JP6381317B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP6381317B2
JP6381317B2 JP2014132349A JP2014132349A JP6381317B2 JP 6381317 B2 JP6381317 B2 JP 6381317B2 JP 2014132349 A JP2014132349 A JP 2014132349A JP 2014132349 A JP2014132349 A JP 2014132349A JP 6381317 B2 JP6381317 B2 JP 6381317B2
Authority
JP
Japan
Prior art keywords
electrode
windmill
vacuum valve
magnetic body
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014132349A
Other languages
Japanese (ja)
Other versions
JP2016012418A (en
JP2016012418A5 (en
Inventor
貴和 原田
貴和 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014132349A priority Critical patent/JP6381317B2/en
Publication of JP2016012418A publication Critical patent/JP2016012418A/en
Publication of JP2016012418A5 publication Critical patent/JP2016012418A5/ja
Application granted granted Critical
Publication of JP6381317B2 publication Critical patent/JP6381317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

この発明は、電極を流れる電流により発生する磁界によって、アークを駆動するようにした風車形電極を備えた真空バルブに関するものである。   The present invention relates to a vacuum valve provided with a windmill-type electrode configured to drive an arc by a magnetic field generated by a current flowing through the electrode.

従来の真空バルブは、例えば特許文献1(特開2001−52576)で開示されているような構造を有している。
ここに開示された真空バルブは、図6に示すように遮断器固定側端子11と遮断器可動側端子12の間に配置されている。図6において、ガラスやアルミナセラミックス等からなる絶縁容器1の両端開口部には、開口部をそれぞれ覆うように固定側端板2、可動側端板3が固着され、内部には、高真空に排気された真空容器と、この真空容器の両端部に絶縁容器1と同軸上に設けられた固定側電極棒4、可動側電極棒5と、各電極棒の対向する端部に設けられた固定側風車電極6、可動側風車電極7を備え、可動側電極棒5には、例えば薄いステンレスで蛇腹状に製作されたベローズ9を配置することにより、真空気密を保持しつつ一方の電極棒を軸方向へ移動させることにより、両電極(即ち固定側電極、可動側電極)を接触又は離隔して通電又は遮断を行なうものである。また、固定側風車電極6と可動側風車電極7間で発生するアークによって絶縁容器1内部の汚損やベローズ9を保護するため、真空容器内側にはアークシールド8やベローズカバー10が装備されている。
A conventional vacuum valve has a structure as disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-52576.
The vacuum valve disclosed here is arranged between the circuit breaker fixed side terminal 11 and the circuit breaker movable side terminal 12 as shown in FIG. In FIG. 6, a fixed-side end plate 2 and a movable-side end plate 3 are fixed to the opening portions at both ends of an insulating container 1 made of glass, alumina ceramics, or the like so as to cover the openings, respectively. The evacuated vacuum vessel, the fixed side electrode rod 4 and the movable side electrode rod 5 provided coaxially with the insulating vessel 1 at both ends of the vacuum vessel, and fixed portions provided at opposite ends of the respective electrode rods A side windmill electrode 6 and a movable side windmill electrode 7 are provided, and the movable side electrode rod 5 is provided with a bellows 9 made of, for example, thin stainless steel in a bellows shape, so that one of the electrode rods is maintained while maintaining vacuum airtightness. By moving in the axial direction, both electrodes (that is, the fixed side electrode and the movable side electrode) are brought into contact with or separated from each other to be energized or cut off. Further, an arc shield 8 and a bellows cover 10 are provided inside the vacuum vessel in order to protect the inside of the insulating vessel 1 and the bellows 9 by an arc generated between the fixed windmill electrode 6 and the movable windmill electrode 7. .

図7は、このような真空バルブにおける風車電極の構造と電極内に流れる電流経路A及びその電流によって生じる電磁力Fを説明する構造図である。
固定側風車電極6と可動側風車電極7では、向きが逆方向であるが同形状に電極自身に溝を設けた風車形をなしている。電流遮断時には、電極間にアークが発生するが、電流が十数KAを超えるとアークは、アーク柱30を形成することが知られている。図7に示すように、風車形電極では、電極に設けられた溝により電流経路Aのように電流が流れ、この電流によってアーク柱30に対し横方向の磁界Bが発生する。この発生した磁界によりアーク柱30に電磁力Fが加わり、アークを円周方向に駆動させる。これにより、アークによる電極の局部溶解を避け、遮断性能の向上を図っている。
FIG. 7 is a structural diagram illustrating the structure of the windmill electrode in such a vacuum valve, the current path A flowing in the electrode, and the electromagnetic force F generated by the current.
The fixed-side windmill electrode 6 and the movable-side windmill electrode 7 have a windmill shape in which the direction is opposite, but the electrodes are provided with grooves in the same shape. When the current is interrupted, an arc is generated between the electrodes. It is known that the arc forms an arc column 30 when the current exceeds a dozen KA. As shown in FIG. 7, in the windmill-type electrode, a current flows like a current path A through a groove provided in the electrode, and a magnetic field B transverse to the arc column 30 is generated by this current. This generated magnetic field applies electromagnetic force F to the arc column 30 to drive the arc in the circumferential direction. As a result, local melting of the electrode due to the arc is avoided, and the interruption performance is improved.

図8は、風車形電極の背面に磁性体を配置した構造図である。
この構造の真空バルブは、例えば特許文献3(特開昭61−153912)で開示されており、図8に示すように、遮断容量をより増大させるために風車電極背面に磁性体20を配置したものである。
このように風車電極背面に磁性体20を配置することによってアークによって発生する磁界を増大させる構造も提案されている。
FIG. 8 is a structural diagram in which a magnetic body is arranged on the back surface of the windmill electrode.
A vacuum valve having this structure is disclosed in, for example, Patent Document 3 (Japanese Patent Laid-Open No. 61-153912). As shown in FIG. 8, a magnetic body 20 is disposed on the back surface of the windmill electrode in order to further increase the breaking capacity. Is.
In this way, a structure that increases the magnetic field generated by the arc by arranging the magnetic body 20 on the back surface of the windmill electrode has been proposed.

特開2001−52576号公報JP 2001-52576 A 特開昭60−74320号公報JP 60-74320 A 特開昭61−153912号公報JP 61-153912 A

図9は、電極背面に磁性体を持たない従来の真空バルブに採用された風車形電極において、電極上のアーク柱の位置によって変化する電磁力の大きさと方向を示す説明図である(図は可動側風車電極7のみ示す)。
図中の各矢印は、固定側電極棒4から可動側電極棒5に電流が流れた場合(図では示していないが)のアーク柱30に加わる電磁力40で、矢印の向き、長さが電磁力の向き、大きさを表す。
FIG. 9 is an explanatory diagram showing the magnitude and direction of electromagnetic force that changes depending on the position of the arc column on the electrode in a windmill-type electrode employed in a conventional vacuum valve that does not have a magnetic body on the back surface of the electrode (the figure is a diagram). Only the movable windmill electrode 7 is shown).
Each arrow in the figure is an electromagnetic force 40 applied to the arc column 30 when a current flows from the fixed electrode rod 4 to the movable electrode rod 5 (not shown in the figure). Represents the direction and magnitude of electromagnetic force.

前述したように、電極間に発生したアーク柱30は、電流経路Aを流れる電流によってアーク柱30に対して横方向の磁界が加えられ矢印の40aから40e方向に電磁力が加わる。
この電磁力40によってアーク柱30は、羽の根本から先端方向に向かって30aから30eのように駆動され、アーク柱30が羽の先端部まで駆動されると隣の羽にアーク柱30が移行する。これを繰り返すことにより、アーク柱30は、風車電極上の外周部を加速しながら回転し、電流遮断時の遮断位相によって異なるがアーク時間の長い場合4〜6周回転する。
このようにアークを電極上で回転させることによってアークによる局部加熱を避け遮断性能を向上させる。
As described above, the arc column 30 generated between the electrodes is applied with a magnetic field in the lateral direction with respect to the arc column 30 by the current flowing through the current path A, and electromagnetic force is applied in the directions of arrows 40a to 40e.
By this electromagnetic force 40, the arc column 30 is driven from the root of the wing toward the tip as shown by 30a to 30e, and when the arc column 30 is driven to the tip of the wing, the arc column 30 moves to the adjacent wing. To do. By repeating this, the arc column 30 rotates while accelerating the outer peripheral portion on the windmill electrode, and rotates 4 to 6 times when the arc time is long although it differs depending on the interruption phase at the time of interruption of current.
Thus, by rotating the arc on the electrode, local heating due to the arc is avoided and the interruption performance is improved.

このような風車形電極構造では、遮断性能を向上させるためには、できるだけアーク柱の駆動速度を早くすることで電極の局部的な加熱を抑制する必要があるが、アーク柱が風車の根本付近(例えば30a)にある場合、アークを駆動させる電磁力が比較的弱く、電磁力の方向も電極の外側へ向く半径方向成分が大きい。
このため、特に電流遮断開始時にアークの発弧が風車の根本で開始されるとアーク停滞時間が長くなる傾向にあった。また、アークが駆動され風車の1つの羽先端から次の羽へ移行した直後にかかる電磁力が外側方向へ向いているため、アークの周方向の回転速度の加速を阻害していた。このため、遮断容量の大容量化のためには、いかにして羽の根本部分のアーク駆動力を向上させるかが課題であった。
In such a windmill-type electrode structure, in order to improve the interruption performance, it is necessary to suppress the local heating of the electrode by increasing the arc column driving speed as much as possible, but the arc column is near the root of the windmill. In the case of (for example, 30a), the electromagnetic force that drives the arc is relatively weak, and the direction of the electromagnetic force also has a large radial component toward the outside of the electrode.
For this reason, the arc stagnation time tends to be long, particularly when the arc is started at the base of the windmill at the start of current interruption. Further, since the electromagnetic force applied immediately after the arc is driven to move from one wing tip of the wind turbine to the next wing is directed outward, acceleration of the rotational speed in the circumferential direction of the arc is hindered. For this reason, in order to increase the breaking capacity, it has been a problem how to improve the arc driving force at the base of the wing.

図10は、電極背面に磁性体を持つ従来の真空バルブに採用された風車形電極において、電磁力の大きさと方向を示す説明図であり、図中の点線矢印の40aは、磁性体を持たない場合、実線矢印の41aは、磁性体を持つ場合の電磁力である。なお、電極に流れる電流の向きは図9と同じである。   FIG. 10 is an explanatory diagram showing the magnitude and direction of electromagnetic force in a windmill-type electrode employed in a conventional vacuum valve having a magnetic body on the back surface of the electrode, and a dotted arrow 40a in the figure has a magnetic body. When there is not, 41a of a solid line arrow is an electromagnetic force when it has a magnetic body. In addition, the direction of the electric current which flows into an electrode is the same as FIG.

このように電極の背面全体に磁性体20を配置した場合では、アーク柱の位置にかかわらず発生する磁界が強くなるためアークに加わる電磁力は大きくなる。ところが、風車電極の背面にただ磁性体20を配置するだけでは、磁界の向きを制御できず、風車の根本付近にアーク柱がある場合(図10の30a)では、電磁力41aの方向が、矢印の40aに比べ電極の外側方向に非常に大きくなってしまう。このため、アークが羽の根本から先端に駆動され、羽の先端から次の羽へ移行するときにアークを効率よく加速することができず、駆動速度が上がりにくくなるという弊害があった。また、アークの電極外部への吹き出しが大きく、シールドを損傷させる場合もあった。   In this way, when the magnetic body 20 is arranged on the entire back surface of the electrode, the generated magnetic field becomes strong regardless of the position of the arc column, and therefore the electromagnetic force applied to the arc increases. However, simply arranging the magnetic body 20 on the back surface of the windmill electrode cannot control the direction of the magnetic field, and when the arc column is near the root of the windmill (30a in FIG. 10), the direction of the electromagnetic force 41a is Compared to the arrow 40a, it becomes very large in the outer direction of the electrode. For this reason, the arc is driven from the base of the wing to the tip, and the arc cannot be efficiently accelerated when moving from the tip of the wing to the next wing, and the driving speed is difficult to increase. In addition, the arc is often blown out of the electrode, and the shield may be damaged.

この発明に係わる真空バルブは、真空容器の一方の端部に固設された固定側電極棒、他
方の端部に進退自在に設けられた可動側電極棒、及び円弧状の風車羽を有し上記固定側電
極棒及び上記可動側電極棒の対向端部に、接離可能に配置された固定側風車形電極及び可
動側風車形電極を備えた真空バルブであって、少なくとも上記固定側風車形電極及び上記
可動側風車形電極の一方の風車形電極において、少なくとも1枚の風車形電極の付け根部
のみに、断面が凹状の磁性体が装着されているものである。
A vacuum valve according to the present invention has a fixed-side electrode rod fixed at one end of a vacuum vessel, a movable-side electrode rod provided at the other end so as to be movable back and forth, and an arcuate windmill blade. A vacuum valve provided with a fixed side windmill electrode and a movable side windmill electrode disposed so as to be able to contact and separate at opposite ends of the fixed side electrode rod and the movable side electrode rod, and at least the fixed side windmill type In one of the electrodes and the wind turbine electrode of the movable wind turbine electrode, the root portion of at least one wind turbine electrode
Only a magnetic body having a concave cross section is mounted.

この発明の真空バルブよれば、風車電極によって発生する磁界が比較的弱い羽の根本部分の磁界を強くすることができ、電磁力の方向も円周方向に制御できるようになるため、電流遮断時にアークの発弧が、風車羽の根本で起こったとしても速やかにアークが駆動され、また、アークが風車羽を跨いで駆動されるときでも、アークが電極外側に振られることなく周方向に駆動され続けることが可能になることから、アークの駆動速度が向上し、電極の局部加熱をより低減することで遮断性能を向上させることが可能となる。   According to the vacuum valve of the present invention, the magnetic field generated by the windmill electrode can be strengthened with a relatively weak magnetic field at the base of the wing, and the direction of the electromagnetic force can be controlled in the circumferential direction. Even if the arc is generated at the root of the wind turbine blade, the arc is driven quickly, and even when the arc is driven across the wind turbine blade, the arc is driven in the circumferential direction without being shaken outside the electrode. Since it becomes possible to continue being performed, the driving speed of the arc is improved, and it becomes possible to improve the interruption performance by further reducing the local heating of the electrode.

この発明の実施の形態1における真空バルブの風車形電極を示す構造図である。It is a structural diagram which shows the windmill-type electrode of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における真空バルブの磁性体を示す構造図である。It is a structural diagram which shows the magnetic body of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における真空バルブの電極に生じる電磁力を示す説明図である。It is explanatory drawing which shows the electromagnetic force which arises in the electrode of the vacuum valve in Embodiment 1 of this invention. 図2で示した、この発明の実施の形態1における真空バルブの磁性体の補足説明図である。FIG. 3 is a supplementary explanatory diagram of the magnetic body of the vacuum valve shown in FIG. 2 according to Embodiment 1 of the present invention. この発明の実施の形態2における真空バルブを示す構造図である。It is a structural diagram which shows the vacuum valve in Embodiment 2 of this invention. この発明の実施の形態2における真空バルブの電極に生じる電磁力を示す説明図で、(a)は図4を固定側から見たときの遮断器端子と風車電極、磁性体の位置関係を示す説明図、(b)はその要部拡大図である。It is explanatory drawing which shows the electromagnetic force which arises in the electrode of the vacuum valve in Embodiment 2 of this invention, (a) shows the positional relationship of a circuit breaker terminal, a windmill electrode, and a magnetic body when FIG. 4 is seen from a fixed side. Explanatory drawing, (b) is the principal part enlarged view. 従来の真空バルブの構造図である(特許文献1)。It is a structural diagram of a conventional vacuum valve (Patent Document 1). 従来の真空バルブの風車電極の構造、電流経路及び発生する電磁力の説明図である。It is explanatory drawing of the structure of a windmill electrode of the conventional vacuum valve, an electric current path, and the electromagnetic force to generate | occur | produce. 従来の真空バルブの磁性体を持つ風車電極の構造図である(特許文献3)。It is a structural diagram of a windmill electrode having a magnetic material of a conventional vacuum valve (Patent Document 3). 従来の真空バルブの磁性体を持たない風車電極において、アークの位置に対する電磁力の方向と大きさを示す説明図である。It is explanatory drawing which shows the direction and magnitude | size of an electromagnetic force with respect to the position of an arc in the windmill electrode which does not have the magnetic body of the conventional vacuum valve. 従来の真空バルブの磁性体を持つ風車電極において、アークの位置に対する電磁力の方向と大きさを示す説明図である。It is explanatory drawing which shows the direction and magnitude | size of electromagnetic force with respect to the position of an arc in the windmill electrode with the magnetic body of the conventional vacuum valve.

以下、図面に基づいて、この発明の各実施の形態を説明する。
なお、各図間において、同一符号は同一あるいは相当部分を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the drawings, the same reference numerals indicate the same or corresponding parts.

実施の形態1.
図1〜図3に基づいて実施の形態1を説明する。
図1は、この発明の実施の形態1における真空バルブの風車形電極を示す構造図、図2は、真空バルブの磁性体を示す構造図、図3は、真空バルブの電極に生じる電磁力を示す説明図である。
実施の形態1において、風車形電極の真空バルブへの組み込みは、背景技術(段落0002)で説明したように、固定側風車電極6と可動側風車電極7を対向させたときに風車の向きが一致するように、固定側と可動側の風車の溝の向きを逆方向に形成した一対の風車形電極を用いる。その際、風車の溝の向きは固定側、可動側どちらの向きであっても構わないが、以降の説明では、可動側風車電極7として説明する。なお、電極部以外の真空バルブの構造は、背景技術(段落0002)で説明した図6と同等であるため説明は省略する。
Embodiment 1 FIG.
The first embodiment will be described with reference to FIGS.
FIG. 1 is a structural diagram showing a windmill electrode of a vacuum valve according to Embodiment 1 of the present invention, FIG. 2 is a structural diagram showing a magnetic body of the vacuum valve, and FIG. 3 is a graph showing electromagnetic force generated at the electrode of the vacuum valve. It is explanatory drawing shown.
In the first embodiment, as described in the background art (paragraph 0002), the windmill electrode is incorporated into the vacuum valve so that the windmill is oriented when the fixed windmill electrode 6 and the movable windmill electrode 7 are opposed to each other. A pair of windmill-shaped electrodes in which the directions of the grooves of the windmill on the fixed side and the movable side are reversed so as to coincide with each other are used. At this time, the direction of the groove of the windmill may be either the fixed side or the movable side, but in the following description, the groove is described as the movable side windmill electrode 7. Note that the structure of the vacuum valve other than the electrode section is the same as that in FIG. 6 described in the background art (paragraph 0002), and thus the description thereof is omitted.

図1において、可動側風車電極7は、円盤状をした接点材料からなり、後述の可動側電極棒5が接合される円形の中心部70を有している。そして、中心部70側から電極周縁に向かって渦巻き状に伸びる複数(図では4個の)の風車電極溝71が形成され、複数の区分に区画され、風車形に形成されている。風車電極溝71は、電極の表面から裏面まで切れ込んでいる。なお、風車電極溝71の数は4個に限定されるものではない。   In FIG. 1, the movable side windmill electrode 7 is made of a disc-shaped contact material, and has a circular center part 70 to which a movable side electrode rod 5 described later is joined. A plurality (four in the figure) of windmill electrode grooves 71 extending in a spiral shape from the central portion 70 side toward the electrode periphery are formed, divided into a plurality of sections, and formed into a windmill shape. The windmill electrode groove 71 is cut from the front surface to the back surface of the electrode. The number of windmill electrode grooves 71 is not limited to four.

可動側風車電極7の材料は、主に遮断性、耐圧性、耐溶着性に優れたものが望まれ、Cuマトリックス中にCr粒子を分散させたCu−Cr合金が用いられる。耐アーク成分であるCrの含有量は20〜60wt%の範囲とするのが好ましい。
その理由は、20wt%未満ではアークによる損傷を受けやすく耐溶着性が低下し、60wt%を超えると加工性や耐熱衝撃性が低下するためである。また、Cu−Cr合金の密度比は高い導電率や熱伝導性を得るために95%以上が好ましい。
The material of the movable side windmill electrode 7 is mainly desired to have excellent barrier properties, pressure resistance, and welding resistance, and a Cu—Cr alloy in which Cr particles are dispersed in a Cu matrix is used. The content of Cr as an arc resistant component is preferably in the range of 20 to 60 wt%.
The reason is that if it is less than 20 wt%, it is easy to be damaged by the arc and the welding resistance is lowered, and if it exceeds 60 wt%, the workability and thermal shock resistance are lowered. Further, the density ratio of the Cu—Cr alloy is preferably 95% or more in order to obtain high electrical conductivity and thermal conductivity.

また、Cu−Cr合金の耐圧性や遮断性能を改善するために、Mo、Nb、W、Ta、Fe、Al、Si、Tiの元素を1種以上添加してもよい。また、耐溶着性を確保するために接触子材料中にBi、Te、Se、Sbの低融点成分を添加してもよい。
低融点成分の含有量は0.01〜5wt%が好ましい。その理由は、0.01wt%以下では耐溶着性の改善効果を得ることができず、5wt%以上では耐圧性能の低下を招くためである。
In addition, in order to improve the pressure resistance and barrier performance of the Cu—Cr alloy, one or more elements of Mo, Nb, W, Ta, Fe, Al, Si, and Ti may be added. Moreover, in order to ensure welding resistance, you may add the low melting-point component of Bi, Te, Se, and Sb in contact material.
The content of the low melting point component is preferably 0.01 to 5 wt%. The reason is that if 0.01 wt% or less, the effect of improving the welding resistance cannot be obtained, and if 5 wt% or more, the pressure resistance performance is lowered.

可動側電極棒5は、純Cu又は導電率が40%IACS以上を示すCu合金を用いる。導電率が40%IACS未満だと、熱伝導性が劣るので遮断性能を向上する効果が得られない。
Cu合金は、例えばCu中にAg、Cr、Zr、W、Mo、Nb、Sn、Fe、Si、Niが1種又は2種以上添加されたもの等が挙げられる。
The movable electrode rod 5 is made of pure Cu or a Cu alloy having a conductivity of 40% IACS or higher. If the electrical conductivity is less than 40% IACS, the thermal conductivity is inferior, and the effect of improving the blocking performance cannot be obtained.
Examples of the Cu alloy include those in which one or more of Ag, Cr, Zr, W, Mo, Nb, Sn, Fe, Si, and Ni are added to Cu.

磁性体20は、例えば鉄、コバルト、ニッケル等からなる強磁性体であり、その形状は、図2に示すように断面が凹状で、台座部24とこの台座部の両側から立ち上がり立設された一対の立設部(外側立設部21と内側立設部22)とによって構成されている。そして、固定側と可動側の電極が対向する側に向くように、すなわち立設部の両上端面は、他方の電極に対向するよう配置され且つ台座部24が例えばロウ付けなどにより風車電極の付け根部(風車羽の根本付近)に固着されている。なお、立設部(外側立設部21と内側立設部22)の両上端面を、他方の電極に対向する側に向けるのは、アークの駆動経路側を立設部側とすることで、磁性体20がアークに触れないようにするためである。   The magnetic body 20 is a ferromagnetic body made of, for example, iron, cobalt, nickel, etc., and its shape is concave as shown in FIG. 2, and is erected from the pedestal 24 and both sides of the pedestal. It is comprised by a pair of standing part (the outer standing part 21 and the inner standing part 22). Then, the upper and lower end surfaces of the standing portion are arranged to face the other electrode so that the fixed side and the movable side electrodes face each other. It is fixed to the root (near the root of the windmill blade). Note that the upper end surfaces of the erected portions (the outer erected portion 21 and the inner erected portion 22) are directed to the side facing the other electrode by setting the arc drive path side as the erected portion side. This is to prevent the magnetic body 20 from touching the arc.

また、断面が凹状の磁性体20は、その両立設部のうち、円弧状の風車羽(風車形電極の)の外周側に位置する外側立設部21は、内側立設部22よりも風車形電極の先端部方向に変位させて配置されており、台座部24において、外側立設部21の中心部と内側立設部22の中心部とを、電極棒の径方向に結ぶ中心線H(磁性体20の中心線)と直交する方向Hが、風車形電極の先端部方向を向くよう配置されている。なお、23は磁性体20の側端面(電極棒径方向の)である。 In addition, the magnetic body 20 having a concave cross section has an outer standing portion 21 located on the outer peripheral side of the arcuate windmill blade (of the windmill-shaped electrode), and the windmill is more wind turbine than the inner standing portion 22. The center electrode H is displaced in the direction of the distal end portion of the shaped electrode, and in the pedestal portion 24, a center line H connecting the center portion of the outer standing portion 21 and the center portion of the inner standing portion 22 in the radial direction of the electrode rod. A direction H X orthogonal to Y (center line of the magnetic body 20) is arranged so as to face the tip of the windmill electrode. Reference numeral 23 denotes a side end face of the magnetic body 20 (in the electrode rod radial direction).

このように磁性体20を配置すると、風車羽に電流(電流経路A)が流れたときに発生する磁束は、断面が凹状の磁性体20を通り外側立設部21から出た磁束は、内側立設部22に戻るように発生し、アーク柱に加わる電磁力42aの大きさを大きくする。   When the magnetic body 20 is arranged in this way, the magnetic flux generated when a current (current path A) flows through the windmill blades passes through the magnetic body 20 having a concave cross section, and the magnetic flux emitted from the outer standing portion 21 is inward. The magnitude of the electromagnetic force 42a generated to return to the standing portion 22 and applied to the arc column is increased.

また、磁性体20を上述のように配置することで、磁性体20を配置した付近におけるアーク柱に加わる電磁力42aの大きさを大きくするだけでなく向きを風車羽の先端部を向く周方向に制御することが可能となり、アークの駆動速度を向上させ電極の局部加熱をより低減することで遮断性能を向上させることが可能となる。
また、アークが電極部の外側へ吹き出すこともなくなるためシールド部を損傷させることをなくすことが可能となる。
Further, by arranging the magnetic body 20 as described above, not only the magnitude of the electromagnetic force 42a applied to the arc column in the vicinity of the arrangement of the magnetic body 20 is increased, but also the circumferential direction in which the direction faces the tip of the wind turbine blade. It becomes possible to improve the interruption performance by improving the arc drive speed and further reducing the local heating of the electrodes.
Further, since the arc does not blow out to the outside of the electrode part, it is possible to eliminate the damage to the shield part.

因みに、磁性体20を、この実施の形態1とは異なる通常の状態で設置した場合(断面凹状で単純形状の磁性体を採用、図3A中、点線で示した21a、22a参照)は、風車羽に電流(電流経路A)が流れた時に生じる電磁力が外側(40a)を向き、アークを駆
動させたい向き、すなわちアークを風車羽の先端部方向(電磁力42a〜42e)に向くよう駆動させる制御ができないが、段落0021で説明したように、中心線Hと直交する方向Hを、アークを駆動させたい方向に向ける(風車羽の先端方向)ことで、アークの駆動方向の制御が可能となる。
Incidentally, when the magnetic body 20 is installed in a normal state different from the first embodiment (a magnetic body having a concave cross section and a simple shape is employed, see 21a and 22a indicated by dotted lines in FIG. 3A), the windmill The electromagnetic force generated when a current (current path A) flows through the wing is directed outward (40a) to drive the arc, that is, the arc is driven toward the tip of the wind turbine blade (electromagnetic forces 42a to 42e). However, as described in paragraph 0021, the direction H X orthogonal to the center line H Y is directed to the direction in which the arc is to be driven (the tip direction of the windmill blade), thereby controlling the arc driving direction. Is possible.

この実施の形態1における風車形電極のアークの駆動特性について、真空チャンバ内に電極をセットし遮断時のアーク挙動を高速度カメラで撮影するという手法で研究を行ない、風車形電極におけるアークの駆動特性について調べた結果、風車羽の幅をW、磁性体の幅をDとした場合、W/2≦D≦2Wのとき最もアークの駆動速度を向上させアークの電極外側への吹き出しが抑制できることが確認された。   The arc driving characteristics of the windmill electrode in the first embodiment are studied by a method of setting an electrode in the vacuum chamber and photographing the arc behavior at the time of interruption with a high-speed camera, and driving the arc in the windmill electrode. As a result of investigating the characteristics, when the width of the windmill blade is W and the width of the magnetic body is D, when W / 2 ≦ D ≦ 2W, the arc driving speed is most improved and the discharge of the arc to the outside of the electrode can be suppressed. Was confirmed.

また、磁性体20の配置位置に関しては、図3に示すように、磁性体20の厚みをTとしたとき、風車電極の最外径となる外周位置72から磁性体の厚みT分だけ内径側に変位した風車電極の外周位置、すなわち風車電極の外周部73と、隣接する風車電極の先端部74との間に形成される外周幅75との幅内に、磁性体20の外側立設部21を配置するとよい。
磁性体20を、このように配置することで電極最外径を大きくすることなく遮断性能に優れた真空バルブ用風車電極を構成することが可能となる。すなわち、磁性体20が風車電極の最外径より突き出ると、電界的な弱点となって耐電圧性能の低下を招く恐れがあるが、これを防ぐことができる。
Further, regarding the arrangement position of the magnetic body 20, as shown in FIG. 3, when the thickness of the magnetic body 20 is T, the inner diameter side of the outer peripheral position 72, which is the outermost diameter of the windmill electrode, by the thickness T of the magnetic body. The outer peripheral position of the magnetic body 20 is within the width of the outer peripheral position of the windmill electrode that is displaced, that is, the outer peripheral width 75 formed between the outer peripheral portion 73 of the windmill electrode and the tip 74 of the adjacent windmill electrode. 21 may be arranged.
By disposing the magnetic body 20 in this way, it is possible to configure a vacuum bulb windmill electrode excellent in blocking performance without increasing the outermost diameter of the electrode. That is, when the magnetic body 20 protrudes from the outermost diameter of the windmill electrode, there is a possibility that the withstand voltage performance may be lowered due to an electric field weak point, but this can be prevented.

実施の形態2.
図4〜図5に基づいて実施の形態2を説明する。
図4は、この発明の実施の形態2における真空バルブを示す構造図、図5は、この発明の実施の形態2における真空バルブの電極に生じる電磁力を示す説明図で、(a)は図4を固定側から見たときの遮断器端子と風車電極、磁性体の位置関係を示す説明図、(b)はその要部を拡大して示した説明図である。
Embodiment 2. FIG.
The second embodiment will be described with reference to FIGS.
FIG. 4 is a structural diagram showing a vacuum valve according to Embodiment 2 of the present invention, FIG. 5 is an explanatory diagram showing electromagnetic force generated at the electrode of the vacuum valve according to Embodiment 2 of the present invention, and FIG. Explanatory drawing which shows the positional relationship of a circuit breaker terminal, a windmill electrode, and a magnetic body when 4 is seen from the fixed side, (b) is explanatory drawing which expanded and showed the principal part.

図4のように、遮断器固定側端子11と遮断器可動側端子12の間に真空バルブを配置するような遮断器の場合、電流遮断時に電極間に発生するアーク柱30は、遮断器端子を流れる電流Iによって生じる電磁力F(図5(b)のf1参照)の影響も受ける。
図4では、遮断器固定側端子11から真空バルブを通って遮断器可動側端子12に電流Iが流れることで紙面に対して奥から手前方向に磁界が発生しアーク柱30が端子とは反対方向にFという電磁力が加わる。また、流れる電流Iが逆の場合も発生する磁界の方向が逆になるため電磁力Fの方向は同じ方向になる。
As shown in FIG. 4, in the case of a circuit breaker in which a vacuum valve is disposed between the circuit breaker fixed side terminal 11 and the circuit breaker movable side terminal 12, the arc column 30 generated between the electrodes when the current is interrupted is the circuit breaker terminal. Is also affected by the electromagnetic force F (see f1 in FIG. 5B) generated by the current I flowing through the.
In FIG. 4, a current I flows from the breaker fixed side terminal 11 through the vacuum valve to the breaker movable side terminal 12, so that a magnetic field is generated from the back to the front with respect to the paper surface, and the arc column 30 is opposite to the terminal. An electromagnetic force of F is applied in the direction. Further, when the flowing current I is reversed, the direction of the generated magnetic field is reversed, so that the direction of the electromagnetic force F is the same.

図5(b)において、アーク柱30が図の上側にある風車電極の場合は、端子によって生じる電磁力f1と風車電極によって生じる電磁力f2(42a)の向きが逆向きとなり、駆動力が減少するため磁性体20の設置数を増やして駆動力をカバーする必要がある。
他方、アーク柱30が図の下側にある風車電極の場合は、端子によって生じる電磁力f1と風車電極によって生じる電磁力f2の向きが同じ向きとなり、電磁力が足し合わされることになるので、磁性体20をなくしても駆動力が得られることになる。
In FIG. 5B, when the arc column 30 is a windmill electrode on the upper side of the figure, the direction of the electromagnetic force f1 generated by the terminal and the direction of the electromagnetic force f2 (42a) generated by the windmill electrode is reversed to reduce the driving force. Therefore, it is necessary to increase the number of installed magnetic bodies 20 to cover the driving force.
On the other hand, when the arc column 30 is a windmill electrode on the lower side of the figure, the direction of the electromagnetic force f1 generated by the terminal and the direction of the electromagnetic force f2 generated by the windmill electrode is the same, and the electromagnetic force is added. Even if the magnetic body 20 is eliminated, a driving force can be obtained.

上述のように遮断器に真空バルブを取り付けたとき一定方向に電磁力が加わる場合には、図5のように電流遮断時に風車電極によって発生する電磁力が遮断器端子によって発生する電磁力と同じ方向になる側の風車羽に取り付ける磁性体の数を減らし、打消しあう側の風車羽に取り付ける磁性体の数を増やすとよい。
このように風車形電極に取り付ける断面が凹状の磁性体20の設置数を、電流Iが遮断器の両端子から真空バルブを流れる際に生じる電磁力の向きに応じて設定されていることで、風車電極の上を駆動されるアーク柱が遮断器端子によって発生する磁界によって減速
されるのを抑制し、遮断性能の良い真空バルブを提供することが可能となる。
When an electromagnetic force is applied in a certain direction when the vacuum valve is attached to the circuit breaker as described above, the electromagnetic force generated by the windmill electrode when the current is interrupted is the same as the electromagnetic force generated by the circuit breaker terminal as shown in FIG. It is preferable to reduce the number of magnetic bodies attached to the wind turbine blades on the direction side and increase the number of magnetic bodies attached to the wind turbine blades on the side to be countered.
In this way, the number of magnetic bodies 20 having a concave cross section attached to the windmill electrode is set according to the direction of the electromagnetic force generated when the current I flows through the vacuum valve from both terminals of the circuit breaker. It is possible to suppress the arc column driven on the windmill electrode from being decelerated by the magnetic field generated by the circuit breaker terminal, and to provide a vacuum valve with good interrupting performance.

ここで、各電磁力の符号について説明する。
電磁力40は、「磁性体なし」におけるアーク柱に加わる電磁力、
電磁力40a〜40eは、電流経路Aの電流による電磁力、
電磁力41は、「磁性体あり」におけるアーク柱に加わる電磁力、
電磁力42aは、この発明の風車電極におけるアーク柱に加わる電磁力である。
Here, the sign of each electromagnetic force will be described.
The electromagnetic force 40 is an electromagnetic force applied to the arc column in “no magnetic body”,
Electromagnetic forces 40a to 40e are electromagnetic forces caused by current in current path A,
The electromagnetic force 41 is an electromagnetic force applied to the arc column in “with magnetic material”,
The electromagnetic force 42a is an electromagnetic force applied to the arc column in the windmill electrode of the present invention.

なお、この発明は、その発明の範囲内において、各実施の形態を適宜、変形、省略することが可能である。   In the present invention, each embodiment can be appropriately modified or omitted within the scope of the invention.

1:絶縁容器、 2:固定側端板、 3:可動側端板、 4:固定側電極棒、
5:可動側電極棒、 6:固定側風車電極、 7:可動側風車電極、
8:アークシールド、 9:ベローズ、 10:ベローズカバー、
11:遮断器固定側端子、 12:遮断器可動側端子、 A:電流経路、
20:磁性体、 21:外側立設部、 22:内側立設部、 24:台座部、
23:磁性体の側端面、 30:アーク柱、
40:電磁力、 40a〜40e:電磁力、 41:電磁力、 42a:電磁力、
71:風車電極溝、
72:外周位置(最外径となる外周位置)、
73:外周位置(内径側に変位した風車電極の外周位置)、
74:隣接風車電極の先端部、
75:磁性体配置の外周幅(磁性体配置位置)。
1: Insulating container, 2: Fixed side end plate, 3: Movable side end plate, 4: Fixed side electrode rod,
5: movable side electrode rod, 6: fixed side windmill electrode, 7: movable side windmill electrode,
8: Arc shield, 9: Bellows, 10: Bellows cover,
11: Circuit breaker fixed side terminal, 12: Circuit breaker movable side terminal, A: Current path,
20: Magnetic body, 21: Outside standing part, 22: Inside standing part, 24: Base part,
23: Side end surface of magnetic material, 30: Arc column,
40: Electromagnetic force, 40a to 40e: Electromagnetic force, 41: Electromagnetic force, 42a: Electromagnetic force,
71: Windmill electrode groove,
72: Outer peripheral position (outer peripheral position that is the outermost diameter),
73: outer peripheral position (the outer peripheral position of the windmill electrode displaced to the inner diameter side),
74: the tip of the adjacent windmill electrode,
75: Perimeter width of magnetic body arrangement (magnetic body arrangement position).

Claims (6)

真空容器の一方の端部に固設された固定側電極棒、他方の端部に進退自在に設けられた
可動側電極棒、及び円弧状の風車羽を有し上記固定側電極棒及び上記可動側電極棒の対向
端部に、接離可能に配置された固定側風車形電極及び可動側風車形電極を備えた真空バル
ブであって、少なくとも固定側風車形電極及び可動側風車形電極の一方の電極において、
少なくとも1枚の風車形電極の付け根部のみに、断面が凹状の磁性体が装着されていることを特徴とする真空バルブ。
A fixed-side electrode rod fixed at one end of the vacuum vessel, a movable-side electrode rod provided at the other end so as to be movable back and forth, and an arc-shaped windmill blade, the fixed-side electrode rod and the movable A vacuum valve provided with a fixed side windmill-shaped electrode and a movable side windmill-shaped electrode that are detachably arranged at opposite ends of the side electrode rod, and at least one of the fixed-side windmill-shaped electrode and the movable-side windmill-shaped electrode In the electrode of
A vacuum valve, wherein a magnetic material having a concave cross section is attached only to the base of at least one windmill electrode.
上記磁性体は、台座部とこの台座部の両側に立設された立設部とによって構成され、上
記立設部の両上端面は、他方の電極に対向するよう配置されていることを特徴とする請求
項1に記載の真空バルブ。
The magnetic body is composed of a pedestal part and standing parts erected on both sides of the pedestal part, and both upper end surfaces of the standing part are arranged to face the other electrode. The vacuum valve according to claim 1.
真空容器の一方の端部に固設された固定側電極棒、他方の端部に進退自在に設けられた
可動側電極棒、及び円弧状の風車羽を有し上記固定側電極棒及び上記可動側電極棒の対向
端部に、接離可能に配置された固定側風車形電極及び可動側風車形電極を備えた真空バル
ブであって、少なくとも固定側風車形電極及び可動側風車形電極の一方の電極において、
少なくとも1枚の風車形電極の付け根部に、断面が凹状の磁性体が装着されており、
上記磁性体は、台座部とこの台座部の両側に立設された立設部とによって構成され、上
記立設部の両上端面は、他方の電極に対向するよう配置されており、
上記磁性体の両立設部のうち、上記風車羽の外周側に位置する外側立設部は、内側立設部よりも上記風車形電極の先端部方向に変位させて配置されていることを特徴とする真空バルブ
Fixed-side electrode rod fixed at one end of the vacuum vessel, and provided at the other end so as to freely advance and retract
Movable side electrode rod, and arc-shaped windmill blades, and facing the fixed side electrode rod and the movable side electrode rod
A vacuum valve having a fixed wind turbine electrode and a movable wind turbine electrode arranged at the end so as to be able to contact and separate.
In at least one of the fixed-side windmill-shaped electrode and the movable-side windmill-shaped electrode,
A magnetic body having a concave cross section is attached to the base of at least one windmill electrode,
The magnetic body includes a pedestal portion and standing portions erected on both sides of the pedestal portion.
Both upper end surfaces of the erection portion are arranged to face the other electrode,
Of the magnetic material-compatible parts, the outer standing part located on the outer peripheral side of the windmill blade is arranged so as to be displaced in the direction of the tip of the windmill-shaped electrode from the inner standing part. A vacuum valve .
上記磁性体は、上記磁性体が装着される位置の上記風車羽の先端部側の幅をW、上記磁性体の幅をDとしたときに、W/2≦D≦2Wに設定されていることを特徴とする請求項1から請求項3のいずれか1項に記載の真空バルブ。 The magnetic body is set such that W / 2 ≦ D ≦ 2W, where W is the width of the tip of the wind turbine blade at the position where the magnetic body is mounted and D is the width of the magnetic body . The vacuum valve according to any one of claims 1 to 3, wherein the vacuum valve is provided. 上記磁性体は、上記磁性体の上記外側立設部の肉厚をTとしたときに、上記風車形電極の最外径となる外周位置から上記肉厚Tだけ内径側に変位した上記風車形電極の外周位置と、隣接する上記風車形電極の先端部との間に形成される外周幅内に、上記磁性体が配置されていることを特徴とする請求項1から請求項4のいずれか1項に記載の真空バルブ。 The magnetic body, the thickness of the outer standing portion of the magnetic body when the T, the windmill-shaped from the outer peripheral position at which the outermost diameter was displaced by the inner diameter side the wall thickness T of the windmill type electrodes 5. The magnetic material according to claim 1, wherein the magnetic body is disposed within an outer peripheral width formed between an outer peripheral position of the electrode and a tip portion of the adjacent windmill electrode. The vacuum valve according to item 1. 上記風車形電極に取り付ける上記磁性体の設置数は、遮断器の電流が真空バルブを流れ
る際に生じる電磁力の向きに応じて設定されていることを特徴とする請求項1から請求項
5のいずれか1項に記載の真空バルブ。
The number of the magnetic bodies to be attached to the windmill electrode is set according to the direction of electromagnetic force generated when the circuit breaker current flows through the vacuum valve. The vacuum valve of any one of Claims.
JP2014132349A 2014-06-27 2014-06-27 Vacuum valve Active JP6381317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132349A JP6381317B2 (en) 2014-06-27 2014-06-27 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132349A JP6381317B2 (en) 2014-06-27 2014-06-27 Vacuum valve

Publications (3)

Publication Number Publication Date
JP2016012418A JP2016012418A (en) 2016-01-21
JP2016012418A5 JP2016012418A5 (en) 2017-06-01
JP6381317B2 true JP6381317B2 (en) 2018-08-29

Family

ID=55229027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132349A Active JP6381317B2 (en) 2014-06-27 2014-06-27 Vacuum valve

Country Status (1)

Country Link
JP (1) JP6381317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089184B2 (en) 2018-12-17 2022-06-22 日本電信電話株式会社 Optical deflector parameter measuring device, method and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252150A (en) * 2016-08-25 2016-12-21 成都汉度科技有限公司 A kind of high-pressure vacuum breaker
CN106298357A (en) * 2016-08-25 2017-01-04 成都汉度科技有限公司 A kind of outdoor mesohigh line control unit
CN106098465A (en) * 2016-08-25 2016-11-09 成都汉度科技有限公司 It is applicable to the automatic switch of 10kV high-tension line
CN106098464A (en) * 2016-08-25 2016-11-09 成都汉度科技有限公司 Mesohigh vacuum circuit breaker
CN106298358A (en) * 2016-08-25 2017-01-04 成都汉度科技有限公司 A kind of ultra-high-tension power transmission line is with controlling switch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074320A (en) * 1983-09-30 1985-04-26 三菱電機株式会社 Breaker
JPS61153912A (en) * 1984-12-26 1986-07-12 三菱電機株式会社 Breaker
JP3568683B2 (en) * 1995-04-28 2004-09-22 株式会社東芝 Vacuum valve
JP3938521B2 (en) * 2002-07-03 2007-06-27 三菱電機株式会社 Vacuum valves and circuit breakers
DE112010005162B4 (en) * 2010-01-20 2019-10-10 Mitsubishi Electric Corporation VACUUM CIRCUIT BREAKER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089184B2 (en) 2018-12-17 2022-06-22 日本電信電話株式会社 Optical deflector parameter measuring device, method and program

Also Published As

Publication number Publication date
JP2016012418A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6381317B2 (en) Vacuum valve
CN113678219A (en) Vacuum valve
JP2015534247A (en) Vacuum interrupter device for medium voltage circuit breakers with cup-shaped TMF contacts
JP2013242977A (en) Switch
JP5281192B2 (en) Vacuum valve
JP2009032481A (en) Vacuum valve
Schellekens 50 years of TMF contacts design considerations
JP6745757B2 (en) Vacuum valve
JP5602607B2 (en) Vacuum valve
JP2010267442A (en) Vertical magnetic-field electrode for vacuum interrupter
WO2017183323A1 (en) Vacuum valve
US10410813B1 (en) Vacuum switching apparatus and electrical contact therefor
JP3812711B2 (en) Vacuum valve
JP6138601B2 (en) Electrode for vacuum circuit breaker and vacuum valve using the same
JP5614721B2 (en) Vacuum circuit breaker electrode
US4028514A (en) High current vacuum circuit interrupter with beryllium contact
JP5597116B2 (en) Vacuum valve
JP2019204651A (en) Vacuum valve
JP2009289660A (en) Vacuum valve
JP5525316B2 (en) Vacuum valve
JP5854925B2 (en) Vacuum valve
JP4284033B2 (en) Vacuum valve
US20220172915A1 (en) Medium voltage vacuum interrupter contact with improved arc breaking performance and associated vacuum interrupter
JP5139161B2 (en) Vacuum valve
JP2015053169A (en) Vacuum valve for dc circuit breaker

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R151 Written notification of patent or utility model registration

Ref document number: 6381317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250