JP2008097423A - Current monitoring device - Google Patents

Current monitoring device Download PDF

Info

Publication number
JP2008097423A
JP2008097423A JP2006279990A JP2006279990A JP2008097423A JP 2008097423 A JP2008097423 A JP 2008097423A JP 2006279990 A JP2006279990 A JP 2006279990A JP 2006279990 A JP2006279990 A JP 2006279990A JP 2008097423 A JP2008097423 A JP 2008097423A
Authority
JP
Japan
Prior art keywords
current
voltage
unit
power supply
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006279990A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasaki
宏 佐々木
Tetsuya Kajita
徹矢 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006279990A priority Critical patent/JP2008097423A/en
Publication of JP2008097423A publication Critical patent/JP2008097423A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current monitoring device that can be correctly operated even to a circuit part of large current consumption. <P>SOLUTION: The current monitoring device comprises a current detecting part interposed in a transmission line to measure a current value of a signal current; a source voltage generating part interposed in the transmission line to output voltage generated at both ends by allowing the signal current to flow through the transmission line; a storage part connected in parallel to both ends of the source voltage generating part to store a current output from the source voltage generating part; a voltage monitoring part connected to both ends of the storage part to monitor voltage at both ends and to output a control signal when detecting that the voltage exceeds a predetermined voltage value; and a power source control part for connecting the source voltage generating part and the storage part to a predetermined first circuit when the control signal is output from the voltage monitoring part, to operate the circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電流モニタ装置に係り、特に2線式の工業用電流伝送路に流れる電流を監視する電流モニタ装置に関する。   The present invention relates to a current monitor device, and more particularly to a current monitor device that monitors a current flowing in a two-wire industrial current transmission line.

従来、化学プラントや石油プラント等には、プラント構成機器の圧力、温度のほか、配管を流れる流体の流速等の物理量を測定する目的で設置される工業用計測器がある。例えば図9に示すように工業用計測器1は、直流電源3(例えば、直流24V)および負荷抵抗器4(例えば、250Ω)とともに2線式伝送路2に直列に介挿されて、計測した物理量を4〜20mA範囲の電流値に変換し、2線式伝送路2に送出するようになっている。   2. Description of the Related Art Conventionally, chemical plants, petroleum plants, and the like have industrial measuring instruments that are installed for the purpose of measuring physical quantities such as the flow velocity of fluid flowing through pipes in addition to the pressure and temperature of plant components. For example, as shown in FIG. 9, the industrial measuring instrument 1 is measured by being inserted in series with the two-wire transmission line 2 together with the DC power source 3 (for example, DC 24V) and the load resistor 4 (for example, 250Ω). The physical quantity is converted into a current value in the range of 4 to 20 mA and sent to the two-wire transmission line 2.

具体的にこの種の電流ループ回路は、伝送路2に工業用計測器が計測可能な物理量が100%のとき20mAを出力し、物理量が0%のとき4mAを出力するようにして、計測した物理量に比例した電流を工業用計測器から出力するように構成されている。尚、負荷抵抗を250Ωにしているのは、この負荷抵抗に4mAの電流が流れたとき、負荷抵抗の両端における電圧降下が1V、20mAの電流が流れたとき、電圧降下が5Vになり、この1V〜5Vの範囲の電圧値は、各種制御演算に用いるのに都合がよいためである。   Specifically, this type of current loop circuit was measured by outputting 20 mA when the physical quantity measurable by the industrial measuring instrument was 100%, and outputting 4 mA when the physical quantity was 0%. An electric current proportional to the physical quantity is output from the industrial measuring instrument. The load resistance is set to 250Ω because when a current of 4 mA flows through the load resistance, the voltage drop at both ends of the load resistance is 1 V, and when the current of 20 mA flows, the voltage drop is 5 V. This is because voltage values in the range of 1 V to 5 V are convenient for use in various control calculations.

一方、この種の工業用計測器としては、2線式伝送路に流れる電流を用いて工業用計測器を作動させる動作電源を自らが作り出し、計測器作動用の電源装置や電源配線、あるいは電池を不要にした2線式伝送器が知られている(例えば、特許文献1を参照)。この2線式伝送器は、2線式伝送路に流れる電流を用いて伝送器内部の作動電源を作り出すとともに、計測器が計測した物理量に応じた電流を2線式伝送路に出力するものである。   On the other hand, as this type of industrial measuring instrument, the power source for operating the measuring instrument itself is generated by using the current flowing through the two-wire transmission line, and the measuring instrument operating power supply, power supply wiring, or battery There is known a two-wire transmitter that eliminates the need (see, for example, Patent Document 1). This 2-wire transmitter creates an operating power source inside the transmitter using the current flowing through the 2-wire transmission line, and outputs a current corresponding to the physical quantity measured by the measuring instrument to the 2-wire transmission line. is there.

あるいは電流モニタ装置には、上述した有線伝送路によらず電流モニタ装置が検出した計測値を例えば図10に示すように無線伝送する方式が採られることもある。この方式は、電流モニタ装置が2線式伝送路に流れる電流を計測し、この計測データを無線にて送出する無線モニタ装置5を設けて構成される。この無線モニタ装置5には、この装置を稼働させる電源として例えば電池6を備えている。   Alternatively, the current monitor device may adopt a method of wirelessly transmitting a measurement value detected by the current monitor device, for example, as shown in FIG. This method is configured by providing a wireless monitoring device 5 that measures the current flowing through the two-wire transmission path by the current monitoring device and transmits the measurement data wirelessly. The wireless monitor device 5 includes, for example, a battery 6 as a power source for operating the device.

発明者らは、この無線モニタ装置5を稼働させる電池6を不要とし、また計測した電流値を無線伝送する電流モニタ装置を提唱した(例えば、特許文献2を参照)。
この電流モニタ装置は、図11のブロック図に示すように計測器1が計測した物理量に対応する信号電流を2線式伝送路2に出力する。伝送路2は、所定電圧(例えば、24V)の直流を出力する直流電源3および所定の抵抗値(例えば、250Ω)を有する負荷抵抗器4が直列に介挿されて電流ループを形成する。そして計測器1は、センサ(図11に図示せず)が計測した物理量を例えば4mA〜20mAの電流値の信号電流に変換して伝送路2に出力する。特許文献2に記載の電流モニタ装置10は、このように構成された計測システムの伝送路2に直列に介挿されて、この伝送路2に流れる電流を検出する。
The inventors have proposed a current monitoring device that eliminates the need for the battery 6 for operating the wireless monitoring device 5 and wirelessly transmits the measured current value (see, for example, Patent Document 2).
This current monitor device outputs a signal current corresponding to the physical quantity measured by the measuring instrument 1 to the two-wire transmission line 2 as shown in the block diagram of FIG. In the transmission line 2, a direct current power source 3 that outputs a direct current of a predetermined voltage (for example, 24V) and a load resistor 4 having a predetermined resistance value (for example, 250Ω) are inserted in series to form a current loop. The measuring instrument 1 converts a physical quantity measured by a sensor (not shown in FIG. 11) into a signal current having a current value of 4 mA to 20 mA, for example, and outputs the signal current to the transmission line 2. The current monitoring device 10 described in Patent Literature 2 is inserted in series in the transmission line 2 of the measurement system configured as described above, and detects a current flowing through the transmission line 2.

詳しくはこの電流モニタ装置10は、二つの端子VP,VMを有し、これらの端子VP,VMを使って伝送路2に電流モニタ装置10を直列に介挿することによって伝送路2に流れる電流から所定の電圧を生成する電源電圧生成部20、伝送路2に流れる信号電流の電流値を検出する電流検出部30およびこの電流検出部30が検出した電流値(電流データ)を無線伝送する無線部40を備えて構成される。   Specifically, the current monitoring device 10 has two terminals VP and VM, and the current flowing through the transmission line 2 by inserting the current monitoring device 10 in series with the transmission line 2 using these terminals VP and VM. A power supply voltage generation unit 20 that generates a predetermined voltage from a current, a current detection unit 30 that detects a current value of a signal current flowing through the transmission line 2, and a wireless that wirelessly transmits a current value (current data) detected by the current detection unit 30 The unit 40 is provided.

このように構成された電流モニタ装置において、無線部40が作動するためには、所定の電圧レベル以上の電圧が電源電圧生成部20から出力されなければならない。この点についてより具体的に例えば図12の無線部40に与える電源電圧と、その消費電流との関係の一例を示す特性グラフを参照しながら説明する。すなわち、無線部40に与える電圧を0Vから徐々に高くしていくにつれて、消費電流は僅かに増加していくが、やがて2V近傍になると消費電流は急増し、その後、電源電圧に比例して消費電流が増加していく。   In the current monitoring device configured as described above, in order for the radio unit 40 to operate, a voltage equal to or higher than a predetermined voltage level must be output from the power supply voltage generation unit 20. This point will be described more specifically with reference to a characteristic graph showing an example of the relationship between the power supply voltage applied to the wireless unit 40 of FIG. That is, as the voltage applied to the wireless unit 40 is gradually increased from 0V, the current consumption slightly increases. However, when the voltage is eventually close to 2V, the current consumption increases rapidly, and then consumed in proportion to the power supply voltage. The current increases.

このような特性を有する無線部40が作動する最低動作電圧が例えば2.9Vであるとすると、このとき無線部40が消費する電流は7mAである。したがって、伝送路2を流れる電流が4mAであるとき、無線部40が作動する電流が不足することになる。
このため無線部40に電源を供給する電源ライン(VSUPとGND間)に無線部40と並列にコンデンサ等の蓄電部C1を設ける一方、無線部40を間欠動作させる。そして無線部40が休止しているとき、電源電圧生成部20から出力されるエネルギーを蓄電部C1に蓄えるとともに、無線部40が作動することによって電源電圧生成部20から供給される電流の不足分を蓄電部C1に蓄えた電荷を電流として無線部40に放出することで補っている。
特開平9−81883号公報 特願2005−251919号
If the minimum operating voltage at which the wireless unit 40 having such characteristics operates is, for example, 2.9V, the current consumed by the wireless unit 40 at this time is 7 mA. Therefore, when the current flowing through the transmission line 2 is 4 mA, the current for operating the radio unit 40 is insufficient.
Therefore, a power storage line C1 such as a capacitor is provided in parallel with the wireless unit 40 in a power supply line (between VSUP and GND) for supplying power to the wireless unit 40, while the wireless unit 40 is operated intermittently. And when the radio | wireless part 40 is dormant, while the energy output from the power supply voltage generation part 20 is stored in the electrical storage part C1, the shortage of the current supplied from the power supply voltage generation part 20 when the radio | wireless part 40 act | operates Is compensated by discharging the electric charge stored in the power storage unit C1 to the radio unit 40 as a current.
JP-A-9-81883 Japanese Patent Application No. 2005-251919

リセットピンによってCPUの動作を止めると消費電流が小さくなるCPUが多いが、その動作を止めても消費電流が小さくならないCPUも存在する。このようなリセットピンによってその動作を止めても消費電流が小さくならず、かつ、前述のような電源電圧−消費電流特性をもつCPUを使用した場合、無線部40により消費される電流により蓄電部C1への蓄電が止まり、無線部40を作動させるために必要な電圧にまで蓄電部C1の両端の電圧、すなわち無線部40の両端の電圧が達しないことがあった。この場合、無線部40両端の電圧が無線部40を作動させるために必要な電圧に、いつまで経っても達しない。このため無線部40はいつまで経っても作動することはないという問題があった。   There are many CPUs whose current consumption decreases when the operation of the CPU is stopped by the reset pin, but there are CPUs whose current consumption does not decrease even when the operation is stopped. Even when the operation is stopped by such a reset pin, the current consumption is not reduced, and when the CPU having the power supply voltage-current consumption characteristic as described above is used, the power storage unit The power storage to C1 stops, and the voltage at both ends of the power storage unit C1, that is, the voltage at both ends of the wireless unit 40 may not reach the voltage necessary to operate the wireless unit 40. In this case, the voltage at both ends of the wireless unit 40 does not reach the voltage necessary for operating the wireless unit 40 forever. For this reason, there has been a problem that the radio unit 40 does not operate any time.

そこで発明者らは、上述した事情を考慮し、既に提唱した電流モニタ装置の作動を消費電流の多い回路部(例えば無線部)に対しても正しく作動することができる電流モニタ装置を提供する。   In view of the above-described circumstances, the inventors provide a current monitoring device that can correctly operate the current monitoring device already proposed for a circuit unit (for example, a wireless unit) that consumes a large amount of current.

上述した目的を達成すべく本発明に係る電流モニタ装置は、測定器が測定した物理量を信号電流に変換して2本の伝送路に出力した電流値を計測する電流モニタ装置であって、
前記伝送路に介挿されて前記信号電流の電流値を計測する電流検出部と、前記伝送路に介挿されて該伝送路に前記信号電流が流れることにより、その両端に生じた電圧を出力する電源電圧生成部と、この電源電圧生成部の両端に並列に接続されて前記電源電圧生成部から出力される電流を蓄える蓄電部と、この蓄電部の両端に接続されて、その両端の電圧を監視し、この電圧が所定の電圧値を超えたことを検出したとき制御信号を出力する電圧監視部と、この電圧監視部から前記制御信号が出力されたとき前記電源電圧生成部および前記蓄電部を所定の第一の回路に接続してその回路を作動させる電源制御部とを備えることを特徴としている。
In order to achieve the above-described object, the current monitoring device according to the present invention is a current monitoring device that measures a current value that is converted into a signal current by converting a physical quantity measured by a measuring instrument into a signal current,
A current detector that measures the current value of the signal current inserted in the transmission line, and outputs a voltage generated at both ends of the signal current flowing through the transmission line inserted in the transmission line. A power supply voltage generation unit, a power storage unit connected in parallel to both ends of the power supply voltage generation unit to store current output from the power supply voltage generation unit, and a voltage connected to both ends of the power storage unit A voltage monitoring unit that outputs a control signal when it is detected that the voltage exceeds a predetermined voltage value, and the power supply voltage generating unit and the power storage when the control signal is output from the voltage monitoring unit. And a power supply control unit for operating the circuit by connecting the unit to a predetermined first circuit.

特に前記電圧監視部は、前記蓄電部の両端の電圧が所定の電圧値を超えたことを検出したとき前記制御信号の出力を保持することを特徴としている。
好ましくは前記電圧監視部は、前記蓄電部の両端の電圧が所定の第一の電圧値を超えたことを検出したときに前記制御信号の出力を保持し、前記蓄電部の両端の電圧が前記第一の電圧値よりも低く、かつ前記第一の回路を作動させるために必要な最低電圧よりも高い第二の電圧値を下回ったことを検出したときに前記制御信号の出力を停止することが望ましい。
In particular, the voltage monitoring unit holds the output of the control signal when detecting that the voltage across the power storage unit exceeds a predetermined voltage value.
Preferably, the voltage monitoring unit holds the output of the control signal when it detects that the voltage across the power storage unit exceeds a predetermined first voltage value, and the voltage across the power storage unit is Stopping the output of the control signal when it is detected that it has fallen below a second voltage value lower than the first voltage value and higher than the minimum voltage required to operate the first circuit. Is desirable.

また前記電流モニタ装置は、更に前記電源電圧生成部の両端に並列に接続されて作動する第二の回路と、前記電源電圧生成部と前記蓄電部との間に介挿されて所定の電流を前記蓄電部に流し込む定電流部とを備えて提供される。
また前記第一の回路は、前記電流検出部が計測した電流値を無線伝送する無線部であることを特徴としている。
Further, the current monitoring device is further connected to both ends of the power supply voltage generation unit in parallel to operate, and is inserted between the power supply voltage generation unit and the power storage unit to generate a predetermined current. And a constant current section that flows into the power storage section.
The first circuit is a wireless unit that wirelessly transmits a current value measured by the current detection unit.

したがって上述した電流モニタ装置は、蓄電部両端の電圧が第二の電圧値を下回ったことを電圧監視部が検出すると、電源制御部に指令を与えて第一の回路(例えば、無線部)に供給する電流を断ち、第一の電圧値を超えるまで蓄電部を充電する。そして蓄電部の電圧が所定の電圧を超えたことを電圧監視部が検出すると、電源制御部に指令を与えて第一の回路に電流を供給する。   Therefore, when the voltage monitoring unit detects that the voltage across the power storage unit has fallen below the second voltage value, the current monitoring device described above gives a command to the power supply control unit to the first circuit (for example, the radio unit). The current to be supplied is cut off, and the power storage unit is charged until the first voltage value is exceeded. When the voltage monitoring unit detects that the voltage of the power storage unit has exceeded a predetermined voltage, the power supply control unit is instructed to supply current to the first circuit.

本発明の電流モニタ装置によれば、伝送路に流れる電流を用いて電流モニタ装置内部の電源電圧生成部が、蓄電部を充電して所定の回路(例えば、無線部等)を作動させる電圧を作り出すとともに、充電されることによって上昇した蓄電部の電圧が所定の電圧を超えたことを電圧監視部が検出したとき、電源制御部を駆動して電源電圧生成部および蓄電部から無線部等に電流を供給しているので、消費電流の多い例えば無線部に対しても正しく作動することが保証できる。   According to the current monitoring device of the present invention, the power supply voltage generation unit inside the current monitoring device uses the current flowing through the transmission line to charge the power storage unit to operate a predetermined circuit (for example, a wireless unit). When the voltage monitoring unit detects that the voltage of the power storage unit that has risen due to charging exceeds a predetermined voltage, the power supply control unit is driven to change the power supply voltage generation unit and the power storage unit to the wireless unit, etc. Since the current is supplied, it can be assured that the radio unit, for example, which consumes a large amount of current, operates correctly.

特に電圧監視部は、電源電圧生成部から出力される電圧が低下したとき、この電圧が無線部等の作動に要する最低動作電圧を下回る前に電源制御部の作動を停止させて、無線部等における所定の第一の回路に供給する電流を断っているので、電圧低下によって無線部等に不安定動作をもたらすことがない。
また本発明の電流モニタ装置は、更に電源電圧生成部と蓄電部との間に定電流部を備えるとともに、電源電圧生成部と並列に別の回路(第二の回路)を接続して構成され、定電流部および第二の回路に流れる電流の総和が伝送路に流れる電流を満たすようにしているので、一定電流で蓄電部を充電することができる一方、第二の回路を常に作動させることも可能である。
In particular, when the voltage output from the power supply voltage generator drops, the voltage monitoring unit stops the operation of the power supply control unit before this voltage falls below the minimum operating voltage required for the operation of the wireless unit, etc. Since the current supplied to the predetermined first circuit is cut off, an unstable operation is not caused to the wireless unit or the like due to the voltage drop.
The current monitoring device of the present invention further includes a constant current unit between the power supply voltage generation unit and the power storage unit, and is configured by connecting another circuit (second circuit) in parallel with the power supply voltage generation unit. Since the sum of the current flowing through the constant current section and the second circuit satisfies the current flowing through the transmission line, the power storage section can be charged with a constant current, while the second circuit is always operated. Is also possible.

また本発明の電流モニタ装置は、第一の回路を無線部とすれば電流モニタ装置を作動させるための電源配線や電池を用いることなく無電源で伝送路に流れる電流を計測して、その計測値を無線伝送することができる。したがって本発明の電流モニタ装置は、電源配線および計測した電流データを伝送する有線伝送路が不要となり、電源配線および有線伝送路を敷設するコストがかからないほか、電池の交換が不要であり優れたメンテナンス性を備えることに加えて、既存のプラントにも容易に適用可能であるという実用上優れた効果を奏し得る。   Further, the current monitoring device of the present invention measures the current flowing in the transmission line with no power source without using power supply wiring or a battery for operating the current monitoring device if the first circuit is a wireless unit, and the measurement The value can be transmitted wirelessly. Therefore, the current monitoring device of the present invention does not require a power supply wiring and a wired transmission path for transmitting the measured current data, and does not require the cost of laying the power supply wiring and the wired transmission path. In addition to having the property, it is possible to achieve an excellent practical effect that it can be easily applied to existing plants.

以下、本発明に係る電流モニタ装置について添付図面を参照しながら説明する。尚、図1〜図8は発明を実施する形態の一例を説明するための図であって、これらの図によって本発明が限定されるものではない。また、これらの図中、図9〜11と同一の符号を付した部分は、前述した2線式伝送路を用いた電流モニタ装置と同一物を表し、基本的な構成は図9〜11に示す従来のものと同様である。   Hereinafter, a current monitoring device according to the present invention will be described with reference to the accompanying drawings. 1 to 8 are diagrams for explaining an example of an embodiment for carrying out the invention, and the present invention is not limited to these drawings. Also, in these drawings, the portions denoted by the same reference numerals as those in FIGS. 9 to 11 represent the same components as the current monitoring device using the two-wire transmission path described above, and the basic configuration is shown in FIGS. This is similar to the conventional one shown.

さて、図1は、本発明の第1の実施形態を示す要部概略構成図である。この図において1は、各種センサ(図1に図示せず)を備えて計測対象の物理量(例えば圧力、温度、流量等)を計測し、その計測した物理量に対応する信号電流を2線式伝送路2(以下単に伝送路ということがある)出力する工業用計測器(以下、単に計測器ということがある)である。伝送路2は、所定電圧(例えば24V)の直流を出力する直流電源3および所定の抵抗値(例えば250Ω)を有する負荷抵抗器4が直列に介挿されて電流ループを形成する。そして計測器1は、センサが計測した物理量を例えば4〜20mAの電流値の信号電流に変換して伝送路2に出力する。本発明の電流モニタ装置10は、このように構成され、計測システムの伝送路2に直列に介挿されて伝送路2に流れる電流を検出する。   FIG. 1 is a schematic configuration diagram of a main part showing a first embodiment of the present invention. In this figure, 1 is equipped with various sensors (not shown in FIG. 1) to measure a physical quantity (for example, pressure, temperature, flow rate, etc.) to be measured and transmits a signal current corresponding to the measured physical quantity in a two-wire manner. This is an industrial measuring instrument (hereinafter sometimes simply referred to as a measuring instrument) that outputs the path 2 (hereinafter also referred to simply as a transmission path). In the transmission line 2, a direct current power source 3 that outputs a direct current of a predetermined voltage (for example, 24V) and a load resistor 4 having a predetermined resistance value (for example, 250Ω) are inserted in series to form a current loop. The measuring instrument 1 converts the physical quantity measured by the sensor into a signal current having a current value of 4 to 20 mA, for example, and outputs the signal current to the transmission line 2. The current monitoring device 10 of the present invention is configured as described above, and detects a current flowing through the transmission line 2 in series with the transmission line 2 of the measurement system.

また電流モニタ装置10は、伝送路2に直列に介挿するべく設けられた二つの端子VP,VMを有し、伝送路2に流れる電流から所定の電圧を生成する電源電圧生成部20を備える。この電源電圧生成部20は、基準電位0VのGNDライン11と正電位VSUPのVSUPライン12との間に生成した所定の電圧を出力する。尚、GNDラインには、伝送路2に流れる信号電流の電流値を検出する電流検出部30が介挿されている。   The current monitoring device 10 includes two terminals VP and VM that are provided in series with the transmission line 2, and includes a power supply voltage generation unit 20 that generates a predetermined voltage from the current flowing through the transmission line 2. . The power supply voltage generator 20 outputs a predetermined voltage generated between the GND line 11 having a reference potential of 0V and the VSUP line 12 having a positive potential VSUP. A current detection unit 30 that detects the current value of the signal current flowing through the transmission line 2 is inserted in the GND line.

電源電圧生成部20の電圧出力側のVSUPライン12およびGNDライン11との間には、電源電圧生成部20から出力される電流を蓄える蓄電部C1が、この電源電圧生成部20と並列に接続されている。この蓄電部C1の両端には、VSUPライン12とGNDライン11との間の電圧を監視する電圧監視部21および電圧監視部21が監視する蓄電部の両端の電圧が所定の電圧値に到達したことを検出したとき、所定の第一の回路としての無線部40に電源電圧生成部20および蓄電部C1のそれぞれ両端を接続または開放する電源制御部22が接続されている。   Between the VSUP line 12 and the GND line 11 on the voltage output side of the power supply voltage generation unit 20, a power storage unit C <b> 1 that stores current output from the power supply voltage generation unit 20 is connected in parallel with the power supply voltage generation unit 20. Has been. At both ends of the power storage unit C1, the voltage monitoring unit 21 that monitors the voltage between the VSUP line 12 and the GND line 11 and the voltage at both ends of the power storage unit monitored by the voltage monitoring unit 21 have reached a predetermined voltage value. When this is detected, a power supply control unit 22 that connects or opens both ends of the power supply voltage generation unit 20 and the power storage unit C1 is connected to the radio unit 40 as a predetermined first circuit.

ちなみに電源制御部22は、例えば図2(a)にその概略構成を示すようにVSUPライン12と無線部40の正電源側(無線部+)とを接続する電源ラインに介挿されたMOSFETのドレインとソースが接続され、そのゲートには、電圧監視部21からの制御信号が与えられる。このMOSFETのゲートは、抵抗器Rを介してソースに接続され、電圧監視部21から出力される負論理の制御信号により無線部40と電源電圧生成部20および蓄電部C1のそれぞれ両端を接続(オン)または開放(オフ)するものである。   Incidentally, the power supply control unit 22 is, for example, a MOSFET inserted in a power supply line that connects the VSUP line 12 and the positive power supply side (wireless unit +) of the wireless unit 40 as shown in FIG. A drain and a source are connected, and a control signal from the voltage monitoring unit 21 is given to the gate. The gate of this MOSFET is connected to the source via a resistor R, and both ends of the radio unit 40, the power supply voltage generation unit 20 and the power storage unit C1 are connected by a negative logic control signal output from the voltage monitoring unit 21 ( ON) or open (OFF).

あるいは電源制御部22は、図2(b)にその概略構成を示すようにGNDライン11と無線部40の接地側(無線部−)とを接続する電源ラインに介挿されたMOSFETのドレインとソースが接続され、そのゲートは、電圧監視部21からの制御信号が与えられる構成としてもよい。そしてMOSFETのゲートは、抵抗器Rを介してソースに接続され、電圧監視部21から出力される正論理の制御信号により無線部40に与える電源のオン/オフが制御される。   Alternatively, the power supply control unit 22 has a MOSFET drain inserted in a power supply line that connects the GND line 11 and the ground side (radio unit −) of the radio unit 40 as shown in FIG. The source may be connected, and the gate may be configured to receive a control signal from the voltage monitoring unit 21. The gate of the MOSFET is connected to the source via the resistor R, and on / off of the power supplied to the wireless unit 40 is controlled by a positive logic control signal output from the voltage monitoring unit 21.

このように構成された本発明の第一の実施形態に係る電流モニタ装置の作動について図3に示されたグラフを参照しながら説明する。電圧監視部21は、蓄電部C1両端の電圧が無線部40が作動する最低動作電圧Vminよりも高い電圧で、無線部40が作動するのに十分な電圧である所定の電圧閾値Vthhを超えた電圧になったことを検出すると電源制御部22に制御信号(オン指令)を与え、無線部40に電源電圧生成部20および蓄電部C1から電流を供給する。   The operation of the current monitoring device according to the first embodiment of the present invention configured as described above will be described with reference to the graph shown in FIG. In the voltage monitoring unit 21, the voltage across the power storage unit C1 is higher than the minimum operating voltage Vmin at which the radio unit 40 operates, and exceeds a predetermined voltage threshold Vthh that is a voltage sufficient for the radio unit 40 to operate. When it is detected that the voltage has been reached, a control signal (ON command) is given to the power supply control unit 22, and current is supplied to the radio unit 40 from the power supply voltage generation unit 20 and the power storage unit C1.

すると無線部40は、初期動作を開始して所定の初期化を行い、休止状態に移行する。以後、無線部40は、所定の周期(例えば1秒間隔)で休止/作動を繰り返す。このとき無線部40が休止状態になると電源電圧生成部20が出力する電流によって蓄電部C1が充電されて、その両端の電圧は、休止状態の経過と共に徐々に上昇し、やがて電源電圧生成部20が出力する最大電圧VSUPに至る。   Then, the wireless unit 40 starts an initial operation, performs predetermined initialization, and shifts to a dormant state. Thereafter, the radio unit 40 repeats the pause / operation at a predetermined cycle (for example, every 1 second). At this time, when the wireless unit 40 is in a dormant state, the power storage unit C1 is charged by the current output from the power supply voltage generating unit 20, and the voltage at both ends gradually rises as the dormant state elapses. Reaches the maximum voltage VSUP output.

次いで無線部40が所定の休止期間を満了して作動すると、電源電圧生成部20および蓄電部C1から無線部40に対して電流が供給される。このとき、電源電圧生成部20から出力される電流より無線部40の消費電流が大きいと、無線部40に蓄電部C1からも電流が供給され、時間の経過と共に徐々に蓄電部C1の電圧が低下していく。したがって無線部40の作動によって蓄電部C1の電圧が無線部40が作動する最低電圧Vminを下回らないように予め電圧閾値Vthhや蓄電部C1の容量を定めておく。   Next, when the wireless unit 40 expires and operates after a predetermined suspension period, a current is supplied to the wireless unit 40 from the power supply voltage generation unit 20 and the power storage unit C1. At this time, if the consumption current of the wireless unit 40 is larger than the current output from the power supply voltage generation unit 20, current is also supplied from the power storage unit C1 to the wireless unit 40, and the voltage of the power storage unit C1 gradually increases with time. It goes down. Therefore, the voltage threshold Vthh and the capacity of the power storage unit C1 are determined in advance so that the voltage of the power storage unit C1 does not fall below the minimum voltage Vmin at which the radio unit 40 operates due to the operation of the wireless unit 40.

尚、この実施形態において電圧監視部21は、蓄電部C1の電圧が電圧閾値Vthhを下回ったとしても、一旦、電源制御部22に与えたオン指令を保持し続けている。そして蓄電部C1両端の電圧が無線部40の最低動作電圧Vminを下回り、無線部40の作動が停止した後、電源制御部22の両端の電圧も低下し、オン指令が保持できなくなったことによって電源制御部22がオフされる。   In this embodiment, the voltage monitoring unit 21 continues to hold the ON command given to the power supply control unit 22 even if the voltage of the power storage unit C1 falls below the voltage threshold Vthh. Then, after the voltage at both ends of the power storage unit C1 is lower than the minimum operating voltage Vmin of the wireless unit 40 and the operation of the wireless unit 40 is stopped, the voltage at both ends of the power supply control unit 22 also decreases, and the on command cannot be held. The power control unit 22 is turned off.

かくして上述したように構成された本発明の第一の実施形態に係る電流モニタ装置は、蓄電部C1の両端の電圧が無線部40が作動するに十分な電圧である電圧閾値Vthhになるまで無線部40に電流を流さないようにしているので、例え伝送路2に流れる電流が少なかったとしても、図4の蓄電部C1両端の電圧変化を示すグラフのように無線部40が動作するに必要な最低動作電圧Vmin(前述した無線部40の場合、例えば2.9V)を得ることができる。   Thus, the current monitoring device according to the first embodiment of the present invention configured as described above is wireless until the voltage at both ends of the power storage unit C1 reaches the voltage threshold Vthh which is a voltage sufficient for the wireless unit 40 to operate. Since no current flows through the unit 40, even if the current flowing through the transmission line 2 is small, it is necessary for the radio unit 40 to operate as shown in the graph showing the voltage change across the power storage unit C1 in FIG. A minimum operating voltage Vmin (in the case of the wireless unit 40 described above, for example, 2.9 V) can be obtained.

次に本発明の第二の実施形態に係る電流モニタ装置の作動について図5に示すグラフを参照しながら説明する。この実施形態は、前述した第一の実施形態に加えて、更に無線部40の作動により蓄電部C1両端の電圧が低下し、無線部40が作動する最低動作電圧Vminに到達しようとしているとき、この最低動作電圧Vminよりやや高い電圧閾値Vthl(第二の電圧閾値:無線部40が作動するに十分な電圧である電圧閾値Vthh(以下、第一の電圧閾値と称する)より低い電圧)を下回ったことを電圧監視部21が検出して、無線部40に対して電流の供給を中断するオフ指令を電源制御部22に対して出力するところにある。ちなみに電圧監視部21が検出する電圧レベルの関係は、[VSUP>Vthh>Vthl>Vmin]である。   Next, the operation of the current monitoring device according to the second embodiment of the present invention will be described with reference to the graph shown in FIG. In this embodiment, in addition to the first embodiment described above, when the voltage of both ends of the power storage unit C1 is further lowered due to the operation of the wireless unit 40 and the wireless unit 40 is about to reach the minimum operating voltage Vmin, A voltage threshold Vthl slightly higher than the minimum operating voltage Vmin (second voltage threshold: a voltage lower than a voltage threshold Vthh (hereinafter referred to as the first voltage threshold) that is sufficient for the radio unit 40 to operate). The voltage monitoring unit 21 detects this, and outputs to the power supply control unit 22 an off command for interrupting the supply of current to the radio unit 40. Incidentally, the relationship between the voltage levels detected by the voltage monitoring unit 21 is [VSUP> Vthh> Vthl> Vmin].

さて本発明の第二の実施形態に係る電流モニタ装置は、前述した実施形態と同様に伝送路2に電流が流れることによって電源電圧生成部20から電流が出力される。そして蓄電部C1は、電源電圧生成部20から出力される電流によって充電され、その両端の電圧が時間の経過と共に徐々に高くなっていく。その後、電圧監視部21は、無線部40が作動するのに十分な第一の電圧閾値Vthhを超えたことを検出すると電源制御部22に対して制御信号(オン指令)を出力し、無線部40に電源電圧生成部20および蓄電部C1からの電流を供給する。   In the current monitoring device according to the second embodiment of the present invention, a current is output from the power supply voltage generation unit 20 when a current flows through the transmission line 2 as in the above-described embodiment. And the electrical storage part C1 is charged with the electric current output from the power supply voltage generation part 20, and the voltage of the both ends becomes high gradually with progress of time. Thereafter, when the voltage monitoring unit 21 detects that the first voltage threshold value Vthh sufficient for the wireless unit 40 to operate is detected, the voltage monitoring unit 21 outputs a control signal (ON command) to the power supply control unit 22, and the wireless unit 40 is supplied with current from the power supply voltage generation unit 20 and the power storage unit C1.

すると無線部40は、上述したように初期動作を開始して所定の初期化を行い、休止状態に移行する。そして無線部40は、所定の周期(例えば1秒間隔)で無線部40の休止/作動を繰り返す。そして無線部40が休止状態になると電源電圧生成部20の出力電流によって蓄電部C1が充電されて、その両端の電圧は、休止状態の経過と共に徐々に上昇し、やがて電源電圧生成部20が出力する最大電圧VSUPに至る。   Then, the wireless unit 40 starts an initial operation as described above, performs predetermined initialization, and shifts to a dormant state. The wireless unit 40 repeats the pause / operation of the wireless unit 40 at a predetermined cycle (for example, at intervals of 1 second). When the wireless unit 40 is in a dormant state, the power storage unit C1 is charged by the output current of the power supply voltage generating unit 20, and the voltage at both ends gradually increases with the elapse of the dormant state, and the power supply voltage generating unit 20 eventually outputs. Reaches the maximum voltage VSUP.

次いで無線部40が所定の休止期間を満了して作動すると、電源電圧生成部20および蓄電部C1から無線部40に対して電源が供給される。このとき、電源電圧生成部20から出力される電流より無線部40の消費電流が大きいと、蓄電部C1に蓄えられた電荷が電流として無線部40に供給され、時間の経過と共に徐々に蓄電部C1の電圧が低下していく。   Next, when the wireless unit 40 expires and operates after a predetermined suspension period, power is supplied to the wireless unit 40 from the power supply voltage generation unit 20 and the power storage unit C1. At this time, if the consumption current of the wireless unit 40 is larger than the current output from the power supply voltage generation unit 20, the charge stored in the power storage unit C1 is supplied to the wireless unit 40 as a current, and gradually increases with time. The voltage of C1 decreases.

そして電圧監視部21は、蓄電部C1の第一の電圧閾値Vthhを下回り、更に第二の電圧閾値Vthlを下回ったことを検出したとき、電源制御部22に対して無線部40に供給している電流を断つオフ指令を与える。
無線部40に供給している電流が断たれると電源電圧生成部20から出力される電流は、蓄電部C1を充電することになる。したがって蓄電部C1両端の電圧は、時間の経過と共に徐々に高くなっていく。そうして蓄電部C1両端の電圧が第一の電圧閾値Vthhを上回ると電圧監視部21は、電源制御部22にオン指令を与えて無線部40を作動させる。
When the voltage monitoring unit 21 detects that the voltage is lower than the first voltage threshold Vthh of the power storage unit C1 and further lower than the second voltage threshold Vthl, the voltage monitoring unit 21 supplies the radio unit 40 with the power supply control unit 22. Give off command to cut off current.
When the current supplied to the wireless unit 40 is cut off, the current output from the power supply voltage generation unit 20 charges the power storage unit C1. Therefore, the voltage across power storage unit C1 gradually increases with time. Then, when the voltage across the power storage unit C1 exceeds the first voltage threshold value Vthh, the voltage monitoring unit 21 gives an ON command to the power supply control unit 22 to operate the radio unit 40.

ちなみに蓄電部C1をコンデンサ等で構成した場合、その静電容量は、無線部40の初期動作中および間欠動作中であっても第二の電圧閾値Vthlを下回らないことが必要である。そこで無線部40の初期動作で消費される電荷をQinit、無線部40の初期動作に要する時間をTinit、伝送路2に流れる最低電流値をIminとすれば、無線部40が初期動作をするために必要な蓄電部C1の静電容量C11は、次式で求めることができる。   Incidentally, when the power storage unit C1 is configured by a capacitor or the like, it is necessary that the electrostatic capacity does not fall below the second voltage threshold Vthl even during the initial operation and intermittent operation of the wireless unit 40. Therefore, if the charge consumed in the initial operation of the wireless unit 40 is Qinit, the time required for the initial operation of the wireless unit 40 is Tinit, and the minimum current value flowing through the transmission line 2 is Imin, the wireless unit 40 performs the initial operation. The capacitance C11 of the power storage unit C1 necessary for the calculation can be obtained by the following equation.

C11=(Qinit−Imin・Tinit)/(Vthh−Vthl)
同様に無線部40の間欠動作で消費される電荷をQint、無線部40の間欠動作に要する時間をTintとすれば、無線部40が間欠動作をするために必要な蓄電部C1の静電容量C12は、次式で求めることができる。
C12=(Qint−Imin・Tint)/(VSUP−Vthl)
蓄電部C1は、このようにして求められる静電容量C11,C12のそれぞれを同時に満たす静電容量を選定すればよい。しかしながら蓄電部C1の静電容量Cが大きいと次式に示されるように蓄電部C1両端の電圧が第一の閾値Vthhに到達するまでの時間T1が長くなる。
C11 = (Qinit−Imin · Tinit) / (Vthh−Vthl)
Similarly, if the charge consumed by the intermittent operation of the wireless unit 40 is Qint and the time required for the intermittent operation of the wireless unit 40 is Tint, the capacitance of the power storage unit C1 required for the wireless unit 40 to perform the intermittent operation. C12 can be obtained by the following equation.
C12 = (Qint−Imin · Tint) / (VSUP−Vthl)
The power storage unit C1 may select a capacitance that simultaneously satisfies each of the capacitances C11 and C12 thus determined. However, when the capacitance C of the power storage unit C1 is large, the time T1 until the voltage at both ends of the power storage unit C1 reaches the first threshold value Vthh increases as shown in the following equation.

T1=C×Vthh/Imin
したがって蓄電部C1の静電容量Cは、上述したようにして求めた静電容量C11,C12のそれぞれを同時に満たす静電容量であり、かつできるだけ小さな静電容量にすることが望ましい。
かくして上述したように構成された本発明の第二の実施形態に係る電流モニタ装置は、蓄電部C1の両端の電圧が無線部40が作動するに十分な電圧である第一の電圧閾値Vthhになるまでは、無線部40に電流を流さないようにするだけでなく、蓄電部C1両端の電圧が低下して無線部40の最低動作電圧Vminに達する前に第二の電圧閾値Vthlに到達したことをもって無線部40に供給する電流を断ち蓄電部C1両端の電圧が第一の電圧閾値Vthhを上回るまで無線部40に電流を供給しないので電源電圧生成部20によって確実に蓄電部C1が充電される。このため無線部40には、確実に作動する範囲の電圧が印加されることになるので無線部40が誤作動することなく正常に作動することができる。
T1 = C × Vthh / Imin
Therefore, it is desirable that the capacitance C of the power storage unit C1 is a capacitance that simultaneously satisfies the capacitances C11 and C12 obtained as described above and is as small as possible.
Thus, in the current monitoring device according to the second embodiment of the present invention configured as described above, the voltage at both ends of the power storage unit C1 is set to the first voltage threshold value Vthh that is sufficient for the radio unit 40 to operate. Until that time, not only does the current flow through the wireless unit 40, but also the voltage across the power storage unit C1 drops to reach the second voltage threshold Vthl before reaching the minimum operating voltage Vmin of the wireless unit 40. Since the current supplied to the wireless unit 40 is cut off and no current is supplied to the wireless unit 40 until the voltage across the power storage unit C1 exceeds the first voltage threshold value Vthh, the power storage unit C1 is reliably charged by the power supply voltage generation unit 20. The For this reason, since the voltage of the range which operates reliably is applied to the radio | wireless part 40, the radio | wireless part 40 can operate | move normally, without malfunctioning.

尚、上述した実施形態は、無線部40に与える電流を電圧監視部21および電圧制御部22によって制御していたが、図6にその変形例を示すように無線部40に換えて例えば電流値を表示する表示器などを備えた回路(1)41を駆動するようにしても勿論かまわない。
次に本発明の第三の実施形態に係る電流モニタ装置について図7を参照しながら説明する。この第三の実施形態が上述した実施形態と異なる点は、電源電圧生成部20と並列に第二の回路(回路(2))42を接続したところにある。この回路(2)42は、伝送路2に流れる最小電流値の4mAを下回る小電流で作動する例えばCPUやLCD表示器等である。つまり伝送路2に流れる電流が4mAであるとき、電源電圧生成部20から蓄電部C1以降の回路に流すことができる電流ISUPの最小値は、4mAから回路(2)42の消費電流を引いたものになる。換言すればこの実施形態は、伝送路2に流れる最小電流(例えば、4mA)よりも少ない消費電流の回路(2)42を電源電圧生成部20と並列に接続して作動させる一方、回路(2)42を作動させた余剰電流によって蓄電部C1を充電するものである。
In the above-described embodiment, the current supplied to the radio unit 40 is controlled by the voltage monitoring unit 21 and the voltage control unit 22. However, instead of the radio unit 40 as shown in FIG. Needless to say, the circuit (1) 41 having a display for displaying the signal may be driven.
Next, a current monitoring device according to a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the above-described embodiment in that a second circuit (circuit (2)) 42 is connected in parallel with the power supply voltage generation unit 20. The circuit (2) 42 is, for example, a CPU or an LCD display that operates with a small current less than 4 mA, which is the minimum current value flowing through the transmission line 2. That is, when the current flowing through the transmission line 2 is 4 mA, the minimum value of the current ISUP that can be passed from the power supply voltage generation unit 20 to the circuit after the power storage unit C1 is obtained by subtracting the current consumption of the circuit (2) 42 from 4 mA. Become a thing. In other words, in this embodiment, the circuit (2) 42 that consumes less current than the minimum current (for example, 4 mA) flowing through the transmission line 2 is operated in parallel with the power supply voltage generator 20 while the circuit (2 ) The power storage unit C1 is charged by the surplus current that has actuated 42.

ただし回路(2)42は、蓄電部C1と並列に接続されているので、蓄電部C1両端の電圧が回路(2)42の作動に必要な電圧になるまで電圧上昇を待つ必要がある。
かくして本発明の第三の実施形態に係る電流モニタ装置は、電圧監視部21および電源制御部22の制御によらず、電源電圧生成部20が出力した電流によって回路(2)42を作動させることができるとともに、回路(2)42を作動させた余剰電流によって蓄電部C1を充電することができる。回路(2)42の両端の電圧は、蓄電部C1の両端の電圧と等しくなる。回路(2)42の最低動作電圧がVthhよりも低い場合には、第一の実施形態または第二の実施形態で回路(1)41が作動を開始するよりも早いタイミングで回路(2)42を作動させることが可能となる。このため回路の一部にせよ早いタイミングで回路を作動させることができ、待ち時間を軽減できる。
However, since the circuit (2) 42 is connected in parallel with the power storage unit C1, it is necessary to wait for the voltage to rise until the voltage across the power storage unit C1 becomes a voltage necessary for the operation of the circuit (2) 42.
Thus, in the current monitoring device according to the third embodiment of the present invention, the circuit (2) 42 is operated by the current output from the power supply voltage generation unit 20 regardless of the control of the voltage monitoring unit 21 and the power supply control unit 22. In addition, the power storage unit C1 can be charged by the surplus current that operates the circuit (2) 42. The voltage across the circuit (2) 42 is equal to the voltage across the battery C1. When the minimum operating voltage of the circuit (2) 42 is lower than Vthh, the circuit (2) 42 is earlier than the circuit (1) 41 starts to operate in the first embodiment or the second embodiment. Can be activated. For this reason, even if it is a part of a circuit, a circuit can be operated at an early timing, and waiting time can be reduced.

次に本発明の第四の実施形態に係る電流モニタ装置について図8を参照しながら説明する。この第四の実施形態は、上述した第三の実施形態を変形したものであって、回路(2)と蓄電部C1との間の電源ライン(図8ではVSUPライン12)に定電流部50を設けた点にある。この定電流部50は、伝送路2に流れる最小電流(例えば、4mA)よりも少ない定電流I(例えば、3mA)で蓄電部C1を充電する役割を担っている。そして、定電流部50に流れる定電流Iの余剰電流Iは、電源電圧生成部20の出力に並列に接続された回路(2)42に供給される。 Next, a current monitoring device according to a fourth embodiment of the present invention will be described with reference to FIG. This fourth embodiment is a modification of the above-described third embodiment, in which the constant current unit 50 is connected to the power supply line (VSUP line 12 in FIG. 8) between the circuit (2) and the power storage unit C1. It is in the point which provided. The constant current unit 50 plays a role of charging the power storage unit C1 with a constant current I 0 (eg, 3 mA) smaller than the minimum current (eg, 4 mA) flowing through the transmission line 2. The surplus current I 2 of the constant current I 0 flowing through the constant current unit 50 is supplied to the circuit (2) 42 connected in parallel to the output of the power supply voltage generation unit 20.

かくして本発明の第四の実施形態に係る電流モニタ装置は、定電流部50によって蓄電部C1を一定電流で充電するように構成しているので回路(2)42から定電流部50を見た回路インピーダンスが高く、それゆえ蓄電部C1の両端の電圧が低くても、電源電圧生成部20の出力側の電圧を高く維持することができ、電流モニタ装置10を4/20mA伝送路2に接続後、すぐに回路(2)42を稼働させることができる。   Thus, since the current monitoring device according to the fourth embodiment of the present invention is configured to charge the power storage unit C1 with a constant current by the constant current unit 50, the constant current unit 50 is viewed from the circuit (2) 42. Even if the circuit impedance is high and therefore the voltage at both ends of the power storage unit C1 is low, the voltage on the output side of the power supply voltage generation unit 20 can be kept high, and the current monitor device 10 is connected to the 4/20 mA transmission line 2 Thereafter, the circuit (2) 42 can be operated immediately.

尚、本発明の電流モニタ装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもかまわない。   The current monitoring device of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.

本発明の第一の実施形態に係る電流モニタ装置の主要部を示す要部概略構成図。The principal part schematic block diagram which shows the principal part of the current monitor apparatus which concerns on 1st embodiment of this invention. 図1に示す電源制御部の構成例を示す回路図。FIG. 2 is a circuit diagram illustrating a configuration example of a power supply control unit illustrated in FIG. 1. 図1に示す電流モニタ装置における蓄電部両端の電圧と電圧監視部が出力する制御信号の関係を示す図。The figure which shows the relationship between the voltage of the both ends of the electrical storage part in the current monitor apparatus shown in FIG. 1, and the control signal which a voltage monitoring part outputs. 伝送路に流れる電流と蓄電部両端の電圧との関係を示すグラフ。The graph which shows the relationship between the electric current which flows through a transmission line, and the voltage of an electrical storage part both ends. 本発明の第二の実施形態に係る電流モニタ装置における蓄電部両端の電圧と電圧監視部が出力する制御信号の関係を示す図。The figure which shows the relationship between the voltage of the electrical storage part in the current monitoring apparatus which concerns on 2nd embodiment of this invention, and the control signal which a voltage monitoring part outputs. 本発明の第二の実施形態を変形した別の実施形態に係る電流モニタ装置の主要部を示す要部概略構成図。The principal part schematic block diagram which shows the principal part of the current monitor apparatus which concerns on another embodiment which deform | transformed 2nd embodiment of this invention. 本発明の第三の実施形態に係る電流モニタ装置の主要部を示す要部概略構成図。The principal part schematic block diagram which shows the principal part of the current monitor apparatus which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係る電流モニタ装置の主要部を示す要部概略構成図。The principal part schematic block diagram which shows the principal part of the current monitor apparatus which concerns on 4th embodiment of this invention. 従来の2線式伝送路を用いた工業用計測システムの原理的構成を示す概略ブロック図。The schematic block diagram which shows the fundamental structure of the industrial measurement system using the conventional 2-wire transmission line. 図9に示す工業計測システムに無線モニタ装置を設けた工業用計測システムの原理的構成を示す概略ブロック図。The schematic block diagram which shows the fundamental structure of the industrial measurement system which provided the wireless monitoring apparatus in the industrial measurement system shown in FIG. 発明者らが考案した電流モニタ装置の主要部を示す要部概略構成図。The principal part schematic block diagram which shows the principal part of the current monitor apparatus which inventors devised. 無線部に与える電圧と消費電流との関係の一例を示すグラフ。The graph which shows an example of the relationship between the voltage given to a radio | wireless part, and consumption current.

符号の説明Explanation of symbols

1 工業用計測器
2 伝送路
3 直流電源
4 負荷抵抗器
5 無線モニタ装置
6 電池
10 電流モニタ装置
11 GNDライン
12 VSUPライン
20 電源電圧生成部
21 電圧監視部
22 電源制御部
30 電流検出部
40 無線部
DESCRIPTION OF SYMBOLS 1 Industrial measuring instrument 2 Transmission line 3 DC power supply 4 Load resistor 5 Wireless monitoring apparatus 6 Battery 10 Current monitoring apparatus 11 GND line 12 VSUP line 20 Power supply voltage generation part 21 Voltage monitoring part 22 Power supply control part 30 Current detection part 40 Wireless Part

Claims (5)

測定器が測定した物理量を信号電流に変換して2本の伝送路に出力した電流値を計測する電流モニタ装置であって、
前記伝送路に介挿されて前記信号電流の電流値を計測する電流検出部と、
前記伝送路に介挿されて該伝送路に前記信号電流が流れることにより、その両端に生じた電圧を出力する電源電圧生成部と、
この電源電圧生成部の両端に並列に接続されて前記電源電圧生成部から出力される電流を蓄える蓄電部と、
この蓄電部の両端に接続されて、その両端の電圧を監視し、この電圧が所定の電圧値を超えたことを検出したとき制御信号を出力する電圧監視部と、
この電圧監視部から前記制御信号が出力されたとき前記電源電圧生成部および前記蓄電部を所定の第一の回路に接続してその回路を作動させる電源制御部と
を備えることを特徴とする電流モニタ装置。
A current monitoring device that measures a current value converted from a physical quantity measured by a measuring instrument into a signal current and output to two transmission lines,
A current detection unit that is inserted in the transmission path and measures the current value of the signal current;
A power supply voltage generation unit that outputs a voltage generated at both ends of the transmission line, when the signal current flows through the transmission line; and
A power storage unit that is connected in parallel to both ends of the power supply voltage generation unit and stores a current output from the power supply voltage generation unit;
A voltage monitoring unit connected to both ends of the power storage unit, monitoring a voltage at both ends, and outputting a control signal when detecting that the voltage exceeds a predetermined voltage value;
A current control unit configured to connect the power supply voltage generation unit and the power storage unit to a predetermined first circuit and operate the circuit when the control signal is output from the voltage monitoring unit; Monitor device.
前記電圧監視部は、前記蓄電部の両端の電圧が所定の電圧値を超えたことを検出したとき前記制御信号の出力を保持することを特徴とする請求項1に記載の電流モニタ装置。   The current monitoring apparatus according to claim 1, wherein the voltage monitoring unit holds the output of the control signal when detecting that the voltage across the power storage unit exceeds a predetermined voltage value. 前記電圧監視部は、前記蓄電部の両端の電圧が所定の第一の電圧値を超えたことを検出したときに前記制御信号の出力を保持し、前記蓄電部の両端の電圧が前記第一の電圧値より低い第二の電圧値を下回ったことを検出したときに前記制御信号の出力を停止することを特徴とする請求項1に記載の電流モニタ装置。   The voltage monitoring unit holds the output of the control signal when it detects that the voltage at both ends of the power storage unit exceeds a predetermined first voltage value, and the voltage at both ends of the power storage unit is 2. The current monitor device according to claim 1, wherein the output of the control signal is stopped when it is detected that the voltage value is lower than a second voltage value lower than the first voltage value. 請求項1〜3のいずれかに記載の電流モニタ装置であって、
更に前記電源電圧生成部の両端に並列に接続されて作動する第二の回路と、前記電源電圧生成部と前記蓄電部との間に介挿されて所定の電流を前記蓄電部に流し込む定電流部と
を備えることを特徴とする電流モニタ装置。
The current monitoring device according to any one of claims 1 to 3,
Furthermore, a second circuit that is connected and operated in parallel at both ends of the power supply voltage generation unit, and a constant current that is inserted between the power supply voltage generation unit and the power storage unit to flow a predetermined current into the power storage unit A current monitoring device.
前記第一の回路は、前記電流検出部が計測した電流値を無線伝送する無線部であることを特徴とする請求項1に記載の電流モニタ装置。   The current monitor device according to claim 1, wherein the first circuit is a wireless unit that wirelessly transmits a current value measured by the current detection unit.
JP2006279990A 2006-10-13 2006-10-13 Current monitoring device Pending JP2008097423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279990A JP2008097423A (en) 2006-10-13 2006-10-13 Current monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279990A JP2008097423A (en) 2006-10-13 2006-10-13 Current monitoring device

Publications (1)

Publication Number Publication Date
JP2008097423A true JP2008097423A (en) 2008-04-24

Family

ID=39380188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279990A Pending JP2008097423A (en) 2006-10-13 2006-10-13 Current monitoring device

Country Status (1)

Country Link
JP (1) JP2008097423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529601A (en) * 2008-07-31 2011-12-08 マイクロ・モーション・インコーポレーテッド Bus device and method for predictively limiting power consumption in a two-wire device bus
WO2015115654A1 (en) * 2014-01-31 2015-08-06 株式会社フジクラ Sensor node and method for controlling sensor node
JP2016170527A (en) * 2015-03-11 2016-09-23 国立研究開発法人産業技術総合研究所 Radio wave sensor terminal, and radio wave transmission method
WO2018066687A1 (en) * 2016-10-07 2018-04-12 国立大学法人電気通信大学 Wireless sensor device and wireless sensor system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529601A (en) * 2008-07-31 2011-12-08 マイクロ・モーション・インコーポレーテッド Bus device and method for predictively limiting power consumption in a two-wire device bus
WO2015115654A1 (en) * 2014-01-31 2015-08-06 株式会社フジクラ Sensor node and method for controlling sensor node
EP3101638A4 (en) * 2014-01-31 2017-08-23 Fujikura Ltd. Sensor node and method for controlling sensor node
US9973832B2 (en) 2014-01-31 2018-05-15 Fujikura Ltd. Sensor node and method of controlling sensor node
JP2016170527A (en) * 2015-03-11 2016-09-23 国立研究開発法人産業技術総合研究所 Radio wave sensor terminal, and radio wave transmission method
WO2018066687A1 (en) * 2016-10-07 2018-04-12 国立大学法人電気通信大学 Wireless sensor device and wireless sensor system
JPWO2018066687A1 (en) * 2016-10-07 2019-08-22 国立大学法人電気通信大学 Wireless sensor device and wireless sensor system

Similar Documents

Publication Publication Date Title
KR100969182B1 (en) Current monitor
EP1214572B1 (en) Two-wire fluid temperature transmitter with thermocouple diagnostics
US20050235758A1 (en) Low power ultrasonic flow meter
US9762150B2 (en) Self-powered sensor system
CN105974218A (en) Life determination device for dc capacitor connected to dc side of rectifier
WO2011005938A3 (en) Process variable transmitter with two-wire process control loop diagnostics
JP2008096431A (en) Fluid measuring instrument
KR101006710B1 (en) Leak detection system
JP2008097423A (en) Current monitoring device
JP6378754B2 (en) Industrial process variable transmitter using isolated and power scavenging intrinsically safe pulse output circuit
JPH03129929A (en) Communicator for field measuring instrument and its power supply method
JP4770916B2 (en) Electronic price tag system
KR101098042B1 (en) Wireless sensor network system and method for thereof
JP6815884B2 (en) Battery level alarm device, numerical control device and machine tool system
CN102257452A (en) Field device for determining and/or monitoring a physical or chemical process parameter
CN107425785B (en) Dynamic motor drive for battery operated devices
US20090277252A1 (en) Leakage detecting apparatus
JP2004157074A (en) Flow measuring device and gas meter
KR20150049359A (en) Apparatus and method for detecting battery life-time and remote controller having the same
JP5267975B2 (en) Secondary battery pack system
Srivastava et al. Wireless performance monitoring of chemical inventory
JP2019071036A (en) Wireless type sensor module and condition monitoring/diagnosis system
CN116097067A (en) Sensor system, sensor device and sensing method
JP2019090667A (en) Smart meter