFC control and control method thereof
US20180019656A1 (en) Semiconductor device for controlling power source
US9564826B2 (en) Current resonant power supply device
EP2678927B1 (en) A power supply comprising a stand by feature
US20160172985A1 (en) Insulated dc power supply and a method of controlling same
US20140362609A1 (en) Power supply device
TWI686042B (en) Power conversion device
JP5754750B2 (en) Wireless sensor terminal
WO2014132345A1 (en) Power supply startup system
JP5979548B2 (en) CURRENT SENSOR TERMINAL WITH WIRELESS TRANSMITTING FUNCTION, WIRELESS TRANSMITTING METHOD, AND WIRELESS TRANSMITTING / RECEIVING SYSTEM
JP6382135B2 (en) Wireless sensor terminal and wireless transmission method
EP1563595B1 (en) Power converter
US9641010B2 (en) Charger and electronic apparatus stably supplying operating voltage
US11211863B2 (en) Arrangement and method for current measurement
JP6108396B2 (en) Wireless sensor terminal and wireless transmission method
KR101969019B1 (en) Power converter and operating method thereof
US9871457B2 (en) Switching power supply device
JP2003098199A (en) Current monitor
JP6925917B2 (en) Power supply unit, semiconductor integrated circuit, and control method of power supply unit
US20180166899A1 (en) Charger with wide range output voltage
US11921532B2 (en) Controlling pulsed operation of a power supply during a power outage
CN213213326U (en) X capacitor discharge control circuit and switching power supply
JP7030618B2 (en) Deterioration judgment device and power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250