JP6380019B2 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
JP6380019B2
JP6380019B2 JP2014225994A JP2014225994A JP6380019B2 JP 6380019 B2 JP6380019 B2 JP 6380019B2 JP 2014225994 A JP2014225994 A JP 2014225994A JP 2014225994 A JP2014225994 A JP 2014225994A JP 6380019 B2 JP6380019 B2 JP 6380019B2
Authority
JP
Japan
Prior art keywords
wheel drive
speed
rotation sensor
shaft rotation
drive clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014225994A
Other languages
Japanese (ja)
Other versions
JP2016088324A (en
Inventor
小野 弘喜
弘喜 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2014225994A priority Critical patent/JP6380019B2/en
Publication of JP2016088324A publication Critical patent/JP2016088324A/en
Application granted granted Critical
Publication of JP6380019B2 publication Critical patent/JP6380019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、農業用、建築用、運搬用等に用いる、四輪駆動式の作業車両に関する。   The present invention relates to a four-wheel drive work vehicle used for agriculture, construction, transportation and the like.

従来、後輪駆動軸の回転をそのままの回転比で前輪駆動軸に伝達するか伝達しないかの切り替えを行う標準四輪駆動クラッチと、後輪駆動軸の回転を増速して前輪駆動軸に伝達するか伝達しないかの切り替えを行う増速四輪駆動クラッチとを有した作業車両が知られている(例えば、特許文献1参照)。   Conventionally, a standard four-wheel drive clutch that switches whether or not the rotation of the rear wheel drive shaft is transmitted to the front wheel drive shaft at the same rotation ratio, and the rotation of the rear wheel drive shaft is increased to the front wheel drive shaft. 2. Description of the Related Art A work vehicle having a speed-up four-wheel drive clutch that switches between transmission and non-transmission is known (see, for example, Patent Document 1).

そして、上記作業車両では、二輪駆動から四輪駆動への制御動作の指令があっても、直ちに、その指令を実行するのではなく、後輪駆動回転軸の回転数及び前輪駆動回転軸の回転数等を検出して路面状態を判定し、その制御動作の必要性の可否を判断して行われるという構成である。   In the work vehicle, even if there is a control operation command from the two-wheel drive to the four-wheel drive, the command is not immediately executed, but the rotation speed of the rear wheel drive rotation shaft and the rotation of the front wheel drive rotation shaft are not executed. It is configured to detect the number and the like to determine the road surface condition and determine whether or not the control operation is necessary.

特許第2536369号公報Japanese Patent No. 2536369

しかしながら、上記特許文献1に記載の作業車両では、四輪駆動から二輪駆動に自動的に切り替わる場合、直ちに二輪駆動に切り替える構成であるため、搭乗者に違和感を与える場合があるという問題があった。   However, the work vehicle described in Patent Document 1 has a problem in that when the vehicle is automatically switched from four-wheel drive to two-wheel drive, the configuration is immediately switched to two-wheel drive, which may give the passenger a sense of incongruity. .

本願発明は、従来の作業車両における上記課題に鑑みて、四輪駆動から二輪駆動に自動的に切り替わる場合、搭乗者に違和感を与えにくい作業車両を提供することを目的とする。   An object of the present invention is to provide a work vehicle that does not give a sense of incongruity to a passenger when automatically switching from four-wheel drive to two-wheel drive in view of the above-described problems in conventional work vehicles.

上記目的を達成するために、第1の本発明は、
エンジンと
左右一対の前輪と、
左右一対の後輪と、
前記エンジンからの駆動力を、前記前輪に伝達するか又は伝達しないかの切り替えを行う四輪駆動クラッチと、
前記四輪駆動クラッチの入力軸側の回転数を検出する後軸回転センサーと、
前記四輪駆動クラッチの出力軸側の回転数を検出する前軸回転センサーと、
後輪二輪駆動状態のときに前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差が第一の規定の範囲外になると、四輪駆動状態とするべく前記四輪駆動クラッチを入れ、前記比又は差が前記第一の規定の範囲内になると、前記後輪二輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を徐々に減らす制御部と、
機体の走行を停止させるブレーキ操作の有無を検出するブレーキ操作検出器と、を備え、
前記制御部は、前記ブレーキ操作検出器が前記ブレーキ操作を検出した場合、前記比又は差に基づいて前記四輪駆動クラッチの接続圧力を制御することに代えて、四輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を制御する、ことを特徴とする作業車両である。
In order to achieve the above object, the first present invention provides:
Engine and
A pair of left and right front wheels;
A pair of left and right rear wheels,
A four-wheel drive clutch for switching whether or not to transmit the driving force from the engine to the front wheels;
A rear shaft rotation sensor that detects the number of rotations on the input shaft side of the four-wheel drive clutch;
A front shaft rotation sensor for detecting the rotation speed on the output shaft side of the four-wheel drive clutch;
If the ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is outside the first specified range in the rear wheel two-wheel drive state, the four wheel drive state is set. When a four-wheel drive clutch is engaged, and the ratio or difference is within the first specified range, a control unit that gradually reduces the connection pressure of the four-wheel drive clutch so as to be in the rear-wheel two-wheel drive state;
Comprising a brake operation detector for detecting the presence or absence of braking operation for stopping the travel of the aircraft, and
The controller, when the brake operation detector detects the brake operation, instead of controlling the connection pressure of the four-wheel drive clutch based on the ratio or difference, controls the connection pressure of the four-wheel drive clutch, it is work vehicle you characterized.

これにより、作業車両が二輪駆動状態で直進走行している場合に、例えば、前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果との比又は差が規定の範囲よりも大きく逸脱した状態、すなわち前後輪のうちどちらかが過剰に回転している状態では、その車輪においてタイヤの摩耗や泥の巻付きが発生してしまう。そこでこのような状態の時に四輪駆動に切り換えることでこれを防ぐことができる。
さらに、元は二輪駆動状態で走行している状態だったので、回転数の比又は差に異常がなくなると徐々に四輪駆動クラッチの接続圧力を下げていくことで、搭乗者に違和感を与えることなく、二輪駆動状態に戻すことができる。
また、これにより、ブレーキ操作時は前後輪の回転の比又は差に関係なく、より高い制動力を発生する四輪駆動状態とするべく接続圧力を例えば全圧に制御する。
As a result, when the work vehicle is traveling straight in a two-wheel drive state, for example, the ratio or difference between the detection result of the rear axle rotation sensor and the detection result of the front axle rotation sensor deviates more than a specified range. In this state, that is, in a state where one of the front and rear wheels is rotating excessively, tire wear or mud winding occurs on the wheel. Therefore, this can be prevented by switching to four-wheel drive in such a state.
Furthermore, since the vehicle was originally running in a two-wheel drive state, when the abnormality in the ratio or difference in the rotation speed disappears, the connection pressure of the four-wheel drive clutch is gradually lowered to give the passenger a sense of incongruity. Without being able to return to the two-wheel drive state.
This also, when the brake operation irrespective of the ratio or difference of the rotation of the front and rear wheels, and controls the connection pressure such as whole pressure so as to obtain four-wheel drive state for generating a higher braking force.

また、第の本発明は、
エンジンと
左右一対の前輪と、
左右一対の後輪と、
前記エンジンからの駆動力を、前記前輪に伝達するか又は伝達しないかの切り替えを行う四輪駆動クラッチと、
前記四輪駆動クラッチの入力軸側の回転数を検出する後軸回転センサーと、
前記四輪駆動クラッチの出力軸側の回転数を検出する前軸回転センサーと、
後輪二輪駆動状態のときに前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差が第一の規定の範囲外になると、四輪駆動状態とするべく前記四輪駆動クラッチを入れ、前記比又は差が前記第一の規定の範囲内になると、前記後輪二輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を徐々に減らす制御部と、を備え、
前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差は、前記後軸回転センサーの前記検出結果から求めた後軸回転数と、前記前軸回転センサーの前記検出結果から求めた前軸平均回転数との比又は差であり、
前記制御部は、
前記後軸回転センサーにより検出された瞬時値と前記前軸回転センサーにより検出された瞬時値との比又は差が、前記第一の規定の範囲を含む第二の規定の範囲内にある場合、前記後軸回転センサーの前記検出結果から求めた後軸回転数と、前記前軸回転センサーの前記検出結果から求めた前軸平均回転数との比又は差に基づいて、前記四輪駆動クラッチの接続圧力を制御し、
前記後軸回転センサーにより検出された瞬時値と前記前軸回転センサーにより検出された瞬時値との比又は差が、前記第二の規定の範囲外にある場合、前記後軸回転センサーにより検出された前記瞬時値と前記前軸回転センサーにより検出された前記瞬時値との比又は差に基づいて、所定時間の間、前記四輪駆動クラッチの接続圧力を制御する、
ことを特徴とする作業車両である。
The second aspect of the present invention
Engine and
A pair of left and right front wheels;
A pair of left and right rear wheels,
A four-wheel drive clutch for switching whether or not to transmit the driving force from the engine to the front wheels;
A rear shaft rotation sensor that detects the number of rotations on the input shaft side of the four-wheel drive clutch;
A front shaft rotation sensor for detecting the rotation speed on the output shaft side of the four-wheel drive clutch;
If the ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is outside the first specified range in the rear wheel two-wheel drive state, the four wheel drive state is set. A controller that gradually reduces the connection pressure of the four-wheel drive clutch so as to enter the rear-wheel two-wheel drive state when the four-wheel drive clutch is engaged and the ratio or difference falls within the first prescribed range. ,
The ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is calculated based on the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor and the front shaft rotation sensor. It is the ratio or difference with the average front shaft speed obtained from the detection result,
The controller is
When the ratio or difference between the instantaneous value detected by the rear shaft rotation sensor and the instantaneous value detected by the front shaft rotation sensor is within a second specified range including the first specified range, Based on the ratio or difference between the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor and the front shaft average rotation speed obtained from the detection result of the front shaft rotation sensor, the four-wheel drive clutch Control the connection pressure,
If the ratio or difference between the instantaneous value detected by the rear shaft rotation sensor and the instantaneous value detected by the front shaft rotation sensor is outside the second specified range, it is detected by the rear shaft rotation sensor. Controlling the connection pressure of the four-wheel drive clutch for a predetermined time based on the ratio or difference between the instantaneous value and the instantaneous value detected by the front shaft rotation sensor;
It is a work vehicle you said.

これにより、作業車両が二輪駆動状態で直進走行している場合に、例えば、前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果との比又は差が規定の範囲よりも大きく逸脱した状態、すなわち前後輪のうちどちらかが過剰に回転している状態では、その車輪においてタイヤの摩耗や泥の巻付きが発生してしまう。そこでこのような状態の時に四輪駆動に切り換えることでこれを防ぐことができる。
さらに、元は二輪駆動状態で走行している状態だったので、回転数の比又は差に異常がなくなると徐々に四輪駆動クラッチの接続圧力を下げていくことで、搭乗者に違和感を与えることなく、二輪駆動状態に戻すことができる。
また、これにより、例えば、後軸回転数と前軸回転数との瞬時値の比又は差が第二の規定の範囲内にあるときは、前軸回転数について平均回転数を求め、後軸回転数と当該平均回転数との比又は差に基づいて、四輪駆動クラッチの接続圧力を制御することにより、継続的な原因に対してのみ反応するため制御が安定し、また、ブレーキ操作時に後輪がロックした場合や、二輪駆動状態に近い接続圧力時に後輪がスリップした場合等、後軸回転数と前軸回転数との瞬時値の比又は差が第二の規定の範囲外になったときは、平均ではなく、後軸回転数と前軸回転数との瞬時値の比又は差に基づいて四輪駆動クラッチの接続圧力を制御することで、後輪ロックやスリップに瞬時に対応出来る。
As a result, when the work vehicle is traveling straight in a two-wheel drive state, for example, the ratio or difference between the detection result of the rear axle rotation sensor and the detection result of the front axle rotation sensor deviates more than a specified range. In this state, that is, in a state where one of the front and rear wheels is rotating excessively, tire wear or mud winding occurs on the wheel. Therefore, this can be prevented by switching to four-wheel drive in such a state.
Furthermore, since the vehicle was originally running in a two-wheel drive state, when the abnormality in the ratio or difference in the rotation speed disappears, the connection pressure of the four-wheel drive clutch is gradually lowered to give the passenger a sense of incongruity. Without being able to return to the two-wheel drive state.
In addition, for example, when the ratio or difference between the instantaneous values of the rear shaft rotational speed and the front shaft rotational speed is within the second specified range, the average rotational speed is obtained for the front shaft rotational speed, and the rear shaft By controlling the connection pressure of the four-wheel drive clutch based on the ratio or difference between the rotational speed and the average rotational speed, the control is stable because it reacts only to continuous causes. If the rear wheel is locked, or if the rear wheel slips when the connection pressure is close to the two-wheel drive state, the instantaneous value ratio or difference between the rear shaft speed and the front shaft speed is outside the second specified range. When this happens, the connection pressure of the four-wheel drive clutch is controlled based on the ratio or difference between the instantaneous values of the rear shaft speed and the front shaft speed instead of the average so that the rear wheel lock and slip can be instantaneously applied. I can respond.

本発明により、四輪駆動から二輪駆動に自動的に切り替わる場合、搭乗者に違和感を与えにくい作業車両を提供することができる。   According to the present invention, it is possible to provide a work vehicle that does not give a sense of incongruity to a passenger when the vehicle is automatically switched from four-wheel drive to two-wheel drive.

本発明の実施の形態の農用トラクターの左側面図Left side view of an agricultural tractor according to an embodiment of the present invention 本実施の形態の農用トラクターの動力伝動機構の伝動線図Transmission diagram of the power transmission mechanism of the agricultural tractor of this embodiment 本実施の形態の農用トラクターの等速切替比例ソレノイドバルブ及び増速切替比例ソレノイドバルブを説明する概略の油圧回路図Schematic hydraulic circuit diagram for explaining the constant speed switching proportional solenoid valve and the speed increasing switching proportional solenoid valve of the agricultural tractor of the present embodiment 本発明の実施の形態の農用トラクターの制御部を説明するブロック図The block diagram explaining the control part of the agricultural tractor of embodiment of this invention 本実施の形態の農用トラクターの制御部のメモリ部に予め格納されている、周速比と接続圧力との対応関係を示す模式図The schematic diagram which shows the correspondence of the peripheral speed ratio and connection pressure previously stored in the memory part of the control part of the agricultural tractor of this Embodiment 本実施の形態の農用トラクターの前輪の周速と後輪の周速との間の周速比の適正範囲を示す概略図Schematic showing the appropriate range of the peripheral speed ratio between the peripheral speed of the front wheel and the peripheral speed of the rear wheel of the agricultural tractor of the present embodiment 本実施の形態の農用トラクターの制御部のメモリ部に予め格納されている、旋回走行における周速比と接続圧力との対応関係を示す模式図The schematic diagram which shows the correspondence of the peripheral speed ratio in turning driving | running | working, and the connection pressure previously stored in the memory part of the control part of the agricultural tractor of this Embodiment 本実施の形態の農用トラクターの旋回外側の後輪の周速と前輪の周速との間の周速比Dsの最適状態について説明する図The figure explaining the optimal state of the circumferential speed ratio Ds between the circumferential speed of the rear wheel of the turning outer side of the agricultural tractor of this embodiment, and the circumferential speed of a front wheel 本実施の形態の農用トラクターにおける各種クラッチの動作状況を示す模式図The schematic diagram which shows the operation condition of the various clutches in the agricultural tractor of this Embodiment 本実施の形態の農用トラクターの制御部のメモリ部に予め格納されている、周速比と接続圧力との対応関係を示す別の例の模式図The schematic diagram of another example which shows the correspondence of the peripheral speed ratio and connection pressure previously stored in the memory part of the control part of the agricultural tractor of this Embodiment 本実施の形態の農用トラクターの周速比と等速四輪駆動クラッチの接続圧力との関係の一例を時系列で示した模式図Schematic diagram showing an example of the relationship between the peripheral speed ratio of the agricultural tractor of this embodiment and the connection pressure of the constant-speed four-wheel drive clutch in time series

本発明の作業車両の一実施の形態について、図面を用いて説明する。   An embodiment of a work vehicle according to the present invention will be described with reference to the drawings.

以下、本発明の作業車両の一例である農用トラクター1を例に挙げて具体的に説明する。   Hereinafter, the agricultural tractor 1 which is an example of the work vehicle of the present invention will be described in detail.

図1は、本実施の形態の農用トラクター1の概略左側面図である。   FIG. 1 is a schematic left side view of an agricultural tractor 1 according to the present embodiment.

また、図2は、本実施の形態の農用トラクター1の動力伝動機構の伝動線図である。   FIG. 2 is a transmission diagram of the power transmission mechanism of the agricultural tractor 1 of the present embodiment.

図1に示す通り、本実施の形態の農用トラクター1は、左右一対の前輪2と、左右一対の後輪3を備え、走行車体1aの前部にエンジン5を内装し、後部にキャビン4を備える構成である。   As shown in FIG. 1, the agricultural tractor 1 of the present embodiment includes a pair of left and right front wheels 2 and a pair of left and right rear wheels 3, and an engine 5 is installed in the front part of the traveling vehicle body 1 a and a cabin 4 is provided in the rear part. It is the composition provided.

キャビン4内には、運転座席6と、ステアリングハンドル7等が設けられている。   In the cabin 4, a driver's seat 6, a steering handle 7 and the like are provided.

また、エンジン5の駆動力は、図2に示す伝動機構を介して適宜減速され、その減速された回転動力が左右一対の後輪3、3に伝達され走行車体1aを走行させる構成である。   Further, the driving force of the engine 5 is appropriately decelerated via the transmission mechanism shown in FIG. 2, and the reduced rotational power is transmitted to the pair of left and right rear wheels 3 and 3 to cause the traveling vehicle body 1a to travel.

また、後輪3、3に伝達された回転動力は、等速四輪駆動クラッチ110又は、増速四輪駆動クラッチ120を介して左右一対の前輪2、2にも伝達可能に構成されている。本実施の形態では、等速四輪駆動クラッチ110と増速四輪駆動クラッチ120を包括して前輪伝動クラッチ装置100と呼ぶ。   Further, the rotational power transmitted to the rear wheels 3 and 3 is configured to be transmitted to the pair of left and right front wheels 2 and 2 via the constant-speed four-wheel drive clutch 110 or the speed-increasing four-wheel drive clutch 120. . In the present embodiment, the constant-speed four-wheel drive clutch 110 and the speed-increasing four-wheel drive clutch 120 are collectively referred to as a front wheel transmission clutch device 100.

本実施の形態の農用トラクター1の伝動機構は、図2に示す通り、低速と高速で二段に変速される高低変速装置11と、低速を四段及び高速を四段へ変速する主変速装置12と、前進と後進の切り替えを行う前後進クラッチ装置13と、低速四段及び高速四段の回転について、それぞれ四段の変速を行う副変速装置14と、上述した前輪伝動クラッチ装置100と、PTO軸15の回転を逆転及び1速〜3速に変速するPTO系変速伝動装置16とを備えた構成である。   As shown in FIG. 2, the transmission mechanism of the agricultural tractor 1 according to the present embodiment includes a high / low transmission 11 that shifts in two stages at low speed and high speed, and a main transmission that shifts the low speed into four stages and the high speed into four stages. 12, a forward / reverse clutch device 13 that switches between forward and reverse, a sub-transmission device 14 that performs a four-speed shift for each of the low-speed four-speed rotation and the high-speed four-speed rotation, the above-described front wheel transmission clutch device 100, This is a configuration provided with a PTO transmission transmission 16 that reverses the rotation of the PTO shaft 15 and changes the speed from the first speed to the third speed.

また、図2に示す通り、副変速装置14を経た動力はドライブ軸46を駆動し、後輪デフ機構49等を介して、右後輪回転軸53Rと左後輪回転軸53Lを駆動し、左右一対の後輪3、3を回転駆動させる構成である。   Further, as shown in FIG. 2, the power that has passed through the auxiliary transmission 14 drives the drive shaft 46, drives the right rear wheel rotation shaft 53R and the left rear wheel rotation shaft 53L via the rear wheel differential mechanism 49 and the like, In this configuration, the pair of left and right rear wheels 3, 3 are rotationally driven.

更に、ドライブ軸46の回転は、取出ギヤ60から後側PTO伝動軸58に支持させた2段ギヤ61を介して、前輪伝動軸62に外嵌して入力ギヤ63を支持する入力筒軸64を連動する。   Further, the rotation of the drive shaft 46 is caused by an input cylinder shaft 64 that externally fits to the front wheel transmission shaft 62 and supports the input gear 63 via a two-stage gear 61 supported from the take-out gear 60 to the rear PTO transmission shaft 58. Interlock.

この入力筒軸64と前輪伝動軸62との間には、油圧クラッチ形態の等速四輪駆動クラッチ110と、増速四輪駆動クラッチ120と、増速ギヤ組67a,67bとが配設されている。   Between the input cylinder shaft 64 and the front wheel transmission shaft 62, a constant speed four-wheel drive clutch 110 in the form of a hydraulic clutch, a speed-up four-wheel drive clutch 120, and speed-up gear sets 67a and 67b are disposed. ing.

そして、等速四輪駆動クラッチ110を接続(入り状態)すると、入力筒軸64と一体的に前輪伝動軸62を駆動し、増速四輪駆動クラッチ120を接続(入り状態)すると増速ギヤ組67a,67bを経由した増速伝動状態となって前輪伝動軸62を駆動する構成である。   When the constant speed four-wheel drive clutch 110 is connected (engaged), the front wheel transmission shaft 62 is driven integrally with the input cylinder shaft 64, and when the speed-up four-wheel drive clutch 120 is connected (engaged), the speed-up gear In this configuration, the front wheel transmission shaft 62 is driven in an increased speed transmission state via the sets 67a and 67b.

また、等速四輪駆動クラッチ110を切断(切り状態)し、且つ、増速四輪駆動クラッチ120を切断(切り状態)すると、入力筒軸64及び増速ギヤ組67bは何れも前輪伝動軸62に遊嵌されているので、ドライブ軸46の回転は、前輪伝動軸62には伝達されない構成である。この場合は、左右一対の後輪3、3のみ駆動し、左右一対の前輪2、2は従動する。   Further, when the constant speed four-wheel drive clutch 110 is disconnected (disengaged) and the speed-up four-wheel drive clutch 120 is disconnected (disengaged), the input cylinder shaft 64 and the speed increasing gear set 67b are both front wheel transmission shafts. The rotation of the drive shaft 46 is not transmitted to the front wheel transmission shaft 62 because the drive shaft 46 is loosely fitted to the front wheel 62. In this case, only the pair of left and right rear wheels 3 and 3 are driven, and the pair of left and right front wheels 2 and 2 are driven.

尚、前輪伝動軸62の駆動力は、前輪デフ機構70等を介して、左右一対の前輪2、2を回転駆動させる構成である。   The driving force of the front wheel transmission shaft 62 is configured to rotationally drive the pair of left and right front wheels 2 and 2 via the front wheel differential mechanism 70 and the like.

また、等速四輪駆動クラッチ110、及び増速四輪駆動クラッチ120の接続圧力は、等速切替比例ソレノイドバルブ111、及び増速切替比例ソレノイドバルブ121により、それぞれ変更制御可能に構成されている(図3参照)。ここで、図3は、等速切替比例ソレノイドバルブ111、及び増速切替比例ソレノイドバルブ121を説明する概略の油圧回路図である。   The connection pressures of the constant speed four-wheel drive clutch 110 and the speed increase four wheel drive clutch 120 are configured to be changeable and controlled by a constant speed switching proportional solenoid valve 111 and an acceleration switching proportional solenoid valve 121, respectively. (See FIG. 3). Here, FIG. 3 is a schematic hydraulic circuit diagram illustrating the constant speed switching proportional solenoid valve 111 and the speed increasing switching proportional solenoid valve 121.

即ち、等速四輪駆動クラッチ110、及び増速四輪駆動クラッチ120の圧力制御は、比例圧力制御弁によりクラッチ押しつけピストン(図示省略)の制御圧力を可変にコントロールする構成である。   That is, the pressure control of the constant-speed four-wheel drive clutch 110 and the speed-up four-wheel drive clutch 120 is configured to variably control the control pressure of the clutch pressing piston (not shown) by the proportional pressure control valve.

次に、図2を用いて、本実施の形態の農用トラクター1の動力伝動機構に設けられた各種センサーについて説明する。   Next, various sensors provided in the power transmission mechanism of the agricultural tractor 1 according to the present embodiment will be described with reference to FIG.

図2に示す通り、動力伝動機構には、前輪伝動クラッチ装置100の入力軸側の入力筒軸64の回転数を検出する後軸回転センサー101と、前輪伝動クラッチ装置100の出力軸側の前輪伝動軸62の回転数を検出する前軸回転センサー102と、左後輪回転軸53Lの回転数を検出する左後輪回転センサー153Lと、右後輪回転軸53Rの回転数を検出する右後輪回転センサー153Rと、が設けられている。   As shown in FIG. 2, the power transmission mechanism includes a rear shaft rotation sensor 101 that detects the rotational speed of the input cylinder shaft 64 on the input shaft side of the front wheel transmission clutch device 100, and a front wheel on the output shaft side of the front wheel transmission clutch device 100. Front shaft rotation sensor 102 that detects the rotation speed of the transmission shaft 62, left rear wheel rotation sensor 153L that detects the rotation speed of the left rear wheel rotation shaft 53L, and right rear that detects the rotation speed of the right rear wheel rotation shaft 53R. A wheel rotation sensor 153R.

また、走行停止の為にブレーキペダル(図示省略)を踏み込む「ブレーキ操作」の有無を検出するブレーキ操作検出センサー160と、ステアリングハンドル7の操作による前輪2の操舵角を検出する操舵角センサー170(図4参照)が設けられている。   In addition, a brake operation detection sensor 160 that detects the presence or absence of a “brake operation” that depresses a brake pedal (not shown) to stop traveling, and a steering angle sensor 170 that detects the steering angle of the front wheels 2 by the operation of the steering handle 7 ( 4).

尚、本実施の形態のブレーキ操作検出センサー160は、本発明のブレーキ操作検出器の一例にあたり、また、本実施の形態の操舵角センサー170は、本発明の操舵角検出器の一例にあたる。   The brake operation detection sensor 160 of the present embodiment is an example of the brake operation detector of the present invention, and the steering angle sensor 170 of the present embodiment is an example of the steering angle detector of the present invention.

次に、上述した各種センサーからの検出結果に基づいて、等速四輪駆動クラッチ110の接続圧力、及び増速四輪駆動クラッチ120の接続圧力をそれぞれ制御する制御部200について、図4〜図8を用いて説明する。   Next, the control unit 200 that controls the connection pressure of the constant-speed four-wheel drive clutch 110 and the connection pressure of the speed-up four-wheel drive clutch 120 based on the detection results from the various sensors described above will be described with reference to FIGS. 8 will be used for explanation.

図4は、本実施の形態の農用トラクター1の制御部200を説明するブロック図である。   FIG. 4 is a block diagram illustrating the control unit 200 of the agricultural tractor 1 according to the present embodiment.

図5は、制御部200のメモリ部210に予め格納されている、周速比Dsと接続圧力Pとの対応関係を示す模式図である。   FIG. 5 is a schematic diagram showing a correspondence relationship between the peripheral speed ratio Ds and the connection pressure P, which is stored in the memory unit 210 of the control unit 200 in advance.

ここで、後輪3の周速は、後軸回転センサー101で検出された入力筒軸64の回転数に、入力筒軸64の回転数を基準とした時の後輪3の回転数の比と、後輪3の直径を乗算することで取得し、前輪2の周速は、前軸回転センサー102で検出された前輪伝動軸62の回転数に、前輪伝動軸62の回転数を基準とした時の前輪2の回転数の比と、前輪2の直径を乗算することで取得する。   Here, the peripheral speed of the rear wheel 3 is the ratio of the rotational speed of the rear wheel 3 when the rotational speed of the input cylindrical shaft 64 is based on the rotational speed of the input cylindrical shaft 64 detected by the rear shaft rotation sensor 101. And the peripheral speed of the front wheel 2 is obtained by multiplying the rotation speed of the front wheel transmission shaft 62 with the rotation speed of the front wheel transmission shaft 62 as a reference. This is obtained by multiplying the rotation speed ratio of the front wheel 2 by the diameter of the front wheel 2.

図6は、前輪の周速と後輪の周速との間の周速比の適正範囲を示す概略図である。   FIG. 6 is a schematic diagram showing an appropriate range of the peripheral speed ratio between the peripheral speed of the front wheels and the peripheral speed of the rear wheels.

図4に示す通り、制御部200に対して、後軸回転センサー101、前軸回転センサー102、左後輪回転センサー153L、右後輪回転センサー153R、ブレーキ操作検出センサー160、及び操舵角センサー170からの検出結果が送られる。   As shown in FIG. 4, with respect to the control unit 200, the rear shaft rotation sensor 101, the front shaft rotation sensor 102, the left rear wheel rotation sensor 153 </ b> L, the right rear wheel rotation sensor 153 </ b> R, the brake operation detection sensor 160, and the steering angle sensor 170. The detection result from is sent.

ここでは、(1)農用トラクター1が、例えば圃場外の路上で2WD(二輪駆動)で直進走行している場合において、制御部200により2WDから等速4WD(等速四輪駆動)の直進走行に自動で切り替えられる場合と、(2)農用トラクター1が、例えば圃場での耕耘作業中に等速4WD(等速四輪駆動)で前進走行した後、圃場の端で旋回走行し始めた場合において、制御部200により等速4WDから増速4WD(増速四輪駆動)に自動で切り替えられ、旋回走行後、直進走行に戻ると、再び等速4WDに自動的に切り替わる場合とに分けて説明する。   Here, (1) when the agricultural tractor 1 is traveling straight forward at 2WD (two-wheel drive), for example, on a road outside the field, the controller 200 travels straight from 2WD to constant speed 4WD (constant speed four-wheel drive). And (2) when the agricultural tractor 1 starts traveling forward at a constant speed 4WD (constant speed four-wheel drive) and then turning at the end of the field, for example, during a tilling operation on the field The control unit 200 automatically switches from the constant speed 4WD to the increased speed 4WD (accelerated four-wheel drive), and after returning to the straight traveling after turning, it automatically switches to the constant speed 4WD again. explain.

(1)直進走行の場合について:
ここでは、更に、ブレーキ操作がなされていない場合と、ブレーキ操作がなされた場合に分けて説明する。
(1) For straight running:
Here, the case where the brake operation is not performed and the case where the brake operation is performed will be described separately.

(1−1)制御部200は、操舵角センサー170とブレーキ操作検出センサー160との検出結果から、農用トラクター1が前進走行中であり、且つブレーキ操作はなされていないと判定した場合、図5中の第1制御特性線501を利用して、次の制御を行う。   (1-1) When the control unit 200 determines from the detection results of the steering angle sensor 170 and the brake operation detection sensor 160 that the agricultural tractor 1 is traveling forward and the brake operation is not performed, FIG. The following control is performed using the first control characteristic line 501 in the middle.

即ち、制御部200は、後軸回転センサー101により検出された回転数と、前軸回転センサー102により検出された回転数とに基づいて、周速比Dsを算出して、その値が適正範囲内かどうかを判定する。そして、その周速比Dsが、適正範囲内(図5に示す周速比DsがD1以上D2未満の範囲内で、同図において「第一規定範囲」と表示した)であれば、2WDを維持するが、例えば、周速比DsがDα(Dα>D2)であると判定すると、2WDから等速4WDに切り替えるべく、等速四輪駆動クラッチ110を接続(入り状態)する。この場合の接続圧力Pは、図5の第1制御特性線501に示す通り、等速四輪駆動クラッチ110の全圧P1とする。   That is, the control unit 200 calculates the peripheral speed ratio Ds based on the number of rotations detected by the rear shaft rotation sensor 101 and the number of rotations detected by the front shaft rotation sensor 102, and the value is within an appropriate range. Determine if it is within. If the peripheral speed ratio Ds is within an appropriate range (in the range where the peripheral speed ratio Ds shown in FIG. 5 is greater than or equal to D1 and less than D2, it is indicated as “first specified range” in the figure), 2WD is set. For example, if it is determined that the peripheral speed ratio Ds is Dα (Dα> D2), the constant-speed four-wheel drive clutch 110 is connected (entered) to switch from 2WD to constant-speed 4WD. The connection pressure P in this case is the total pressure P1 of the constant-speed four-wheel drive clutch 110 as shown by the first control characteristic line 501 in FIG.

尚、本実施の形態の適正範囲は、本発明の第一の規定の範囲の一例にあたる。   The appropriate range of the present embodiment corresponds to an example of the first specified range of the present invention.

その後、制御部200は、後軸回転センサー101により検出された回転数と、前軸回転センサー102により検出された回転数とに基づいて、周速比Dsを算出して、その値が適正範囲内かどうかを判定し、適正範囲内に入るまで上記と同様の制御を繰り返し、適正範囲に入れば、等速4WDを2WDに戻す。   Thereafter, the control unit 200 calculates the peripheral speed ratio Ds based on the number of rotations detected by the rear shaft rotation sensor 101 and the number of rotations detected by the front shaft rotation sensor 102, and the value is within an appropriate range. It is determined whether or not it is within the appropriate range, and the same control as described above is repeated until it falls within the proper range.

尚、2WDから等速4WDに切り替える際の接続圧力P0からP1への昇圧及び等速4WDから2WDに切り替える際の接続圧力P1からP0への減圧は徐々に行っても良いし、急激に行ってもよいが、搭乗者がショック(違和感)を感じない程度に滑らかに昇圧及び減圧することがより好ましい。   The pressure increase from the connection pressure P0 to P1 when switching from 2WD to constant speed 4WD and the pressure decrease from the connection pressure P1 to P0 when switching from constant speed 4WD to 2WD may be performed gradually or suddenly. However, it is more preferable to increase and decrease pressure smoothly so that the passenger does not feel shock (discomfort).

これにより、前輪2の駆動状態を適正なものに出来、前輪2の過剰な回転を抑え、泥の巻き付きやタイヤの摩耗を防ぐことが出来る。   As a result, the driving state of the front wheels 2 can be made appropriate, excessive rotation of the front wheels 2 can be suppressed, and mud wrapping and tire wear can be prevented.

ここで、前輪2の周速と後輪3の周速との間の周速比の適正範囲について、図6を用いて説明する。図6は、前輪の周速と後輪の周速との間の周速比の適正範囲について説明する図である。   Here, the appropriate range of the peripheral speed ratio between the peripheral speed of the front wheel 2 and the peripheral speed of the rear wheel 3 will be described with reference to FIG. FIG. 6 is a diagram illustrating an appropriate range of the peripheral speed ratio between the peripheral speed of the front wheels and the peripheral speed of the rear wheels.

図6の横軸は後輪の周速を示し、縦軸は前輪の周速を示す。図6中の実線は、後輪の周速と前輪の周速が一致している最適状態を示す最適状態線300であり、図6中の破線は、前輪2が後輪3に比べて回り過ぎている状態における適正限界を示す前輪オーバーラン適正限界線310であり、図6中の一転鎖線は、後輪3が前輪2に比べて回り過ぎている状態における適正限界を示す、後輪スリップ適正限界線320である。   The horizontal axis in FIG. 6 indicates the peripheral speed of the rear wheel, and the vertical axis indicates the peripheral speed of the front wheel. The solid line in FIG. 6 is an optimum state line 300 that shows the optimum state in which the peripheral speed of the rear wheel and the peripheral speed of the front wheel coincide with each other, and the broken line in FIG. 6 is a front wheel overrun appropriate limit line 310 indicating an appropriate limit in a state in which the rear wheel slips, and a one-dot chain line in FIG. 6 indicates a rear wheel slip indicating the appropriate limit in a state in which the rear wheel 3 is rotated too much compared to the front wheel 2. This is the appropriate limit line 320.

即ち、前輪の周速と後輪の周速との周速比が、図6に示した前輪オーバーラン状態の適正限界を示す前輪オーバーラン適正限界線310と、後輪スリップ状態の適正限界を示す後輪スリップ適正限界線320との間の範囲内に入っていれば、前輪の駆動状態は適正であると言える。   That is, the peripheral speed ratio between the peripheral speed of the front wheels and the peripheral speed of the rear wheels is determined by the front wheel overrun appropriate limit line 310 indicating the appropriate limit of the front wheel overrun state shown in FIG. If it is within the range between the rear wheel slip appropriate limit line 320 shown, it can be said that the driving state of the front wheels is appropriate.

ここで、図5に示す第一規定範囲(上記適正範囲)の下限の基準値D1は後輪スリップ限界線320の傾きに基づき、上限の基準値D2は前輪オーバーラン適正限界線310の傾きに基づいてそれぞれ定められた固定値である。   Here, the lower limit reference value D1 of the first specified range (the above appropriate range) shown in FIG. 5 is based on the slope of the rear wheel slip limit line 320, and the upper limit reference value D2 is the slope of the front wheel overrun appropriate limit line 310. It is a fixed value determined based on each.

尚、基準値D1、D2は後輪の周速に対応して変化する構成としても良い。   The reference values D1 and D2 may be configured to change corresponding to the peripheral speed of the rear wheels.

(1−2)制御部200は、操舵角センサー170とブレーキ操作検出センサー160との検出結果から、農用トラクター1が前進走行中において、ブレーキ操作がなされたと判定した場合、図5中の第2制御特性線502を利用して、次の制御を行う。   (1-2) When the control unit 200 determines from the detection results of the steering angle sensor 170 and the brake operation detection sensor 160 that the agricultural tractor 1 is traveling forward and the brake operation is performed, the second part in FIG. The following control is performed using the control characteristic line 502.

ブレーキ操作時は、走行車体1aをスムーズに且つ確実に停止させることが求められる。その為、制御部200は、後軸回転センサー101により検出された回転数と、前軸回転センサー102により検出された回転数とにかかわらず、2WDから等速4WDに切り替えるべく、等速四輪駆動クラッチ110を接続(入り状態)すると共に、その接続圧力Pを、メモリ部210に予め格納されている第2制御特性線502(図5参照)を用いて、全圧P1に決定して、等速切替比例ソレノイドバルブ111に対して、全圧P1の接続圧力を出力させるべく指令を出す。   During the brake operation, it is required to smoothly and reliably stop the traveling vehicle body 1a. For this reason, the control unit 200 controls the constant-speed four-wheel to switch from 2WD to constant-speed 4WD regardless of the rotational speed detected by the rear-axis rotational sensor 101 and the rotational speed detected by the front-axis rotational sensor 102. The drive clutch 110 is connected (engaged), and the connection pressure P is determined as the total pressure P1 using the second control characteristic line 502 (see FIG. 5) stored in the memory unit 210 in advance. A command is issued to the constant velocity switching proportional solenoid valve 111 to output the connection pressure of the total pressure P1.

図5では、第2制御特性線502を、周速比Dsにかかわらず、縦軸に示す接続圧力Pが全圧P1となる一点鎖線の直線で表したが、周速比Dsが0からD1の間と、D2を越える範囲では、実線で表された第1制御特性線501と重複している。   In FIG. 5, the second control characteristic line 502 is represented by a one-dot chain line in which the connection pressure P shown on the vertical axis is the total pressure P1 regardless of the peripheral speed ratio Ds, but the peripheral speed ratio Ds is from 0 to D1. The first control characteristic line 501 represented by a solid line overlaps between the two and the range exceeding D2.

尚、この接続圧力P1に向けての昇圧のさせ方は、急激に昇圧させるより滑らかなカーブを描いて昇圧させる方が停止時の衝撃が少なくなる。   Note that, when the pressure is increased toward the connection pressure P1, the impact at the time of stopping is less when the pressure is increased by drawing a smoother curve than when the pressure is increased rapidly.

これにより、ブレーキ非操作時には前輪2の駆動状態を適正なものにするべく、接続圧力Pを予め定めた第1制御特性線501に沿って可変制御出来、ブレーキ操作時には制動力を高めるべく接続圧力を全圧P1に制御することが出来る(図5参照)。   As a result, the connection pressure P can be variably controlled along a predetermined first control characteristic line 501 so that the driving state of the front wheels 2 is appropriate when the brake is not operated, and the connection pressure is increased to increase the braking force when the brake is operated. Can be controlled to the total pressure P1 (see FIG. 5).

(2)旋回走行の場合について:
制御部200は、操舵角センサー170の検出結果から、走行車体1aが例えば、反時計回りに旋回を開始したと判定した場合、図7中の第3制御特性線503を利用して、次の制御を行う。図7は、本実施の形態の農用トラクター1の制御部200のメモリ部210に予め格納されている、旋回走行における周速比Dsと増速四輪駆動クラッチ120の接続圧力Pとの対応関係を示す模式図である。
(2) About turning:
When it is determined from the detection result of the steering angle sensor 170 that the traveling vehicle body 1a has started turning counterclockwise, for example, the control unit 200 uses the third control characteristic line 503 in FIG. Take control. FIG. 7 shows the correspondence between the peripheral speed ratio Ds and the connection pressure P of the speed-up four-wheel drive clutch 120 stored in advance in the memory unit 210 of the control unit 200 of the agricultural tractor 1 of the present embodiment. It is a schematic diagram which shows.

尚、本実施の形態では、旋回走行の場合における、旋回外側の後輪の周速と前輪の周速との周速比についての最適状態は、項目(1)で説明した直進走行の場合の最適状態(図6の符号300参照)と異なるので、その点について、図8を用いて説明する。   In the present embodiment, in the case of turning, the optimum state of the peripheral speed ratio between the peripheral speed of the rear wheel outside the turn and the peripheral speed of the front wheel is the case of the straight traveling described in item (1). Since this is different from the optimum state (see reference numeral 300 in FIG. 6), this point will be described with reference to FIG.

図8は、旋回外側の後輪の周速と前輪の周速との間の周速比Ds(図7参照)の最適状態について説明する図である。   FIG. 8 is a diagram for explaining an optimum state of the peripheral speed ratio Ds (see FIG. 7) between the peripheral speed of the rear wheel and the peripheral speed of the front wheel.

即ち、本実施の形態では、旋回走行の場合、図8に示す通り、前輪の周速が旋回外側の後輪の周速に対して常にやや速くなる状態を最適状態と決め、図中において旋回時最適状態線400とした。   That is, in this embodiment, in the case of turning, as shown in FIG. 8, the state in which the peripheral speed of the front wheels is always slightly higher than the peripheral speed of the rear wheels outside the turn is determined as the optimum state. The time optimum state line 400 was used.

尚、前輪の周速と旋回外側の後輪の周速とが一致している周速一致状態を示す線を周速一致状態線410とした。   A line indicating a peripheral speed matching state in which the peripheral speed of the front wheel and the peripheral speed of the rear wheel outside the turn coincide with each other is referred to as a peripheral speed matching state line 410.

また、本実施の形態では、図8において、旋回外側の後輪の周速における、旋回時最適状態線400の傾きを基準値D3と定めた。ここで、基準値D3は固定値であるが、旋回外側の後輪の周速に対応して変化する構成としても良い。   Further, in the present embodiment, in FIG. 8, the inclination of the turning optimum state line 400 at the peripheral speed of the rear wheel outside the turn is determined as the reference value D3. Here, although the reference value D3 is a fixed value, it may be configured to change in accordance with the peripheral speed of the rear wheel on the outside of the turn.

そして、制御部200は、周速比Ds(図7参照)がD3未満であれば、増速四輪駆動クラッチ120の接続圧力Pを高くし、D3以上であれば、増速四輪駆動クラッチ120の接続圧力Pを低くする構成とした。   Then, the control unit 200 increases the connection pressure P of the speed-up four-wheel drive clutch 120 if the peripheral speed ratio Ds (see FIG. 7) is less than D3, and if it is greater than or equal to D3, the speed-up four-wheel drive clutch. The connection pressure P of 120 was made low.

これによれば、周速比Dsが旋回時最適状態線400上を移動するべく接続圧力が制御されるので、前輪が常に駆動力を出して後輪を少し引っ張る状態の挙動になり、旋回性が向上する。   According to this, since the connection pressure is controlled so that the circumferential speed ratio Ds moves on the optimum state line 400 at the time of turning, the behavior of the front wheel always outputs a driving force and slightly pulls the rear wheel, and the turning performance. Will improve.

尚、最適な周速比D3に対応する接続圧力P3は、路面状況によって変動する構成としても良い。   The connection pressure P3 corresponding to the optimum circumferential speed ratio D3 may be configured to vary depending on the road surface condition.

ここで、再び、図7中の第3制御特性線503を利用した制御部200の説明に戻る。   Here, the description returns to the control unit 200 using the third control characteristic line 503 in FIG. 7 again.

制御部200は、操舵角センサー170の検出結果から走行車体1aが反時計回りに旋回を開始したと判定した場合、等速4WDから増速4WDに切り替えるべく、前輪伝動クラッチ装置100における等速四輪駆動クラッチ110を切断し、且つ、増速四輪駆動クラッチ120を接続させる。そして、メモリ部210に予め格納されている第3制御特性線503(図7参照)を用いて、周速比Dβに対応する接続圧力Pβを決定して、増速切替比例ソレノイドバルブ121に対して、接続圧力Pβを出力させるべく指令を出す。   When it is determined from the detection result of the steering angle sensor 170 that the traveling vehicle body 1a has started to turn counterclockwise, the control unit 200 switches the constant speed 4WD from the constant speed 4WD to the speed increase 4WD in the front wheel transmission clutch device 100. The wheel drive clutch 110 is disconnected and the speed-up four-wheel drive clutch 120 is connected. Then, the third control characteristic line 503 (see FIG. 7) stored in advance in the memory unit 210 is used to determine the connection pressure Pβ corresponding to the peripheral speed ratio Dβ, and to the speed increasing switching proportional solenoid valve 121. Command to output the connection pressure Pβ.

尚、制御部200は、反時計回りの旋回走行において、周速比Dsを算出する際、右後輪回転センサー153Rで検出された右後輪の回転数に後輪3の直径を乗算することで右後輪の周速Srを取得し、前軸回転センサー102で検出された前輪伝動軸62の回転数に、前輪伝動軸62の回転数を基準とした時の前輪2の回転数の比と、前輪2の直径を乗算することで前輪の周速Sfを取得し、Ds=Sf/Srの演算を行って求める。   When calculating the peripheral speed ratio Ds in counterclockwise turning, the control unit 200 multiplies the rotational speed of the right rear wheel detected by the right rear wheel rotation sensor 153R by the diameter of the rear wheel 3. To obtain the peripheral speed Sr of the right rear wheel and the ratio of the rotational speed of the front wheel 2 to the rotational speed of the front wheel transmission shaft 62 detected by the front shaft rotation sensor 102 based on the rotational speed of the front wheel transmission shaft 62. Then, the peripheral speed Sf of the front wheel is obtained by multiplying the diameter of the front wheel 2 and calculated by calculating Ds = Sf / Sr.

反時計回りの旋回中においてその後、制御部200は、旋回外側の右後輪回転センサー153Rにより検出された回転数と、前軸回転センサー102により検出された回転数とに基づいて一定の時間間隔で周速比Dsを算出して、Ds=D3となるように、上記と同様の制御を繰り返し、周速比Ds<D3となれば、増速四輪駆動クラッチ120の接続圧力Pを高くし、周速比Ds>D3となれば、増速四輪駆動クラッチ120の接続圧力Pを低くする。   Subsequently, during the counterclockwise turn, the control unit 200 determines a fixed time interval based on the rotation speed detected by the right rear wheel rotation sensor 153R outside the turn and the rotation speed detected by the front shaft rotation sensor 102. Then, the peripheral speed ratio Ds is calculated, and the same control as described above is repeated so that Ds = D3. If the peripheral speed ratio Ds <D3, the connection pressure P of the speed-up four-wheel drive clutch 120 is increased. If the peripheral speed ratio Ds> D3, the connection pressure P of the speed-up four-wheel drive clutch 120 is lowered.

尚、決定した接続圧力Pβに向けての昇圧又は減圧の仕方は、滑らかなカーブを描くべく昇圧させても良いし、急激に昇圧させても良い。   The method of increasing or decreasing pressure toward the determined connection pressure Pβ may be increased to draw a smooth curve or may be increased rapidly.

これにより、旋回走行時において、前輪2に対して増速状態での適正駆動トルクを与えることで、圃場条件により前輪2がブレーキ気味に作用したり、空回りする状態(駆動力が少ない状態)を防止出来る。   As a result, when turning, the appropriate driving torque in the accelerated state is given to the front wheels 2, so that the front wheels 2 act like a brake or are idle due to the field conditions (a state where the driving force is low). It can be prevented.

次に、本実施の形態の農用トラクター1が、路上を直進走行した後、圃場に進入し、圃場内において耕耘作業を行う場合の動作を、図9を用いて説明する。   Next, the operation in the case where the agricultural tractor 1 according to the present embodiment travels straight on the road, enters the field, and performs the cultivation work in the field will be described with reference to FIG.

図9は、農用トラクター1における、上述した各種クラッチの動作状況の一例を示す模式図である。   FIG. 9 is a schematic diagram illustrating an example of the operation state of the above-described various clutches in the agricultural tractor 1.

図9に示す通り、路上走行行程600においては、概ね直進走行であるので、制御部200は、2WDによる走行中に、周速比Dsが例えばDα(Dα>D2)であると判定すると(図5参照)、2WDから等速4WDに切り替えるべく、等速四輪駆動クラッチ110を接続(入り状態)する。この場合、接続圧力Pの決め方は、図5で説明した通りである。   As shown in FIG. 9, in the road travel distance 600, since the vehicle travels substantially straight, the control unit 200 determines that the peripheral speed ratio Ds is, for example, Dα (Dα> D2) during travel by 2WD (FIG. 9). 5) The constant-speed four-wheel drive clutch 110 is connected (engaged) to switch from 2WD to constant-speed 4WD. In this case, how to determine the connection pressure P is as described with reference to FIG.

その後、圃場内に進入し耕耘開始位置まで走行する圃場進入行程610においては、制御部200は、周速比Dsが概ねD2より大きいと判定するので、2WDから等速4WDに切り替えるべく、等速四輪駆動クラッチ110を接続(入り状態)し、図5で説明した判定を行いながら、例えば、耕耘開始位置までその接続状態を維持する。   Thereafter, in the farm field entry process 610 that enters the farm field and travels to the tillage start position, the control unit 200 determines that the peripheral speed ratio Ds is substantially larger than D2, and therefore, the constant speed is set to switch from 2WD to constant speed 4WD. The four-wheel drive clutch 110 is connected (engaged), and the connected state is maintained up to, for example, a tilling start position while performing the determination described in FIG.

次に、耕耘作業行程620においては、作業者の操作により作業機(図示省略)が下げられて耕耘作業が開始されると、制御部200は、図5で説明した判定を行いながら、例えば、直進走行中は等速4WDで耕耘作業を行い、圃場の端まで来て旋回を開始すると、操舵角センサー170の検出結果により旋回方向を判定して、図7で説明した通り、等速4WDから増速4WDに切り替えるべく、増速四輪駆動クラッチ120を接続(入り状態)すると共に、その接続圧力Pを、周速比DsがD3に一致するべくフィードバック制御する。   Next, in the tilling work process 620, when the work implement (not shown) is lowered by the operator's operation and the tilling work is started, the control unit 200 performs, for example, the determination described in FIG. During straight running, plowing work is performed at a constant speed of 4WD, and when turning to the end of the field starts turning, the turning direction is determined based on the detection result of the steering angle sensor 170, and as described with reference to FIG. In order to switch to the speed increase 4WD, the speed increase four-wheel drive clutch 120 is connected (engaged), and the connection pressure P is feedback-controlled so that the peripheral speed ratio Ds matches D3.

そして、旋回が完了して直進走行が再開されると、制御部200は、周速比Dsを判定して(図5参照)、増速4WDから等速4WDに切り替える。耕耘作業中においては、上記動作を繰り返す。   Then, when the turn is completed and the straight traveling is resumed, the control unit 200 determines the peripheral speed ratio Ds (see FIG. 5) and switches from the increased speed 4WD to the constant speed 4WD. The above operation is repeated during tillage work.

これにより、農用トラクター1が直進走行している場合に、例えば、前輪と後輪との周速度の間に差が発生すると、四輪駆動クラッチの接続圧力を、当該差の大きさに対応した値に制御することで、前輪の駆動状態を適正なものに出来、前輪の過剰な回転を抑え、泥の巻き付きやタイヤの摩耗を防ぐことが出来る。   Thereby, when the agricultural tractor 1 is traveling straight, for example, if a difference occurs between the peripheral speeds of the front wheels and the rear wheels, the connection pressure of the four-wheel drive clutch corresponds to the magnitude of the difference. By controlling the value, the driving state of the front wheels can be made appropriate, excessive rotation of the front wheels can be suppressed, and mud wrapping and tire wear can be prevented.

また、操舵角センサー170の検出結果により農用トラクター1が旋回中であると判定された場合、前輪に対して増速で駆動力を伝達するべく前輪伝動クラッチ装置100が切り替えられると共に、前輪に適正な駆動トルクを与えることが出来、安定した旋回を行うことが出来る。   When it is determined from the detection result of the steering angle sensor 170 that the agricultural tractor 1 is turning, the front wheel transmission clutch device 100 is switched to transmit the driving force at an increased speed to the front wheels, and the front wheels are appropriate for the front wheels. Can provide a stable driving torque and can perform stable turning.

尚、上記実施の形態では、図5中の第1制御特性線501で示した通り、制御部200は、周速比Dsが第一規定範囲の外にあるときは、周速比Dsの値に関わらず、等速四輪駆動クラッチ110の接続圧力Pとして一律に全圧P1を掛ける構成について説明したが、これに限らず例えば、図10に示す通り、制御部200は、周速比DsがD1以上かつD2未満であれば、等速四輪駆動クラッチ110の接続圧力PをP0とすることで等速四輪駆動クラッチ110を「切」状態とし2WDの走行を維持するが、D1未満又はD2以上であれば、2WDを等速4WDに切り替えると共に、その周速比Dsの値に対応した接続圧力Pを決定して、その決定した接続圧力Pを用いて、等速四輪駆動クラッチ110の接続状態を維持する構成であっても良い。例えば、図10では、制御部200は、周速比がDαの場合、予め定められた第4制御特性線504を利用して、接続圧力PをPα(Pα<P1)とする。ここで、図10は、本実施の形態の農用トラクター1の制御部200のメモリ部210に予め格納されている、周速比と接続圧力との対応関係を示す別の例の模式図である。   In the above embodiment, as indicated by the first control characteristic line 501 in FIG. 5, the control unit 200 determines the value of the peripheral speed ratio Ds when the peripheral speed ratio Ds is outside the first specified range. Regardless, the configuration in which the total pressure P1 is uniformly applied as the connection pressure P of the constant-speed four-wheel drive clutch 110 has been described. However, the present invention is not limited to this. For example, as shown in FIG. Is equal to or greater than D1 and less than D2, by setting the connection pressure P of the constant-speed four-wheel drive clutch 110 to P0, the constant-speed four-wheel drive clutch 110 is set to the “disengaged” state and 2WD running is maintained, but less than D1 Alternatively, if it is D2 or more, the 2WD is switched to the constant speed 4WD, the connection pressure P corresponding to the value of the peripheral speed ratio Ds is determined, and the constant speed four-wheel drive clutch is determined using the determined connection pressure P. It is a configuration that maintains the connection state of 110 It may be. For example, in FIG. 10, when the peripheral speed ratio is Dα, the control unit 200 uses the fourth control characteristic line 504 determined in advance to set the connection pressure P to Pα (Pα <P1). Here, FIG. 10 is a schematic diagram of another example showing a correspondence relationship between the peripheral speed ratio and the connection pressure, which is stored in advance in the memory unit 210 of the control unit 200 of the agricultural tractor 1 of the present embodiment. .

尚、上記実施の形態では、等速四輪駆動クラッチ110の接続又は切断の判定の基準値D1、D2(図5参照)は、固定値の場合について説明したが、これに限らず例えば、基準値D1、D2は、D1、D2の平均値や、或いは、D1、D2の内の最大値、或いはその他の値等といった固定値であっても良いし、後輪の周速に対応して決められる構成としても良い。   In the above embodiment, the reference values D1 and D2 (see FIG. 5) for determining whether the constant-speed four-wheel drive clutch 110 is connected or disconnected have been described as being fixed values. The values D1 and D2 may be fixed values such as the average value of D1 and D2, the maximum value of D1 and D2, or other values, and are determined according to the peripheral speed of the rear wheels. It is good also as a structure to be made.

また、上記実施の形態では、増速四輪駆動クラッチ120の接続圧力Pを決定する基準値D3(図7参照)は、固定値の場合について説明したが、これに限らず例えば、基準値D3は、D3の平均値や、D3の内の最大値、或いはその他の値等といった固定値であっても良いし、旋回外側の後輪の周速に対応して決められる構成としても良い。   In the above-described embodiment, the reference value D3 (see FIG. 7) for determining the connection pressure P of the speed-up four-wheel drive clutch 120 has been described as being a fixed value. May be a fixed value such as the average value of D3, the maximum value of D3, or other values, or may be determined according to the peripheral speed of the rear wheel outside the turn.

また、上記実施の形態では、農用トラクター1の制御部200が、直進走行時において、2WDから等速4WDに切り替える際の等速四輪駆動クラッチ110の接続圧力を所定のルールに基づいて制御する構成と(図5、図10参照)、旋回走行時において、等速4WDから増速4WDに切り替える際に増速四輪駆動クラッチ120の接続圧力を別の所定のルールに基づいて制御する構成(図7参照)を同時に実現する場合について説明したが、これに限らず例えば、直進走行時における制御と、旋回走行時における制御との内、何れか一方の制御を実現する構成であっても良い。   Moreover, in the said embodiment, the control part 200 of the agricultural tractor 1 controls the connection pressure of the constant speed four-wheel drive clutch 110 at the time of switching from 2WD to constant speed 4WD based on a predetermined rule at the time of straight traveling. Configuration (see FIGS. 5 and 10), and a configuration for controlling the connection pressure of the speed-up four-wheel drive clutch 120 based on another predetermined rule when switching from the constant speed 4WD to the speed-up 4WD during turning. However, the present invention is not limited to this. For example, a configuration that realizes either one of the control during straight traveling and the control during turning traveling may be adopted. .

また、上記実施の形態では、周速比Dsが適正範囲内にあれば、即ち、基準値D1以上D2未満であれば、2WDを実行する構成について説明したが、これに限らず例えば、周速比Dsが、最適状態線300(図6参照)上にくるまでは、等速4WDを実行すると共に、その接続圧力を低めに設定する制御を行っても良い。また、この構成では、前輪の周速と後輪の周速の関係が、図6に示した前輪オーバーラン適正限界線310より上側(即ち、オーバーラン大ゾーン)にある場合、及び、後輪スリップ適正限界線320より下側(即ち、スリップ大ゾーン)にある場合、等速四輪駆動クラッチ110の接続圧力を高めに設定する。更に、この構成では、等速四輪駆動クラッチ110のクラッチ材は、カーボン製等のすべりに強い材質とし、滑りトルクを発生させながら回転数のコントロールが出来る構成としても良い。これにより、路面との関係で適正な駆動力を、クラッチ面を滑らせながらコントロールする事で、常に適正な駆動力で摩耗の少ない駆動を実現出来る。   In the above-described embodiment, the configuration in which 2WD is executed if the circumferential speed ratio Ds is within the appropriate range, that is, if the reference value D1 is less than D2 has been described. Until the ratio Ds reaches the optimum state line 300 (see FIG. 6), the constant speed 4WD may be executed and the control for setting the connection pressure lower may be performed. Further, in this configuration, the relationship between the front wheel peripheral speed and the rear wheel peripheral speed is above the front wheel overrun appropriate limit line 310 shown in FIG. 6 (ie, the overrun large zone), and the rear wheel When it is below the slip appropriate limit line 320 (that is, the large slip zone), the connection pressure of the constant-speed four-wheel drive clutch 110 is set higher. Furthermore, in this configuration, the clutch material of the constant-speed four-wheel drive clutch 110 may be made of a material that is resistant to sliding such as carbon, and the rotation speed can be controlled while generating a sliding torque. As a result, by controlling the appropriate driving force in relation to the road surface while sliding the clutch surface, it is possible to always realize a drive with less wear with the appropriate driving force.

また、上記実施の形態では、直進走行において、後輪の周速と前輪の周速との周速比Dsを算出し、その周速比Dsに基づいて等速四輪駆動クラッチ110の接続圧力を決める構成について説明したが、これに限らず例えば、後輪の回転数と前輪の回転数との比又は差を利用して、等速四輪駆動クラッチ110接続圧力を決める構成であっても良い。また、この場合、後輪の回転数と前輪の回転数とが求められるのであれば、何れの場所の回転数を利用する構成でも良い。   In the above-described embodiment, in the straight traveling, the peripheral speed ratio Ds between the peripheral speed of the rear wheels and the peripheral speed of the front wheels is calculated, and the connection pressure of the constant-speed four-wheel drive clutch 110 is calculated based on the peripheral speed ratio Ds. However, the present invention is not limited to this. For example, even if the constant pressure four-wheel drive clutch 110 connection pressure is determined using the ratio or difference between the rotational speed of the rear wheels and the rotational speed of the front wheels, good. Further, in this case, as long as the number of rotations of the rear wheel and the number of rotations of the front wheel are required, a configuration using the number of rotations at any location may be used.

また、上記実施の形態では、旋回走行において、旋回外側の後輪の周速と前輪の周速との周速比Dsを算出し、その周速比Dsに基づいて増速四輪駆動クラッチ120の接続圧力を決める構成について説明したが、これに限らず例えば、旋回外側の後輪の回転数と前輪の回転数との比又は差を利用して、増速四輪駆動クラッチ120の接続圧力を決める構成であっても良い。また、この場合、旋回外側の後輪の回転数と前輪の回転数とが求められるのであれば、何れの場所の回転数を利用する構成であっても良い。   Further, in the above-described embodiment, during turning, the peripheral speed ratio Ds between the peripheral speed of the rear wheels outside the turn and the peripheral speed of the front wheels is calculated, and the speed-up four-wheel drive clutch 120 is calculated based on the peripheral speed ratio Ds. However, the present invention is not limited to this. For example, the connection pressure of the speed-up four-wheel drive clutch 120 is determined using the ratio or difference between the rotation speed of the rear wheel and the rotation speed of the front wheel. It may be configured to determine. Further, in this case, as long as the rotation speed of the rear wheel and the rotation speed of the front wheel are calculated, the rotation speed at any place may be used.

また、上記実施の形態では、直進走行において、ある時点で検出された後輪及び前輪の瞬時値の回転数に基づいて、周速比を算出する構成を中心に説明したが、これに限らず例えば、後軸回転センサー101の検出結果から求めた後軸回転数と、前軸回転センサー102の検出結果から求めた前軸平均回転数との比又は差に基づいて、等速四輪駆動クラッチ110の接続圧力を制御する構成でも良い。これにより、前輪2の回転数の頻繁な変動に対しても、接続圧力の制御を安定的に行える。   Further, in the above-described embodiment, the description has been made centering on the configuration for calculating the peripheral speed ratio based on the rotational speed of the instantaneous value of the rear wheel and the front wheel detected at a certain point in straight traveling, but the present invention is not limited to this. For example, the constant-speed four-wheel drive clutch is based on the ratio or difference between the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor 101 and the front shaft average rotation speed obtained from the detection result of the front shaft rotation sensor 102. The structure which controls the connection pressure of 110 may be sufficient. As a result, the connection pressure can be stably controlled even with respect to frequent fluctuations in the rotational speed of the front wheels 2.

また、上記実施の形態では、直進走行において、ある時点で検出された後輪及び前輪の瞬時値の回転数に基づいて、周速比を算出する構成を中心に説明したが、これに限らず例えば、図11に示す通り、制御部200は、(1)後軸回転センサー101により検出された瞬時値と前軸回転センサー102により検出された瞬時値との比又は差(図11の符号710参照)が、上記第一規定範囲(図11参照)を含む予め定められた第二規定範囲(図11参照)の内にある場合、後軸回転センサー101の検出結果から求めた後軸回転数と前軸回転センサー102の検出結果から求めた前軸平均回転数との比又は差(図11の符号720参照)に基づいて、等速四輪駆動クラッチ110の接続圧力を制御し、(2)後軸回転センサー101により検出された瞬時値と前軸回転センサー102により検出された瞬時値との比又は差(図11の符号710参照)が、第二規定範囲の外にある場合、後軸回転センサー101により検出された瞬時値と前軸回転センサー102により検出された瞬時値との比又は差(図11の符号710参照)に基づいて、所定時間(図11のTw参照)の間、等速四輪駆動クラッチ110の接続圧力を制御する構成でも良い。   Further, in the above-described embodiment, the description has been made centering on the configuration for calculating the peripheral speed ratio based on the rotational speed of the instantaneous value of the rear wheel and the front wheel detected at a certain point in straight traveling, but the present invention is not limited to this. For example, as shown in FIG. 11, the control unit 200 (1) a ratio or difference between the instantaneous value detected by the rear shaft rotation sensor 101 and the instantaneous value detected by the front shaft rotation sensor 102 (reference numeral 710 in FIG. 11). Reference) is within a predetermined second specified range (see FIG. 11) including the first specified range (see FIG. 11), the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor 101 And the connection pressure of the constant-speed four-wheel drive clutch 110 is controlled based on the ratio or difference (see reference numeral 720 in FIG. 11) between the average rotational speed of the front shafts obtained from the detection result of the front shaft rotation sensor 102 and (2 ) By rear shaft rotation sensor 101 If the ratio or difference (see reference numeral 710 in FIG. 11) between the detected instantaneous value and the instantaneous value detected by the front shaft rotation sensor 102 is outside the second specified range, it is detected by the rear shaft rotation sensor 101. Constant-speed four-wheel drive clutch for a predetermined time (see Tw in FIG. 11) based on the ratio or difference (see reference numeral 710 in FIG. 11) between the instantaneous value detected and the instantaneous value detected by the front shaft rotation sensor 102 The structure which controls the connection pressure of 110 may be sufficient.

ここで、図11は、本実施の形態の農用トラクター1の周速比Ds(前輪/後輪)と等速四輪駆動クラッチ110の接続圧力Pとの関係の一例を時系列で示した模式図である。   Here, FIG. 11 is a schematic diagram showing an example of the relationship between the peripheral speed ratio Ds (front wheel / rear wheel) of the agricultural tractor 1 of this embodiment and the connection pressure P of the constant speed four-wheel drive clutch 110 in time series. FIG.

これにより、例えば、後軸回転数と前軸回転数との瞬時値の比又は差(図11の符号710参照)が第二規定範囲の内にあるときは、前軸回転数について平均回転数を求め、後軸回転数と当該前軸平均回転数との比又は差(図11の符号720参照)に基づいて、等速四輪駆動クラッチ110の接続圧力を制御することにより、前輪2の駆動状態を適正なものとし、また、ブレーキ操作時に後輪3がロックした場合や、二輪駆動に近い接続圧力時に後輪3がスリップした場合等、後軸回転数と前軸回転数との瞬時値の比又は差(図11の符号710参照)が第二規定範囲の外になったときは、平均ではなく、後軸回転数と前軸回転数との瞬時値の比又は差(図11の符号710参照)に基づいて、等速四輪駆動クラッチの接続圧力を制御することで、後輪ロックやスリップに瞬時に対応出来る。   Thereby, for example, when the ratio or difference (see reference numeral 710 in FIG. 11) of the instantaneous value between the rear shaft rotational speed and the front shaft rotational speed is within the second specified range, the average rotational speed with respect to the front shaft rotational speed. And the connection pressure of the constant-speed four-wheel drive clutch 110 is controlled based on the ratio or difference (see reference numeral 720 in FIG. 11) between the rear shaft rotational speed and the front shaft average rotational speed. When the driving state is appropriate and the rear wheel 3 is locked during brake operation, or when the rear wheel 3 slips when the connection pressure is close to two-wheel driving, the instantaneous rotation speed between the rear axle and the front axle When the value ratio or difference (see reference numeral 710 in FIG. 11) is outside the second specified range, it is not an average, but the instantaneous value ratio or difference between the rear shaft speed and the front shaft speed (FIG. 11). The reference pressure of the constant-speed four-wheel drive clutch is controlled based on And in, it can respond instantly to the rear wheels lock and slip.

ここで、本実施の形態の第一規定範囲は本発明の第一の規定の範囲の一例にあたり、本実施の形態の第二規定範囲は本発明の第二の規定の範囲の一例にあたる。   Here, the first specified range of the present embodiment corresponds to an example of the first specified range of the present invention, and the second specified range of the present embodiment corresponds to an example of the second specified range of the present invention.

ここで、上記構成において、図11を参照しながら、制御部200による、周速比Ds(前輪/後輪)に基づいた、等速四輪駆動クラッチ110の接続圧力Pの制御の一例を時系列的に説明する。   Here, in the above configuration, an example of control of the connection pressure P of the constant-speed four-wheel drive clutch 110 based on the peripheral speed ratio Ds (front wheel / rear wheel) by the control unit 200 will be described with reference to FIG. This will be explained in series.

図11において、前輪回転数の変化曲線は、前輪回転数の瞬時値曲線701については実線で示し、前輪回転数の平均値曲線702については破線で示した。また、周速比Ds(前輪周速/後輪周速)の変化曲線は、後輪回転数の瞬時値と前輪回転数の瞬時値とに基づいた瞬時値周速比曲線710については実線で示し、後輪回転数の瞬時値と前輪回転数の平均回転数とに基づいた平均値周速比曲線720については破線で示した。また、第一規定範囲は1.1〜1.6の範囲であり、第二規定範囲は0.4〜2.0の範囲である。   In FIG. 11, the change curve of the front wheel rotational speed is indicated by a solid line for the instantaneous value curve 701 of the front wheel rotational speed, and is indicated by a broken line for the average value curve 702 of the front wheel rotational speed. The change curve of the peripheral speed ratio Ds (front wheel peripheral speed / rear wheel peripheral speed) is a solid line for the instantaneous value peripheral speed ratio curve 710 based on the instantaneous value of the rear wheel speed and the instantaneous value of the front wheel speed. The average peripheral speed ratio curve 720 based on the instantaneous value of the rear wheel rotational speed and the average rotational speed of the front wheel rotational speed is indicated by a broken line. The first specified range is a range of 1.1 to 1.6, and the second specified range is a range of 0.4 to 2.0.

図11に示す通り、時刻t1では、瞬時値周速比曲線710は第二規定範囲の内にあり、且つ、平均値周速比曲線720が第一規定範囲の外ではないので、等速四輪駆動クラッチ110は「切」状態のまま、即ち、接続圧力はP0である。   As shown in FIG. 11, at the time t1, the instantaneous value peripheral speed ratio curve 710 is within the second specified range, and the average value peripheral speed ratio curve 720 is not outside the first specified range. The wheel drive clutch 110 remains in the “disengaged” state, that is, the connection pressure is P0.

次に、時刻t2では、瞬時値周速比曲線710は第二規定範囲の内にあり、且つ、平均値周速比曲線720が第一規定範囲の外にあるので、等速四輪駆動クラッチ110は「入」状態となり、時刻t3で接続圧力P1に到達する。   Next, at the time t2, since the instantaneous value peripheral speed ratio curve 710 is within the second specified range and the average value peripheral speed ratio curve 720 is outside the first specified range, the constant speed four-wheel drive clutch 110 enters the “ON” state and reaches the connection pressure P1 at time t3.

その後、時刻t4で、平均値周速比曲線720が第一規定範囲の内に入るので、二輪駆動状態とするべく、等速四輪駆動クラッチ110の接続圧力は、時刻t4からt5に至るまでの間において徐々に低下して、時刻t5において完全に「切」状態となる。   Thereafter, at time t4, the average peripheral speed ratio curve 720 falls within the first specified range, so that the connection pressure of the constant-speed four-wheel drive clutch 110 is from time t4 to time t5 in order to set the two-wheel drive state. It gradually decreases during the period of time and becomes completely “OFF” at time t5.

次に、時刻t6において、瞬時値周速比曲線710は第二規定範囲の外にあるので、平均値周速比曲線720が第一規定範囲の外にあるか否かにかかわらず、等速四輪駆動クラッチ110は「入」状態となり、時刻t7で接続圧力P1に到達する。その後、時刻t8で接続圧力は、時刻t8からt9に至るまでの間において徐々に低下して、時刻t9において完全に「切」状態となる。この場合、予め定められた時間Twの間、即ち、時刻t6〜t8の間、等速四輪駆動クラッチ110は接続圧力として実質上P1が掛けられ、時刻t9以降は、二輪駆動状態に戻る。   Next, since the instantaneous value circumferential speed ratio curve 710 is outside the second specified range at time t6, the constant speed regardless of whether the average value circumferential speed ratio curve 720 is outside the first specified range or not. The four-wheel drive clutch 110 enters the “ON” state and reaches the connection pressure P1 at time t7. Thereafter, at time t8, the connection pressure gradually decreases from time t8 to time t9, and is completely turned off at time t9. In this case, during a predetermined time Tw, that is, from time t6 to t8, the constant-speed four-wheel drive clutch 110 is substantially applied with P1 as the connection pressure, and after time t9, returns to the two-wheel drive state.

ここで、時刻t6周辺において、瞬時値周速比曲線710が急激に第二規定範囲の下限値0.4を下回ったのは、後輪は回転しているが、前輪の回転数の瞬時値が極端に低下した状態(図11の時刻t6周辺の瞬時値曲線701参照)、即ち後輪がスリップ状態にあることを意味している。   Here, around the time t6, the instantaneous value peripheral speed ratio curve 710 suddenly falls below the lower limit value 0.4 of the second specified range because the rear wheel is rotating, but the instantaneous value of the rotational speed of the front wheel is Is extremely reduced (see instantaneous value curve 701 around time t6 in FIG. 11), that is, the rear wheels are in a slip state.

尚、図11では、時刻t9の少し手前から、旋回走行が開始されているので、直進走行において行われていた、上記第一規定範囲及び第二規定範囲に基づく等速四輪駆動クラッチ110の接続圧力の制御は、旋回走行中は行われない。その代わり、上記項目(2)で説明した通り、周速比Dsを最適な周速比D3と一致させるべく周速比Ds<D3となれば、増速四輪駆動クラッチ120の接続圧力Pを高くし、周速比Ds>D3となれば、増速四輪駆動クラッチ120の接続圧力Pを低くするフィードバック制御が行われる。その結果、時刻t9以降において、周速比Ds(前輪周速/後輪周速)が、高めの値を維持している。   In FIG. 11, since the cornering is started slightly before time t9, the constant-speed four-wheel drive clutch 110 based on the first prescribed range and the second prescribed range, which has been used in the straight traveling, is used. The connection pressure is not controlled during turning. Instead, as explained in the above item (2), if the peripheral speed ratio Ds <D3 in order to make the peripheral speed ratio Ds coincide with the optimal peripheral speed ratio D3, the connection pressure P of the speed-up four-wheel drive clutch 120 is increased. If the peripheral speed ratio Ds> D3, the feedback control is performed to lower the connection pressure P of the speed-up four-wheel drive clutch 120. As a result, after time t9, the peripheral speed ratio Ds (front wheel peripheral speed / rear wheel peripheral speed) maintains a high value.

また、図11で説明した構成例では、瞬時値周速比曲線710が第二規定範囲の外にある場合は、平均値周速比曲線720が第一規定範囲の外にあるか否かにかかわらず、一定時間Twの間、等速四輪駆動クラッチ110に接続圧力として実質上P1が掛けられる制御について説明したが、これに限らず例えば、瞬時値周速比曲線710が第二規定範囲の外に出ると同時に、平均値周速比曲線720が第一規定範囲の外に出る場合は、平均値周速比曲線720が第一規定範囲の外に居る時間と一定時間Twとの内、何れか長い方の時間、等速四輪駆動クラッチ110の接続圧力として実質上P1を掛ける制御としても良い。   In the configuration example described with reference to FIG. 11, when the instantaneous value peripheral speed ratio curve 710 is outside the second specified range, whether the average value peripheral speed ratio curve 720 is outside the first specified range or not. Regardless, the control in which P1 is substantially applied as the connection pressure to the constant-speed four-wheel drive clutch 110 for a certain time Tw has been described. However, the present invention is not limited to this. For example, the instantaneous value peripheral speed ratio curve 710 is the second specified range. If the average value circumferential speed ratio curve 720 goes out of the first specified range at the same time when the average value peripheral speed ratio curve 720 goes out of the first specified range, the average value peripheral speed ratio curve 720 falls within the predetermined time Tw. It is also possible to perform a control in which P1 is substantially applied as the connection pressure of the constant velocity four-wheel drive clutch 110, whichever is longer.

また、図11で説明した構成例では、周速比Dsの値に関わらず、条件を満たせば、等速四輪駆動クラッチ110に接続圧力として、一律に全圧P1を掛ける構成について説明したが、これに限らず例えば、周速比Dsの値に対応した接続圧力を決定して、その決定した接続圧力Pを用いて、等速四輪駆動クラッチ110の接続状態を維持する構成であっても良い。   In the configuration example described with reference to FIG. 11, the configuration in which the total pressure P1 is uniformly applied as the connection pressure to the constant-speed four-wheel drive clutch 110 if the condition is satisfied regardless of the value of the peripheral speed ratio Ds has been described. For example, the connection pressure corresponding to the value of the peripheral speed ratio Ds is determined, and the connection state of the constant-speed four-wheel drive clutch 110 is maintained using the determined connection pressure P. Also good.

また、上記実施の形態では、操舵角センサー170により旋回方向を検出する構成について説明したが、これに限らず例えば、操舵角センサー170を設けずに、右後輪回転センサー153Rと左後輪回転センサー153Lのそれぞれの検出結果から、回転数の速い方の後輪を求めて、旋回方向は、その求めた後輪の位置と反対側の方向であると判定する構成であっても良い。   In the above embodiment, the configuration in which the turning direction is detected by the steering angle sensor 170 has been described. However, the present invention is not limited to this, and for example, the right rear wheel rotation sensor 153R and the left rear wheel rotation are not provided without the steering angle sensor 170 being provided. The configuration may be such that the rear wheel having the higher rotation speed is obtained from the respective detection results of the sensor 153L, and the turning direction is determined to be the direction opposite to the obtained position of the rear wheel.

また、上記実施の形態では、旋回走行において、前輪が常に駆動力を出して後輪を少し引っ張る状態で旋回するべく、増速四輪駆動クラッチ120の接続圧力を決定する構成について説明したが、これに限らず例えば、旋回走行を開始した直後において、前輪が駆動力を出して後輪を少し引っ張る状態で旋回するべく、増速四輪駆動クラッチ120の接続圧力を決定し、その後は、前輪の周速と旋回外側の後輪の周速が一致するべく接続圧力を制御する構成でも良い。これにより、旋回開始時の増速4WDへの切り替わりのショックが和らぐ。   Further, in the above embodiment, in the turning traveling, the configuration for determining the connection pressure of the speed-up four-wheel drive clutch 120 so as to turn in a state in which the front wheels always output driving force and slightly pull the rear wheels has been described. Not limited to this, for example, immediately after the start of turning, the connection pressure of the speed-up four-wheel drive clutch 120 is determined so as to turn in a state in which the front wheels output driving force and slightly pull the rear wheels. The connection pressure may be controlled so that the peripheral speed of the rear wheel and the peripheral speed of the rear wheel outside the turn coincide with each other. As a result, the shock of switching to the increased speed 4WD at the start of turning is eased.

また、上記実施の形態では、旋回走行時において、前輪の周速が旋回外側の後輪の周速に対して常にやや速くなる状態を維持するべく、即ち、周速比Dsが旋回時最適状態線400上にくるべく増速四輪駆動クラッチ120の接続圧力が制御される(図8参照)構成について説明したが、これに限らず例えば、周速比Dsが旋回時最適状態線400と周速一致状態線410とで囲まれた範囲を移動するべく接続圧力が制御される構成でも良い。この構成では、接続圧力Pは、図7において、周速比が1〜D3の範囲では同一の値を示す点で、上記構成と相違する。   Further, in the above embodiment, during turning, the peripheral speed of the front wheels is always kept slightly higher than the peripheral speed of the rear wheels outside the turn, that is, the peripheral speed ratio Ds is the optimum state during turning. Although the configuration has been described in which the connection pressure of the speed-up four-wheel drive clutch 120 is controlled so as to be on the line 400 (see FIG. 8), the present invention is not limited to this. A configuration in which the connection pressure is controlled so as to move in a range surrounded by the fast coincidence state line 410 may be used. In this configuration, the connection pressure P is different from the above configuration in that the connection pressure P shows the same value in the range of the peripheral speed ratio of 1 to D3 in FIG.

また、上記実施の形態では、旋回走行時において、周速比Dsが旋回時最適状態線400上にくるべく増速四輪駆動クラッチ120の接続圧力が制御される(図8参照)構成について説明したが、これに限らず例えば、周速比Dsが1となるべく、即ち、前輪の周速が旋回外側の後輪の周速に一致するべく、増速四輪駆動クラッチ120の接続圧力が制御される構成でも良い。   Further, in the above-described embodiment, the configuration in which the connection pressure of the speed-up four-wheel drive clutch 120 is controlled so that the peripheral speed ratio Ds is on the turning optimum state line 400 during turning (see FIG. 8) will be described. However, the present invention is not limited to this. For example, the connection pressure of the speed-up four-wheel drive clutch 120 is controlled so that the peripheral speed ratio Ds becomes 1, that is, the peripheral speed of the front wheels matches the peripheral speed of the rear wheels outside the turn. The structure which is made may be sufficient.

また、上記実施の形態の増速四輪駆動クラッチ120の前輪増速ギヤの回転比は、2倍以上の回転比となるギヤで構成しても良い。即ち、最大を2倍以上の回転数が発生するギヤで構成しておくことで、増速四輪駆動クラッチ120の接続圧力をコントロールすることによるトルクコントロールで、路面状態により適正トルクでのコントロールが可能となる。   Further, the front wheel speed increasing gear of the speed increasing four-wheel drive clutch 120 of the above-described embodiment may be configured with a gear having a rotation ratio of twice or more. In other words, by configuring the maximum with a gear that generates twice or more the number of revolutions, torque control by controlling the connection pressure of the four-wheel drive clutch 120 can be controlled with appropriate torque depending on the road surface condition. It becomes possible.

また、上記実施の形態の等速四輪駆動クラッチ110、増速四輪駆動クラッチ120のクラッチ材は、カーボン製等のすべりに強い材質とし、滑りトルクを発生させながら回転数のコントロールが出来る構成としても良い。   Further, the clutch material of the constant speed four-wheel drive clutch 110 and the speed-increasing four-wheel drive clutch 120 of the above embodiment is made of a material that is resistant to slip such as carbon, and can control the rotation speed while generating a sliding torque. It is also good.

これにより、路面との関係で適正な駆動力を、クラッチ面を滑らせながらコントロールする事で、常に適正な駆動力で摩耗の少ない駆動を実現出来る。   As a result, by controlling the appropriate driving force in relation to the road surface while sliding the clutch surface, it is possible to always realize a drive with less wear with the appropriate driving force.

また、上記実施の形態では、作業車両の一例として農用トラクターについて説明したが、これに限らず例えば、農業用以外に、建築用、運搬用等に用いるトラクターであっても良いし、トラクターに限らず例えば、その他の作業車両であっても良い。   Moreover, in the said embodiment, although the agricultural tractor was demonstrated as an example of a working vehicle, it is not restricted to this, For example, it may be a tractor used for construction, conveyance, etc. besides agriculture, It is restricted to a tractor For example, other work vehicles may be used.

本発明の作業車は、前輪の駆動状態を適正なものに出来る効果を有し、農業用、建築用、運搬用等に用いる、トラクター等の作業車両として有用である。   The work vehicle of the present invention has an effect that the driving state of the front wheels can be made appropriate, and is useful as a work vehicle such as a tractor used for agriculture, construction, transportation, or the like.

1 農用トラクター
1a 走行車体
2 前輪
3 後輪
4 キャビン
5 エンジン
11 高低変速装置
12 主変速装置
13 前後進クラッチ装置
14 副変速装置
15 PTO軸
16 PTO系変速伝動装置
100 前輪伝動クラッチ装置
101 後軸回転センサー
102 前軸回転センサー
110 等速四輪駆動クラッチ
120 増速四輪駆動クラッチ
200 制御部
DESCRIPTION OF SYMBOLS 1 Agricultural tractor 1a Traveling vehicle body 2 Front wheel 3 Rear wheel 4 Cabin 5 Engine 11 High / low-speed transmission 12 Main transmission 13 Forward / reverse clutch device 14 Subtransmission 15 PTO shaft 16 PTO system transmission transmission 100 Front wheel transmission clutch device 101 Rear shaft rotation Sensor 102 Front shaft rotation sensor 110 Constant speed four-wheel drive clutch 120 Increased speed four-wheel drive clutch 200 Control unit

Claims (2)

エンジンと
左右一対の前輪と、
左右一対の後輪と、
前記エンジンからの駆動力を、前記前輪に伝達するか又は伝達しないかの切り替えを行う四輪駆動クラッチと、
前記四輪駆動クラッチの入力軸側の回転数を検出する後軸回転センサーと、
前記四輪駆動クラッチの出力軸側の回転数を検出する前軸回転センサーと、
後輪二輪駆動状態のときに前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差が第一の規定の範囲外になると、四輪駆動状態とするべく前記四輪駆動クラッチを入れ、前記比又は差が前記第一の規定の範囲内になると、前記後輪二輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を徐々に減らす制御部と、
機体の走行を停止させるブレーキ操作の有無を検出するブレーキ操作検出器と、を備え、
前記制御部は、前記ブレーキ操作検出器が前記ブレーキ操作を検出した場合、前記比又は差に基づいて前記四輪駆動クラッチの接続圧力を制御することに代えて、四輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を制御する、ことを特徴とする作業車両。
Engine and
A pair of left and right front wheels;
A pair of left and right rear wheels,
A four-wheel drive clutch for switching whether or not to transmit the driving force from the engine to the front wheels;
A rear shaft rotation sensor that detects the number of rotations on the input shaft side of the four-wheel drive clutch;
A front shaft rotation sensor for detecting the rotation speed on the output shaft side of the four-wheel drive clutch;
If the ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is outside the first specified range in the rear wheel two-wheel drive state, the four wheel drive state is set. When a four-wheel drive clutch is engaged, and the ratio or difference is within the first specified range, a control unit that gradually reduces the connection pressure of the four-wheel drive clutch so as to be in the rear-wheel two-wheel drive state;
Comprising a brake operation detector for detecting the presence or absence of braking operation for stopping the travel of the aircraft, and
The controller, when the brake operation detector detects the brake operation, instead of controlling the connection pressure of the four-wheel drive clutch based on the ratio or difference, It controls the connection pressure of the four-wheel drive clutch, work vehicle you wherein a.
エンジンと
左右一対の前輪と、
左右一対の後輪と、
前記エンジンからの駆動力を、前記前輪に伝達するか又は伝達しないかの切り替えを行う四輪駆動クラッチと、
前記四輪駆動クラッチの入力軸側の回転数を検出する後軸回転センサーと、
前記四輪駆動クラッチの出力軸側の回転数を検出する前軸回転センサーと、
後輪二輪駆動状態のときに前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差が第一の規定の範囲外になると、四輪駆動状態とするべく前記四輪駆動クラッチを入れ、前記比又は差が前記第一の規定の範囲内になると、前記後輪二輪駆動状態とするべく前記四輪駆動クラッチの接続圧力を徐々に減らす制御部と、を備え、
前記後軸回転センサーの検出結果と前記前軸回転センサーの検出結果とに基づく比又は差は、前記後軸回転センサーの前記検出結果から求めた後軸回転数と、前記前軸回転センサーの前記検出結果から求めた前軸平均回転数との比又は差であり、
前記制御部は、
前記後軸回転センサーにより検出された瞬時値と前記前軸回転センサーにより検出された瞬時値との比又は差が、前記第一の規定の範囲を含む第二の規定の範囲内にある場合、前記後軸回転センサーの前記検出結果から求めた後軸回転数と、前記前軸回転センサーの前記検出結果から求めた前軸平均回転数との比又は差に基づいて、前記四輪駆動クラッチの接続圧力を制御し、
前記後軸回転センサーにより検出された瞬時値と前記前軸回転センサーにより検出された瞬時値との比又は差が、前記第二の規定の範囲外にある場合、前記後軸回転センサーにより検出された前記瞬時値と前記前軸回転センサーにより検出された前記瞬時値との比又は差に基づいて、所定時間の間、前記四輪駆動クラッチの接続圧力を制御する、
ことを特徴とする作業車両。
Engine and
A pair of left and right front wheels;
A pair of left and right rear wheels,
A four-wheel drive clutch for switching whether or not to transmit the driving force from the engine to the front wheels;
A rear shaft rotation sensor that detects the number of rotations on the input shaft side of the four-wheel drive clutch;
A front shaft rotation sensor for detecting the rotation speed on the output shaft side of the four-wheel drive clutch;
If the ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is outside the first specified range in the rear wheel two-wheel drive state, the four wheel drive state is set. A controller that gradually reduces the connection pressure of the four-wheel drive clutch so as to enter the rear-wheel two-wheel drive state when the four-wheel drive clutch is engaged and the ratio or difference falls within the first prescribed range. ,
The ratio or difference based on the detection result of the rear shaft rotation sensor and the detection result of the front shaft rotation sensor is calculated based on the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor and the front shaft rotation sensor. It is the ratio or difference with the average front shaft speed obtained from the detection result,
The controller is
When the ratio or difference between the instantaneous value detected by the rear shaft rotation sensor and the instantaneous value detected by the front shaft rotation sensor is within a second specified range including the first specified range, Based on the ratio or difference between the rear shaft rotation speed obtained from the detection result of the rear shaft rotation sensor and the front shaft average rotation speed obtained from the detection result of the front shaft rotation sensor, the four-wheel drive clutch Control the connection pressure,
If the ratio or difference between the instantaneous value detected by the rear shaft rotation sensor and the instantaneous value detected by the front shaft rotation sensor is outside the second specified range, it is detected by the rear shaft rotation sensor. Controlling the connection pressure of the four-wheel drive clutch for a predetermined time based on the ratio or difference between the instantaneous value and the instantaneous value detected by the front shaft rotation sensor;
Work vehicle you, characterized in that.
JP2014225994A 2014-11-06 2014-11-06 Work vehicle Expired - Fee Related JP6380019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014225994A JP6380019B2 (en) 2014-11-06 2014-11-06 Work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225994A JP6380019B2 (en) 2014-11-06 2014-11-06 Work vehicle

Publications (2)

Publication Number Publication Date
JP2016088324A JP2016088324A (en) 2016-05-23
JP6380019B2 true JP6380019B2 (en) 2018-08-29

Family

ID=56015747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225994A Expired - Fee Related JP6380019B2 (en) 2014-11-06 2014-11-06 Work vehicle

Country Status (1)

Country Link
JP (1) JP6380019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283236B2 (en) * 2019-06-06 2023-05-30 井関農機株式会社 work vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447625A (en) * 1987-08-14 1989-02-22 Iseki Agricult Mach Travelling controller for tractor
JPH10114229A (en) * 1996-10-09 1998-05-06 Kubota Corp Transmission gear for running working machine

Also Published As

Publication number Publication date
JP2016088324A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
JP2830944B2 (en) Drive system clutch control device for vehicles
JP4844720B2 (en) Vehicle differential limiting control device
US20020003057A1 (en) Drive-force distribution controller
CN109987084B (en) Control device for four-wheel drive vehicle
JP2000326742A (en) Front/rear wheel load sharing control device of connecting vehicle
JP6216666B2 (en) Driving force distribution control device
JPS63159135A (en) Drive operation structure for agricultural tractor
JP4626778B2 (en) Left / right driving force control device
JP6380019B2 (en) Work vehicle
JPH0725270B2 (en) Rear wheel torque distribution control device for vehicle
US7657357B2 (en) Vehicle motion control device
JP4662060B2 (en) Vehicle driving force distribution control device
JP2020192962A (en) Four-wheel drive car
JP2006528571A (en) Control system for cars that are at least temporarily operated on four wheels
JP6376477B2 (en) Driving force control method
US8682556B2 (en) Control device for controlling drive force that operates on vehicle
US20050283289A1 (en) Vehicle control system for traversing obstacles
JPH11348595A (en) Driving/bracking/control device for right and left wheels for vehicle
JP2612718B2 (en) Torque split control device for four-wheel drive vehicle
JP4993105B2 (en) Vehicle behavior control device
JP2578006B2 (en) Automotive differential limit controller
JP2002144903A (en) Tractor
JP3352728B2 (en) Control method of rear wheel differential limiting device
JP3390188B2 (en) Control method of rear wheel differential limiting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6380019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees