JP6378475B2 - Hydrophilic room temperature ionic liquid and its application - Google Patents

Hydrophilic room temperature ionic liquid and its application Download PDF

Info

Publication number
JP6378475B2
JP6378475B2 JP2013205316A JP2013205316A JP6378475B2 JP 6378475 B2 JP6378475 B2 JP 6378475B2 JP 2013205316 A JP2013205316 A JP 2013205316A JP 2013205316 A JP2013205316 A JP 2013205316A JP 6378475 B2 JP6378475 B2 JP 6378475B2
Authority
JP
Japan
Prior art keywords
coo
anion
stretching vibration
integer
acid anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013205316A
Other languages
Japanese (ja)
Other versions
JP2014131974A (en
Inventor
河合 功治
功治 河合
恒太郎 金子
恒太郎 金子
亜紀良 矢下
亜紀良 矢下
杉山 克之
克之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP2013205316A priority Critical patent/JP6378475B2/en
Publication of JP2014131974A publication Critical patent/JP2014131974A/en
Application granted granted Critical
Publication of JP6378475B2 publication Critical patent/JP6378475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、イオン液体に関するものであり、更に詳しくは、親水性、特に高水溶性を持つイオン液体とその用途に関するものである。   The present invention relates to ionic liquids, and more particularly to ionic liquids having hydrophilicity, particularly high water solubility, and their uses.

従来、イオン液体としては、例えば、カチオンとしてイミダゾリウム系カチオンや第4級アンモニウムカチオンと、各種アニオンとから構成されたイオン液体が知られており、近年では各種の用途への応用も検討が進んでいる(特許文献1〜3、非特許文献1、2)。   Conventionally, as an ionic liquid, for example, an ionic liquid composed of an imidazolium-based cation or a quaternary ammonium cation as a cation and various anions is known, and in recent years, application to various applications is also studied. (Patent documents 1 to 3, Non-patent documents 1 and 2).

例えば、酵素、ペプチド、タンパク質や核酸やセルロース等の難溶性多糖類や等の生体材料をはじめとする水素結合性の材料の溶解溶媒、反応溶媒、タンパク質リフォールディング剤、電子顕微鏡の可視化剤、電解質材料、帯電防止剤、潤滑油等の用途では、その使用環境において流動性(液状)であることが望ましく、イオン液体はできる限りの低融点化が求められている。広義には、100℃以下の融点を持つ有機塩がイオン液体と呼ばれているが、特に室温(25℃)でも液状で存在しているものは室温イオン液体と呼ばれている。しかしながら、イオン液体の液性の発現の機構が明確に解明されていないため、種々、有機塩を合成しても液状のもの、特に室温で液状のものが得られる場合は少ない。   For example, solvents for dissolving hydrogen bonding materials such as enzymes, peptides, proteins, nucleic acids, poorly soluble polysaccharides such as cellulose, and other biological materials, reaction solvents, protein refolding agents, visualization agents for electron microscopy, electrolytes In applications such as materials, antistatic agents, lubricating oils, etc., it is desirable that the liquid be fluid (liquid) in the environment of use, and the ionic liquid is required to have a melting point as low as possible. In a broad sense, an organic salt having a melting point of 100 ° C. or less is called an ionic liquid, but in particular, a liquid which is present at room temperature (25 ° C.) is called a room temperature ionic liquid. However, since the mechanism of the liquid expression of the ionic liquid has not been clearly elucidated, there are few cases where various organic salts can be synthesized even if they are liquid, in particular, liquid at room temperature.

またイオン液体の不揮発性、不燃性から起因する安全性、リサイクル性から、低環境負荷型の熱媒体への利用も期待されるが、室温で液体であり、高温から低温までの広範囲で蓄熱性が高く、高温下でも不揮発性で耐熱性に優れ、冷却系熱媒体としての使用時には凝固点が低く低温でも流動性を示すことが望まれる。   In addition, due to the nonvolatility and nonflammability of ionic liquids, and the recyclability, it is also expected to be used as a low environmental load type heat medium, but it is a liquid at room temperature and has a wide range of heat storage from high temperature to low temperature. It is desirable that they are non-volatile and have excellent heat resistance even at high temperatures, and have a low freezing point when used as a cooling system heat medium and exhibit fluidity even at low temperatures.

このようなイオン液体の中でも、親水性、特に高水溶性を有するイオン液体は、上記のような応用の可能性を高めるものとして期待されている。例えば、酵素、ペプチド、タンパク質や核酸やセルロース等の難溶性多糖類との水素結合の形成により親和性が高まることから、酵素溶解溶媒、ペプチド溶解溶媒、タンパク質溶解溶媒(非特許文献2)、核酸溶解溶媒、セルロース等の難溶性多糖類に対する溶解溶媒、タンパク質リフォールディング剤等への応用が検討されている。また、金属、金属塩化物、金属水酸化物、金属酸化物等のように通常の溶媒やイオン液体には溶解、分散しにくいような無機化合物の溶解性、分散性を高めることができ、これにより、例えば、反応性を高めることができる。   Among such ionic liquids, ionic liquids having hydrophilicity, particularly high water solubility, are expected to enhance the possibilities of application as described above. For example, since the affinity is enhanced by the formation of hydrogen bonds with poorly soluble polysaccharides such as enzymes, peptides, proteins, nucleic acids and celluloses, enzyme dissolution solvents, peptide dissolution solvents, protein dissolution solvents (non-patent document 2), nucleic acids Application to dissolution solvents, dissolution solvents for poorly soluble polysaccharides such as cellulose, protein refolding agents, etc. has been studied. In addition, it is possible to enhance the solubility and dispersibility of inorganic compounds that are difficult to dissolve or disperse in common solvents and ionic liquids such as metals, metal chlorides, metal hydroxides, metal oxides, etc. For example, the reactivity can be enhanced.

反応溶媒等の各種の用途においても、水溶性のプロトン性極性溶媒として、従来のものとは異なる溶媒効果や特性を有する新規なイオン液体が望まれている。また、電子顕微鏡の可視化剤としてイオン液体を用いて生体試料を観察する場合、生体試料の像を高精度に得るためには、生体試料との親和性を高めるために水溶性のイオン液体が必要となる。   Also in various uses such as a reaction solvent, as the water-soluble protic polar solvent, a novel ionic liquid having a solvent effect and characteristics different from conventional ones is desired. In addition, when observing a biological sample using an ionic liquid as a visualization agent for an electron microscope, in order to obtain an image of the biological sample with high accuracy, a water-soluble ionic liquid is required to enhance affinity with the biological sample. It becomes.

また、化学物質は一般に、使用期間中はその性能を維持するが、使用後には環境中に排出される化学物質も少なくない。そのため、地中、水中等の自然環境下において、微生物の酵素反応等によって二酸化炭素、水、バイオマス等に分解されることで環境に負荷を与えないといった適性を備えていることが望ましく、特に近年では環境保護の観点からその重要性は高まっている。こうした現状において、イオン液体には易生分解性も望まれている。   In addition, chemicals generally maintain their performance during the period of use, but after use they are also released to the environment in small amounts. Therefore, it is desirable to have the aptitude not to give an impact on the environment by being decomposed into carbon dioxide, water, biomass, etc. by enzyme reactions of microorganisms under natural environment such as underground or in water, especially in recent years The importance of environmental protection is increasing. Under these circumstances, ionic liquids are also desired to be readily biodegradable.

本発明者らは、以上のような要求に適したものとして、第4級アンモニウムカチオンに水溶性官能基を導入し、低融点でかつ水溶性を高めた親水性イオン液体を開発した(特許文献4)。具体的には、アルキル基及び水酸基等の水溶性官能基を有する第4級アンモニウムカチオンと、各種アニオンとから構成される親水性イオン液体である。   The inventors of the present invention have developed a hydrophilic ionic liquid having a low melting point and enhanced water solubility by introducing a water-soluble functional group into a quaternary ammonium cation as one suitable for the above-mentioned requirements (patent document 4). Specifically, it is a hydrophilic ionic liquid composed of a quaternary ammonium cation having a water-soluble functional group such as an alkyl group and a hydroxyl group, and various anions.

また、コリン又はコリン誘導体からなる脂肪族4級アンモニウムカチオンと、カルボン酸アニオンとから構成されるイオン液体(特許文献5)、カチオンは荷電した窒素原子を含む1級、2級又は3級のアンモニウムイオンと、各種アニオンとから構成される種々のイオン性液体(特許文献6)が開示されている。   Also, an ionic liquid composed of an aliphatic quaternary ammonium cation composed of choline or a choline derivative and a carboxylate anion (Patent Document 5), the cation is a primary, secondary or tertiary ammonium containing a charged nitrogen atom Various ionic liquids (Patent Document 6) composed of ions and various anions are disclosed.

再表2007−083756号公報Revised 2007-083756 特開2004−509945号公報Unexamined-Japanese-Patent No. 2004-509945 特開2007−126624号公報JP 2007-126624 A 特開2012−031137号公報JP 2012-031137 A 特開2008−162899号公報JP, 2008-162899, A 特表2007−532525号公報Japanese Patent Application Publication No. 2007-532525

J. Phys. Chem. B 2007, 111, 4807-4811J. Phys. Chem. B 2007, 111, 4807-4811 Chemical Communications, 2005, 4804-4806Chemical Communications, 2005, 4804-4806

しかしながら、上記特許文献等の従来技術には、種々の第4級アンモニウムカチオンを用いたイオン液体が開示されているが、水と相関が強く高親水性を発揮し、また、生体物質をはじめとする水素結合性の材料との相関において、カチオン構造等には更に改良の余地があった。また、広い範囲のアニオンが適用できる液性となりやすいカチオン構造等にも更に改良の余地があった。比較的類似する分子構造同士であっても、更に高親水性、熱安定性、生分解性等の特性を十分に有するものが得られるかどうかの予測は難しく、また融点の低い、例えば室温で液状のものが得られる場合は少ない。   However, although conventional techniques such as the above patent documents disclose ionic liquids using various quaternary ammonium cations, they exhibit a strong correlation with water and exhibit high hydrophilicity, and also include biological substances. There is room for further improvement in the cation structure and the like in relation to the hydrogen bonding material. In addition, there is room for further improvement in the cationic structure which is likely to be liquid to which a wide range of anions can be applied. It is difficult to predict whether even relatively similar molecular structures can be obtained with sufficient properties such as high hydrophilicity, thermal stability and biodegradability, and it is difficult to obtain a low melting point, for example, at room temperature There are few cases where liquid products can be obtained.

すなわち、これまでの第4級アンモニウムカチオンを用いたイオン液体の構造設計において、官能基や特性基の選択による融点、高親水性、生分解性等への影響、特に溶解、分散が難しい水素結合受容性、電子受容性をもつ酵素、ペプチド、タンパク質や核酸やセルロースのような難溶性多糖類等の生体材料、金属、金属塩化物、金属水酸化物、金属酸化物等無機化合物、有機化合物等の材料の分散、溶解溶媒等への用途と高親水性との相関に関する影響は十分な知見がなかった。   That is, in the structural design of the ionic liquid using the quaternary ammonium cation so far, the influence on the melting point, the high hydrophilicity, the biodegradability, etc. by the selection of the functional group or the characteristic group, especially the hydrogen bond which is difficult to dissolve or disperse Bio-materials such as poorly soluble polysaccharides like enzymes, peptides, proteins, nucleic acids and celluloses with acceptability and electron acceptability, inorganic compounds such as metals, metal chlorides, metal hydroxides and metal oxides, organic compounds etc. The influence on the correlation between the dispersion of the material of (1), the use for the dissolution solvent, etc. and the high hydrophilicity was not sufficiently known.

本発明は、以上の通りの事情に鑑みてなされたものであり、液性となりやすいカチオン構造を有し、かつ高親水性、特に高水溶性である新規なイオン液体を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and it is an object of the present invention to provide a novel ionic liquid having a cationic structure which tends to be liquid and having high hydrophilicity, particularly high water solubility. There is.

また、本発明は、上記に加えて、生分解性も併せ持つ新規なイオン液体を提供することを課題としている。   Moreover, in addition to the above, this invention makes it a subject to provide the novel ionic liquid which also has biodegradability.

また、本発明は、室温で液状であり、親水性、特に高水溶性であり、かつアミノ酸で構成される酵素、ペプチド、タンパク質や核酸等の生体材料、無機化合物、有機化合物等の水素結合性材料を溶解又は分散することができる溶媒を提供することを課題としている。   The present invention also relates to hydrogen bonding properties of enzymes, peptides, biomaterials such as proteins and nucleic acids, inorganic compounds, organic compounds, etc. which are liquid at room temperature, hydrophilic, particularly highly water soluble, and composed of amino acids. An object is to provide a solvent capable of dissolving or dispersing a material.

また、本発明は、室温で液状であり、親水性、特に高水溶性であり、緩衝液等に添加することで、可溶化した変性タンパク質のリフォールディング溶液として使用できるタンパク質リフォールディング剤を提供することを課題としている。   The present invention also provides a protein refolding agent which is liquid at room temperature, is hydrophilic, particularly highly water-soluble, and can be used as a refolding solution of solubilized denatured protein by adding it to a buffer or the like. The problem is that.

また、本発明は、高温から低温までの広範囲で蓄熱性が高く、高温下でも不揮発性で耐熱性に優れ、室温で液状であり、冷却系熱媒体としての使用時には凝固点が低く低温でも流動性を示し、さらに環境への負荷も低減することができる熱媒体を提供することを課題としている。   Further, the present invention has high heat storage properties in a wide range from high temperature to low temperature, is non-volatile even at high temperature and excellent in heat resistance, is liquid at room temperature, has low solidification point when used as a cooling system heat medium, and fluidity even at low temperature It is an object of the present invention to provide a heat medium which can further reduce the load on the environment.

上記の課題を解決するために、本発明の親水性室温イオン液体は、カチオン及びアニオンを含む親水性室温イオン液体であって、該カチオンが下記式(I)の第4級アンモニウムカチオンであることを特徴としている。   In order to solve the above problems, the hydrophilic room temperature ionic liquid of the present invention is a hydrophilic room temperature ionic liquid containing a cation and an anion, and the cation is a quaternary ammonium cation of the following formula (I) It is characterized by

(式中、R1はそれぞれ独立に水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基を示し、R2はそれぞれ独立に水素原子又は炭素数1〜5の直鎖もしくは分岐のモノヒドロキシアルキル基を示す。nは1〜4の整数を示す。)
また本発明の水素結合性材料に対する溶解又は分散用溶媒は、前記の親水性室温イオン液体からなる。
(Wherein, R 1 independently represents a linear or branched polyhydroxyalkyl group having 2 to 8 carbon atoms having two or more hydroxyl groups, and R 2 independently represents a hydrogen atom or a straight chain having 1 to 5 carbon atoms Chain or branched monohydroxyalkyl group, n is an integer of 1 to 4)
The solvent for dissolving or dispersing the hydrogen bonding material of the present invention comprises the above-mentioned hydrophilic room temperature ionic liquid.

本発明のタンパク質溶解溶媒は、前記の親水性室温イオン液体を含む。   The protein dissolving solvent of the present invention comprises the aforementioned hydrophilic room temperature ionic liquid.

本発明の核酸溶解溶媒は、前記の親水性室温イオン液体を含む。   The nucleic acid dissolving solvent of the present invention comprises the hydrophilic room temperature ionic liquid described above.

本発明のタンパク質リフォールディング剤は、前記の親水性室温イオン液体を含む。   The protein refolding agent of the present invention comprises the hydrophilic room temperature ionic liquid described above.

本発明の熱媒体は、前記の親水性室温イオン液体を含む。   The heat medium of the present invention comprises the hydrophilic room temperature ionic liquid described above.

本発明によれば、液性となりやすいカチオン構造を有し、高水溶性で、生体材料をはじめとする水素結合性の材料に対して特異的な相関を持ち、高溶解性、高分散性を示し、タンパク質リフォールディング剤、熱媒体としても優れた特性を発揮する新規なイオン液体が提供される。更に、生分解性も併せ持つ新規なイオン液体が提供される。   According to the present invention, it has a cationic structure that tends to be liquid, is highly water soluble, has a specific correlation with hydrogen bonding materials such as biomaterials, and has high solubility and high dispersibility. A novel ionic liquid is provided which exhibits excellent properties as a protein refolding agent and a heat medium. Furthermore, novel ionic liquids having biodegradability are also provided.

以下に、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の親水性室温イオン液体は、カチオン及びアニオンを含む親水性室温イオン液体であって、該カチオンが式(I)の第4級アンモニウムカチオンである。   The hydrophilic room temperature ionic liquid of the present invention is a hydrophilic room temperature ionic liquid containing a cation and an anion, wherein the cation is a quaternary ammonium cation of the formula (I).

式(I)において、R1はそれぞれ独立に水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基を示し、中でも水酸基を2〜6個有する炭素数3〜8の直鎖のポリヒドロキシアルキル基や、次式で表わされる分岐のポリヒドロキシアルキル基が好ましい。 In formula (I), each R 1 independently represents a linear or branched polyhydroxyalkyl group having 2 to 8 carbon atoms having 2 or more hydroxyl groups, and in particular, 3 to 8 carbon atoms having 2 to 6 hydroxyl groups. A linear polyhydroxyalkyl group or a branched polyhydroxyalkyl group represented by the following formula is preferable.

(式中、R3は水素原子、炭素数1〜3の直鎖のアルキル基、又は炭素数1〜3の直鎖のモノヒドロキシアルキル基を示す。)
R1のポリヒドロキシアルキル基として具体的には、例えば、1,2-ジヒドロキシエチル基等のジヒドロキシエチル基;1,2-ジヒドロキシ-n-プロピル基、2,3-ジヒドロキシ-n-プロピル基等のジヒドロキシ-n-プロピル基;1,2-ジヒドロキシ-iso-プロピル基、1,3-ジヒドロキシ-iso-プロピル基等のジヒドロキシ-iso-プロピル基;トリヒドロキシ-n-プロピル基;トリヒドロキシ-iso-プロピル基;1,2-ジヒドロキシ-n-ブチル基、1,3-ジヒドロキシ-n-ブチル基、1,4-ジヒドロキシ-n-ブチル基、2,3-ジヒドロキシ-n-ブチル基、2,4-ジヒドロキシ-n-ブチル基、3,4-ジヒドロキシ-n-ブチル基等のジヒドロキシ-n-ブチル基;1,2,3トリヒドロキシ-n-ブチル基、1,2,4トリヒドロキシ-n-ブチル基、1,3,4トリヒドロキシ-n-ブチル基、2,3,4トリヒドロキシ-n-ブチル基等のトリヒドロキシ-n-ブチル基;テトラヒドロキシ-n-ブチル基;1,2-ジヒドロキシ-iso-ブチル基、1,3-ジヒドロキシ-iso-ブチル基、2,3-ジヒドロキシ-iso-ブチル基等のジヒドロキシ-iso-ブチル基;トリヒドロキシ-iso-ブチル基;テトラヒドロキシ-iso-ブチル基;1,2-ジヒドロキシ-sec-ブチル基、1,3-ジヒドロキシ-sec-ブチル基、1,4-ジヒドロキシ-sec-ブチル基、2,3-ジヒドロキシ-sec-ブチル基、2,4-ジヒドロキシ-sec-ブチル基、3,4-ジヒドロキシ-sec-ブチル基等のジヒドロキシ-sec-ブチル基;1,2,3トリヒドロキシ-sec-ブチル基、1,2,4トリヒドロキシ-sec-ブチル基、1,3,4トリヒドロキシ-sec-ブチル基、2,3,4トリヒドロキシ-sec-ブチル基等のトリヒドロキシ-sec-ブチル基;テトラヒドロキシ-sec-ブチル基;1,3-ジヒドロキシ-2-メチル-iso-プロピル基、1,3-ジヒドロキシ-2-エチル-iso-プロピル基、1,3-ジヒドロキシ-2-ヒドロキシメチル-iso-プロピル基;ジ、トリ、テトラ、又はペンタヒドロキシ-n-ペンチル基;ジ、トリ、テトラ、又はペンタヒドロキシ-n-ヘキシル基;ジ、トリ、テトラ、又はペンタヒドロキシ-n-ヘプチル基;ジ、トリ、テトラ、又はペンタヒドロキシ-n-オクチル基;ジ、トリ、テトラ、ペンタ、又はヘキサヒドロキシ-n-ヘキシル基;ジ、トリ、テトラ、ペンタ、ヘキサ、又はヘプタヒドロキシ-n-ヘプチル基;ジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシ-n-オクチル基等が挙げられる。中でも2,3-ジヒドロキシ-n-プロピル基、1,3-ジヒドロキシ-iso-プロピル基、1,3-ジヒドロキシ-2-エチル-iso-プロピル基、1,3-ジヒドロキシ-2-ヒドロキシメチル-iso-プロピル基、ペンタヒドロキシ-n-ヘキシル基がより好ましい。
(Wherein, R 3 represents a hydrogen atom, a linear alkyl group of 1 to 3 carbon atoms, or a linear monohydroxyalkyl group of 1 to 3 carbon atoms)
Specific examples of the polyhydroxyalkyl group as R 1 include dihydroxyethyl groups such as 1,2-dihydroxyethyl group; 1,2-dihydroxy-n-propyl group, 2,3-dihydroxy-n-propyl group and the like Dihydroxy-n-propyl group; dihydroxy-iso-propyl group such as 1,2-dihydroxy-iso-propyl group and 1,3-dihydroxy-iso-propyl group; trihydroxy-n-propyl group; trihydroxy-iso 1,2-Propyl group; 1,2-Dihydroxy-n-butyl group, 1,3-Dihydroxy-n-butyl group, 1,4-Dihydroxy-n-butyl group, 2,3-Dihydroxy-n-butyl group, 2, Dihydroxy-n-butyl group such as 4-dihydroxy-n-butyl group, 3,4-dihydroxy-n-butyl group; 1,2,3 trihydroxy-n-butyl group, 1,2,4 trihydroxy-n group Trihydroxy-n-butyl group such as -butyl group, 1,3,4 trihydroxy-n-butyl group, 2,3,4 trihydroxy-n-butyl group; Trahydroxy-n-butyl group; dihydroxy-iso-butyl group such as 1,2-dihydroxy-iso-butyl group, 1,3-dihydroxy-iso-butyl group, 2,3-dihydroxy-iso-butyl group; Tri Hydroxy-iso-butyl group; tetrahydroxy-iso-butyl group; 1,2-dihydroxy-sec-butyl group, 1,3-dihydroxy-sec-butyl group, 1,4-dihydroxy-sec-butyl group, 2, Dihydroxy-sec-butyl groups such as 3-dihydroxy-sec-butyl group, 2,4-dihydroxy-sec-butyl group, 3,4-dihydroxy-sec-butyl group; 1,2,3 trihydroxy-sec-butyl group Trihydroxy-sec-butyl group such as 1, 2, 4 trihydroxy-sec-butyl group, 1, 3, 4 trihydroxy-sec-butyl group, 2, 3, 4 trihydroxy-sec-butyl group; Tetrahydroxy-sec-butyl group; 1,3-dihydroxy-2-methyl-iso-propyl group, 1,3-dihydroxy-2-ethyl-iso-propyl group, 1,3-dihydroxy-2-methyl group Droxymethyl-iso-propyl group; di, tri, tetra or pentahydroxy-n-pentyl group; di, tri, tetra or pentahydroxy-n-hexyl group; di, tri, tetra or pentahydroxy-n-heptyl group Di, tri, tetra or pentahydroxy-n-octyl group; di, tri, tetra, penta or hexahydroxy-n-hexyl group; di, tri, tetra, penta, hexa or heptahydroxy-n- group And heptyl groups; di, tri, tetra, penta, hexa, hepta, octahydroxy-n-octyl groups and the like. Among them, 2,3-dihydroxy-n-propyl group, 1,3-dihydroxy-iso-propyl group, 1,3-dihydroxy-2-ethyl-iso-propyl group, 1,3-dihydroxy-2-hydroxymethyl-iso -Propyl group and pentahydroxy-n-hexyl group are more preferable.

このポリヒドロキシアルキル基を有することで、多点水素結合部位を持ち、水分子とより多く水和することを可能とし、また、一置換基に水酸基が2個以上存在するために、カチオン中のアルキル基及びアルキレン基による疎水性が小さくなり、水溶性が向上する。そしてカチオンにアニオン性で電子供与性基である水酸基をより多く存在させることにより、第4級アンモニウムカチオン全体のカチオン性が弱く、そのカチオンは立体的に嵩高いため、アニオンとの相互作用が小さくなる。更に、水酸基を2個以上持つことから、隣接するアニオンと反発、パッキングしづらく、結晶度が低くなり、液性となりやすい。   Having this polyhydroxyalkyl group makes it possible to have multiple hydrogen bonding sites and to be more hydrated with water molecules, and because there are two or more hydroxyl groups in one substituent, it is possible to use in the cation. The hydrophobicity by the alkyl group and the alkylene group is reduced, and the water solubility is improved. And by making the cation group have a large number of hydroxyl groups which are anionic and electron donating groups in the cation, the cationic property of the entire quaternary ammonium cation is weak, and the cation is sterically bulky, so the interaction with the anion is small. Become. Furthermore, since it has two or more hydroxyl groups, it does not easily repel or pack with adjacent anions, and the degree of crystallinity is low, and it tends to be liquid.

式(I)において、R2はそれぞれ独立に水素原子又は炭素数1〜5の直鎖もしくは分岐のモノヒドロキシアルキル基を示し、中でも、炭素数1〜3のものが好ましい。モノヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシ-n-プロピル基、4-ヒドロキシ-n-ブチル基、5-ヒドロキシ-n-ペンチル基、2-ヒドロキシ-iso-プロピル基、2-ヒドロキシ-iso-ブチル基、3-ヒドロキシ-sec-ブチル基、2-ヒドロキシ-iso-ペンチル基等が挙げられる。中でも、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシ-n-プロピル基が好ましい。 In formula (I), each R 2 independently represents a hydrogen atom or a linear or branched monohydroxyalkyl group having 1 to 5 carbon atoms, and among them, those having 1 to 3 carbon atoms are preferable. Examples of the monohydroxyalkyl group include a hydroxymethyl group, a 2-hydroxyethyl group, a 3-hydroxy-n-propyl group, a 4-hydroxy-n-butyl group, a 5-hydroxy-n-pentyl group, and a 2-hydroxy- group. Examples thereof include iso-propyl group, 2-hydroxy-iso-butyl group, 3-hydroxy-sec-butyl group, 2-hydroxy-iso-pentyl group and the like. Among them, hydroxymethyl group, 2-hydroxyethyl group and 3-hydroxy-n-propyl group are preferable.

本発明の親水性室温イオン液体において、アニオンとしては、特に限定されないが、カルボン酸アニオン、ハロゲン化物イオン、スルホン酸系アニオン、アルキル硫酸系アニオン、フッ素系アニオン、無機酸系アニオン、シアン系アニオン、アルキルリン酸系アニオン、アルキルホスホン酸系アニオン、ホウ素系アニオン等が挙げられる。   In the hydrophilic room temperature ionic liquid of the present invention, the anion is not particularly limited, but it is, but not limited to, carboxylate anion, halide ion, sulfonic acid anion, alkyl sulfate anion, fluorine anion, inorganic acid anion, cyan anion, Alkyl phosphate anions, alkyl phosphonic acid anions, boron anions and the like can be mentioned.

カルボン酸アニオンとしては、例えば、飽和脂肪族モノカルボン酸アニオン、不飽和脂肪族モノカルボン酸アニオン、飽和ヒドロキシモノカルボン酸アニオン、飽和ジカルボン酸アニオン、飽和ヒドロキシジ又はトリカルボン酸アニオン、芳香族モノカルボン酸アニオン、飽和カルボニルモノカルボン酸アニオン、アルキルエーテルカルボン酸アニオン、ハロゲンカルボン酸アニオン等が挙げられる。   As a carboxylate anion, for example, a saturated aliphatic monocarboxylic acid anion, an unsaturated aliphatic monocarboxylic acid anion, a saturated hydroxy monocarboxylic acid anion, a saturated dicarboxylic acid anion, a saturated hydroxydi or tricarboxylic acid anion, an aromatic monocarboxylic acid Anions, saturated carbonyl monocarboxylic acid anions, alkyl ether carboxylic acid anions, halogen carboxylic acid anions and the like can be mentioned.

飽和脂肪族モノカルボン酸アニオンは、炭素数1〜22が好ましい。   The saturated aliphatic monocarboxylic acid anion preferably has 1 to 22 carbon atoms.

中でも、HCOO-及びCH3(CH2)pCOO-(pは0〜4の整数を示す。)から選ばれるいずれかの飽和脂肪族モノカルボン酸アニオン、分岐鎖を有する飽和脂肪族モノカルボン酸アニオンが好ましい。具体的には、例えば、蟻酸、酢酸、プロピオン酸、酪酸、カプロン酸、イソ酪酸、2-メチル酪酸、イソ吉草酸、イソパルミチン酸、イソステアリン酸等からプロトンが解離したアニオンが挙げられる。 Among them, any saturated aliphatic monocarboxylic acid anion selected from HCOO and CH 3 (CH 2 ) p COO (p represents an integer of 0 to 4), and a saturated aliphatic monocarboxylic acid having a branched chain. Anion is preferred. Specifically, for example, anions in which a proton is dissociated from formic acid, acetic acid, propionic acid, butyric acid, caproic acid, isobutyric acid, 2-methylbutyric acid, isovaleric acid, isopalmitic acid, isostearic acid and the like can be mentioned.

不飽和脂肪族モノカルボン酸アニオンは、炭素数3〜22が好ましい。   The unsaturated aliphatic monocarboxylic acid anion preferably has 3 to 22 carbon atoms.

中でも、R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオンが好ましい。具体的には、例えば、アクリル酸、メタクリル酸、クロトン酸、オレイン酸、リノール酸等からプロトンが解離したアニオンが挙げられる。 Among them, R 1 CH = CH (CH 2 ) r COO (wherein R 1 represents a hydrogen atom or CH 3 (CH 2 ) q- (q represents an integer of 0 to 7)), and r represents 0 to 7 Preferred are unsaturated aliphatic monocarboxylic acid anions represented by the integers. Specifically, for example, anions in which a proton is dissociated from acrylic acid, methacrylic acid, crotonic acid, oleic acid, linoleic acid and the like can be mentioned.

飽和ヒドロキシモノカルボン酸アニオンは、炭素数2〜22が好ましく、炭素数2〜7がより好ましい。水酸基の個数は1〜4が好ましい。   The saturated hydroxy monocarboxylic acid anion preferably has 2 to 22 carbon atoms, and more preferably 2 to 7 carbon atoms. The number of hydroxyl groups is preferably 1 to 4.

中でも、(R2)3C(C(R3)2)sCOO-(sは1〜3の整数を示し、3個のR2及び2×s個のR3はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオンが好ましい。具体的には、例えば、グリコール酸、乳酸(D体、L体)等からプロトンが解離したアニオンが挙げられる。また、シクロヘキサン環骨格を有する飽和脂環式ヒドロキシモノカルボン酸アニオンが好ましい。具体的には、例えば、キナ酸(1,3,4,5-テトラヒドロキシシクロヘキサンカルボン酸)からプロトンが解離したアニオンが挙げられる。 Among them, (R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3 and 3 R 2 and 2 × s R 3 are each independently a hydrogen atom or The saturated hydroxy monocarboxylic acid anion which shows a hydroxyl group and the total number of a hydroxyl group is 1-2.) Is preferable. Specifically, for example, anions in which a proton is dissociated from glycolic acid, lactic acid (D form, L form) and the like can be mentioned. In addition, a saturated alicyclic hydroxymonocarboxylic acid anion having a cyclohexane ring skeleton is preferred. Specifically, for example, an anion in which a proton is dissociated from quinic acid (1,3,4,5-tetrahydroxycyclohexanecarboxylic acid) can be mentioned.

飽和ジカルボン酸アニオンは、炭素数2〜22が好ましく、炭素数3〜5がより好ましい。   The saturated dicarboxylic acid anion preferably has 2 to 22 carbon atoms, and more preferably 3 to 5 carbon atoms.

中でも、HOOC(CH2)xCOO-(xは1〜3の整数を示す。)で表わされる飽和ジカルボン酸アニオンが好ましい。具体的には、例えば、マロン酸、コハク酸等からプロトンが解離したアニオンが挙げられる。 Among them, a saturated dicarboxylic acid anion represented by HOOC (CH 2 ) x COO (x represents an integer of 1 to 3) is preferable. Specifically, for example, anions in which a proton is dissociated from malonic acid, succinic acid and the like can be mentioned.

飽和ヒドロキシジ又はトリカルボン酸アニオンは、炭素数4〜22が好ましい。水酸基の個数は1〜3が好ましい。   The saturated hydroxydi or tricarboxylic acid anion preferably has 4 to 22 carbon atoms. The number of hydroxyl groups is preferably 1 to 3.

中でも、HOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオンが好ましい。具体的には、例えば、リンゴ酸(D体、L体)、酒石酸(D体、L体)、クエン酸等からプロトンが解離したアニオンが挙げられる。 Among them, HOOCC (R 4 R 5 ) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represents a hydrogen atom, a hydroxyl group or a carboxyl group, and the hydroxyl group is a total of 1 The saturated hydroxydi or tricarboxylic acid anion represented by -2 and the carboxyl group is 0-1 in total) is preferable. Specifically, for example, anions in which a proton is dissociated from malic acid (D form, L form), tartaric acid (D form, L form), citric acid and the like can be mentioned.

芳香族モノカルボン酸アニオンは、炭素数6〜20が好ましい。   The aromatic monocarboxylic acid anion preferably has 6 to 20 carbon atoms.

中でも、ヒドロキシ芳香族モノカルボン酸アニオンが好ましく、水酸基の個数は1〜2が好ましい。ヒドロキシ芳香族モノカルボン酸アニオンは、フェニル環骨格を有するもの、特に、フェニル基にカルボン酸アニオンと水酸基が直接結合した構造や、フェニル基にヒドロキシメチレン基を介してカルボン酸アニオンが結合した構造のものが好ましい。具体的には、例えば、サリチル酸、p-ヒドロキシ安息香酸、マンデル酸等からプロトンが解離したアニオンが挙げられる。   Among them, hydroxyaromatic monocarboxylic acid anions are preferable, and the number of hydroxyl groups is preferably 1 to 2. The hydroxy aromatic monocarboxylic acid anion has a phenyl ring skeleton, in particular, a structure in which a carboxylic acid anion and a hydroxyl group are directly bonded to a phenyl group, or a structure in which a carboxylic acid anion is bonded to a phenyl group via a hydroxymethylene group. Is preferred. Specifically, for example, anions in which a proton is dissociated from salicylic acid, p-hydroxybenzoic acid, mandelic acid and the like can be mentioned.

飽和カルボニルモノカルボン酸アニオンは、炭素数3〜22が好ましく、炭素数3〜5がより好ましい。カルボニル基の個数は1〜2が好ましい。   The saturated carbonyl monocarboxylic acid anion preferably has 3 to 22 carbon atoms, and more preferably 3 to 5 carbon atoms. The number of carbonyl groups is preferably 1 to 2.

中でも、CH3((CH2)tCO(CH2)u)COO-(t及びuは0〜2の整数を示す。)で表わされる飽和カルボニルモノカルボン酸アニオンが好ましい。具体的には、例えば、ピルビン酸等からプロトンが解離したアニオンが挙げられる。 Among them, CH 3 ((CH 2) t CO (CH 2) u) COO - (t and u is an integer of 0 to 2.) Preferably saturated carbonyl monocarboxylic acid anion represented by. Specifically, for example, an anion in which a proton is dissociated from pyruvic acid and the like can be mentioned.

アルキルエーテルカルボン酸アニオンは、炭素数2〜22が好ましく、炭素数3〜10がより好ましい。エーテル結合の個数は1〜10が好ましい。   The alkyl ether carboxylic acid anion preferably has 2 to 22 carbon atoms, and more preferably 3 to 10 carbon atoms. The number of ether bonds is preferably 1 to 10.

中でも、CH3(CH2)vO(CH2)wCOO-(v及びwは0〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオンが好ましい。具体的には、例えば、メトキシ酢酸、エトキシ酢酸、メトキシ酪酸、エトキシ酪酸等からプロトンが解離したアニオンが挙げられる。 Among them, alkyl ether carboxylate anions represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent an integer of 0 to 4) are preferable. Specifically, for example, anions in which a proton is dissociated from methoxyacetic acid, ethoxyacetic acid, methoxybutyric acid, ethoxybutyric acid and the like can be mentioned.

ハロゲンカルボン酸アニオンは、炭素数2〜22が好ましい。具体的には、例えば、トリフルオロ酢酸、ペンタフルオロプロピオン酸等のフッ素置換のハロゲンカルボン酸等からプロトンが解離したアニオンが挙げられる。   The halogen carboxylate anion preferably has 2 to 22 carbon atoms. Specifically, for example, anions in which a proton is dissociated from fluorine-substituted halogen carboxylic acid such as trifluoroacetic acid, pentafluoropropionic acid and the like can be mentioned.

ハロゲン化物イオンとしては、例えば、臭化物イオン(Br-)、塩化物イオン(Cl-)、ヨウ化物イオン(I-)等が挙げられる。 The halide ion, e.g., bromide ion (Br -), chloride ion (Cl -) - and the like is, iodide ion (I).

フッ素系アニオンとしては、例えば、トリフルオロ酢酸イオン(CF3COO-)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)、ビス(トリフルオロメタンスルホニル)イミドイオン((CF3SO22N-)、ヘキサフルオロリン酸イオン(PF6 -)、テトラフルオロホウ酸イオン(BF4 -)フッ素アニオン(F-)、等が挙げられる。 As a fluorine type anion, for example, trifluoroacetate ion (CF 3 COO ), trifluoromethanesulfonate ion (CF 3 SO 3 ), bis (trifluoromethanesulfonyl) imide ion ((CF 3 SO 2 ) 2 N ) Hexafluorophosphate ion (PF 6 ), tetrafluoroborate ion (BF 4 ) fluorine anion (F ), and the like.

スルホン酸系アニオンとしては、例えば、メタンスルホン酸イオン(CH3SO3 -)、エタンスルホン酸イオン(CH3CH2SO3 -)、p-トルエンスルホン酸イオン(CH3-C6H4-SO3 -)等が挙げられる。 Examples of the sulfonic acid-based anion, for example, methanesulfonate ion (CH 3 SO 3 -), ethanesulfonic acid ion (CH 3 CH 2 SO 3 - ), p- toluenesulfonate ion (CH 3 -C 6 H 4 - SO 3 ) and the like.

無機酸系アニオンとしては、例えば、硫酸イオン(SO4 2-)、硝酸イオン(NO3 -)、炭酸イオン(CO3 2-)、リン酸イオン(H2PO4 -)等が挙げられる。 The inorganic acid anions such as sulfate ion (SO 4 2-), nitrate ion (NO 3 -), carbonate ions (CO 3 2-), phosphate ion (H 2 PO 4 -) and the like.

シアン系アニオンとしては、例えば、ジシアナミドイオン(N(CN)2 -)、トリシアノメタニドイオン(C(CN)3 -)、チオシアネートイオン(SCN-)等が挙げられる。 Examples of the cyanide anion include dicyanamide ion (N (CN) 2 ), tricyanomethanide ion (C (CN) 3 ), thiocyanate ion (SCN ) and the like.

本発明の親水性室温イオン液体は、例えば、次のようにして合成することができる。   The hydrophilic room temperature ionic liquid of the present invention can be synthesized, for example, as follows.

本発明の親水性室温イオン液体は、式(I)の第4級アンモニウムカチオンに対応するモノ、ジ、又はトリアルカノールアミンとアニオンに対応する有機酸もしくは無機酸を、水やアセトニトリル等の極性溶剤中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1時間〜1日程度で行うことができる。その後、溶剤を減圧留去し、必要に応じて精製することにより、目的の親水性室温イオン液体を液状物として得ることができる。また等モルで反応させ、反応が完結した場合は精製工程も必要がなく、更に製造工程が簡素化できる。   The hydrophilic room temperature ionic liquid of the present invention comprises mono-, di- or trialkanolamines corresponding to the quaternary ammonium cation of the formula (I) and organic or inorganic acids corresponding to the anion, and polar solvents such as water and acetonitrile. Let react in. Although the reaction temperature and the reaction time depend on the type of the raw material and the like, they can be carried out, for example, at room temperature for about 1 hour to 1 day. Thereafter, the solvent is distilled off under reduced pressure, and if necessary, purification is carried out to obtain the target hydrophilic room temperature ionic liquid as a liquid. In addition, when the reaction is carried out equimolarly and the reaction is completed, there is no need for a purification step, and the production process can be further simplified.

また、次のようにして合成することもできる。式(I)の第4級アンモニウムカチオンの構造に対応させるべく、モノ、ジ、又はトリアルカノールアミンと、ポリヒドロキシアルキルハライド等の有機ハロゲン化合物とを、水やアセトニトリル等の極性溶媒中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。その後、反応物を洗浄し、式(I)の第4級アンモニウムカチオンとハロゲン化物イオンからなる化合物を得ることができる。更にハロゲン化物イオンから目的のアニオンにする場合はアニオン交換を行う。アニオン交換を行う際には、例えば、得られた化応物と、目的の化合物のアニオンに対応する有機酸もしくは無機酸とを水中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。あるいは、強塩基性イオン交換樹脂等を用いて、水酸化物アニオンにアニオン交換した後に、更に目的の化合物のアニオンに対応する有機酸もしくは無機酸とアニオン交換することで目的の親水性室温イオン液体を得ることができる。   Moreover, it can also synthesize | combine as follows. A mono-, di-, or trialkanolamine is reacted with an organic halogen compound such as polyhydroxyalkyl halide in a polar solvent such as water or acetonitrile to correspond to the structure of the quaternary ammonium cation of the formula (I) . The reaction temperature and the reaction time may be, for example, about 1 day at room temperature, although it depends on the kind of the raw material. Thereafter, the reaction product can be washed to obtain a compound consisting of a quaternary ammonium cation of formula (I) and a halide ion. Furthermore, anion exchange is carried out in the case of making the target anion from the halide ion. When anion exchange is performed, for example, the obtained reaction product is reacted in water with an organic acid or inorganic acid corresponding to the anion of the target compound. The reaction temperature and the reaction time may be, for example, about 1 day at room temperature, although it depends on the kind of the raw material. Alternatively, after using the strongly basic ion exchange resin or the like, after performing anion exchange to a hydroxide anion, the target hydrophilic room temperature ionic liquid is obtained by further anion exchange with an organic acid or inorganic acid corresponding to the anion of the target compound. You can get

本発明の親水性室温イオン液体は、カチオンにアニオン性で電子供与性基である水酸基をより多く存在させたことにより、第4級アンモニウムカチオン全体のカチオン性が弱く、そのカチオンは立体的に嵩高いため、アニオンとの相互作用が小さくなる。更に、水酸基を2個以上持つことから、隣接するアニオンと反発し、パッキングしづらく、結晶度が低くなり、液性となりやすい。そのため、広い範囲のアニオンが適用できる。   In the hydrophilic room temperature ionic liquid of the present invention, the cationic property of the entire quaternary ammonium cation is weak due to the presence of more hydroxyl groups which are anionic and electron donating groups in the cation, and the cation is sterically bulky. Because it is high, the interaction with the anion is reduced. Furthermore, since it has two or more hydroxyl groups, it repels with adjacent anions, is difficult to pack, has a low crystallinity, and tends to be liquid. Therefore, a wide range of anions can be applied.

本発明の親水性室温イオン液体は、室温(25℃)で液状であり、融点が0℃以下、更には−5℃未満のものが得られる。広義には、100℃以下の融点を持つ有機塩がイオン液体と呼ばれているが、特に室温(25℃)でも液状で存在しているものは室温イオン液体と呼ばれている。室温イオン液体は、元来イオン液体に求められている流動性を室温付近でも有することから、様々な用途への優位な展開が期待される。   The hydrophilic room temperature ionic liquid of the present invention is liquid at room temperature (25 ° C.) and has a melting point of 0 ° C. or less, and even less than −5 ° C. In a broad sense, an organic salt having a melting point of 100 ° C. or less is called an ionic liquid, but in particular, a liquid which is present at room temperature (25 ° C.) is called a room temperature ionic liquid. Since room temperature ionic liquids have the flowability originally required for ionic liquids even near room temperature, they are expected to be developed for various applications.

なお、ここでイオン液体が液状であるとは、流動性を有する状態を意味する(例えばゲルのような流動性のないものは含まれない)。   In addition, that an ionic liquid is a liquid here means the state which has fluidity | liquidity (For example, the thing without fluidity | liquidity like a gel is not included).

本発明の親水性室温イオン液体は、カチオンに疎水性のアルキル基のみで構成される置換基はなく、水分子と水素結合が可能な水素原子、(ポリ)ヒドロキシアルキル基のみのカチオンであり、イオン液体1分子中に多点水素結合部を持ち、より多くの水分子と水和することが可能となる。また、一置換基に水酸基が2個以上存在するために、カチオン中のアルキル基及びアルキレン基による疎水性が小さくなることから、水との親和性が高く高水溶性を発揮することができる。本発明の親水性室温イオン液体は、室温(25℃)での水への溶解度が、1200g/100g water以上のものが得られる。   The hydrophilic room temperature ionic liquid of the present invention has no substituent consisting of only a hydrophobic alkyl group as a cation, and is a cation of only a hydrogen atom capable of hydrogen bonding with a water molecule, a (poly) hydroxyalkyl group, It has multiple hydrogen bonding sites in one ionic liquid molecule and can be hydrated with more water molecules. In addition, since two or more hydroxyl groups exist in one substituent, the hydrophobicity due to the alkyl group and the alkylene group in the cation is reduced, so that the affinity with water is high and high water solubility can be exhibited. The hydrophilic room temperature ionic liquid of the present invention has a solubility in water at room temperature (25 ° C.) of 1200 g / 100 g water or more.

本発明の親水性室温イオン液体は、生分解速度が速く環境負荷の低減を図ることができ、環境適性に優れている。例えば、OECD(経済協力開発機構)テストガイドライン301C法に準拠した生分解性試験による28日間のBOD分解度を60%以上とすることができる。OECDテストガイドライン301のうち、OECDテストガイドライン301C法は、28日間の生化学的酸素要求量(BOD)から求めた分解度が60%以上を満たす化学物質は易生分解性物質であり、実際の好気的な水環境では速やかに分解されるため、環境中に残留することがなく、環境に対する影響を低減することができる。   The hydrophilic room temperature ionic liquid of the present invention has a high biodegradation rate, can reduce environmental load, and is excellent in environmental suitability. For example, the 28-day BOD degradation degree by the biodegradability test based on the OECD (economic cooperation development mechanism) test guideline 301 C method can be made 60% or more. Among the OECD Test Guideline 301, the OECD Test Guideline 301C method is a substance that is more than 60% degradable calculated from 28 days of biochemical oxygen demand (BOD) is an easily biodegradable substance, The aerobic water environment is rapidly decomposed, so it does not remain in the environment, and the environmental impact can be reduced.

すなわち、化学物質は、使用中は安定であるが、使用後は環境中に排出される場合も少なくないため、環境負荷が小さいことが望まれる。例えば、環境に対して開放の条件で使用する場合は、生分解性が高く、環境負荷が小さいほうが望ましい。そして近年では、産業廃棄物に代表される環境問題が深刻になり、廃棄物を削減することが企業の重要な責務となっている。この点において、生分解性の高い化学物質は、廃棄後は焼却処分等をしなくても微生物によって分解されるため廃棄物削減につながる。現在、プラスチックや潤滑油分野においても生分解性が着目され新たな材料開発が行われている。以上のような背景において、本発明の親水性室温イオン液体は、第4級アンモニウムカチオン、アニオンに対応させるべく用いるアミン原料、有機酸もしくは無機酸の生分解性を把握し、イオン液体としての生分解性を予測して構造設計することができ、結果として生分解性の高いイオン液体が得られるとともに環境負荷低減に貢献するものである。   That is, a chemical substance is stable during use, but is often discharged into the environment after use, so it is desirable that the environmental load be small. For example, in the case of use under open conditions to the environment, it is desirable that the biodegradability be high and the environmental load be small. In recent years, environmental problems typified by industrial waste have become serious, and reducing waste is an important responsibility of companies. In this respect, highly biodegradable chemical substances are degraded by microorganisms without being incinerated after disposal, which leads to waste reduction. At present, biodegradability is focused on in the fields of plastics and lubricating oils, and new material development is being conducted. In the background as described above, the hydrophilic room temperature ionic liquid of the present invention is a raw material of quaternary ammonium cation, amine raw material used to correspond to anion, grasping the biodegradability of organic acid or inorganic acid, Degradability can be predicted for structural design, and as a result, a highly biodegradable ionic liquid can be obtained, as well as contributing to environmental load reduction.

更に本発明の親水性室温イオン液体は、不揮発性、熱伝導性、不燃性、導電性等の通常のイオン液体が有する特性も併せ持ち、不揮発性、不燃性から起因する安全性、リサイクル性等に優れることからも環境負荷低減に貢献するものである。   Furthermore, the hydrophilic room temperature ionic liquid of the present invention also has the properties possessed by ordinary ionic liquids such as non-volatility, thermal conductivity, non-combustibility, conductivity, etc. It also contributes to the reduction of environmental impact from its superiority.

本発明の親水性室温イオン液体は、室温等で液状で、親水性、特に高水溶性であり、生分解性にも優れた低環境負荷型であることから、これらの特性および構造的特徴を活かして、酵素、ペプチド、タンパク質、核酸やセルロース等の難溶性多糖類等の生体材料、金属酸化物をはじめとする水素結合性の無機化合物、有機化合物等の材料に対する分散又は溶解溶媒、タンパク質リフォールディング剤、反応溶媒、電子顕微鏡の可視化剤、電解質材料、帯電防止剤、潤滑油、熱媒体、溶剤、医薬品、香粧品等の用途で使用することができ、親水性であることから水や極性溶媒と混合して使用することもできる。   Since the hydrophilic room temperature ionic liquid of the present invention is liquid at room temperature and the like, and is hydrophilic, particularly highly water-soluble, and low in environmental impact type excellent also in biodegradability, these characteristics and structural features are obtained. Bio-materials such as enzymes, peptides, proteins, poorly soluble polysaccharides such as nucleic acids and cellulose, hydrogen bonding inorganic compounds including metal oxides, dispersion or dissolution solvents for materials such as organic compounds, protein It can be used in applications such as folding agents, reaction solvents, electron microscope visualizing agents, electrolyte materials, antistatic agents, lubricating oils, heat transfer media, solvents, pharmaceuticals and cosmetics, and is hydrophilic because it is water or polar It can also be used in combination with a solvent.

本発明の親水性室温イオン液体は、カチオンの構造的特徴を活かして、水素結合供与性、電子供与性及び配位性により、生体材料、無機化合物、有機化合物等の材料の溶解性、分散性を高めたり、反応性を高めることができる。また、水素結合受容性材料をはじめとする水素結合性材料に対する溶解性、分散性は、カチオンだけではなく、水素と電気陰性度が高い酸素が共有結合した水酸基やカルボキシル基等の官能基をアニオンに導入すると、更に、その効果は高くなる。つまり、アニオンもしくはカチオンの一方しか水素と電気陰性度が高い酸素が共有結合した水酸基やカルボキシル基等の官能基がない場合には、イオン液体1分子は2分子のアミノ酸で構成される酵素、ペプチド、タンパク質、セルロース等の生体高分子間では、1分子の生体高分子と水素結合が可能だが、もう一方の分子とは水素結合が難しい。しかしながら、カチオン及びアニオンの双方に、それらの官能基を有すると、2分子の生体高分子とアニオン、カチオンの双方で、安定した構造で水素結合が可能となり、生体高分子のマトリックスに入り込みやすい。   The hydrophilic room temperature ionic liquid of the present invention takes advantage of the structural features of the cation, and has solubility and dispersibility of materials such as biomaterials, inorganic compounds, organic compounds and the like by hydrogen bond donating property, electron donating property and coordination property. Can increase the reactivity or increase the reactivity. In addition, the solubility and dispersibility in hydrogen bonding materials including hydrogen bond accepting materials are not only cations, but hydrogen and high electronegativity with high oxygen anion anions functional groups such as hydroxyl groups and carboxyl groups covalently bonded In addition, its effect is enhanced. That is, when there is no functional group such as a hydroxyl group or a carboxyl group in which only one of the anion or cation has hydrogen and oxygen having a high electronegativity covalently bonded, an enzyme or peptide composed of one amino acid molecule consisting of two amino acids Among the biopolymers such as protein and cellulose, hydrogen bonding with one molecule of biopolymer is possible, but hydrogen bonding with the other molecule is difficult. However, having both functional groups in both the cation and the anion enables hydrogen bonding with a stable structure in both of the biopolymer of the two molecules and the anion and the cation, and easily enters the matrix of the biopolymer.

イオン液体の水素結合性材料に対する溶解性、分散性は、イオン液体と水素結合性材料との間の水素結合が重要であり、その水素結合による相互作用の度合いを判断する一つの指標として、イオン液体と水分子との間の水素結合が起因するイオン液体の水に対する溶解度で間接的に判断できる。つまり、本発明の親水性室温イオン液体の水素結合性材料に対する非常に高い溶解性、分散性は、それらの高い水溶性からも示唆される。   The solubility and dispersibility of the ionic liquid in the hydrogen bonding material is important for the hydrogen bonding between the ionic liquid and the hydrogen bonding material, and as one index to determine the degree of interaction by the hydrogen bonding, the ion It can be judged indirectly by the solubility of the ionic liquid in water due to the hydrogen bond between the liquid and the water molecule. That is, the very high solubility and dispersibility of the hydrophilic room temperature ionic liquid of the present invention in the hydrogen bonding material is also suggested from their high water solubility.

本発明の親水性室温イオン液体は、カチオンに疎水性のアルキル基のみで構成される置換基はなく、水分子と水素結合が可能な水素原子、(ポリ)ヒドロキシアルキル基のみのカチオンであり、イオン液体1分子中に多点水素結合部を持つので、水素結合性の材料、特に電気陰性度が大きい窒素、酸素、ハロゲン等の第15、16、17族元素を含む水素結合受容性の官能基(例えば、カルボニル基、エーテル基)を持つ材料には高い親和性を有するので、例えば水素結合性の生体材料の保存溶媒、溶解溶媒等への用途に有用となる。   The hydrophilic room temperature ionic liquid of the present invention has no substituent consisting of only a hydrophobic alkyl group as a cation, and is a cation of only a hydrogen atom capable of hydrogen bonding with a water molecule, a (poly) hydroxyalkyl group, Since it has multiple hydrogen bonding sites in one ionic liquid molecule, hydrogen bonding materials, in particular, hydrogen bond accepting functional groups containing elements 15, 16 and 17 such as nitrogen, oxygen and halogen having high electronegativity A material having a group (for example, a carbonyl group or an ether group) has high affinity, and thus it is useful, for example, for use as a storage solvent for a hydrogen-bonding biomaterial, a dissolution solvent, and the like.

本発明の親水性室温イオン液体は、例えば、カルボニル基やエーテル基を持つ酵素、ペプチド、タンパク質、核酸やセルロース等の難溶性多糖類等の生体材料の水素結合受容性官能基との間に水素結合を形成し、生体材料の複雑に絡み合った構造中にイオン液体が入り込み、生体分子構造を解きほぐすとともに、カチオンのポリヒドロキシル基の立体的に嵩高い構造により生体高分子間の距離を一定に保ち、生体高分子間の相互作用を軽減化させることができるため、高溶解性の溶媒、保存溶媒、タンパク質リフォールディング剤として有用である。   The hydrophilic room temperature ionic liquid of the present invention is, for example, an enzyme having a carbonyl group or an ether group, a peptide, a protein, a hydrogen, a hydrogen bond accepting functional group of a biological material such as poorly soluble polysaccharide such as nucleic acid or cellulose, etc. Together with the formation of bonds, the ionic liquid penetrates into the intricately intertwined structure of the biomaterial to break up the biomolecular structure, and the steric bulk of the polyhydroxyl group of the cation keeps the distance between the biopolymers constant. Since the interaction between biopolymers can be reduced, they are useful as highly soluble solvents, storage solvents, and protein refolding agents.

本発明の親水性室温イオン液体は、室温下でもタンパクを変性することなく、長期保存ができるが、一般的には、タンパク質を溶解した保存液は、低温下での保存が望ましく、0℃以下でも安定して液性を保持することが望まれており、本発明の親水性室温イオン液体は−5℃未満の融点であるため有用である。   The hydrophilic room temperature ionic liquid of the present invention can be stored for a long time without denaturing the protein even at room temperature, but generally, the storage solution in which the protein is dissolved is desirably stored at low temperature, 0 ° C. or less However, it is desirable to maintain the stability stably, and the hydrophilic room temperature ionic liquid of the present invention is useful because it has a melting point of less than -5 ° C.

本発明の親水性室温イオン液体は、通常の溶媒やイオン液体には溶解、分散が難しい水素結合受容性、電子受容性をもつ金属、金属塩化物、金属水酸化物、金属酸化物等無機化合物や有機化合物に対しても、イオン液体が持つ水素結合供与性、電子供与性及び配位性の多点水素結合部位の水酸基により、溶解、分散、高反応性に効果があることから、光学材料、電子材料、触媒の溶解、分散溶媒や反応溶媒等の用途で使用することができる。   The hydrophilic room temperature ionic liquid of the present invention is an inorganic compound such as metal, metal chloride, metal hydroxide, metal oxide, etc. having hydrogen bond accepting ability and electron accepting ability which are difficult to dissolve and disperse in ordinary solvents and ionic liquids. Also for organic compounds, optical materials have an effect on dissolution, dispersion, and high reactivity by the hydroxyl group of the hydrogen bond donating property, electron donating property, and coordinating property of ionic liquid, and the high reactivity. , Electronic materials, dissolution of catalysts, dispersion solvents, reaction solvents and the like.

本発明の親水性室温イオン液体は、一般的な有機反応溶媒以外に、例えば、その水素結合供与性から酵素に対して親和性が良く、酵素の再使用が可能な酵素反応溶媒として用いることができる。また、第4級アンモニウムカチオンのポリヒドロキシアルキル基中の水酸基による水素結合ドナー型触媒の機能を合わせ持つ有機反応溶媒として利用できる。   The hydrophilic room temperature ionic liquid of the present invention may be used as an enzyme reaction solvent which has good affinity to the enzyme due to its hydrogen bond donating property, for example, and which can be reused as well as general organic reaction solvents. it can. In addition, it can be used as an organic reaction solvent having a hydrogen bond donor type catalyst function by the hydroxyl group in the polyhydroxyalkyl group of the quaternary ammonium cation.

本発明の水素結合性材料に対する溶解又は分散用溶媒は、本発明の親水性室温イオン液体を含み、溶媒として使用する際には、本発明の親水性室温イオン液体を単独で使用してもよく、これを水や極性溶媒等の他の溶媒成分と混合して使用し、あるいは添加剤を加えて使用することもできる。   The solvent for dissolving or dispersing the hydrogen bonding material of the present invention includes the hydrophilic room temperature ionic liquid of the present invention, and when used as a solvent, the hydrophilic room temperature ionic liquid of the present invention may be used alone. It is also possible to use this in combination with other solvent components such as water and polar solvents, or to add additives.

本発明の水素結合性材料に対する溶解又は分散用溶媒の対象となる水素結合性材料としては、水素結合受容性の元素又は官能基を含む材料、特に、生体材料や、有機又は無機化合物の材料等が挙げられる。   As a hydrogen bonding material to be a target of the solvent for dissolving or dispersing the hydrogen bonding material of the present invention, a material containing a hydrogen bond accepting element or functional group, particularly, a biomaterial, a material of an organic or inorganic compound, etc. Can be mentioned.

生体材料としては、例えば、酵素、ペプチド、タンパク質、核酸、セルロース等の難溶性多糖類等が挙げられる。   Examples of biomaterials include enzymes, peptides, proteins, nucleic acids, poorly soluble polysaccharides such as cellulose, and the like.

本発明の水素結合性材料に対する溶解又は分散用溶媒のうち、生体材料としてタンパク質を使用したタンパク質溶解溶媒では、溶解対象となるタンパク質としては特に限定されないが、例えば溶液物性の面からは、カルボキシル基を持ったアミノ酸(アスパラギン酸、グルタミン酸等)を多く含む酸性タンパク質、アミノ基を持ったアミノ酸(リシン、アルギン、ヒスチジン等)を多く含むアルカリ性タンパク質、そのバランスのとれた中性タンパク質が挙げられる。   Among the solvents for dissolving or dispersing the hydrogen bonding material of the present invention, a protein dissolving solvent using a protein as a biomaterial is not particularly limited as a protein to be dissolved, but from the viewpoint of solution properties, for example, a carboxyl group And acidic proteins containing a large amount of amino acids (aspartate, glutamic acid, etc.), alkaline proteins containing a large number of amino acids (lysine, algin, histidine, etc.), and neutral proteins with well-balanced amino acids.

その構成要素からは、アミノ酸のみから構成されている単純タンパク質、アミノ酸以外の成分も含まれて構成されている複合タンパク質が挙げられる。単純タンパク質には、アルブミン、カゼイン、コラーゲン、ケラチン、プロタミン、ヒストン等があり複合タンパク質には、糖タンパク質(黄体形成ホルモン、卵胞刺激ホルモン、甲状腺刺激ホルモン、ヒト絨毛性ゴナドトロピン、アビジン、カドヘリン、プロテオグリカン、ムチン等)、リポタンパク質(カイロミクロン、LDL、HDL等)、核タンパク質(ヒストンのタンパク質群やテロメラーゼ、プロタミン等)、色素タンパク質(クロロフィル等)、金属タンパク質(ヘモグロビン、シトクロムC等)、リンタンパク質(牛乳中のカゼイン、卵黄中のビテリン等)等がある。全ての酵素もこれらいずれかのタンパク質である。   The component includes simple proteins consisting only of amino acids, and complex proteins consisting of components other than amino acids. Simple proteins include albumin, casein, collagen, keratin, protamine, histone, etc. Complex proteins include glycoproteins (luteinizing hormone, follicle stimulating hormone, thyroid stimulating hormone, human chorionic gonadotropin, avidin, cadherin, proteoglycan, Mucins etc., Lipoproteins (Chylomicrons, LDL, HDL etc.), Nuclear Proteins (proteins of histones, telomerase, protamine etc.), chromoproteins (chlorophyll etc.), Metalloproteins (hemoglobin, Cytochrome C etc.), Phosphoproteins Casein in milk, vitellin in egg yolk etc. All enzymes are either of these proteins.

また、その分子の形状からは、繊維状タンパク質、(ケラチン、コラーゲン等)と球状タンパク質(ヘモグロビン等)、その働きからは、酵素タンパク質(酵素)、構造タンパク質(コラーゲン、ケラチン等)、輸送タンパク質(ヘモグロビン、アルブミン、アポリポタンパク質等)、貯蔵タンパク質(卵白中のオボアルブミン、フェリチン、ヘモシデリン等)、収縮タンパク質(アクチン、ミオシン等)、防御タンパク質(グロブリン等)、調節タンパク質(カルモジュリン等)に分けられる。   Moreover, from the shape of the molecule, fibrous proteins (keratin, collagen etc.) and globular proteins (hemoglobin etc.), from the function, enzyme protein (enzyme), structural protein (collagen, keratin etc.), transport protein ( Hemoglobin, albumin, apolipoprotein, etc., storage proteins (ovalbumin in egg white, ferritin, hemosiderin, etc.), contractile proteins (actin, myosin, etc.), protective proteins (globulin, etc.), regulatory proteins (calmodulin, etc.).

分子および分子間構造から一次構造(アミノ酸の配列)、二次構造(α−ヘリックスやβ−構造、ランダムコイル)、三次構造(特定の空間的配置)、四次構造(ヘモグロビン、DNAポリメラーゼ、イオンチャンネル等)を持つものが挙げられる。   From molecular and intermolecular structure to primary structure (sequence of amino acids), secondary structure (α-helix, β-structure, random coil), tertiary structure (specific spatial arrangement), quaternary structure (hemoglobin, DNA polymerase, ionic Channel etc.).

タンパク質の分子量は、特に限定されないが、4000〜300000のものが考慮される。   The molecular weight of the protein is not particularly limited, but 4,000 to 300,000 are considered.

本発明の水素結合性材料に対する溶解又は分散用溶媒のうち、生体材料として核酸を使用した核酸溶解溶媒では、溶解対象となる核酸として、DNA、RNA等が挙げられる。これらの核酸は、水中ではその分解酵素によって容易に加水分解を受けることが知られており、溶媒に水を使用する場合にはこれらの保存に際して分解酵素を除去した水中に溶存させる必要があるが、本発明の核酸溶解溶媒を核酸の保存に使用し、核酸含有溶液とした状態で保存することで、核酸分解酵素が失活する環境下で核酸を保存することができ、また不揮発性で熱安定性も高いことから、簡便に核酸の長期安定保存が可能となる。そして核酸溶解溶媒を核酸の反応に使用し、例えばこの溶媒中で核酸の化学修飾反応等を行うことで、従来の溶媒である水中では取り扱うことのできなかった試薬を用いた反応や、水中では進行し難い反応を、広い温度範囲で行うことができる。   Among the solvents for dissolving or dispersing the hydrogen bonding material of the present invention, in the nucleic acid dissolving solvent using a nucleic acid as a biomaterial, examples of the nucleic acid to be dissolved include DNA, RNA and the like. These nucleic acids are known to be easily hydrolyzed in water by their degradative enzymes, and when using water as a solvent, it is necessary to dissolve them in water from which they have been removed. By using the nucleic acid lysing solvent of the present invention for storage of nucleic acids and storing it as a nucleic acid-containing solution, the nucleic acids can be stored under the environment where the nucleolytic enzyme is inactivated, and also nonvolatile and heat Since the stability is also high, the long-term stable storage of the nucleic acid can be easily achieved. Then, by using a nucleic acid lysing solvent for the reaction of nucleic acid, for example, by performing a chemical modification reaction of the nucleic acid in this solvent, a reaction using a reagent which could not be handled in water which is a conventional solvent, or in water It is possible to carry out a reaction that is difficult to progress in a wide temperature range.

本発明の水素結合性材料に対する溶解又は分散用溶媒において、溶解又は分散の対象となる有機又は無機化合物の材料としては、分子やイオン等として本発明の親水性室温イオン液体中に溶解するものや、微粒子として本発明の親水性室温イオン液体中に分散するもの等が挙げられる。例えば、分子や官能基の構成元素として水素結合受容性の第15、16、17族元素を有する化合物又は微粒子、これらの元素を含む官能基で表面修飾された微粒子等が挙げられる。微粒子は、その粒径は特に限定されないが、例えば、粒径1nm〜100μmのものが挙げられる。   In the solvent for dissolving or dispersing the hydrogen bonding material of the present invention, as the material of the organic or inorganic compound to be dissolved or dispersed, those dissolved in the hydrophilic room temperature ionic liquid of the present invention as molecules, ions, etc. Examples of the fine particles include those dispersed in the hydrophilic room temperature ionic liquid of the present invention. For example, a compound or fine particle having a hydrogen bond accepting Group 15, 16 or 17 element as a constituent element of a molecule or functional group, a fine particle surface-modified with a functional group containing these elements, etc. may be mentioned. The particle size of the fine particles is not particularly limited, and examples thereof include particles with a particle size of 1 nm to 100 μm.

本発明のタンパク質リフォールディング剤は、本発明の親水性室温イオン液体単独または、本発明の親水性室温イオン液体を例えば、水、緩衝液、及びこれらと極性溶媒と必要に応じて変性剤や還元剤等の添加剤との混合物等に添加してリフォールディング溶液として使用される。   The protein refolding agent of the present invention comprises the hydrophilic room temperature ionic liquid of the present invention alone or the hydrophilic room temperature ionic liquid of the present invention, for example, water, a buffer, and these and a polar solvent, if necessary, a denaturant or a reduction It is added to a mixture with additives such as agents and used as a refolding solution.

タンパク質リフォールディングとは、不溶化したか又は高次構造を失ったタンパク質から、天然状態(活性化した状態)の高次構造のタンパク質に回復させることである。例えば、上記の本発明の親水性室温イオン液体を含むリフォールディング溶液に直接、不溶化したか又は高次構造を失ったタンパク質を必要に応じて変性剤を添加して可溶化、リフォールディングする。または、不溶化したか又は高次構造を失ったタンパク質を必要に応じて変性剤を添加して、一般的なタンパク可溶化剤によって可溶化し、その可溶化液を、上記の本発明の親水性室温イオン液体を含むリフォールディング溶液に溶解させてタンパク質に高次構造を回復させることにより、活性なタンパク質を得る。   Protein refolding is to restore from a protein which has been insolubilized or lost the conformation to a protein in the native state (activated state) of the conformation. For example, a protein which has been insolubilized or lost of higher-order structure is directly solubilized and refolded, as required, by adding a denaturing agent to the refolding solution containing the hydrophilic room temperature ionic liquid of the present invention described above. Alternatively, a protein which has been insolubilized or lost in higher-order structure may be solubilized by a general protein solubilizing agent by adding a denaturing agent as necessary, and the solubilization solution is made hydrophilic according to the above-mentioned present invention An active protein is obtained by dissolving in a refolding solution containing a room temperature ionic liquid to restore the conformation to the protein.

リフォールディングにおいて、例えば、界面活性剤を利用する方法では、界面活性剤の作用が強すぎればタンパク質の立体構造を壊し、弱いとタンパク質を十分可溶化できないとともに、界面活性剤とタンパク質の相性も問題になるので、複数の界面活性剤を使用してスクリーニングをする必要がある。また界面活性剤をタンパク質から脱離するのは簡単ではない。一方、本発明の親水性室温イオン液体は、各種のタンパク質に対して溶解性が高く、タンパク質の構造への影響がなく長期安定性も良好であり、簡便なタンパク質の可溶化、保存溶媒としても有用である。   In refolding, for example, in the method using a surfactant, if the action of the surfactant is too strong, the steric structure of the protein is broken, and if it is too weak, the protein can not be sufficiently solubilized and the compatibility between the surfactant and the protein is also a problem. Therefore, it is necessary to screen using a plurality of surfactants. In addition, it is not easy to release the surfactant from the protein. On the other hand, the hydrophilic room temperature ionic liquid of the present invention is highly soluble in various proteins, has no influence on the structure of the protein, has a long-term stability and is also simple as a protein solubilization and storage solvent It is useful.

変性剤を使用しないと溶解しない封入体やミスフォールドしたタンパク質の可溶化工程、リフォールディング工程における諸条件は、例えば特表2011−500517号公報が参照される。   For various conditions in the solubilization step of the inclusion body and misfolded protein which are not dissolved unless a denaturing agent is used, and the refolding step, for example, JP-A-2011-500517 is referred to.

つまり、可溶化工程では、グアニジン塩酸塩などの変性剤および必要に応じて還元剤を含有する緩衝液を使用することによって可溶化する。その後のリフォールディング工程では、本発明のタンパク質リフォールディング剤を含有するリフォールディング溶液に、変性させたタンパク質可溶化液を希釈、透析等によって接触させることで、変性剤の効果を低下させてリフォールディングさせ、その生物学的活性を示す天然の状態に再生する。   That is, in the solubilization step, solubilization is carried out by using a buffer solution containing a denaturing agent such as guanidine hydrochloride and optionally a reducing agent. In the subsequent refolding step, the denatured protein solubilization solution is brought into contact with the refolding solution containing the protein refolding agent of the present invention by dilution, dialysis or the like to reduce the effect of the denaturing agent and refold. And regenerate their natural state to show their biological activity.

本発明の親水性室温イオン液体は、電子ビーム照射による加熱条件下で使用される電子顕微鏡の可視化剤として用いる場合、その高い導電性により試料観察面の帯電を簡易な手段で防止することができる。更に、高水溶性で比較的分子サイズが小さく、かつ柔軟な分子構造を持つことから、生体試料中の水と良好に置換することにより、生体試料に適用した際に浸透性が高く、生体試料のバルク形状及び微細構造の収縮等の変形が抑制され、高精度での観察が可能となる。   When the hydrophilic room temperature ionic liquid of the present invention is used as a visualizing agent for an electron microscope used under heating conditions by electron beam irradiation, its high conductivity can prevent electrification of the sample observation surface by a simple means. . Furthermore, since it is highly water-soluble, has a relatively small molecular size, and has a flexible molecular structure, it has high permeability when applied to a biological sample by being well replaced with water in the biological sample, and the biological sample is Deformation such as shrinkage of the bulk shape and microstructure of the above is suppressed, and observation with high accuracy becomes possible.

本発明の親水性室温イオン液体は、その不揮発性、不燃性から起因する安全性、リサイクル性から、低環境負荷型の反応溶媒、電解質材料、帯電防止剤、潤滑油、熱媒体等への利用が期待されるが、対象とする系、例えば、特に熱媒体である不凍液、潤滑油、電解質材料は、0℃以下の氷点下の低温から150℃以上の高温へと広範囲の温度領域で利用され、低温液状性、熱安定性が要求されることから有用である。   The hydrophilic room temperature ionic liquid of the present invention is used as a low environmental load type reaction solvent, electrolyte material, antistatic agent, lubricating oil, heat medium, etc. in view of its nonvolatility and safety derived from nonflammability and recyclability. However, target systems such as antifreeze, lubricating oil, and electrolyte materials, which are heating media in particular, are used in a wide temperature range from low temperature below freezing below 0 ° C to high temperature above 150 ° C, It is useful because low temperature liquid property and heat stability are required.

本発明の熱媒体は、本発明の親水性室温イオン液体を含み、使用条件により必要に応じて水、メタノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル等のエステル系溶媒、エチレングリコール、ポリエチレングリコール、トルエン、植物性油、動物性油、鉱物性油等と混合して使用することができる。   The heat medium of the present invention contains the hydrophilic room temperature ionic liquid of the present invention, and depending on the conditions of use, water, alcohol solvents such as methanol and isopropyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate and the like. It can be used by mixing with ester solvents, ethylene glycol, polyethylene glycol, toluene, vegetable oil, animal oil, mineral oil and the like.

従来、内燃機関や燃料電池等の冷却系には、冷却液や不凍液等の熱媒体の基剤としてグリコール類等が使用され、また路面等の凍結防止や融雪のために熱媒体と雪氷粒子が直接接触して熱交換する直接散水融雪技術には、熱媒体の基剤として水、エチレングリコール、塩化物、酢酸塩等が使用されているが、本発明の熱媒体によれば、高温下でも不揮発性で耐熱性に優れ、室温で液状であり、冷却系熱媒体としての使用時には凝固点が低く低温でも流動性を示し、さらに環境への負荷も低減することができる。特に、本発明の熱媒体によれば、−50℃の低温から100℃付近の高温までの広い温度範囲において前記したような従来の熱媒体に使用される基剤に比べて高い比熱容量を示し、高い蓄熱性を示す。すなわち、本発明の親水性室温イオン液体は、カチオンには水素原子やヒドロキシアルキル基、アニオンには水酸基やエーテル基等の水素結合性官能基を有しているため、分子内及び分子間において水素結合を形成して分子間及び分子内の相互作用が強いため、比熱容量は大きくなり、従来の化合物に比べて高い蓄熱性を示し、熱媒体として好適である。   Conventionally, in cooling systems such as internal combustion engines and fuel cells, glycols and the like are used as a base of heat medium such as coolant and antifreeze liquid, and heat medium and snow and ice particles are used to prevent freezing on the road surface or melt snow. Although water, ethylene glycol, chloride, acetate and the like are used as the base of the heat medium in the direct water melting and snow melting technology in which heat is exchanged in direct contact, according to the heat medium of the present invention, even under high temperature It is non-volatile and excellent in heat resistance, is liquid at room temperature, has a low freezing point when used as a cooling system heat medium, exhibits fluidity even at low temperatures, and can reduce environmental load. In particular, the heat medium of the present invention exhibits a high specific heat capacity as compared with the base used for the conventional heat medium as described above in a wide temperature range from a low temperature of -50 ° C to a high temperature near 100 ° C. , Show high heat storage. That is, since the hydrophilic room temperature ionic liquid of the present invention has a hydrogen atom or a hydroxyalkyl group as a cation, and a hydrogen bonding functional group such as a hydroxyl group or an ether group as an anion, hydrogen can be generated in the molecule and between molecules The specific heat capacity is increased due to the strong intermolecular and intramolecular interaction by forming a bond, and the heat storage property is high compared to the conventional compounds, which is suitable as a heat medium.

本発明の熱媒体は、装置を加熱又は冷却して目的の温度に制御するために、外部熱源と装置との間での熱を移動させる流体として幅広い目的に使用できる。本発明の熱媒体は、例えば、内燃機関、燃料電池、ヒートパイプ、モーター等の高温で使用される装置、機器等の冷却液や不凍液の基剤として、また、道路、滑走路、ガラス等への散布や塗布、あるいは循環式仮設トイレ、住宅用設備(玄関、ドア、トイレ、排水トラップ等)における水への含有もしくは散布や塗布により、凍結防止剤、融雪剤として好適に用いることができる。例えば、近年では、自動車用エンジンは燃費向上や排出有害物質の低減のため稼働時の温度が高温化される傾向にあるが、これに伴って冷却液等の温度も高温となるため、このような背景において本発明の親水性室温イオン液体は熱媒体の基剤として好適である。   The heat medium of the present invention can be used for a wide range of purposes as a fluid to transfer heat between an external heat source and the device in order to heat or cool the device to control it to the desired temperature. The heat medium of the present invention is used, for example, as a base for coolants and antifreezes of devices used at high temperatures such as internal combustion engines, fuel cells, heat pipes, motors, etc., and also to roads, runways, glass etc. It can be suitably used as an antifreezing agent or a snow melting agent by containing or spreading or spreading to water in the spraying or coating of water, or in a temporary circulation type toilet, household equipment (door, door, toilet, drainage trap, etc.). For example, in recent years, the temperature at the time of operation tends to be increased during operation due to the improvement of fuel efficiency and the reduction of harmful substances discharged. However, the temperature of coolant etc. also becomes high accordingly. In the background, the hydrophilic room temperature ionic liquid of the present invention is suitable as a base of heat transfer medium.

本発明の親水性室温イオン液体は、例えば、電解質材料、帯電防止剤、潤滑油、熱媒体として用いる場合、特に、(ポリ)ヒドロキシアルキル基のみからなる水素結合供与性、電子供与性及び配位性かつ親水性の第4級アンモニウムカチオンと、疎水性の長鎖モノ飽和脂肪酸アニオン、長鎖不飽和脂肪酸アニオン、芳香族カルボン酸アニオン等で構成されたイオン液体は、対象とする媒体(金属、繊維、樹脂、水等)の表面あるいは界面に、配列あるいは作用し、親和性、相溶性、浸透性等を向上したり、媒体を活性化あるいは改質したりして機能を発揮することから有用である。   The hydrophilic room temperature ionic liquid of the present invention, for example, when used as an electrolyte material, an antistatic agent, a lubricating oil, and a heat medium, in particular, a hydrogen bond donating property consisting only of (poly) hydroxyalkyl group, electron donating property and coordination An ionic liquid composed of a hydrophilic and hydrophilic quaternary ammonium cation, a hydrophobic long-chain monosaturated fatty acid anion, a long-chain unsaturated fatty acid anion, an aromatic carboxylic acid anion and the like can be used as a target medium (metal, Arrays or functions on the surface or interface of fibers, resins, water etc.) to improve affinity, compatibility, permeability, etc. or to activate or modify the medium to exert functions, which is useful. It is.

カチオンとアニオンからなるイオン液体が導電性を持つことは広く知られており、例えば、帯電防止等の媒体表面の改質に有用である。   It is widely known that an ionic liquid composed of a cation and an anion has conductivity, and is useful, for example, for modifying the surface of a medium such as antistatic.

このように本発明の親水性室温イオン液体を使用することにより、イオン液体の特性や機能を活かした反応設計や、新機能を有する材料の創出が可能となる。   As described above, by using the hydrophilic room temperature ionic liquid of the present invention, it becomes possible to design a reaction having characteristics and functions of the ionic liquid and to create a material having a new function.

以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1>
下記式で表される化合物を合成した。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
Example 1
The compound represented by the following formula was synthesized.

2-アミノ-1,3-プロパンジオ−ル(2.50g、27.44mmol)と蟻酸(1.26g、27.44mmol)を水50ml中で、室温下、3時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、無色透明液体のアンモニウム蟻酸塩(3.76g、27.44mmol)を得た。
FT−IR(KBr):3362cm-1:O−H伸縮振動 2954cm-1:C−H伸縮振動 1588cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.15−3.19 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.49−3.65 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 8.30 (s, 1H, HCOO-).
13C−NMR (D2O 100MHz): δ 53.8 (HOCH2 CH(N+H3)CH2OH), δ 59.5 (HOCH2CH(N+H3)CH2OH), δ 171.0 (HCOO-).
<実施例2〜72>
表1、2及び表4〜11に示した実施例2〜72の化合物を、実施例1と同様の合成方法と、表4〜11に記載した配合モル比にて合成した。物性値を下記に示す。
<実施例2>
After reacting 2-amino-1,3-propanediol (2.50 g, 27.44 mmol) and formic acid (1.26 g, 27.44 mmol) in 50 ml of water at room temperature for 3 hours, the water is distilled off under reduced pressure and yellow I got a liquid. The obtained liquid was washed to obtain ammonium formate (3.76 g, 27.44 mmol) as a colorless and transparent liquid.
FT-IR (KBr): 3362cm -1: O-H stretching vibration 2954cm -1: C-H stretching vibration 1588cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.15-3.19 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.49-3.65 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH ), δ 8.30 (s, 1H, H COO -).
13 C-NMR (D 2 O 100MHz): δ 53.8 (HOCH 2 C H (N + H 3) CH 2 OH), δ 59.5 (HO C H 2 CH (N + H 3) C H 2 OH), δ 171.0 (H C OO -).
Examples 2 to 72
The compounds of Examples 2 to 72 shown in Tables 1 and 2 and Tables 4 to 11 were synthesized by the same synthesis method as in Example 1 and the compounding molar ratio described in Tables 4 to 11. Physical property values are shown below.
Example 2

FT−IR(KBr):3370cm-1:O−H伸縮振動 2960cm-1:C−H伸縮振動 1561cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.84 (s, 3H, CH 3 COO-), δ 3.27−3.38 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.62−3.78 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 23.3 (CH3COO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH), δ 181.4 (CH3 COO-).
<実施例3>
FT-IR (KBr): 3370cm -1: O-H stretching vibration 2960cm -1: C-H stretching vibration 1561cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.84 (s, 3H, C H 3 COO -), δ 3.27-3.38 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.62-3.78 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 23.3 (C H 3 COO -), δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH) , δ 181.4 (CH 3 C OO -).
Example 3

FT−IR(KBr):3152cm-1:O−H伸縮振動 2921cm-1:C−H伸縮振動 1549cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.76 (s, 3H, CH 3 COO-), δ 2.89−3.09 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.47−3.68 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.86−3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 23.2 (CH3COO-), δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9−70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 181.4 (CH3 COO-).
<実施例4>
FT-IR (KBr): 3152cm -1: O-H stretching vibration 2921cm -1: C-H stretching vibration 1549cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 1.76 (s, 3 H, C 3 H 3 COO ), δ 2.89-3.09 (m, 2 H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.47-3.68 (m, 5H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 3.86-3.90 (m, 1 H, HOCH 2 (CH (CH OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100MHz): δ 23.2 (C H 3 COO -), δ 41.6 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 +), δ 68.9-70.8 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 181.4 ( CH 3 C OO -).
Example 4

FT−IR(KBr):3152cm-1:O−H伸縮振動 2921cm-1:C−H伸縮振動 1549cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.60−0.68 (m, 6H, NH3 +C(CH2OH)2CH2CH 3, CH 3 CH2CH2), δ 1.25−1.47 (m, 4H, NH3 +C(CH2OH)2CH 2 CH3, CH3CH 2 CH2 ), δ 3.40 (t, 2H CH3CH2CH 2 ) δ 3.40 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 13.2 (CH3CH2CH2), δ 19.2 (CH3 CH2CH2),δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 39.5 (CH3CH2 CH2), δ 60.7 (NH3 + C(CH2OH)2CH2CH3), δ 60.9 (NH3 +C(CH2OH)2CH2CH3) , δ 183.7 (CH3CH2CH2 COO-).
<実施例5>
FT-IR (KBr): 3152cm -1: O-H stretching vibration 2921cm -1: C-H stretching vibration 1549cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.60-0.68 (m, 6H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3, C H 3 CH 2 CH 2), δ 1.25-1.47 ( m, 4H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3, CH 3 C H 2 CH 2), δ 3.40 (t, 2H CH 3 CH 2 C H 2) δ 3.40 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 13.2 (C H 3 CH 2 CH 2), δ 19.2 (CH 3 C H 2 CH 2), δ 23.2 ( NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 39.5 (CH 3 CH 2 C H 2), δ 60.7 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 60.9 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3), δ 183.7 (CH 3 CH 2 CH 2 C OO -).
Example 5

FT−IR(KBr):3370cm-1:O−H伸縮振動 2960cm-1:C−H伸縮振動 1561cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.64−0.73 (m, 6H, NH3 +C(CH2OH)2CH2CH 3, CH 3 CH2CH2CH2), δ 1.04−1.10 (m, 4H, CH3CH2CH 2 CH 2 ), δ 1.31−1.51 (m, 4H, NH3 +C(CH2OH)2CH 2 CH3, CH3CH 2 CH2CH2), δ 1.92−1.96 (t, 2H CH 2 COO-), δ 3.44 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 13.3 (CH3CH2CH2), δ 21.7 (CH3 CH2CH2), δ 23.3 (NH3 +C(CH2OH)2 CH2CH3), δ 25.5 (CH3CH2CH2 CH2), δ 31.0 (CH3CH2 CH2CH2), δ 37.5 (CH 2 COO-), δ 60.6 (NH3 + C(CH2OH)2CH2CH3), δ 60.7 (NH3 +C(CH2OH)2CH2CH3), δ 184.0 (CH2 COO-).
<実施例6>
FT-IR (KBr): 3370cm -1: O-H stretching vibration 2960cm -1: C-H stretching vibration 1561cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.64-0.73 (m, 6H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3, C H 3 CH 2 CH 2 CH 2), δ 1.04- 1.10 (m, 4H, CH 3 CH 2 C H 2 C H 2), δ 1.31-1.51 (m, 4H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3, CH 3 C H 2 CH 2 CH 2), δ 1.92-1.96 (t , 2H C H 2 COO -), δ 3.44 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 13.3 (C H 3 CH 2 CH 2), δ 21.7 (CH 3 C H 2 CH 2), δ 23.3 ( NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 25.5 (CH 3 CH 2 CH 2 C H 2), δ 31.0 (CH 3 CH 2 C H 2 CH 2), δ 37.5 (C H 2 COO -), δ 60.6 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 60.7 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 184.0 (CH 2 C OO -).
Example 6

FT−IR(KBr):3392cm-1:O−H伸縮振動 2929cm-1:C−H伸縮振動 1558cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.83−0.90 (m, 6H, CH 3 (CH2)8CH((CH2)6CH 3 )COO-), δ1.06−1.51 (m, 28H, CH3(CH 2 )8CH((CH 2 )6CH3)COO-), δ 2.13−2.16 (m, 1H, CH3(CH2)8CH((CH2)6CH3)COO-), δ 3.30−3.39 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.64−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2), δ 22.7 (CH3 CH--2CH2), δ 26.4 (CH2CH2CHCOO-), δ 30.0 (CH3CH2CH2(CH2)4CH2CH2CH(CH2CH2(CH2)2CH2CH2CH3)COO-,CH2 CH2CHCOO-), δ 31.9 (CH3CH2 CH2), δ 37.7 (CHCOO-), δ 54.6 (HOCH2 CH(N+H3)CH2OH), δ 60.2 (HOCH2CH(N+H3)CH2OH), δ 182.1 (CHCOO-).
<実施例7>
FT-IR (KBr): 3392cm -1: O-H stretching vibration 2929cm -1: C-H stretching vibration 1558cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.83-0.90 (m, 6H, C H 3 (CH 2) 8 CH ((CH 2) 6 C H 3) COO -), δ1.06-1.51 (m , 28H, CH 3 (C H 2) 8 CH ((C H 2) 6 CH 3) COO -), δ 2.13-2.16 (m, 1H, CH 3 (CH 2) 8 C H ((CH 2) 6 CH 3) COO -), δ 3.30-3.39 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.64-3.77 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2), δ 22.7 (CH 3 C H-- 2 CH 2), δ 26.4 (C H 2 CH 2 CHCOO -), δ 30.0 ( CH 3 CH 2 CH 2 (C H 2) 4 CH 2 CH 2 CH (CH 2 CH 2 (C H 2) 2 CH 2 CH 2 CH 3) COO -, CH 2 C H 2 CHCOO -), δ 31.9 ( CH 3 CH 2 C H 2) , δ 37.7 (C HCOO -), δ 54.6 (HOCH 2 C H (N + H 3) CH 2 OH), δ 60.2 (HO C H 2 CH (N + H 3) C H 2 OH), δ 182.1 ( CH C OO -).
Example 7

FT−IR(KBr):3120cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1543cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.84−0.94 (m, 9H, NH3 +C(CH2OH)2CH2CH 3 , CH 3 (CH2)8CH((CH2)6CH 3 )COO-), δ 1.08−1.68 (m, 30H, NH3 +C(CH2OH)2CH 2 CH3, CH3(CH 2 )8CH((CH 2 )6CH3)COO-), δ 2.14−2.18 (m, 1H, CH3(CH2)8CH((CH2)6CH3)COO-), δ 3.58−3.67 (m, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 7.3 (NH3 +C(CH2OH)2CH2 CH3), δ 14.1 (CH3CH2), δ 22.7 (CH3 CH--2CH2), δ 25.1 (NH3 +C(CH2OH)2 CH2CH3), δ 26.4 (CH2CH2CHCOO-), δ 30.0 (CH3CH2CH2(CH2)4CH2CH2CH(CH2CH2(CH2)2CH2CH2CH3)COO-,CH2 CH2CHCOO-), δ 31.9 (CH3CH2 CH2), δ 38.0 (CHCOO-), δ 60.2 (NH3 + C(CH2OH)2CH2CH3), δ 62.9 (NH3 +C(CH2OH)2CH2CH3), δ 182.1 (CHCOO-).
<実施例8>
FT-IR (KBr): 3120cm -1: O-H stretching vibration 2922cm -1: C-H stretching vibration 1543cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.84-0.94 (m, 9H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3, C H 3 (CH 2) 8 CH ((CH 2) 6 C H 3 ) COO ), δ 1.08−1.68 (m, 30 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3 , CH 3 (C H 2 ) 8 CH ((C H 2 ) 6 ) CH 3) COO -), δ 2.14-2.18 (m, 1H, CH 3 (CH 2) 8 C H ((CH 2) 6 CH 3) COO -), δ 3.58-3.67 (m, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100MHz): δ 7.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 14.1 (C H 3 CH 2), δ 22.7 (CH 3 C H-- 2 CH 2 ), δ 25.1 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 26.4 ( C H 2 CH 2 CHCOO ), δ 30.0 (CH 3 CH 2 CH 2 ( C H 2) ) 4 CH 2 CH 2 CH ( CH 2 CH 2 (C H 2) 2 CH 2 CH 2 CH 3) COO -, CH 2 C H 2 CHCOO -), δ 31.9 (CH 3 CH 2 C H 2), δ 38.0 (C HCOO -), δ 60.2 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 62.9 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3), δ 182.1 (CH C OO -).
Example 8

FT−IR(KBr):3153cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1551cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.83−0.90 (m, 6H, CH 3 (CH2)8CH((CH2)6CH 3 )COO-), δ1.08−1.58 (m, 28H, CH3(CH 2 )8CH((CH 2 )6CH3)COO-), δ 2.24−2.28 (m, 1H, CH3(CH2)8CH((CH2)6CH3)COO-), δ 3.67 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2), δ 22.7 (CH3 CH--2CH2), δ 27.1 (CH2CH2CHCOO-), δ 30.0 (CH3CH2CH2(CH2)4CH2CH2CH(CH2CH2(CH2)2CH2CH2CH3)COO-,CH2 CH2CHCOO-), δ 31.9 (CH3CH2 CH2), δ 37.2 (CHCOO-), δ 61.0 (NH3 + C(CH2OH)3), δ 61.5 (NH3 +C(CH2OH)3), δ 182.1 (CHCOO-).
<実施例9>
FT-IR (KBr): 3153cm -1: O-H stretching vibration 2922cm -1: C-H stretching vibration 1551cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.83-0.90 (m, 6H, C H 3 (CH 2) 8 CH ((CH 2) 6 C H 3) COO -), δ1.08-1.58 (m , 28H, CH 3 (C H 2) 8 CH ((C H 2) 6 CH 3) COO -), δ 2.24-2.28 (m, 1H, CH 3 (CH 2) 8 C H ((CH 2) 6 CH 3 ) COO ), δ 3.67 (s, 6 H, NH 3 + C (C H 2 OH) 3 ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2), δ 22.7 (CH 3 C H-- 2 CH 2), δ 27.1 (C H 2 CH 2 CHCOO -), δ 30.0 ( CH 3 CH 2 CH 2 (C H 2) 4 CH 2 CH 2 CH (CH 2 CH 2 (C H 2) 2 CH 2 CH 2 CH 3) COO -, CH 2 C H 2 CHCOO -), δ 31.9 ( CH 3 CH 2 C H 2) , δ 37.2 (C HCOO -), δ 61.0 (NH 3 + C (CH 2 OH) 3), δ 61.5 (NH 3 + C (C H 2 OH) 3), δ 182.1 (CH C OO -).
Example 9

FT−IR(KBr):3392cm-1:O−H伸縮振動 2929cm-1:C−H伸縮振動 1588cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.85−0.91 (m, 6H, CH 3 (CH2)8CH((CH2)6CH 3 )COO-), δ 1.12−1.59 (m, 28H, CH3(CH 2 )8CH((CH 2 )6CH3)COO-), δ 2.14−2.18 (m, 1H, CH3(CH2)8CH((CH2)6CH3)COO-), δ 3.04−3.11 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.63−3.84 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.97−3.98 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 14.6 (CH3CH2), δ 23.8 (CH3 CH--2CH2), δ 27.8 (CH2CH2CHCOO-), δ 30.8 (CH3CH2CH2(CH2)4CH2CH2CH(CH2CH2(CH2)2CH2CH2CH3)COO-,CH2 CH2CHCOO-), δ 31.2 (CH3CH2 CH2), δ 38.3 (CHCOO-), δ 43.3 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 71.0−72.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 183.2 (CHCOO-).
<実施例10>
FT-IR (KBr): 3392cm -1: O-H stretching vibration 2929cm -1: C-H stretching vibration 1588cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.85 to 0.91 (m, 6 H , C H 3 (CH 2 ) 8 CH ((CH 2 ) 6 C H 3 ) COO ), δ 1.12-1.59 (m, 28H, CH 3 (C H 2 ) 8 CH ((C H 2) 6 CH 3) COO -), δ 2.14-2.18 (m, 1H, CH 3 (CH 2) 8 C H ((CH 2) 6 CH 3) COO -), δ 3.04-3.11 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 3.63-3.84 (m, 5H, HOC H 2 (C H (OH) 3 CH (OH) CH 2 NH 3 + ), δ 3.97-3.98 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100MHz): δ 14.6 (C H 3 CH 2), δ 23.8 (CH 3 C H-- 2 CH 2), δ 27.8 (C H 2 CH 2 CHCOO -), δ 30.8 ( CH 3 CH 2 CH 2 (C H 2) 4 CH 2 CH 2 CH (CH 2 CH 2 (C H 2) 2 CH 2 CH 2 CH 3) COO -, CH 2 C H 2 CHCOO -), δ 31.2 ( CH 3 CH 2 C H 2) , δ 38.3 (C HCOO -), δ 43.3 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH ) CH 2 NH 3 +), δ 71.0-72.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 183.2 (CH C OO - ).
Example 10

FT−IR(KBr):3394cm-1:O−H伸縮振動 2957cm-1:C−H伸縮振動 1558cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.29−3.40 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.67−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 5.96 (m, 1H, CH 2 CHCOO-), δ 6.22 (m, 1H, CH2CHCOO-), δ 6.66 (m, 1H, CH 2 CHCOO-).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH), δ 127.7−132.7 (CH2 CHCOO-), δ 175.4 (CH2CHCOO-).
<実施例11>
FT-IR (KBr): 3394 cm -1 : OH stretching vibration 2957 cm -1 : CH stretching vibration 1558 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.29-3.40 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.67-3.77 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH ), δ 5.96 (m, 1H, C H 2 CHCOO -), δ 6.22 (m, 1H, CH 2 C H COO -), δ 6.66 (m, 1H, C H 2 CHCOO - ).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH), δ 127.7-132.7 (C H 2 C HCOO - ), δ 175.4 (CH 2 CH C OO -).
Example 11

FT−IR(KBr):3362cm-1:O−H伸縮振動 2956cm-1:C−H伸縮振動 1559cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.68−1.70 (m, 3H, CH 3 CHCHCOO-), δ 3.29−3.34 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.58−3.74 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 5.69−5.75 (m, 1H, CH3CHCHCOO-), δ 6.49−6.53 (m, 1H, CH3CHCHCOO-).
13C−NMR (D2O 100MHz): δ 16.9 (CH3CHCHCOO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 127.2 (CH3CHCHCOO-), δ 141.2 (CH3 CHCHCOO-), δ 175.9 (CH3CHCHCOO-).
<実施例12>
FT-IR (KBr): 3362cm -1: O-H stretching vibration 2956cm -1: C-H stretching vibration 1559cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.68-1.70 (m, 3H, C H 3 CHCHCOO -), δ 3.29-3.34 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH) , δ 3.58-3.74 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH), δ 5.69-5. 75 (m, 1 H, CH 3 CHC H COO ), δ 6.49-6.53 (m, 1H, CH 3 C H CHCOO - ).
13 C-NMR (D 2 O 100MHz): δ 16.9 (C H 3 CHCHCOO -), δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH) , δ 127.2 (CH 3 CH C HCOO -), δ 141.2 (CH 3 C HCHCOO -), δ 175.9 (CH 3 CHCH C OO -).
Example 12

FT−IR(KBr):3398cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.88 (t, 3H, CH 3 CH2CH2), δ 1.27 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.53 (s, 2H, CH 2 CH2COO-), δ 1.96−2.01 (m, 4H, CH 2 CHCHCH 2 ), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 3.27−3.28 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.64−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 29.3−29.9 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 54.6 (HOCH2 CH(N+H3)CH2OH), δ 60.2 (HOCH2CH(N+H3)CH2OH), δ 129.7−130.0 (CHCH), δ 181.8 (COO-).
<実施例13>
FT-IR (KBr): 3398 cm -1 : OH stretching vibration 2922 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.88 (t, 3H, C H 3 CH 2 CH 2), δ 1.27 (s, 20H, CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO ), δ 1.53 (s, 2 H, C H 2 CH 2 COO ), δ 1.96-2.01 (m, 4 H, C H 2 CHCHC H 2 ), δ 2. 16 (t, 2 H, CH 2 C H 2 COO -), δ 3.27-3.28 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.64-3.77 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH), δ 5.32-5. 38 (m, 2 H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 ( C H 2 CHCH C H 2) , δ 29.3-29.9 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2), δ 37.5 (CH 2 C H 2 COO -), δ 54.6 (HOCH 2 C H (N + H 3) CH 2 OH), δ 60.2 (HO C H 2 CH (N + H 3) C H 2 OH), δ 129.7-130.0 (C H C H), δ 181.8 (C OO -).
Example 13

FT−IR(KBr):3144cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1554cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.88 (t, 3H, CH 3 CH2CH2), δ 1.27 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.57 (s, 2H, CH 2 CH2COO-), δ 1.98−2.01 (m, 4H, CH 2 CHCHCH 2 ), δ 2.24 (s, 2H, CH2CH 2 COO-), δ 3.67 (s, 6H, NH3 +C(CH 2 OH)3), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 29.3−29.8 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 32.6 (CH2 CH2COO-), δ 60.9 (NH3 + C(CH2OH)3), δ 61.5 (NH3 +C(CH2OH)3), δ 129.7−130.0 (CHCH), δ 181.8 (COO-).
<実施例14>
FT-IR (KBr): 3144cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1554cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.88 (t, 3H, C H 3 CH 2 CH 2), δ 1.27 (s, 20H, CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO ), δ 1.57 (s, 2 H, C H 2 CH 2 COO ), δ 1. 98-2.01 (m, 4 H, C H 2 CHCHC H 2 ), δ 2. 24 (s, 2 H, CH 2 C H 2 COO ), δ 3.67 (s, 6 H, NH 3 + C (C H 2 OH) 3 ), δ 5.32-5. 38 (m, 2 H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 ( C H 2 CHCH C H 2 ), δ 29.3-29.8 (CH 3 CH 2 CH 2 ( C H 2 ) 4 , ( C H 2 ) 4 CH 2 CH 2 COO ), δ 31.9 (CH 3 CH 2 C H 2 ), δ 32.6 (CH 2 C H 2 COO ), δ 60.9 (NH 3 + C (CH 2 OH) 3 ), δ 61.5 (NH 3 + C ( C H 2 OH) 3 ), δ 129.7-130.0 (C H C H), δ 181.8 (C OO -).
Example 14

FT−IR(KBr):3144cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1554cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.90 (t, 3H, CH 3 CH2CH2), δ 1.30 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.57 (s, 2H, CH 2 CH2COO-), δ 2.00−2.04 (m, 4H, CH 2 CHCHCH 2 ), δ 2.17 (t, 2H, CH2CH 2 COO-), δ 3.06−3..14 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.65−3.84 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.98−4.01 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 14.6 (CH3CH2CH2), δ 23.8 (CH3 CH2CH2), δ 27.6 (CH2CH2COO-), δ 28.3 (CH2CHCHCH2), δ 30.4−31.0 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 33.1 (CH3CH2 CH2), δ 38.8 (CH2 CH2COO-), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 130.9−130.9 (CHCH), δ 182.7 (COO-).
<実施例15>
FT-IR (KBr): 3144cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1554cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.90 (t, 3H, C H 3 CH 2 CH 2), δ 1.30 (s, 20H, CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO ), δ 1.57 (s, 2 H, C H 2 CH 2 COO ), δ 2.00-2.04 (m, 4 H, C H 2 CHCHC H 2 ), δ 2. 17 (t, 2 H, CH 2 C H 2 COO ), δ 3.06-3..14 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.65-3.84 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.98-4.01 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100MHz): δ 14.6 (C H 3 CH 2 CH 2), δ 23.8 (CH 3 C H 2 CH 2), δ 27.6 (C H 2 CH 2 COO -), δ 28.3 ( C H 2 CHCH C H 2) , δ 30.4-31.0 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 33.1 (CH 3 CH 2 C H 2 ), δ 38.8 (CH 2 C H 2 COO ), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 64.7 (HO C H 2 (CH (OH (OH) 2 ) )) 3 CH (OH) CH 2 NH 3 + ), δ 70.7-72.9 (HOCH 2 ( C H (OH)) 3 C H (OH) CH 2 NH 3 + ), δ 130.9-130.9 ( C H C H H) ), δ 182.7 (C OO - ).
Example 15

FT−IR(KBr):3398cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.88 (t, 3H, CH 3 CH2CH2), δ 1.24−1.30 (m, 14H, CH3(CH 2 )3CH2, (CH 2 )4CH2CH2COO-), δ 1.51 (s, 2H, CH 2 CH2COO-), δ 1.96−2.01 (m, 4H, CH2CH 2 CH), δ 2.14 (t, 2H, CH2CH 2 COO-), δ 2.76 (t, 2H, CHCH 2 CH), δ 3.29 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.63−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 5.29−5.49 (m, 4H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 25.6 (CHCH2CH), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2 CH2CH), δ 29.4−31.5 (CH3CH2(CH2)2,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 54.5 (HOCH2 CH(N+H3)CH2OH), δ 59.6 (HOCH2CH(N+H3)CH2OH), δ 127.9−130.2 (CHCH), δ 182.4 (COO-).
<実施例16>
FT-IR (KBr): 3398 cm -1 : OH stretching vibration 2922 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.88 (t, 3H, C H 3 CH 2 CH 2), δ 1.24-1.30 (m, 14H, CH 3 (C H 2) 3 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.51 (s, 2H, C H 2 CH 2 COO -), δ 1.96-2.01 (m, 4H, CH 2 C H 2 CH), δ 2.14 (t, 2H , CH 2 C H 2 COO - ), δ 2.76 (t, 2H, CHC H 2 CH), δ 3.29 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.63-3.77 ( m, 4H, HOC H 2 CH (N + H 3) C H 2 OH), δ 5.29-5.49 (m, 4H, C H C H).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 25.6 (CH C H 2 CH), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 (CH 2 C H 2 CH), δ 29.4-31.5 (CH 3 CH 2 (C H 2) 2, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2 ), δ 37.5 (CH 2 C H 2 COO -), δ 54.5 (HOCH 2 C H (N + H 3) CH 2 OH), δ 59.6 (HO C H 2 CH (N + H 3) C H 2 OH ), δ 127.9-130.2 (C H C H), δ 182.4 (C OO -).
Example 16

FT−IR(KBr):3398cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.86−0.92 (m, 6H, NH3 +C(CH2OH)2CH2CH 3 , CH 3 CH2CH2), δ 1.25−1.37 (m, 14H, CH3(CH 2 )3CH2, (CH 2 )4CH2CH2COO-), δ 1.52 (s, 2H, CH 2 CH2COO-), δ 1.65 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 2.02−2.15 (m, 4H, CH2CH 2 CH), δ 2.15 (t, 2H, CH2CH 2 COO-), δ 2.76 (t, 2H, CHCH 2 CH), δ 3.57−3.64 (m, 4H, NH3 +C(CH 2 OH)2CH2CH3), δ 5.29−5.49 (m, 4H, CHCH).
13C−NMR (D2O 100MHz): δ 7.2 (NH3 +C(CH2OH)2CH2 CH3), δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 24.4 (NH3 +C(CH2OH)2 CH2CH3), δ 25.6 (CHCH2CH), δ 26.5 (CH2CH2COO-), δ 27.2 (CH2 CH2CH), δ 29.4−31.5 (CH3CH2(CH2)2,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 38.0 (CH2 CH2COO-), δ 60.6 (NH3 + C(CH2OH)2CH2CH3), δ 61.8 (NH3 +C(CH2OH)2CH2CH3), δ 129.9−130.2 (CHCH), δ 182.3 (COO-).
<実施例17>
FT-IR (KBr): 3398 cm -1 : OH stretching vibration 2922 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.86-0.92 (m, 6H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3, C H 3 CH 2 CH 2), δ 1.25-1.37 ( m, 14H, CH 3 (C H 2) 3 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.52 (s, 2H, C H 2 CH 2 COO -), δ 1.65 (m, 2H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 2.02-2.15 (m, 4H, CH 2 C H 2 CH), δ 2.15 (t, 2H, CH 2 C H 2 COO - ), δ 2.76 (t, 2 H, CHC H 2 CH), δ 3.57-3.64 (m, 4 H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 5.29-5.49 (m, 4 H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 7.2 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 24.4 ( NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 25.6 (CH C H 2 CH), δ 26.5 (C H 2 CH 2 COO -), δ 27.2 ( CH 2 C H 2 CH), δ 29.4-31.5 (CH 3 CH 2 (C H 2) 2, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2), δ 38.0 (CH 2 C H 2 COO ), δ 60.6 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 61.8 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ) , δ 129.9-130.2 (C H C H ), δ 182.3 (C OO -).
Example 17

FT−IR(KBr):3144cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1554cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.88 (t, 3H, CH 3 CH2CH2), δ 1.25−1.37 (m, 14H, CH3(CH 2 )3CH2, (CH 2 )4CH2CH2COO-), δ 1.53 (s, 2H, CH 2 CH2COO-), δ 2.02−2.07 (m, 4H, CH2CH 2 CH), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 2.76 (t, 2H, CHCH 2 CH), δ 3.64 (s, 6H, NH3 +C(CH 2 OH)3), δ 5.28−5.39 (m, 4H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 25.6 (CHCH2CH), δ 26.5 (CH2CH2COO-), δ 27.2 (CH2 CH2CH), δ 29.4−31.5 (CH3CH2(CH2)2,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 60.6 (NH3 + C(CH2OH)3), δ 61.0 (NH3 +C(CH2OH)3), δ 127.9−130.2 (CHCH), δ 182.3 (COO-).
<実施例18>
FT-IR (KBr): 3144cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1554cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.88 (t, 3 H, C H 3 CH 2 CH 2 ), δ 1.25-1.37 (m, 14 H , CH 3 (C H 2 ) 3 CH 2 , (C H 2) 4 CH 2 CH 2 COO -), δ 1.53 (s, 2H, C H 2 CH 2 COO -), δ 2.02-2.07 (m, 4H, CH 2 C H 2 CH), δ 2.16 (t, 2H , CH 2 C H 2 COO - ), δ 2.76 (t, 2H, CHC H 2 CH), δ 3.64 (s, 6H, NH 3 + C (C H 2 OH) 3), δ 5.28-5.39 (m, 4H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 25.6 (CH C H 2 CH), δ 26.5 (C H 2 CH 2 COO -), δ 27.2 (CH 2 C H 2 CH), δ 29.4-31.5 (CH 3 CH 2 (C H 2) 2, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2 ), δ 37.5 (CH 2 C H 2 COO -), δ 60.6 (NH 3 + C (CH 2 OH) 3), δ 61.0 (NH 3 + C (C H 2 OH) 3), δ 127.9-130.2 (C H C H), δ 182.3 (C OO -).
Example 18

FT−IR(KBr):3174cm-1:O−H伸縮振動 2924cm-1:C−H伸縮振動 1577cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.90 (t, 3H, CH 3 CH2CH2), δ 1.30−1.40 (m, 14H, CH3(CH 2 )3CH2, (CH 2 )4CH2CH2COO-), δ 1.61 (s, 2H, CH 2 CH2COO-), δ 2.05−2.08 (m, 4H, CH2CH 2 CH), δ 2.19 (t, 2H, CH2CH 2 COO-), δ 2.77 (t, 2H, CHCH 2 CH), δ 3.10−3.15 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.67−3.73 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.79−4.00 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 5.38−5.40 (m, 4H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2CH2), δ 23.7 (CH3 CH2CH2), δ 26.6 (CHCH2CH), δ 27.7 (CH2CH2COO-), δ 28.3 (CH2 CH2CH), δ 30.5−30.8 (CH3CH2(CH2)2,(CH2)4CH2CH2COO-), δ 32.7 (CH3CH2 CH2), δ 39.0 (CH2 CH2COO-), δ 43.3 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 70.8−72.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 129.1−131.0 (CHCH), δ 183.0 (COO-).
<実施例19>
FT-IR (KBr): 3174 cm -1 : OH stretching vibration 2924 cm -1 : CH stretching vibration 1577 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.90 (t, 3H, C H 3 CH 2 CH 2), δ 1.30-1.40 (m, 14H, CH 3 (C H 2) 3 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.61 (s, 2H, C H 2 CH 2 COO -), δ 2.05-2.08 (m, 4H, CH 2 C H 2 CH), δ 2.19 (t, 2H , CH 2 C H 2 COO - ), δ 2.77 (t, 2H, CHC H 2 CH), δ 3.10-3.15 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 3.67-3.73 (m, 5H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 +), δ 3.79-4.00 (m, 1H, HOCH 2 (CH (OH) ) 3 C H (OH) CH 2 NH 3 + ), δ 5.38-5.40 (m, 4H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 23.7 (CH 3 C H 2 CH 2), δ 26.6 (CH C H 2 CH), δ 27.7 (C H 2 CH 2 COO -), δ 28.3 (CH 2 C H 2 CH), δ 30.5-30.8 (CH 3 CH 2 (C H 2) 2, (C H 2) 4 CH 2 CH 2 COO -), δ 32.7 (CH 3 CH 2 C H 2 ), δ 39.0 (CH 2 C H 2 COO -), δ 43.3 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 64.7 (HO C H 2 (CH (OH) ) 3 CH (OH) CH 2 NH 3 +), δ 70.8-72.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 129.1 −131.0 ( C H C H), δ 183.0 ( C OO ).
Example 19

FT−IR(KBr):3373cm-1:O−H伸縮振動 2954cm-1:C−H伸縮振動 1588cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.35−3.41 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.65−3.80 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 3.89 (s, 2H, HOCH 2 COO-).
13C−NMR (D2O 100MHz): δ 54.2 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH), δ 61.2 (HOCH2COO-), δ 179.8 (HOCH2 COO-).
<実施例20>
FT-IR (KBr): 3373cm -1: O-H stretching vibration 2954cm -1: C-H stretching vibration 1588cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.35-3.41 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.65-3.80 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH), δ 3.89 (s, 2H, HOC H 2 COO ).
13 C-NMR (D 2 O 100MHz): δ 54.2 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH), δ 61.2 (HO C H 2 COO - ), δ 179.8 (HOCH 2 C OO -).
Example 20

FT−IR(KBr):3167cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1573cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.94−3.13 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.51−3.72 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.82 (s, 2H, HOCH 2 COO-), δ 3.89−3.96 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 61.2 (HOCH2COO-), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 179.9 (HOCH2 COO-).
<実施例21>
FT-IR (KBr): 3167cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1573cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.94-3.13 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.51-3.72 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.82 (s, 2H, HOC H 2 COO -), δ 3.89-3.96 (m, 1H, HOCH 2 (CH ( OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 61.2 (HO C H 2 COO ), δ 62.6 (HO C H 2 (CH (OH) ) 3 CH (OH) CH 2 NH 3 +), δ 68.9-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 179.9 (HOCH 2 C OO -).
Example 21

FT−IR(KBr):3231cm-1:O−H伸縮振動 2972cm-1:C−H伸縮振動 1571cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.17−1.24 (m, 3H, CH 3 CH(OH)COO-), δ 3.22−3.27 (m, 1H, CH3CH(OH)COO-), δ 3.55−3.71 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.97−4.02 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 20.0 (CH3CH(OH)COO-), δ 53.9 (HOCH2 CH(N+H3)CH2OH), δ 59.3 (HOCH2CH(N+H3)CH2OH), δ 68.4 (CH3 CH(OH)COO-), δ 182.4 (CH3CH(OH)COO-).
<実施例22>
FT-IR (KBr): 3231cm -1: O-H stretching vibration 2972cm -1: C-H stretching vibration 1571cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.17-1.24 (m, 3H, C H 3 CH (OH) COO -), δ 3.22-3.27 (m, 1H, CH 3 C H (OH) COO -) , δ 3.55-3.71 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.97-4.02 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 20.0 (C H 3 CH (OH) COO -), δ 53.9 (HOCH 2 C H (N + H 3) CH 2 OH), δ 59.3 (HO C H 2 CH (N + H 3) C H 2 OH), δ 68.4 (CH 3 C H (OH) COO -), δ 182.4 (CH 3 CH (OH) C OO -).
Example 22

FT−IR(KBr):3231cm-1:O−H伸縮振動 2937cm-1:C−H伸縮振動 1571cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.77−0.81 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.17−1.24 (m, 3H, CH 3 CH(OH)COO-), δ 1.51−1.57 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.52 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3), δ 3.94−3.99 (m, 1H, CH3CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 20.0 (CH3CH(OH)COO-), δ 23.5 (NH3 +C(CH2OH)2 CH2CH3), δ 60.3 (NH3 + C(CH2OH)2CH2CH3), δ 61.0 (NH3 +C(CH2OH)2CH2CH3), δ 68.5 (CH3 CH(OH)COO-) , δ 182.4 (CH3CH(OH)COO-).
<実施例23>
FT-IR (KBr): 3231cm -1: O-H stretching vibration 2937cm -1: C-H stretching vibration 1571cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.77 to 0.81 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.17 to 1.24 (m, 3 H, C H 3 CH (OH) COO -), δ 1.51-1.57 (m, 2H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.52 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 3.94-3.99 (m, 1 H, CH 3 C H (OH) COO ).
13 C-NMR (D 2 O 100MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 20.0 (C H 3 CH (OH) COO -), δ 23.5 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 60.3 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 61.0 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 68.5 (CH 3 C H (OH) COO ), δ 182.4 (CH 3 CH (OH) C OO ).
Example 23

FT−IR(KBr):3228cm-1:O−H伸縮振動 2935cm-1:C−H伸縮振動 1571cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.15−1.17 (m, 3H, CH 3 CH(OH)COO-), δ 3.53 (s, 6H, NH3 +C(CH 2 OH)3), δ 3.91−4.11 (m, 1H, CH3CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 20.0 (CH3CH(OH)COO-), δ 59.8 (NH3 + C(CH2OH)3), δ 60.7 (NH3 +C(CH2OH)3), δ 68.4 (CH3 CH(OH)COO-), δ 182.4 (CH3CH(OH)COO-).
<実施例24>
FT-IR (KBr): 3228cm -1: O-H stretching vibration 2935cm -1: C-H stretching vibration 1571cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.15-1.17 (m, 3H, C H 3 CH (OH) COO -), δ 3.53 (s, 6H, NH 3 + C (C H 2 OH) 3) , δ 3.91-4.11 (m, 1H, CH 3 C H (OH) COO -).
13 C-NMR (D 2 O 100MHz): δ 20.0 (C H 3 CH (OH) COO -), δ 59.8 (NH 3 + C (CH 2 OH) 3), δ 60.7 (NH 3 + C (C H 2 OH) 3), δ 68.4 (CH 3 C H (OH) COO -), δ 182.4 (CH 3 CH (OH) C OO -).
Example 24

FT−IR(KBr):3234cm-1:O−H伸縮振動 2926cm-1:C−H伸縮振動 1572cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.14 (m, 3H, CH 3 CH(OH)COO-), δ 2.83−3.02 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.45−3.66 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.81−3.85 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 3.90−3.95 (m, 1H, CH3CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 20.1 (CH3CH(OH)COO-), δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.4 (CH3 CH(OH)COO-), δ 68.9−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 182.5 (CH3CH(OH)COO-).
<実施例25>
FT-IR (KBr): 3234cm -1: O-H stretching vibration 2926cm -1: C-H stretching vibration 1572cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 1.14 (m, 3H, C H 3 CH (OH) COO -), δ 2.83-3.02 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH ) C H 2 NH 3 + ), δ 3.45-3.66 (m, 5 H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 3.81-3.85 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 +), δ 3.90-3.95 (m, 1H, CH 3 C H (OH) COO -).
13 C-NMR (D 2 O 100MHz): δ 20.1 (C H 3 CH (OH) COO -), δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 +), δ 68.4 (CH 3 C H (OH) COO -), δ 68.9-70.9 (HOCH 2 (C H (OH )) 3 C H (OH) CH 2 NH 3 + ), δ 182.5 (CH 3 CH (OH) C OO ).
Example 25

FT−IR(KBr):3394cm-1:O−H伸縮振動 2957cm-1:C−H伸縮振動 1716cm-1:COOH伸縮振動 1584cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.29−3.40 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.67−3.77 (m, 6H, HOCH 2 CH(N+H3)CH 2 OH, HOOCCH 2 COO-).
13C−NMR (D2O 100MHz): δ 41.3 (HOOCCH2COO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 174.6 (HOOCCH2 COO-).
<実施例26>
FT-IR (KBr): 3394cm -1: O-H stretching vibration 2957cm -1: C-H stretching vibration 1716 cm -1: COOH stretching vibration 1584cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.29-3.40 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.67-3.77 (m, 6H, HOC H 2 CH (N + H 3) C H 2 OH , HOOCC H 2 COO -).
13 C-NMR (D 2 O 100 MHz): δ 41.3 (HOOC C H 2 COO ), δ 54.1 (HOCH 2 C H (N + H 3 ) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH ), δ 174.6 (HOO C CH 2 C OO -).
Example 26

FT−IR(KBr):3388cm-1:O−H伸縮振動 2958cm-1:C−H伸縮振動 1714cm-1:COOH伸縮振動 1558cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.42 (s, 4H, HOOCCH 2 CH 2 COO-), δ 3.29−3.35 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.58−3.74 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 31.3 (HOOCCH2 CH2COO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 179.7 (HOOCCH2CH2 COO-).
<実施例27>
FT-IR (KBr): 3388cm -1: O-H stretching vibration 2958cm -1: C-H stretching vibration 1714 cm -1: COOH stretching vibration 1558cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.42 (s, 4 H, HOOC H 2 C H 2 COO ), δ 3.29-3.35 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH ), δ 3.58-3.74 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100 MHz): δ 31.3 (HOOC C H 2 C H 2 COO ), δ 54.1 (HOCH 2 C H (N + H 3 ) CH 2 OH), δ 58.6 (HO C H 2) CH (N + H 3) C H 2 OH), δ 179.7 (HOO C CH 2 CH 2 C OO -).
Example 27

FT−IR(KBr):3388cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1714cm-1:COOH伸縮振動 1543cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.73−0.77 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.50−1.56 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 2.33 (s, 4H, HOOCCH 2 CH 2 COO-), δ 3.49−3.50 (m, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 31.4 (HOOCCH2 CH2COO-),δ 60.5 (NH3 + C(CH2OH)2CH2CH3), δ 63.3 (NH3 +C(CH2OH)2CH2CH3), δ 179.7 (HOOCCH2CH2 COO-).
<実施例28>
FT-IR (KBr): 3388cm -1: O-H stretching vibration 2922cm -1: C-H stretching vibration 1714 cm -1: COOH stretching vibration 1543 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.73-0.77 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.50-1.56 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 2.33 (s, 4 H, HOOC H 2 C H 2 COO ), δ 3.49-3.50 (m, 4 H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ).
13 C-NMR (D 2 O 100 MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.2 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 31.4 (HOOC C H 2 C H 2 COO -), δ 60.5 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 63.3 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3), δ 179.7 (HOO C CH 2 CH 2 C OO -).
Example 28

FT−IR(KBr):3177cm-1:O−H伸縮振動 2925cm-1:C−H伸縮振動 1709cm-1:COOH伸縮振動 1551cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.42 (s, 4H, HOOCCH 2 CH 2 COO-), δ 2.89−3.08 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.46−3.67 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.85−3.89 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 31.2 (HOOCCH2 CH2COO-), δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9−70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 179.6 (HOOCCH2CH2 COO-).
<実施例29>
FT-IR (KBr): 3177cm -1: O-H stretching vibration 2925cm -1: C-H stretching vibration 1709 cm -1: COOH stretching vibration 1551 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.42 (s, 4 H, HOOC H 2 C H 2 COO ), δ 2.89-3.08 (m, 2 H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.46-3.67 (m, 5 H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 3.85-3.89 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 +).
13 C-NMR (D 2 O 100 MHz): δ 31.2 (HOOC C H 2 C H 2 COO ), δ 41.6 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.6 (HO 3 C 2 H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 68.9-70.8 (HOCH 2 ( C 2 H (OH)) 3 C H (OH) CH 2 NH 3 + ) , δ 179.6 (HOO C CH 2 CH 2 C OO -).
Example 29

FT−IR(KBr):3375cm-1:O−H伸縮振動 2955cm-1:C−H伸縮振動 1717cm-1:COOH伸縮振動 1576cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.52−2.76 (m, 2H, HOOCCH 2 CH(OH)COO-), δ 3.32−3.38 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.61−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 4.29−4.32 (m, 1H, HOOCCH2CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 40.1 (HOOCCH2CH(OH)COO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 68.7 (HOOCCH2 CH(OH)COO-), δ 176.4 (CH2 COOH), δ 179.1 (C(OH)COO-).
<実施例30>
FT-IR (KBr): 3375cm -1: O-H stretching vibration 2955cm -1: C-H stretching vibration 1717 cm -1: COOH stretching vibration 1576 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.52-2.76 (m, 2 H, HOOC H 2 CH (OH) COO ), δ 3.32-3. 38 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.61-3.77 ( m, 4H, HOC H 2 CH (N + H 3) C H 2 OH), δ 4.29-4.32 (m, 1H, HOOCCH 2 C H (OH) COO -).
13 C-NMR (D 2 O 100 MHz): δ 40.1 (HOOC C H 2 CH (OH) COO ), δ 54.1 (HOCH 2 C H (N + H 3 ) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3 ) C H 2 OH), δ 68.7 (HOOCCH 2 C H (OH) COO ), δ 176.4 (CH 2 C OOH), δ 179.1 (C (OH) C OO ).
Example 30

FT−IR(KBr):3447cm-1:O−H伸縮振動 2956cm-1:C−H伸縮振動 1743cm-1:COOH伸縮振動 1515cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.37−3.43 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.66−3.81 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 4.49 (s, 2H, HOOCCH(OH)CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 54.2 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH), δ 72.8 (HOOCCH(OH)CH(OH)COO-), δ 176.3 (HOOCCH(OH)CH(OH)COO-).
<実施例31>
FT-IR (KBr): 3447cm -1: O-H stretching vibration 2956cm -1: C-H stretching vibration 1743cm -1: COOH stretching vibration 1515 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.37-3.43 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.66-3.81 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH ), δ 4.49 (s, 2H, HOOCC H (OH) C H (OH) COO -).
13 C-NMR (D 2 O 100MHz): δ 54.2 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH), δ 72.8 (HOOC C H (OH) C H (OH) COO -), δ 176.3 (HOO C CH (OH) CH (OH) C OO -).
Example 31

FT−IR(KBr):3388cm-1:O−H伸縮振動 2955cm-1:C−H伸縮振動 1721cm-1:COOH伸縮振動 1556cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.66−2.83 (m, 4H, HOOCCH 2 C(OH)(COOH)CH 2 COO-), δ 3.32−3.38 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.60−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 43.7 (HOOCCH2C(OH)(COOH)CH2COO-), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 73.8 (HOOCCH2 C(OH)(COOH)CH2COO-), δ 174.7 (HOOCCH2C(OH)(COOH)CH2 COO-) , δ 178.6 (HOOCCH2C(OH)(COOH)CH2COO-).
<実施例32>
FT-IR (KBr): 3388cm -1: O-H stretching vibration 2955cm -1: C-H stretching vibration 1721 cm -1: COOH stretching vibration 1556cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.66-2.83 (m, 4 H, HOOC H 2 C (OH) (COOH) C H 2 COO ), δ 3.32-3. 38 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.60-3.77 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100 MHz): δ 43.7 (HOOC C H 2 C (OH) (COOH) C H 2 COO ), δ 54.1 (HOCH 2 C H (N + H 3 ) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3 ) C H 2 OH), δ 73.8 (HOOCCH 2 C (OH) (COOH) CH 2 COO ), δ 174.7 (HOO C CH 2 C (OH) ( COOH) CH 2 C OO -) , δ 178.6 (HOOCCH 2 C (OH) (C OOH) CH 2 COO -).
Example 32

FT−IR(KBr):3156cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1713cm-1:COOH伸縮振動 1570cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.75−0.79 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.52−1.58 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 2.57−2.75 (m, 4H, HOOCCH 2 C(OH)(COOH)CH 2 COO-), δ 3.52 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 43.7 (HOOCCH2C(OH)(COOH)CH2COO-), δ 60.5 (NH3 + C(CH2OH)2CH2CH3), δ 61.0 (NH3 +C(CH2OH)2CH2CH3), δ 73.8 (HOOCCH2 C(OH)(COOH)CH2COO-), δ 174.8 (HOOCCH2C(OH)(COOH)CH2 COO-), δ 178.5 (HOOCCH2C(OH)(COOH)CH2COO-).
<実施例33>
FT-IR (KBr): 3156cm -1: O-H stretching vibration 2940cm -1: C-H stretching vibration 1713 cm -1: COOH stretching vibration 1570cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.75-0.79 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.52-1.58 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 2.57-2.75 (m, 4 H, HOOCC H 2 C (OH) (COOH) C H 2 COO ), δ 3.52 (s, 4 H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ).
13 C-NMR (D 2 O 100 MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.2 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 43.7 (HOOC C H 2 C (OH) (COOH) C H 2 COO -), δ 60.5 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 61.0 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 73.8 (HOOCCH 2 C (OH) (COOH) CH 2 COO ), δ 174.8 (HOO C CH 2 C (OH) (COOH) CH 2 C OO ), δ 178.5 (HOOCCH 2 C (OH ) (C OOH) CH 2 COO -).
Example 33

FT−IR(KBr):3145cm-1:O−H伸縮振動 2946cm-1:C−H伸縮振動 1711cm-1:COOH伸縮振動 1572cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.58−2.75 (m, 4H, HOOCCH 2 C(OH)(COOH)CH 2 COO-), δ 3.57 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 43.7 (HOOCCH2C(OH)(COOH)CH2COO-), δ 59.2 (NH3 + C(CH2OH)3), δ 61.4 (NH3 +C(CH2OH)3), δ 73.8 (HOOCCH2 C(OH)(COOH)CH2COO-), δ 174.8 (HOOCCH2C(OH)(COOH)CH2 COO-), δ 178.6 (HOOCCH2C(OH)(COOH)CH2COO-).
<実施例34>
FT-IR (KBr): 3145cm -1: O-H stretching vibration 2946cm -1: C-H stretching vibration 1711cm -1: COOH stretching vibration 1572cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.58-2.75 (m, 4H, HOOCC H 2 C (OH) (COOH) C H 2 COO -), δ 3.57 (s, 6H, NH 3 + C (C H 2 OH) 3 ).
13 C-NMR (D 2 O 100 MHz): δ 43.7 (HOOC C H 2 C (OH) (COOH) C H 2 COO ), δ 59.2 (NH 3 + C (CH 2 OH) 3 ), δ 61.4 (δ NH 3 + C (C H 2 OH) 3), δ 73.8 (HOOCCH 2 C (OH) (COOH) CH 2 COO -), δ 174.8 (HOO C CH 2 C (OH) (COOH) CH 2 C OO - ), δ 178.6 (HOOCCH 2 C (OH) (C OOH) CH 2 COO -).
Example 34

FT−IR(KBr):3226cm-1:O−H伸縮振動 2931cm-1:C−H伸縮振動 1711cm-1:COOH伸縮振動 1575cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.66−2.83 (m, 4H, HOOCCH 2 C(OH)(COOH)CH 2 COO-), δ 2.90−3.10 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.48−3.68 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.86−3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 43.6 (HOOCCH2C(OH)(COOH)CH2COO-), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9−70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 73.8 (HOOCCH2 C(OH)(COOH)CH2COO-), δ 174.6 (HOOCCH2C(OH)(COOH)CH2 COO-), δ 178.6 (HOOCCH2C(OH)(COOH)CH2COO-).
<実施例35>
FT-IR (KBr): 3226cm -1: O-H stretching vibration 2931cm -1: C-H stretching vibration 1711cm -1: COOH stretching vibration 1575cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.66-2.83 (m, 4H, HOOCC H 2 C (OH) (COOH) C H 2 COO -), δ 2.90-3.10 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH ) C H 2 NH 3 +), δ 3.48-3.68 (m, 5H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 +), δ 3.86 −3.90 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 43.6 (HOOC C H 2 C (OH) (COOH) C H 2 COO -), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 +), δ 68.9-70.8 (HOCH 2 (C H (OH)) 3 C H (OH ) CH 2 NH 3 + ), δ 73.8 (HOOCCH 2 C (OH) (COOH) CH 2 COO ), δ 174.6 (HOO C CH 2 C (OH) (COOH) CH 2 C OO ), δ 178.6 ( HOOCCH 2 C (OH) (C OOH) CH 2 COO -).
Example 35

FT−IR(KBr):3370cm-1:O−H伸縮振動 2950cm-1:C−H伸縮振動 1592cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.28−3.33 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.57−3.72 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 6.80−6.86 (m, 2H, C(OH)CHCH, C(COO-)CHCHCH), δ 7.35−7.39 (m, 1H, CHCHC(OH)), δ 7.68−7.73 (m, 1H, C(COOH)CHCH).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 116.2 (C(OH)CHCH), δ 118.0 (CHC(COO-)C(OH)), δ 119.3 (C(COO-)CHCHCH), δ 130.5 (C(COO-)CHCH), δ 133.9 (CHCHC(OH)), δ 159.6 (CC(OH)C), δ 175.5 (CCOO-).
<実施例36>
FT-IR (KBr): 3370cm -1: O-H stretching vibration 2950cm -1: C-H stretching vibration 1592cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.28-3.33 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.57-3.72 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH ), δ 6.80-6.86 (m, 2H, C (OH) C H CH, C (COO -) CHC H CH), δ 7.35-7.39 (m, 1H, C H CHC ( OH)), δ 7.68-7.73 (m , 1H, C (COOH) C H CH).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH), δ 116.2 (C (OH) C HCH ), δ 118.0 (CH C (COO -) C (OH)), δ 119.3 (C (COO -) CH C HCH), δ 130.5 (C (COO -) C HCH), δ 133.9 (C HCHC (OH) ), δ 159.6 (C C (OH) C), δ 175.5 (C C OO -).
Example 36

FT−IR(KBr):3248cm-1:O−H伸縮振動 2921cm-1:C−H伸縮振動 1570cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.87−3.05 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.46−3.66 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.87−3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 6.72−6.78 (m, 2H, C(OH)CHCH, C(COO-)CHCHCH), δ 7.22−7.24 (m, 1H, CHCHC(OH)), δ 7.61−7.63 (m, 1H, C(COOH)CHCH).
13C−NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.0−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 116.2 (C(OH)CHCH), δ 117.9 (CHC(COO-)C(OH)), δ 119.3 (C(COO-)CHCHCH), δ 130.4 (C(COO-)CHCH), δ 133.9 (CHCHC(OH)), δ 159.5 (CC(OH)C), δ 175.5 (CCOO-).
<実施例37>
FT-IR (KBr): 3248cm -1: O-H stretching vibration 2921cm -1: C-H stretching vibration 1570cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.87-3.05 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.46-3.66 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.87-3.90 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ), δ 6.72-6.78 (m, 2H , C (OH) C H CH, C (COO -) CHC H CH), δ 7.22-7.24 (m, 1H, C H CHC (OH)), δ 7.61-7.63 (m, 1 H, C (COOH) C H CH).
13 C-NMR (D 2 O 100 MHz): δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 69.0-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 116.2 (C (OH) C HCH), δ 117.9 (CH C (COO -) C (OH)), δ 119.3 (C (COO -) CH C HCH), δ 130.4 (C (COO -) C HCH), δ 133.9 (C HCHC (OH)), δ 159.5 (C C (OH) C) , δ 175.5 (C C OO -).
Example 37

FT−IR(KBr):3341cm-1:O−H伸縮振動 2947cm-1:C−H伸縮振動 1577cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.29−3.35 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.59−3.75 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH), δ 7.31−7.35 (m, 5H, (CH)5).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 75.0 (CH(OH)(COO-), δ 127.1 ((CH)2 CH(CH)2), δ 128.2 (CHCHCCH(OH)(COO-)), δ 128.8 (CHCCH(OH)(COO-)), δ 140.6 (CCH(OH)(COO-)), δ 179.4 (COO-).
<実施例38>
FT-IR (KBr): 3341cm -1: O-H stretching vibration 2947cm -1: C-H stretching vibration 1577cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.29-3.35 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.59-3.75 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH), δ 7.31-7.35 (m, 5 H, (C H ) 5 ).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH), δ 75.0 (C H (OH) ( COO -), δ 127.1 ((CH) 2 C H (CH) 2), δ 128.2 (C HCHC C H (OH) (COO -)), δ 128.8 (C HCCH (OH ) (COO -)), δ 140.6 (C CH (OH) (COO -)), δ 179.4 (C OO -).
Example 38

FT−IR(KBr):3388cm-1:O−H伸縮振動 2955cm-1:C−H伸縮振動 1556cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.20 (m, 3H, CH 3 CO), δ 3.32−3.38 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.60−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 14.6 (CH 3 CO), δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 165.3 (CH3COCOO-), δ 191.8 (CH3 COCOO-).
<実施例39>
FT-IR (KBr): 3388cm -1: O-H stretching vibration 2955cm -1: C-H stretching vibration 1556cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.20 (m, 3 H, C 3 H 3 CO), δ 3.32-3. 38 (m, 1 H, HOCH 2 C 2 H (N + H 3 ) CH 2 OH), δ 3.60 -3.77 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 14.6 (C H 3 CO), δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH), δ 165.3 (CH 3 CO C OO -), δ 191.8 (CH 3 C OCOO -).
Example 39

FT−IR(KBr):3156cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1570cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.75−0.79 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.52−1.58 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 2.20 (m, 3H, CH 3 CO), δ 3.52 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 14.6 (CH 3 CO), δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 60.5 (NH3 + C(CH2OH)2CH2CH3), δ 61.0 (NH3 +C(CH2OH)2CH2CH3), δ 165.3 (CH3COCOO-), δ 191.8 (CH3 COCOO-).
<実施例40>
FT-IR (KBr): 3156 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1570 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.75-0.79 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.52-1.58 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 2.20 (m, 3H, C H 3 CO), δ 3.52 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 14.6 (C H 3 CO), δ 23.2 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 60.5 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 61.0 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3), δ 165.3 (CH 3 CO C OO - ), δ 191.8 (CH 3 C OCOO -).
Example 40

FT−IR(KBr):3145cm-1:O−H伸縮振動 2946cm-1:C−H伸縮振動 1572cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.20 (m, 3H, CH 3 CO), δ 3.57 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 14.6 (CH 3 CO), δ 59.2 (NH3 + C(CH2OH)3), δ 61.4 (NH3 +C(CH2OH)3), δ 165.3 (CH3COCOO-), δ 191.8 (CH3 COCOO-).
<実施例41>
FT-IR (KBr): 3145cm -1: O-H stretching vibration 2946cm -1: C-H stretching vibration 1572cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.20 (m, 3H, C H 3 CO), δ 3.57 (s, 6H, NH 3 + C (C H 2 OH) 3).
13 C-NMR (D 2 O 100MHz): δ 14.6 (C H 3 CO), δ 59.2 (NH 3 + C (CH 2 OH) 3), δ 61.4 (NH 3 + C (C H 2 OH) 3) , δ 165.3 (CH 3 CO C OO -), δ 191.8 (CH 3 C OCOO -).
Example 41

FT−IR(KBr):3371cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1582cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.23 (s, 3H, CH 3 OCH2COO-), δ 3.30−3.36 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.60−3.76 (m, 6H, HOCH 2 CH(N+H3)CH 2 OH, CH3OCH 2 COO-).
13C−NMR (D2O 100MHz): δ 48.9 (HOCH2 CH(N+H3)CH2OH), δ 58.1 (CH3OCH2COO-), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 71.1 (CH3OCH2COO-), δ 178.1 (CH3OCH2 COO-).
<実施例42>
FT-IR (KBr): 3371 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1582 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.23 (s, 3H, C H 3 OCH 2 COO -), δ 3.30-3.36 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH) , δ 3.60-3.76 (m, 6H, HOC H 2 CH (N + H 3) C H 2 OH, CH 3 OC H 2 COO -).
13 C-NMR (D 2 O 100MHz): δ 48.9 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.1 (C H 3 OCH 2 COO -), δ 58.6 (HO C H 2 CH ( N + H 3) C H 2 OH), δ 71.1 (CH 3 O C H 2 COO -), δ 178.1 (CH 3 OCH 2 C OO -).
Example 42

FT−IR(KBr):3148cm-1:O−H伸縮振動 2928cm-1:C−H伸縮振動 1574cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.16 (s, 3H, CH 3 OCH2COO-), δ 3.53 (s, 6H, NH3 +C(CH 2 OH)3), δ 3.67 (s, 2H, HOCCH3OCH 2 COO-).
13C−NMR (D2O 100MHz): δ 48.8 (NH3 + C(CH2OH)3), δ 59.3 (CH3OCH2COO-), δ 61.3 (NH3 +C(CH2OH)3), δ 71.0 (CH3OCH2COO-), δ 177.9 (CH3OCH2 COO-).
<実施例43>
FT-IR (KBr): 3148 cm -1 : OH stretching vibration 2928 cm -1 : CH stretching vibration 1574cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.16 (s, 3 H, C H 3 OCH 2 COO ), δ 3.53 (s, 6 H, NH 3 + C (C H 2 OH) 3 ), δ 3.67 ( s, 2H, HOCCH 3 OC H 2 COO -).
13 C-NMR (D 2 O 100MHz): δ 48.8 (NH 3 + C (CH 2 OH) 3), δ 59.3 (C H 3 OCH 2 COO -), δ 61.3 (NH 3 + C (C H 2 OH 3 ), δ 71.0 (CH 3 O C H 2 COO ), δ 177.9 (CH 3 OCH 2 C OO ).
Example 43

FT−IR(KBr):3174cm-1:O−H伸縮振動 2924cm-1:C−H伸縮振動 1577cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.89−3.09 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.20 (s, 3H, CH 3 OCH2COO-), δ 3.48−3.69 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.72 (s, 2H, CH3OCH 2 COO-), δ 3.86−3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 58.0 (CH3OCH2COO-), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.0−70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 71.1 (CH3OCH2COO-), δ 178.0 (CH3OCH2 COO-).
<実施例44>
FT-IR (KBr): 3174 cm -1 : OH stretching vibration 2924 cm -1 : CH stretching vibration 1577 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.89-3.09 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.20 (s, 3H, C H 3 OCH 2 COO ), δ 3.48-3.69 (m, 5 H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 3.72 (s, 2 H, CH 3 OC H 2 COO ), δ 3.85-3.90 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100MHz): δ 41.6 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 58.0 (C H 3 OCH 2 COO -), δ 62.6 ( HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 69.0-70.8 (HOCH 2 ( C H (OH)) 3 C H (OH) CH 2 NH 3 + ), δ 71.1 (CH 3 O C H 2 COO ), δ 178.0 (CH 3 OCH 2 C OO ).
Example 44

FT−IR(KBr):3371cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1582cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.99 (s, 3H, CH 3 CH2OCH2COO-), δ 3.20−3.25 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.34−3.39 (q, 2H, CH3CH 2 OCH2COO-), δ 3.49−3.64 (m, 6H, HOCH 2 CH(N+H3)CH 2 OH, CH3CH2OCH 2 COO-).
13C−NMR (D2O 100MHz): δ 14.0 (CH3CH2O), δ 54.0 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH), δ 66.4 (CH3 CH2O), δ 69.1 (CH3CH2OCH2COO-), δ 178.1 (CH3CH2OCH2 COO-).
<実施例45>
FT-IR (KBr): 3371 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1582 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.99 (s, 3H, C H 3 CH 2 OCH 2 COO -), δ 3.20-3.25 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.34-3.39 (q, 2H, CH 3 C H 2 OCH 2 COO -), δ 3.49-3.64 (m, 6H, HOC H 2 CH (N + H 3) C H 2 OH, CH 3 CH 2 OC H 2 COO -).
13 C-NMR (D 2 O 100MHz): δ 14.0 (C H 3 CH 2 O), δ 54.0 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH ), δ 66.4 (CH 3 C H 2 O), δ 69.1 (CH 3 CH 2 O C H 2 COO -), δ 178.1 (CH 3 CH 2 OCH 2 C OO -).
Example 45

FT−IR(KBr):3156cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1570cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.75−0.79 (t, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 0.99 (t, 3H, CH 3 CH2OCH2COO-), δ 1.45−1.47 (q, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.28−3.33 (q, 2H, CH3CH 2 OCH2COO-), δ 3.42 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3), δ 3.63 (m, 2H, CH3CH2OCH 2 COO-).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 14.0 (CH3CH2O), δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 60.4 (NH3 + C(CH2OH)2CH2CH3), δ 60.9 (NH3 +C(CH2OH)2CH2CH3), δ 66.4 (CH3 CH2O), δ 69.1 (CH3CH2OCH2COO-), δ 177.9 (CH3CH2OCH2 COO-).
<実施例46>
FT-IR (KBr): 3156 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1570 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.75-0.79 (t, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 0.99 (t, 3 H, C H 3 CH 2 OCH 2 COO ), δ 1.45 to 1.47 (q, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 3.28 to 3.33 (q, 2 H, CH 3 C H 2 OCH 2 COO ) , δ 3.42 (s, 4 H, NH 3 + C (C 2 H 2 OH) 2 CH 2 CH 3 ), δ 3.63 (m, 2 H, CH 3 CH 2 OC H 2 COO ).
13 C-NMR (D 2 O 100MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3), δ 14.0 (C H 3 CH 2 O), δ 23.2 (NH 3 + C ( CH 2 OH) 2 C H 2 CH 3), δ 60.4 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 60.9 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3) , δ 66.4 (CH 3 C H 2 O), δ 69.1 (CH 3 CH 2 O C H 2 COO -), δ 177.9 (CH 3 CH 2 OCH 2 C OO -).
Example 46

FT−IR(KBr):3148cm-1:O−H伸縮振動 2928cm-1:C−H伸縮振動 1574cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.95 (t, 3H, CH 3 CH2OCH2COO-), δ 3.31−3.33 (q, 2H, CH3CH 2 OCH2COO-), δ 3.48 (s, 6H, NH3 +C(CH 2 OH)3), δ 3.66 (s, 2H, CH3CH2OCH 2 COO-).
13C−NMR (D2O 100MHz): δ 14.0 (CH3CH2O), δ 59.2 (NH3 + C(CH2OH)3), δ 61.3 (NH3 +C(CH2OH)3), δ 66.4 (CH3 CH2O), δ 69.1 (CH3CH2OCH2COO-), δ 178.1 (CH3CH2OCH2 COO-).
<実施例47>
FT-IR (KBr): 3148 cm -1 : OH stretching vibration 2928 cm -1 : CH stretching vibration 1574cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.95 (t, 3H, C H 3 CH 2 OCH 2 COO -), δ 3.31-3.33 (q, 2H, CH 3 C H 2 OCH 2 COO -), δ 3.48 (s, 6H, NH 3 + C (C H 2 OH) 3), δ 3.66 (s, 2H, CH 3 CH 2 OC H 2 COO -).
13 C-NMR (D 2 O 100MHz): δ 14.0 (C H 3 CH 2 O), δ 59.2 (NH 3 + C (CH 2 OH) 3), δ 61.3 (NH 3 + C (C H 2 OH) 3), δ 66.4 (CH 3 C H 2 O), δ 69.1 (CH 3 CH 2 O C H 2 COO -), δ 178.1 (CH 3 CH 2 OCH 2 C OO -).
Example 47

FT−IR(KBr):3174cm-1:O−H伸縮振動 2924cm-1:C−H伸縮振動 1577cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.06 (t, 3H, CH 3 CH2OCH2COO-), δ 2.92−3.11 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.41−3.46 (q, 2H, CH3CH 2 OCH2COO-), δ 3.49−3.69 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.78 (s, 2H, CH3CH2OCH 2 COO-), δ 3.88−3.95 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 14.0 (CH3CH2O), δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 66.6 (CH3 CH2O), δ 69.0−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +, CH3CH2OCH2COO-), δ 178.0 (CH3CH2OCH2 COO-).
<実施例48>
FT-IR (KBr): 3174 cm -1 : OH stretching vibration 2924 cm -1 : CH stretching vibration 1577 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 1.06 (t, 3 H, C H 3 CH 2 OCH 2 COO ), δ 2.92-3. 11 (m, 2 H, HOCH 2 (CH (OH)) 3 CH (OH) ) C H 2 NH 3 +) , δ 3.41-3.46 (q, 2H, CH 3 C H 2 OCH 2 COO -), δ 3.49-3.69 (m, 5H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 3.78 (s, 2H, CH 3 CH 2 OC H 2 COO -), δ 3.88-3.95 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH ) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100MHz): δ 14.0 (C H 3 CH 2 O), δ 41.6 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 62.6 (HO C H 2 (CH (OH) ) 3 CH (OH) CH 2 NH 3 +), δ 66.6 (CH 3 C H 2 O), δ 69.0-70.9 (HOCH 2 (C H (OH)) 3 C H ( OH) CH 2 NH 3 +, CH 3 CH 2 O C H 2 COO -), δ 178.0 (CH 3 CH 2 OCH 2 C OO -).
Example 48

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動 1576cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.28−3.33 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.58−3.73 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH), δ 114.9−117.8 (CF3COO-), δ 162.8−163.1 (CF3 COO-).
<実施例49>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration 1576 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.28-3.33 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.58-3.73 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH), δ 114.9-117.8 (C F 3 COO -) , δ 162.8-163.1 (CF 3 C OO -).
Example 49

FT−IR(KBr):3267cm-1:O−H伸縮振動 2926cm-1:C−H伸縮振動 1671cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.86−3.05 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.48−3.69 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.84−3.89 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.8 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.4−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 114.8−117.7 (CF3COO-), δ 162.7−163.4 (CF3 COO-).
<実施例50>
FT-IR (KBr): 3267 cm -1 : OH stretching vibration 2926 cm -1 : CH stretching vibration 1671 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.86-3.05 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.48-3.69 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.84-3.89 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 41.8 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 69.4-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ 114.8-117.7 (C F 3 COO -), δ 162.7-163.4 (CF 3 C OO -) .
Example 50

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.33−3.46 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.69−3.84 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.2 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH).
<実施例51>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.33-3.46 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.69-3.84 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.2 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 51

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.75−0.79 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.39−1.44 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.39−3.46 (m, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.6 (NH3 +C(CH2OH)2CH2 CH3), δ 24.6 (NH3 +C(CH2OH)2 CH2CH3), δ 57.8 (NH3 + C(CH2OH)2CH2CH3), δ 62.8 (NH3 +C(CH2OH)2CH2CH3).
<実施例52>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.75-0.79 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.39-1.44 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ), δ 3.39-3.46 (m, 4 H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ).
13 C-NMR (D 2 O 100 MHz): δ 6.6 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 24.6 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 57.8 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 62.8 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
Example 52

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.78−2.98 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.52−3.72 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.79−3.84 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 42.1 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 70.6−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例53>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.78-2.98 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.52-3.72 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.79-3.84 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 42.1 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 70.6-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +).
Example 53

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.30−3.36 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.60−3.76 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH).
<実施例54>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.30-3.36 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.60-3.76 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 54

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.72−0.76 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.48−1.54 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.48 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.4 (NH3 +C(CH2OH)2CH2 CH3), δ 23.3 (NH3 +C(CH2OH)2 CH2CH3), δ 48.9 (NH3 + C(CH2OH)2CH2CH3), δ 60.8 (NH3 +C(CH2OH)2CH2CH3).
<実施例55>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.72-0.76 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.48-1.54 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.48 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.4 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.3 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 48.9 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 60.8 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
Example 55

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.78−2.98 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.52−3.72 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.79−3.84 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 42.1 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 70.6−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例56>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.78-2.98 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.52-3.72 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.79-3.84 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 42.1 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 70.6-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +).
Example 56

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.75 (s, 3H, CH 3 SO3 -), δ 3.35−3.41 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.64−3.80 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 38.5 (CH3SO3 -), δ 54.2 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH).
<実施例57>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.75 (s, 3H, C H 3 SO 3 -), δ 3.35-3.41 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.64-3.80 (m, 4H, HOC H 2 CH (N + H 3) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 38.5 (C H 3 SO 3 -), δ 54.2 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3 ) C H 2 OH).
Example 57

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.82−0.86 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.59−1.65 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 2.70 (s, 3H, CH 3 SO3 -), δ 3.59 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.4 (NH3 +C(CH2OH)2CH2 CH3), δ 23.3 (NH3 +C(CH2OH)2 CH2CH3), δ 38.5 (CH3SO3 -), δ 60.6 (NH3 + C(CH2OH)2CH2CH3), δ 61.2 (NH3 +C(CH2OH)2CH2CH3).
<実施例58>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.82-0.86 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.59-1.65 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 2.70 (s, 3H, C H 3 SO 3 -), δ 3.59 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3 ).
13 C-NMR (D 2 O 100 MHz): δ 6.4 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.3 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 38.5 (C H 3 SO 3 -), δ 60.6 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 61.2 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3) .
Example 58

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.72 (s, 3H, CH 3 SO3 -), δ 3.65 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 38.5 (CH3SO3 -), δ 59.4 (NH3 + C(CH2OH)3), δ 61.4 (NH3 +C(CH2OH)3).
<実施例59>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.72 (s, 3H, C H 3 SO 3 -), δ 3.65 (s, 6H, NH 3 + C (C H 2 OH) 3).
13 C-NMR (D 2 O 100MHz): δ 38.5 (C H 3 SO 3 -), δ 59.4 (NH 3 + C (CH 2 OH) 3), δ 61.4 (NH 3 + C (C H 2 OH) 3 ).
Example 59

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.71 (s, 3H, CH 3 SO3 -), δ 2.95−3.15 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.53−3.73 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.90−3.96 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 38.5 (CH3SO3 -), δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9−70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例60>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.71 (s, 3H, C H 3 SO 3 -), δ 2.95-3.15 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 3.53-3.73 (m, 5H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 +), δ 3.90-3.96 (m, 1H, HOCH 2 (CH (OH)) 3 C H ( OH) CH 2 NH 3 +).
13 C-NMR (D 2 O 100MHz): δ 38.5 (C H 3 SO 3 -), δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ 62.7 (HO C H 2 (CH (OH) ) 3 CH (OH) CH 2 NH 3 +), δ 68.9-70.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +).
Example 60

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.28−3.32 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.59−3.75 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.0 (HOCH2 CH(N+H3)CH2OH), δ 59.1 (HOCH2CH(N+H3)CH2OH).
<実施例61>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.28-3.32 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.59-3.75 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.0 (HOCH 2 C H (N + H 3) CH 2 OH), δ 59.1 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 61

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.74−0.78 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.42−1.48 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.45 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 24.1 (NH3 +C(CH2OH)2 CH2CH3), δ 58.8 (NH3 + C(CH2OH)2CH2CH3), δ 62.1 (NH3 +C(CH2OH)2CH2CH3).
<実施例62>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.74 to 0.78 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.42-1.48 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.45 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 24. 1 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 58.8 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 62.1 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
<Example 62>

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.51 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 69.1 (NH3 + C(CH2OH)3), δ 61.0 (NH3 +C(CH2OH)3).
<実施例63>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.51 (s, 6 H, NH 3 + C (C H 2 OH) 3 ).
13 C-NMR (D 2 O 100 MHz): δ 69.1 (NH 3 + C (CH 2 OH) 3 ), δ 61.0 (NH 3 + C ( C H 2 OH) 3 ).
Example 63

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.86−3.05 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.41−3.68 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.83−3.88 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.2−70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例64>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.86-3.05 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.41-3.68 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.83-3.88 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 69.2-70.8 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +).
Example 64

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.33−3.38 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.61−3.77 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH).
<実施例65>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.33-3.38 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.61-3.77 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 65

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.72 (t, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.49−1.51 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.47 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 23.2 (NH3 +C(CH2OH)2 CH2CH3), δ 48.9 (NH3 + C(CH2OH)2CH2CH3), δ 61.1 (NH3 +C(CH2OH)2CH2CH3).
<実施例66>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.72 (t, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.49-1.51 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.47 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.2 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 48.9 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 61.1 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
Example 66

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.37−3.43 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.66−3.81 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.2 (HOCH2 CH(N+H3)CH2OH), δ 58.7 (HOCH2CH(N+H3)CH2OH).
<実施例67>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.37-3.43 (m, 1H, HOCH 2 C H (N + H 3) CH 2 OH), δ 3.66-3.81 (m, 4H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.2 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.7 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 67

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.81−0.85 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.59−1.65 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.59 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 23.3 (NH3 +C(CH2OH)2 CH2CH3), δ 60.5 (NH3 + C(CH2OH)2CH2CH3), δ 61.2 (NH3 +C(CH2OH)2CH2CH3).
<実施例68>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.81-0.85 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.59-1.65 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.59 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.3 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.3 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 60.5 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 61.2 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
<Example 68>

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.67 (s, 6H, NH3 +C(CH 2 OH)3).
13C−NMR (D2O 100MHz): δ 59.4 (NH3 + C(CH2OH)3), δ 61.5 (NH3 +C(CH2OH)3).
<実施例69>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.67 (s, 6 H, NH 3 + C (C H 2 OH) 3 ).
13 C-NMR (D 2 O 100 MHz): δ 59.4 (NH 3 + C (CH 2 OH) 3 ), δ 61.5 (NH 3 + C ( C H 2 OH) 3 ).
Example 69

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 2.98−3.17 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.54−3.75 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.94−3.98 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.0−71.0 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例70>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 2.98-3.17 (m, 2H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 3.54-3.75 (m, 5H, HOC H 2 (C H (OH )) 3 CH (OH) CH 2 NH 3 +), δ 3.94-3.98 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 + ).
13 C-NMR (D 2 O 100 MHz): δ 41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 + ), δ 62.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 + ), δ 69.0-71.0 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +).
<Example 70>

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 3.33−3.39 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.62−3.78 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C−NMR (D2O 100MHz): δ 54.1 (HOCH2 CH(N+H3)CH2OH), δ 58.6 (HOCH2CH(N+H3)CH2OH).
<実施例71>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 3.33-3.39 (m, 1 H, HOCH 2 C H (N + H 3 ) CH 2 OH), δ 3.62-3.78 (m, 4 H, HOC H 2 CH (N + H 3 ) C H 2 OH).
13 C-NMR (D 2 O 100MHz): δ 54.1 (HOCH 2 C H (N + H 3) CH 2 OH), δ 58.6 (HO C H 2 CH (N + H 3) C H 2 OH).
Example 71

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.60 (t, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.35−1.41 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.35 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.2 (NH3 +C(CH2OH)2CH2 CH3), δ 23.1 (NH3 +C(CH2OH)2 CH2CH3), δ 48.7 (NH3 + C(CH2OH)2CH2CH3), δ 60.8 (NH3 +C(CH2OH)2CH2CH3).
<実施例72>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.60 (t, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.35-1.41 (m, 2 H, NH 3 + C (CH 2 2 OH) 2 C H 2 CH 3), δ 3.35 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.2 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.1 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 48.7 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3 ), δ 60.8 (NH 3 + C ( C H 2 OH) 2 CH 2 CH 3 ).
<Example 72>

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動
1H−NMR (D2O 400MHz): δ 0.91−0.94 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.68−1.73 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.67 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3).
13C−NMR (D2O 100MHz): δ 6.5 (NH3 +C(CH2OH)2CH2 CH3), δ 23.4 (NH3 +C(CH2OH)2 CH2CH3), δ 60.7 (NH3 + C(CH2OH)2CH2CH3), δ 61.3 (NH3 +C(CH2OH)2CH2CH3) , δ 120.2 (N(CN)2 -).
<実施例73>
下記式で表される化合物を合成した。
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.91 to 0.94 (m, 3 H, NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.68 to 1.73 (m, 2 H, NH 3 + C (CH 2 OH) 2 C H 2 CH 3), δ 3.67 (s, 4H, NH 3 + C (C H 2 OH) 2 CH 2 CH 3).
13 C-NMR (D 2 O 100 MHz): δ 6.5 (NH 3 + C (CH 2 OH) 2 CH 2 C H 3 ), δ 23.4 (NH 3 + C (CH 2 OH) 2 C H 2 CH 3 ) , δ 60.7 (NH 3 + C (CH 2 OH) 2 CH 2 CH 3), δ 61.3 (NH 3 + C (C H 2 OH) 2 CH 2 CH 3), δ 120.2 (N (C N) 2 - ).
Example 73
The compound represented by the following formula was synthesized.

2-アミノ-2-エチル-1,3-プロパンジオ−ル(10.00g、83.92mmol)と3-クロロ-1,2-プロパンジオ−ル(46.38g、419.60mmol)を1-プロパノ−ル500ml中で、還流下、48時間反応後、1-プロパノ−ルを減圧留去し、得られた液体にTHFを加えて加熱洗浄することにより、白色粉末を得た。得られた白色粉末に水酸化ナトリウムを加え、室温下、2時間攪拌後、エタノ−ルを加えて析出した結晶をろ別後、ろ液を減圧留去し、得られた液体をカラムクロマトグラフィーで精製することで、表11の実施例73に記載したアミン系化合物1(11.35g、58.74mmol)を得た。 2-amino-2-ethyl-1,3-propanediol (10.00 g, 83.92 mmol) and 3-chloro-1,2-propanediol (46.38 g, 419.60 mmol) in 1-propanol 500 ml After reacting for 48 hours under reflux, 1-propanol was distilled off under reduced pressure, THF was added to the obtained liquid, and the mixture was heated and washed to obtain a white powder. Sodium hydroxide is added to the obtained white powder, and after stirring at room temperature for 2 hours, ethanol is added and the precipitated crystals are filtered off, and the filtrate is evaporated under reduced pressure, and the obtained liquid is subjected to column chromatography The reaction mixture was purified by the above to obtain amine compound 1 (11.35 g, 58.74 mmol) described in Example 73 in Table 11.

アミン系化合物1(2.50g、12.94mmol)とオレイン酸(3.65g、12.94mmol)を水50ml中で、室温下、3時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色液体のアンモニウムオレイン酸塩(6.16g、12.94mmol)を得た。
FT−IR(KBr):3398cm-1:O−H伸縮振動 2922cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.86−0.92 (m, 6H, NH2 +C(CH2OH)2CH2CH 3 , CH 3 CH2CH2), δ 1.27 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.44 (m, 2H, NH2 +C(CH2OH)2CH 2 CH3), δ 1.53 (s, 2H, CH 2 CH2COO-), δ 1.96−2.01 (m, 4H, CH 2 CHCHCH 2 ), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 2.78−2.96 (m, 2H, NH2 +CH 2CH(OH)), δ 3.61−3.78 (m, 6H, NH2 +C(CH 2 OH)2CH2CH3, NH2 +CH2CH(OH)CH 2 OH), δ 3.83−3.88 (m, 1H, NH2 +CH2CH(OH)), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 9.6 (NH2 +C(CH2OH)2CH2 CH3), δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 24.6 (NH2 +C(CH2OH)2 CH2CH3), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 29.3−29.9 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 43.6 (NH2 + C(CH2OH)2CH2CH3), δ 45.8 (NH2 + CH2CH(OH)), δ 60.2 (NH2 +C(CH2OH)2CH2CH3), δ 62.8 (NH2 +CH2CH(OH)CH2OH), δ 71.1 (NH2 +CH2 CH(OH)CH2OH), δ 129.7−130.0 (CHCH), δ 181.8 (COO-).
<実施例74>
下記式で表される化合物を合成した。
After reacting amine compound 1 (2.50 g, 12.94 mmol) and oleic acid (3.65 g, 12.94 mmol) in 50 ml of water at room temperature for 3 hours, water was distilled off under reduced pressure to obtain a yellow liquid. The obtained liquid was washed to obtain ammonium oleate (6.16 g, 12.94 mmol) as a yellow liquid.
FT-IR (KBr): 3398 cm -1 : OH stretching vibration 2922 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.86-0.92 (m, 6H, NH 2 + C (CH 2 OH) 2 CH 2 C H 3, C H 3 CH 2 CH 2), δ 1.27 (s, 20H, CH 3 (C H 2 ) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.44 (m, 2H, NH 2 + C (CH 2 OH) 2 C H 2 CH 3) , δ 1.53 (s, 2H, C H 2 CH 2 COO -), δ 1.96-2.01 (m, 4H, C H 2 CHCHC H 2), δ 2.16 (t, 2H, CH 2 C H 2 COO -), δ 2.78-2.96 (m, 2H, NH 2 + C H 2 CH (OH)), δ 3.61-3.78 (m, 6H, NH 2 + C (C H 2 OH) 2 CH 2 CH 3, NH 2 + CH 2 CH (OH) C H 2 OH), δ 3.83-3.88 (m, 1H, NH 2 + CH 2 C H (OH)), δ 5.32-5.38 (m, 2H, C H C H).
13 C-NMR (D 2 O 100MHz): δ 9.6 (NH 2 + C (CH 2 OH) 2 CH 2 C H 3), δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 24.6 ( NH 2 + C (CH 2 OH) 2 C H 2 CH 3), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 (C H 2 CHCH C H 2), δ 29.3-29.9 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2), δ 37.5 (CH 2 C H 2 COO -), δ 43.6 ( NH 2 + C (CH 2 OH) 2 CH 2 CH 3), δ 45.8 (NH 2 + C H 2 CH (OH)), δ 60.2 (NH 2 + C (C H 2 OH) 2 CH 2 CH 3 ), δ 62.8 (NH 2 + CH 2 CH (OH) C H 2 OH), δ 71.1 (NH 2 + CH 2 C H (OH) C H 2 OH), δ 129.7-130.0 (C H C H), δ 181.8 (C OO -).
Example 74
The compound represented by the following formula was synthesized.

D-グルカミン(10.00g、55.19mmol)と3-クロロ-1,2-プロパンジオ−ル(30.50g、275.95mmol)を1-プロパノ−ル500ml中で、還流下、48時間反応後、1-プロパノ−ルを減圧留去し、得られた液体にTHFを加えて加熱洗浄することにより、白色粉末を得た。得られた白色粉末に水酸化ナトリウムを加え、室温下、2時間攪拌後、エタノ−ルを加えて析出した結晶をろ別後、ろ液を減圧留去し、得られた液体をカラムクロマトグラフィーで精製することで、表11の実施例74に記載したアミン系化合物2(7.05g、27.60mmol)を得た。 After reacting D-glucamine (10.00 g, 55.19 mmol) and 3-chloro-1,2-propanediol (30.50 g, 275.95 mmol) in 500 ml of 1-propanol under reflux for 48 hours, 1- Propanol was distilled off under reduced pressure, THF was added to the obtained liquid, and the mixture was heated and washed to obtain a white powder. Sodium hydroxide is added to the obtained white powder, and after stirring at room temperature for 2 hours, ethanol is added and the precipitated crystals are filtered off, and the filtrate is evaporated under reduced pressure, and the obtained liquid is subjected to column chromatography The reaction mixture was purified by the above to obtain amine compound 2 (7.05 g, 27.60 mmol) described in Example 74 of Table 11.

アミン系化合物2(2.50g、9.79mmol)とオレイン酸(2.76g、9.79mmol)を水50ml中で、室温下、3時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色液体のアンモニウムオレイン酸塩(5.26g、9.79mmol)を得た。
FT−IR(KBr):3344cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1554cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.90 (t, 3H, CH 3 CH2CH2), δ 1.30 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.57 (s, 2H, CH 2 CH2COO-), δ 2.00−2.04 (m, 4H, CH 2 CHCHCH 2 ), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 3.00−3.23 (m, 4H, HOCH2(CH(OH))3CH(OH)CH 2 NH2 +, NH2 +CH 2CH(OH)), δ 3.51−3.74 (m, 7H, HOCH 2 (CH(OH))3CH(OH)CH2NH2 + , NH2 +CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 1H, NH2 +CH2CH(OH), δ 4.03−4.09 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH2 +), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 14.6 (CH3CH2CH2), δ 23.8 (CH3 CH2CH2), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 30.4−31.0 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2NH2 +), δ 45.8 (NH2 + CH2CH(OH)), δ 62.8 (NH2 +CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2NH2 +), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +, NH2 +CH2 CH(OH)CH2OH), δ 130.0−130.9 (CHCH), δ 182.7 (COO-).
<実施例75>
下記式で表される化合物を合成した。
After reacting amine compound 2 (2.50 g, 9.79 mmol) and oleic acid (2.76 g, 9.79 mmol) in 50 ml of water at room temperature for 3 hours, water was distilled off under reduced pressure to obtain a yellow liquid. The obtained liquid was washed to obtain ammonium oleate (5.26 g, 9.79 mmol) as a yellow liquid.
FT-IR (KBr): 3344cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1554cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.90 (t, 3H, C H 3 CH 2 CH 2), δ 1.30 (s, 20H, CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO ), δ 1.57 (s, 2 H, C H 2 CH 2 COO ), δ 2.00−2.04 (m, 4 H, C H 2 CHCHC H 2 ), δ 2. 16 (t, 2 H, CH 2 C H 2 COO ), δ 3.00 to 3.23 (m, 4 H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 2 + , NH 2 + C H 2 CH (OH)), δ 3.51-3.74 (m, 7H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 2 +, NH 2 + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m , 1 H, NH 2 + CH 2 C H (OH), δ 4.03-4.09 (m, 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 2 + ), δ 5.32-5. 38 (m , 2H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.6 (C H 3 CH 2 CH 2), δ 23.8 (CH 3 C H 2 CH 2), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 ( C H 2 CHCH C H 2) , δ 30.4-31.0 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2), δ 37.5 (CH 2 C H 2 COO -), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 2 +), δ 45.8 (NH 2 + C H 2 CH ( OH)), δ 62.8 (NH 2 + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 2 + ), δ 70.7 − 72.9 (HOCH 2 (C H ( OH)) 3 C H (OH) CH 2 NH 3 +, NH 2 + CH 2 C H (OH) C H 2 OH), δ 130.0-130.9 (C H C H), δ 182.7 (C OO -).
Example 75
The compound represented by the following formula was synthesized.

表11の実施例74に記載したアミン系化合物2(10.00g、39.17mmol)と3-クロロ-1,2-プロパンジオ−ル(43.90g、397.14mmol)を1-プロパノ−ル500ml中で、加圧下、130℃で4時間反応後、1-プロパノ−ルを減圧留去し、得られた液体にTHFを加えて加熱洗浄することにより、白色粉末を得た。得られた白色粉末に水酸化ナトリウムを加え、室温下、2時間攪拌後、エタノ−ルを加えて析出した結晶をろ別後、ろ液を減圧留去し、得られた液体をカラムクロマトグラフィーで精製することで、白色粉末を得た。 Amine compound 2 (10.00 g, 39.17 mmol) and 3-chloro-1,2-propanediol (43.90 g, 397.14 mmol) described in Example 74 of Table 11 in 500 ml of 1-propanol: After reacting at 130 ° C. for 4 hours under pressure, 1-propanol was distilled off under reduced pressure, THF was added to the obtained liquid, and the mixture was heated and washed to obtain a white powder. Sodium hydroxide is added to the obtained white powder, and after stirring at room temperature for 2 hours, ethanol is added and the precipitated crystals are filtered off, and the filtrate is evaporated under reduced pressure, and the obtained liquid is subjected to column chromatography The white powder was obtained by purifying with.

この白色粉末と3-クロロ-1,2-プロパンジオ−ル(21.65g、195.90mmol)をアセトニトリル500ml中で、加圧下、130℃で4時間反応後、アセトニトリルを減圧留去し、得られた固体にTHFを加えて加熱洗浄することにより、薄黄色粉末を得た。   The white powder was reacted with 3-chloro-1,2-propanediol (21.65 g, 195.90 mmol) in 500 ml of acetonitrile under pressure at 130 ° C. for 4 hours, and then the acetonitrile was distilled off under reduced pressure. The solid was added with THF and heated and washed to obtain a pale yellow powder.

この薄黄色粉末に水を加え、アニオン交換樹脂に通水することによって、表11の実施例75に記載したアミン系化合物3(4.13g、9.80mmol)を得た。   Water was added to this pale yellow powder, and water was passed through the anion exchange resin to obtain amine compound 3 (4.13 g, 9.80 mmol) described in Example 75 in Table 11.

アミン系化合物3(4.13g、9.80mmol)とイソステアリン酸(2.79g、9.80mmol)を水50ml中で、室温下、3時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色液体の第4級アンモニウムイソステアリン酸塩(6.92g、9.80mmol)を得た。
FT−IR(KBr):3324cm-1:O−H伸縮振動 2920cm-1:C−H伸縮振動 1555cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.83−0.90 (m, 6H, CH 3 (CH2)8CH((CH2)6CH 3 )COO-), δ 1.06−1.51 (m, 28H, CH3(CH 2 )8CH((CH 2 )6CH3)COO-), δ 2.13−2.16 (m, 1H, CH3(CH2)8CH((CH2)6CH3)COO-), δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2), δ 22.7 (CH3 CH--2CH2), δ 26.4 (CH2CH2CHCOO-), δ 30.0 (CH3CH2CH2(CH2)4CH2CH2CH(CH2CH2(CH2)2CH2CH2CH3)COO-, CH2 CH2CHCOO-), δ 31.9 (CH3CH2 CH2 -), δ 37.7 (CHCOO-), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 182.1 (CHCOO-).
<実施例76>
下記式で表される化合物を合成した。
After reacting amine compound 3 (4.13 g, 9.80 mmol) and isostearic acid (2.79 g, 9.80 mmol) in 50 ml of water at room temperature for 3 hours, water was distilled off under reduced pressure to obtain a yellow liquid. The resulting liquid was washed to obtain quaternary ammonium isostearate (6.92 g, 9.80 mmol) as a yellow liquid.
FT-IR (KBr): 3324cm -1: O-H stretching vibration 2920cm -1: C-H stretching vibration 1555cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.83-0.90 (m, 6H, C H 3 (CH 2) 8 CH ((CH 2) 6 C H 3) COO -), δ 1.06-1.51 (m, 28H, CH 3 (C H 2 ) 8 CH ((C H 2) 6 CH 3) COO -), δ 2.13-2.16 (m, 1H, CH 3 (CH 2) 8 C H ((CH 2) 6 CH 3) COO -), δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +, N + C H 2 CH (OH)), δ 3.51-3.74 ( m, 11 H , HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N + , N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3 H, N + CH 2 C H (OH), δ 4.03-4.09 (m 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N + ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2), δ 22.7 (CH 3 C H-- 2 CH 2), δ 26.4 (C H 2 CH 2 CHCOO -), δ 30.0 ( CH 3 CH 2 CH 2 (C H 2) 4 CH 2 CH 2 CH (CH 2 CH 2 (C H 2) 2 CH 2 CH 2 CH 3) COO -, CH 2 C H 2 CHCOO -), δ 31.9 ( CH 3 CH 2 C H 2 - ), δ 37.7 (C HCOO -), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +), δ 45.8 (N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N + ), δ 70.7-72.9 (HOCH 2 (C H (OH )) 3 C H (OH) CH 2 N +, N + CH 2 C H (OH) C H 2 OH), δ 182.1 (CH C OO -).
Example 76
The compound represented by the following formula was synthesized.

表11の実施例73に記載したアミン系化合物1(10.00g、51.75mmol)と3-クロロ-1,2-プロパンジオ−ル(57.20g、517.50mmol)を1-プロパノ−ル500ml中で、加圧下、130℃で4時間反応後、1-プロパノ−ルを減圧留去し、得られた液体にTHFを加えて加熱洗浄することにより、白色粉末を得た。得られた白色粉末に水酸化ナトリウムを加え、室温下、2時間攪拌後、エタノ−ルを加えて析出した結晶をろ別後、ろ液を減圧留去し、得られた液体をシリカゲルにて精製することで、白色粉末を得た。 Amine compound 1 (10.00 g, 51.75 mmol) and 3-chloro-1,2-propanediol (57.20 g, 517.50 mmol) described in Example 73 in Table 11 in 500 ml of 1-propanol: After reacting at 130 ° C. for 4 hours under pressure, 1-propanol was distilled off under reduced pressure, THF was added to the obtained liquid, and the mixture was heated and washed to obtain a white powder. Sodium hydroxide is added to the obtained white powder, and after stirring at room temperature for 2 hours, ethanol is added, and the precipitated crystals are separated by filtration, and the filtrate is evaporated under reduced pressure, and the obtained liquid is used as silica gel. By purification, a white powder was obtained.

この白色粉末と3-クロロ-1,2-プロパンジオ−ル(17.16g、155.25mmol)をアセトニトリル500ml中で、加圧下、130℃で4時間反応後、アセトニトリルを減圧留去し、得られた固体にTHFを加えて加熱洗浄することにより、薄黄色粉末を得た。   The white powder was reacted with 3-chloro-1,2-propanediol (17.16 g, 155.25 mmol) in 500 ml of acetonitrile under pressure at 130 ° C. for 4 hours, and then the acetonitrile was distilled off under reduced pressure. The solid was added with THF and heated and washed to obtain a pale yellow powder.

この薄黄色粉末に水を加え、アニオン交換樹脂に通水することによって、表11の実施例76に記載したアミン系化合物4(5.58g、15.53mmol)を得た。アミン系化合物4(5.58g、15.53mmol)とオレイン酸(4.39g、15.53mmol)を水50ml中で、室温下、3時間反応後、水を減圧留去し、黄色液体を得た。得られた液体を洗浄することにより、黄色液体の第4級アンモニウムオレイン酸塩(9.97g、15.53mmol)を得た。
FT−IR(KBr):3350cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.86−0.92 (m, 6H, N+C(CH2OH)2CH2CH 3 , CH 3 CH2CH2), δ 1.27 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.44 (m, 2H, N+C(CH2OH)2CH 2 CH3), δ 1.53 (s, 2H, CH 2 CH2COO-), δ 1.96−2.01 (m, 4H, CH 2 CHCHCH 2 ), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 2.78−2.96 (m, 6H, N+CH 2CH(OH)), δ 3.61−3.78 (m, 10H, N+C(CH 2 OH)2CH2CH3, N+CH2CH(OH)CH 2 OH), δ 3.83−3.88 (m, 3H, N+CH2CH(OH)), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 9.6 (N+C(CH2OH)2CH2 CH3), δ 14.1(CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 24.6 (N+C(CH2OH)2 CH2CH3), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 29.3−29.9 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 43.6 (N+ C(CH2OH)2CH2CH3), δ 45.8 (N+ CH2CH(OH)), δ 60.2 (N+C(CH2OH)2CH2CH3), δ 62.8 (N+CH2CH(OH)CH2OH), δ 71.1 (N+CH2 CH(OH)CH2OH), δ 129.7−130.0 (CHCH), δ 181.8 (COO-).
<実施例77〜83>
表3及び表11、12に示した実施例77、79〜83の化合物を、実施例75と同様の合成方法で、表11、12に記載した配合モル比にて合成した。また、表3及び表11に示した実施例78の化合物を、実施例76と同様の合成方法と、表11に記載した配合モル比にて合成した。物性値を下記に示す。
<実施例77>
Water was added to this pale yellow powder, and water was passed through the anion exchange resin to obtain amine compound 4 (5.58 g, 15.53 mmol) described in Example 76 of Table 11. Amine compound 4 (5.58 g, 15.53 mmol) and oleic acid (4.39 g, 15.53 mmol) were reacted in 50 ml of water at room temperature for 3 hours, and water was distilled off under reduced pressure to obtain a yellow liquid. The obtained liquid was washed to obtain quaternary ammonium oleate (9.97 g, 15.53 mmol) as a yellow liquid.
FT-IR (KBr): 3350 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.86-0.92 (m, 6H, N + C (CH 2 OH) 2 CH 2 C H 3, C H 3 CH 2 CH 2), δ 1.27 (s, 20H , CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.44 (m, 2H, N + C (CH 2 OH) 2 C H 2 CH 3), δ 1.53 (s, 2H, C H 2 CH 2 COO -), δ 1.96-2.01 (m, 4H, C H 2 CHCHC H 2), δ 2.16 (t, 2H, CH 2 C H 2 COO -), δ 2.78 −2.96 (m, 6H, N + C H 2 CH (OH)), δ 3.61-3. 78 (m, 10 H , N + C (C H 2 OH) 2 CH 2 CH 3, N + CH 2 CH (OH) C H 2 OH), δ 3.83-3.88 (m, 3 H, N + CH 2 C H (OH)), δ 5.32-5. 38 (m, 2 H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 9.6 (N + C (CH 2 OH) 2 CH 2 C H 3), δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 24.6 (N + C (CH 2 OH) 2 C H 2 CH 3), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 (C H 2 CHCH C H 2), δ 29.3- 29.9 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2), δ 37.5 (CH 2 C H 2 COO ), δ 43.6 (N + C (CH 2 OH) 2 CH 2 CH 3 ), δ 45.8 (N + C H 2 CH (OH)), δ 60.2 (N + C ( C H 2 OH) 2 CH 2 CH 3 ), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 71.1 (N + CH 2 C H (OH) C H 2 OH), δ 129.7-130.0 ( C H C H), δ 181.8 (C OO -).
Examples 77 to 83
The compounds of Examples 77, 79 to 83 shown in Table 3 and Tables 11 and 12 were synthesized by the same synthesis method as in Example 75, at the compounding molar ratio described in Tables 11 and 12. In addition, the compound of Example 78 shown in Table 3 and Table 11 was synthesized by the same synthesis method as in Example 76 and the compounding molar ratio described in Table 11. Physical property values are shown below.
<Example 77>

FT−IR(KBr):3350cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.86−0.92 (m, 3H, CH 3 CH2CH2), δ 1.27 (s, 20H, CH3(CH 2 )6CH2, (CH 2 )4CH2CH2COO-), δ 1.53 (s, 2H, CH 2 CH2COO-), δ 1.96−2.01 (m, 4H, CH 2 CHCHCH 2 ), δ 2.16 (t, 2H, CH2CH 2 COO-), δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+), δ 5.32−5.38 (m, 2H, CHCH).
13C−NMR (D2O 100MHz): δ 14.1 (CH3CH2CH2), δ 22.7 (CH3 CH2CH2), δ 26.3 (CH2CH2COO-), δ 27.2 (CH2CHCHCH2), δ 29.3−29.9 (CH3CH2CH2(CH2)4,(CH2)4CH2CH2COO-), δ 31.9 (CH3CH2 CH2), δ 37.5 (CH2 CH2COO-), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 129.7−130.0 (CHCH), δ 181.8 (COO-).
<実施例78>
FT-IR (KBr): 3350 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.86-0.92 (m, 3H, C H 3 CH 2 CH 2), δ 1.27 (s, 20H, CH 3 (C H 2) 6 CH 2, (C H 2) 4 CH 2 CH 2 COO -), δ 1.53 (s, 2H, C H 2 CH 2 COO -), δ 1.96-2.01 (m, 4H, C H 2 CHCHC H 2), δ 2.16 (t, 2H , CH 2 C H 2 COO - ), δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +, N + C H 2 CH (OH)), δ 3.51-3.74 (m, 11H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N +, N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3H , N + CH 2 C H (OH), δ 4.03-4.09 (m 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N + ), δ 5.32-5. 38 (m, 2 H, C H C H ).
13 C-NMR (D 2 O 100MHz): δ 14.1 (C H 3 CH 2 CH 2), δ 22.7 (CH 3 C H 2 CH 2), δ 26.3 (C H 2 CH 2 COO -), δ 27.2 ( C H 2 CHCH C H 2) , δ 29.3-29.9 (CH 3 CH 2 CH 2 (C H 2) 4, (C H 2) 4 CH 2 CH 2 COO -), δ 31.9 (CH 3 CH 2 C H 2 ), δ 37.5 (CH 2 C H 2 COO ), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + ), δ 45.8 (N + C H 2 CH (OH) ), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N + ), δ 70.7-72.9 (HOCH 2) (C H (OH)) 3 C H (OH) CH 2 N +, N + CH 2 C H (OH) C H 2 OH), δ 129.7-130.0 (C H C H), δ 181.8 (C OO - ).
<Example 78>

FT−IR(KBr):3231cm-1:O−H伸縮振動 2937cm-1:C−H伸縮振動 1571cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.86 (m, 3H, N+C(CH2OH)2CH2CH 3 ), δ 1.17−1.24 (m, 3H, CH 3 CH(OH)COO-), δ 1.44 (m, 2H, N+C(CH2OH)2CH 2 CH3), δ 2.78−2.96 (m, 6H, N+CH 2CH(OH)), δ 3.61−3.78 (m, 10H, N+C(CH 2 OH)2CH2CH3, N+CH2CH(OH)CH 2 OH), δ 3.83−3.88 (m, 3H, N+CH2CH(OH)), δ 3.94−3.99 (m, 1H, CH3CH(OH)COO-).
13C−NMR (D2O 100MHz): δ 9.6 (N+C(CH2OH)2CH2 CH3), δ 20.0 (CH3CH(OH)COO-), δ 24.6 (N+C(CH2OH)2 CH2CH3), δ 43.6 (N+ C(CH2OH)2CH2CH3), δ 45.8 (N+ CH2CH(OH)), δ 60.2 (N+C(CH2OH)2CH2CH3), δ 62.8 (N+CH2CH(OH)CH2OH), δ 68.5 (CH3 CH(OH)COO-), δ 71.1 (N+CH2 CH(OH)CH2OH), δ 182.4 (CH3CH(OH)COO-).
<実施例79>
FT-IR (KBr): 3231cm -1: O-H stretching vibration 2937cm -1: C-H stretching vibration 1571cm -1: COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 0.86 (m, 3 H, N + C (CH 2 OH) 2 CH 2 C H 3 ), δ 1.17-1.24 (m, 3 H, C H 3 CH (OH) COO -), δ 1.44 (m , 2H, N + C (CH 2 OH) 2 C H 2 CH 3), δ 2.78-2.96 (m, 6H, N + C H 2 CH (OH)), δ 3.61- 3.78 (m, 10H, N + C (C H 2 OH) 2 CH 2 CH 3, N + CH 2 CH (OH) C H 2 OH), δ 3.83-3.88 (m, 3H, N + CH 2 C H (OH)), δ 3.94-3.99 ( m, 1H, CH 3 C H (OH) COO -).
13 C-NMR (D 2 O 100MHz): δ 9.6 (N + C (CH 2 OH) 2 CH 2 C H 3), δ 20.0 (C H 3 CH (OH) COO -), δ 24.6 (N + C (CH 2 OH) 2 C H 2 CH 3), δ 43.6 (N + C (CH 2 OH) 2 CH 2 CH 3), δ 45.8 (N + C H 2 CH (OH)), δ 60.2 (N + C (C H 2 OH) 2 CH 2 CH 3), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 68.5 (CH 3 C H (OH) COO -), δ 71.1 (N + CH 2 C H (OH) C H 2 OH), δ 182.4 (CH 3 CH (OH) C OO -).
<Example 79>

FT−IR(KBr):3350cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 1.17−1.24 (m, 3H, CH 3 CH(OH)COO-), δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 4H, N+CH2CH(OH), CH3CH(OH)COO-), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+).
13C−NMR (D2O 100MHz): δ 20.0 (CH3CH(OH)COO-), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 68.5 (CH3 CH(OH)COO-), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 182.4 (CH3CH(OH)COO-).
<実施例80>
FT-IR (KBr): 3350 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 1.17 to 1.24 (m, 3 H, C H 3 CH (OH) COO ), δ 3.00 to 3.23 (m, 8 H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + , N + C H 2 CH (OH)), δ 3.51-3.74 (m, 11H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N +, N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 4H, N + CH 2 C H (OH), CH 3 C H (OH) COO -), δ 4.03-4.09 (m 1H , HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N + ).
13 C-NMR (D 2 O 100MHz): δ 20.0 (C H 3 CH (OH) COO -), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +), δ 45.8 (N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N +), δ 68.5 (CH 3 C H (OH) COO -), δ 70.7-72.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 N +, N + CH 2 C H (OH ) C H 2 OH), δ 182.4 (CH 3 CH (OH) C OO -).
<Example 80>

FT−IR(KBr):3350cm-1:O−H伸縮振動 2930cm-1:C−H伸縮振動 1560cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 2.66−2.83 (m, 4H, HOOCCH 2 C(OH)(COOH)CH 2 COO-δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH)), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+).
13C−NMR (D2O 100MHz): δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 43.7 (HOOCCH2C(OH)(COOH)CH2COO-), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 73.8 (HOOCCH2 C(OH)(COOH)CH2COO-), δ 174.7 (HOOCCH2C(OH)(COOH)CH2 COO-), δ 178.6 (HOOCCH2C(OH)(COOH)CH2COO-).
<実施例81>
FT-IR (KBr): 3350 cm -1 : OH stretching vibration 2930 cm -1 : CH stretching vibration 1560 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 2.66-2.83 (m, 4H, HOOCC H 2 C (OH) (COOH) C H 2 COO - δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH )) 3 CH (OH) C H 2 N +, N + C H 2 CH (OH)), δ 3.51-3.74 (m, 11H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N +, N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3H, N + CH 2 C H (OH)), δ 4.03-4.09 (m 1H, HOCH 2 (CH ( OH)) 3 C H (OH) CH 2 N + ).
13 C-NMR (D 2 O 100 MHz): δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + ), δ 43.7 (HOOC C H 2 C (OH) (COOH) C H 2 COO -), δ 45.8 ( N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N + ), δ 70.7-72.9 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 N +, N + CH 2 C H (OH) CH 2 OH), δ 73.8 (HOOCCH 2 C (OH) (COOH) CH 2 COO -), δ 174.7 (HOO C CH 2 C (OH) (COOH) CH 2 C OO -), δ 178.6 (HOOCCH 2 C (OH) (C OOH ) CH 2 COO -).
<Example 81>

FT−IR(KBr):3370cm-1:O−H伸縮振動 2950cm-1:C−H伸縮振動 1592cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH)), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+), δ 6.80−6.86 (m, 2H, C(OH)CHCH, C(COO-)CHCHCH), δ 7.35−7.39 (m, 1H, CHCHC(OH)), δ 7.68−7.73 (m, 1H, C(COOH)CHCH).
13C−NMR (D2O 100MHz): δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 116.2 (C(OH)CHCH), δ 118.0 (CHC(COO-)C(OH)), δ 119.3 (C(COO-)CHCHCH), δ 130.5 (C(COO-)CHCH), δ 133.9 (CHCHC(OH)), δ 159.6 (CC(OH)C), δ 175.5 (CCOO-).
<実施例82>
FT-IR (KBr): 3370 cm -1 : OH stretching vibration 2950 cm -1 : CH stretching vibration 1592 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +, N + C H 2 CH (OH)), δ 3.51-3.74 (m, 11 H , HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N + , N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3H, N + CH 2 C H (OH)), δ 4.03-4.09 (m 1 H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N + ), δ 6.80-6.86 (m, 2H, C (OH) C H CH, C (COO -) CHC H CH), δ 7.35-7.39 (m, 1H, C H CHC (OH)), δ 7.68-7.73 (m, 1H, C (COOH) C H CH).
13 C-NMR (D 2 O 100 MHz): δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + ), δ 45.8 (N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH ) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N +), δ 70.7-72.9 (HOCH 2 (C H ( OH)) 3 C H (OH ) CH 2 N +, N + CH 2 C H (OH) CH 2 OH), δ 116.2 (C (OH) C HCH), δ 118.0 (CH C (COO -) C ( OH)), δ 119.3 (C (COO -) CH C HCH), δ 130.5 (C (COO -) C HCH), δ 133.9 (C HCHC (OH)), δ 159.6 (C C (OH) C), δ 175.5 (C C OO -) .
<Example 82>

FT−IR(KBr):3371cm-1:O−H伸縮振動 2940cm-1:C−H伸縮振動 1582cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 0.99 (s, 3H, CH 3 CH2OCH2COO-), δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.34−3.39 (q, 2H, CH3CH 2 OCH2COO-), δ 3.49 (m, 2H, CH3CH2OCH 2 COO-), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH)), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+).
13C−NMR (D2O 100MHz): δ 14.0 (CH 3 CH2O), δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 66.4 (CH3CH 2 O), δ 69.1 (CH3CH2OCH2COO-), δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 178.1 (CH3CH2OCH2 COO-).
<実施例83>
FT-IR (KBr): 3371 cm -1 : OH stretching vibration 2940 cm -1 : CH stretching vibration 1582 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 0.99 (s, 3H, C H 3 CH 2 OCH 2 COO -), δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH)) 3 CH (OH ) C 2 H 2 N + , N + C 2 H 2 CH (OH)), δ 3.34-3.39 (q, 2 H, CH 3 C H 2 OCH 2 COO ), δ 3.49 (m, 2 H, CH 3 CH 2 OC H 2 COO ), δ 3.51-3.74 (m, 11 H , HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N + , N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3H, N + CH 2 C H (OH)), δ 4.03-4.09 (m 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N +).
13 C-NMR (D 2 O 100 MHz): δ 14.0 (C H 3 CH 2 O), δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + ), δ 45.8 (N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N + ), δ 66.4 (CH 3 C H 2 O), δ 69.1 (CH 3 CH 2 O C H 2 COO ), δ 70.7-72.9 (HOCH 2 ( C H (OH)) 3 C H (OH) CH 2 N + , N + CH 2 C H ( OH) CH 2 OH), δ 178.1 (CH 3 CH 2 OCH 2 C OO -).
Example 83

FT−IR(KBr):3388cm-1:O−H伸縮振動 2959cm-1:C−H伸縮振動 1676cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ 3.00−3.23 (m, 8H, HOCH2(CH(OH))3CH(OH)CH 2 N+, N+CH 2CH(OH)), δ 3.51−3.74 (m, 11H, HOCH 2 (CH(OH))3CH(OH)CH2N+ , N+CH2CH(OH)CH 2 OH), δ 3.94−3.98 (m, 3H, N+CH2CH(OH)), δ 4.03−4.09 (m 1H, HOCH2(CH(OH))3CH(OH)CH2N+).
13C−NMR (D2O 100MHz): δ 43.2 (HOCH2(CH(OH))3CH(OH)CH2N+), δ 45.8 (N+ CH2CH(OH)), δ 62.8 (N+CH2CH(OH)CH2OH), δ 64.7 (HOCH2(CH(OH))3CH(OH)CH2N+),δ 70.7−72.9 (HOCH2(CH(OH))3 CH(OH)CH2N+, N+CH2 CH(OH)CH2OH), δ 114.9−117.8 (CF3COO-), δ 162.8−163.1 (CF3 COO-).
<実施例84、85>
表1、12に示した実施例84、85の化合物を、実施例1と同様の合成方法と、表12に記載した配合モル比にて合成した。物性値を下記に示す。
<実施例84>
FT-IR (KBr): 3388 cm -1 : OH stretching vibration 2959 cm -1 : CH stretching vibration 1676 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ 3.00-3.23 (m, 8H, HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N +, N + C H 2 CH (OH)), δ 3.51-3.74 (m, 11 H , HOC H 2 (C H (OH)) 3 CH (OH) CH 2 N + , N + CH 2 CH (OH) C H 2 OH), δ 3.94-3.98 (m, 3H, N + CH 2 C H (OH)), δ 4.03-4.09 (m 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 N +).
13 C-NMR (D 2 O 100 MHz): δ 43.2 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 N + ), δ 45.8 (N + C H 2 CH (OH)), δ 62.8 (N + CH 2 CH (OH ) C H 2 OH), δ 64.7 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 N +), δ 70.7-72.9 (HOCH 2 (C H ( OH)) 3 C H (OH ) CH 2 N +, N + CH 2 C H (OH) CH 2 OH), δ 114.9-117.8 (C F 3 COO -), δ 162.8-163.1 (CF 3 C OO - ).
Examples 84 and 85
The compounds of Examples 84 and 85 shown in Tables 1 and 12 were synthesized by the same synthesis method as in Example 1 and the compounding molar ratio described in Table 12. Physical property values are shown below.
Example 84

FT−IR(KBr):3248cm-1:O−H伸縮振動 2951cm-1:C−H伸縮振動 1578cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ1.66−1.89 (m, 4H, CH 2 C(OH)(COO-)), δ3.35 (m, 1H, CH(OH)CH(OH)CH(OH)), δ3.50 (s, 6H, H3N+C(CH 2 OH)3), δ3.79−3.95 (m, 2H, CH2CH(OH)CH(OH)).
13C−NMR (D2O 100MHz): δ37.3 (CH2C(OH)(COO-)), δ40.6 (CH2C(OH)(COO-)), δ59.9 (H3N+C(CH2OH)3), δ60.4 (H3N+ C(CH2OH)3), δ66.9 (CH2 CH(OH)CH(OH)), δ70.3 (CH2 CH(OH)CH(OH)), δ75.1 (CH(OH)CH(OH)CH(OH)), δ76.9 (CH2 C(OH)(COO-)), δ181.3 (CH2C(OH)(COO-)).
<実施例85>
FT-IR (KBr): 3248 cm -1 : OH stretching vibration 2951 cm -1 : CH stretching vibration 1578 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400MHz): δ1.66-1.89 (m, 4H, C H 2 C (OH) (COO -)), δ3.35 (m, 1H, CH (OH) C H (OH ) CH (OH)), δ3.50 (s, 6H, H 3 N + C (C H 2 OH) 3), δ3.79-3.95 (m, 2H, CH 2 C H (OH) CH (OH) ).
13 C-NMR (D 2 O 100MHz): δ37.3 (C H 2 C (OH) (COO -)), δ40.6 (C H 2 C (OH) (COO -)), δ59.9 (H 3 N + C ( C H 2 OH) 3 , δ 60.4 (H 3 N + C (CH 2 OH) 3 ), δ 66.9 (CH 2 C H (OH) CH (OH)), δ 70.3 (CH 2 C H (OH) CH (OH)), δ75.1 (CH (OH) C H (OH) CH (OH)), δ76.9 (CH 2 C (OH) (COO -)), δ181 .3 (CH 2 C (OH) (C OO -)).
<Example 85>

FT-IR(KBr):3240cm-1:O−H伸縮振動 2980cm-1:C−H伸縮振動 1571cm-1:COO-伸縮振動
1H−NMR (D2O 400MHz): δ1.71−1.94 (m, 4H, CH 2 C(OH)(COO-)), δ2.88−3.08 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ3.42 (m, 1H, CH(OH)CH(OH)CH(OH)), δ3.50−3.71 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ3.88 (m, 2H, CH2CH(OH)CH(OH)), δ4.00 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C−NMR (D2O 100MHz): δ37.3 (CH2C(OH)(COO-)), δ40.6 (CH2C(OH)(COO-)), δ41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ66.9 (CH2 CH(OH)CH(OH)), δ69.3−70.7 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ70.8 (CH2 CH(OH)CH(OH)), δ75.2 (CH(OH)CH(OH)CH(OH)), δ77.0 (CH2 C(OH)(COO-)), δ181.4 (CH2C(OH)(COO-)).
<比較例1〜73、85、86>
下記の表1〜3及び表13〜20に示した比較例1〜73、85、86の化合物を合成した。表13〜18の比較例1〜56及び表20の比較例85、86の化合物は、実施例1と同様の合成方法で、表13〜18、20に記載した配合モル比にて合成した。
FT-IR (KBr): 3240 cm -1 : OH stretching vibration 2980 cm -1 : CH stretching vibration 1571 cm -1 : COO - stretching vibration
1 H-NMR (D 2 O 400 MHz): δ 1.71-1.94 (m, 4 H, C H 2 C (OH) (COO )), δ 2.88-3.08 (m, 2 H, HOCH 2 (CH (OH (OH) )) 3 CH (OH) C H 2 NH 3 + ), δ 3.42 (m, 1 H, CH (OH) C H (OH) CH (OH)), δ 3.50-3.71 (m, 5 H, HOC H 2 (C H (OH)) 3 CH (OH) CH 2 NH 3 +), δ3.88 (m, 2H, CH 2 C H (OH) CH (OH)), δ4.00 (m, 1H, HOCH 2 (CH (OH)) 3 C H (OH) CH 2 NH 3 +).
13 C-NMR (D 2 O 100MHz): δ37.3 (C H 2 C (OH) (COO -)), δ40.6 (C H 2 C (OH) (COO -)), δ41.7 (HOCH 2 (CH (OH)) 3 CH (OH) C H 2 NH 3 +), δ62.6 (HO C H 2 (CH (OH)) 3 CH (OH) CH 2 NH 3 +), δ66.9 ( CH 2 C H (OH) CH (OH)), δ69.3-70.7 (HOCH 2 (C H (OH)) 3 C H (OH) CH 2 NH 3 +), δ70.8 (CH 2 C H ( OH) CH (OH)), δ75.2 (CH (OH) C H (OH) CH (OH)), δ77.0 (CH 2 C (OH) (COO -)), δ181.4 (CH 2 C (OH) (C OO -) ).
<Comparative Examples 1 to 73, 85, 86>
The compounds of Comparative Examples 1 to 73, 85 and 86 shown in Tables 1 to 3 and Tables 13 to 20 below were synthesized. The compounds of Comparative Examples 1 to 56 of Tables 13 to 18 and Comparative Examples 85 and 86 of Table 20 were synthesized by the same synthesis method as in Example 1 at compounding molar ratios described in Tables 13 to 18 and 20.

表18の比較例57、58の化合物は、実施例73、74をもとに、表18に記載した配合モル比にて合成した。   The compounds of Comparative Examples 57 and 58 in Table 18 were synthesized based on Examples 73 and 74 at compounding molar ratios described in Table 18.

表18〜20の比較例59〜73の化合物は、実施例75、76をもとに、表18〜20に記載した配合モル比にて合成した。
<比較例74>
下記の表21に示した比較例74の化合物は和光純薬製の試薬を用いた。
<比較例75、76>
下記の表21に示した比較例75、76化合物は特許文献4に記載の方法に従って合成した。
<比較例77、78>
下記の表22に示した比較例77、78の化合物は、ジメチルエタノールアミン又は水酸化コリンと、グリコール酸を用いて、実施例1と同様の合成方法で合成した。
<比較例79>
下記式で表される比較例79の化合物は、非特許文献2に記載の方法に従って合成した(m.p.119℃)。
The compounds of Comparative Examples 59 to 73 of Tables 18 to 20 were synthesized based on Examples 75 and 76 at the compounding molar ratio described in Tables 18 to 20.
Comparative Example 74
As the compound of Comparative Example 74 shown in Table 21 below, a reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
Comparative Examples 75 and 76
The compounds of Comparative Examples 75 and 76 shown in Table 21 below were synthesized according to the method described in Patent Document 4.
Comparative Examples 77 and 78
The compounds of Comparative Examples 77 and 78 shown in Table 22 below were synthesized in the same manner as in Example 1 using dimethylethanolamine or choline hydroxide and glycolic acid.
Comparative Example 79
The compound of Comparative Example 79 represented by the following formula was synthesized according to the method described in Non-patent Document 2 (mp 119 ° C.).

<比較例80>
下記式で表される比較例80の化合物は、テトラブチルアンモニウムブロマイド水溶液を、アニオン交換樹脂を充填したカラムを通過させ、得られた水溶液に乳酸を加え、攪拌後、溶媒を減圧留去し、洗浄することで合成した(m.p.110℃)。
Comparative Example 80
In the compound of Comparative Example 80 represented by the following formula, an aqueous tetrabutylammonium bromide solution is passed through a column filled with an anion exchange resin, lactic acid is added to the obtained aqueous solution, and after stirring, the solvent is distilled off under reduced pressure, It synthesize | combined by washing | cleaning (mp110 degreeC).

<比較例81>
下記式で表される比較例81の化合物は、特許文献4に記載の方法に従って合成した。
Comparative Example 81
The compound of Comparative Example 81 represented by the following formula was synthesized according to the method described in Patent Document 4.

<比較例82>
下記式で表される比較例82の化合物は、トリエタノールアミンと乳酸を、実施例1と同様の合成方法で合成した。
Comparative Example 82
The compound of Comparative Example 82 represented by the following formula was synthesized in the same manner as in Example 1 for triethanolamine and lactic acid.

<比較例83>
下記式で表される比較例83の化合物は、テトラブチルアンモニウムブロマイド水溶液を、アニオン交換樹脂を充填したカラムを通過させ、得られた水溶液に酒石酸を加え、攪拌後、溶媒を減圧留去し、洗浄することで合成した。
Comparative Example 83
In the compound of Comparative Example 83 represented by the following formula, an aqueous solution of tetrabutylammonium bromide is passed through a column packed with an anion exchange resin, tartaric acid is added to the obtained aqueous solution, and after stirring, the solvent is distilled off under reduced pressure, It was synthesized by washing.

<比較例84>
下記式で表される比較例84の化合物は、トリエタノールアミンと酒石酸を、実施例1と同様の合成方法で合成した。
Comparative Example 84
The compound of Comparative Example 84 represented by the following formula was synthesized in the same manner as in Example 1 for triethanolamine and tartaric acid.

<比較例96>
表24、表27に示した比較例96の化合物は、トリエタノールアミンとレブリン酸を用いて、実施例1と同様の合成方法で合成した(m.p.30℃)。
Comparative Example 96
The compounds of Comparative Example 96 shown in Table 24 and Table 27 were synthesized in the same manner as in Example 1 using triethanolamine and levulinic acid (mp 30 ° C.).

上記の実施例、比較例化合物を用いて、次の測定及び評価を行った。
1.室温(25℃)での性状
実施例1〜85および比較例1〜73、85、86の化合物について、スクリュ−管に添加して減圧乾燥させ無水物として、室温(25℃)での液性を確認した。また、スクリュ−管を傾けて、イオン液体の流動性を観察した。更に、−5℃に設定した低温恒温器に、イオン液体を24時間放置し、次いで−10℃で24時間放置し、性状(液体、固体)を確認した。結果を表1〜20に示す。なお表1〜3中の"liquid"は室温(25℃)で液体であることを示し、"solid"は室温(25℃)で固体であることを示し、表4〜20中に融点(mp(℃))を−10℃未満(<−10)、−10℃以上−5℃未満(−10≦〜<−5)、25℃超(25<)で示す。
The following measurement and evaluation were performed using the above-mentioned Example and comparative example compound.
1. Properties at room temperature (25 ° C.) The compounds of Examples 1 to 83 and Comparative Examples 1 to 73, 85, 86 are added to a screw tube and dried under reduced pressure to be liquid as an anhydride at room temperature (25 ° C.) It was confirmed. In addition, the screw was tilted to observe the fluidity of the ionic liquid. Furthermore, the ionic liquid was allowed to stand in a low temperature incubator set at -5 ° C for 24 hours, and then allowed to stand at -10 ° C for 24 hours, and the properties (liquid, solid) were confirmed. The results are shown in Tables 1 to 20. “Liquid” in Tables 1 to 3 indicates that it is liquid at room temperature (25 ° C.), “solid” indicates that it is solid at room temperature (25 ° C.), and melting points (mp) in Tables 4 to 20 (° C.) is shown at less than −10 ° C. (<−10), −10 ° C. to less than −5 ° C. (−10 ≦ − <− 5), above 25 ° C. (25 <).

その結果、実施例1〜85の化合物が流動性を有する液体であった。   As a result, the compounds of Examples 1 to 85 were liquid having fluidity.

このことは、本発明の親水性室温イオン液体が、カチオンにアニオン性で電子供与性基である水酸基をより多く有することから、第4級アンモニウムカチオン全体のカチオン性が弱く、且つ立体的に嵩高いため、アニオンとの相互作用が小さくなる。加えて一置換基に水酸基が2個以上存在するために、隣接するアニオンと反発し、パッキングしづらく、結晶度が低くなり液性となりやすくなったからと考えられる。   This is because the hydrophilic room temperature ionic liquid of the present invention has a larger number of hydroxyl groups which are anionic and electron donating groups in the cation, so that the cationicity of the entire quaternary ammonium cation is weak and sterically bulky. Because it is high, the interaction with the anion is reduced. In addition, the presence of two or more hydroxyl groups in a single substituent is considered to cause repulsion with an adjacent anion, making it difficult to pack, resulting in low crystallinity and a tendency to become liquid.

すなわち、本発明の親水性室温イオン液体は、従来の第4級アンモニウムカチオンを用いたイオン液体(例えば特許文献4)に比べ、ポリヒドロキシアルキル基とすることで液性になりやすいカチオン構造となり、構造設計において官能基や特性基の選択による融点への影響および広い範囲の各種アニオンを適用できることが判明した。
2.水への溶解度
実施例1〜85および比較例74〜76の化合物について、水への溶解度を測定した。水への溶解度は次の方法で測定した。示差熱熱重量同時測定装置(TG/DTA)で測定した含水率を踏まえて、スクリュ−管に所定の濃度となるようにイオン液体及び水を仕込み、その後、25℃で30分間攪拌した後、10分間静置し、溶解性を目視で確認し、25℃での水100gに溶解するイオン液体量(g)を溶解度(g/100g water)とした。結果を表4〜12および表21に示す。
That is, the hydrophilic room temperature ionic liquid of the present invention has a cationic structure that tends to be liquid by using a polyhydroxyalkyl group as compared to the conventional ionic liquid using quaternary ammonium cation (for example, Patent Document 4). It has been found that the influence on the melting point by the choice of functional groups and characteristic groups in structural design and that a wide variety of anions can be applied.
2. Solubility in water The solubility in water was measured for the compounds of Examples 1-85 and Comparative Examples 74-76. The solubility in water was measured by the following method. Based on the moisture content measured by a differential thermal thermal simultaneous measurement device (TG / DTA), the ionic liquid and water are charged in the screw tube so as to obtain a predetermined concentration, and then after stirring for 30 minutes at 25 ° C. The solution was allowed to stand for 10 minutes, the solubility was visually confirmed, and the amount (g) of the ionic liquid dissolved in 100 g of water at 25 ° C. was defined as the solubility (g / 100 g water). The results are shown in Tables 4-12 and 21.

その結果、一般的な親水性のイオン液体である比較例74と比較例75、76のイオン液体はいずれも水への溶解度が600g/100g water未満であるのに対して、実施例化合物はすべて1200g/100g water以上溶解した。   As a result, while all of the ionic liquids of Comparative Example 74 and Comparative Examples 75 and 76, which are general hydrophilic ionic liquids, have a solubility in water of less than 600 g / 100 g water, all of the example compounds It melt | dissolved more than 1200g / 100g water.

本発明の親水性室温イオン液体は、カチオンに疎水性のアルキル基のみで構成される置換基はなく、水分子と水素結合が可能な水素原子、(ポリ)ヒドロキシアルキル基のみのカチオンであり、イオン液体1分子中に多点水素結合部を持ち、より多くの水分子と水和が可能となる。また、一置換基に水酸基が2個以上存在するために、カチオン中のアルキル基及びアルキレン基による疎水性が小さくなるカチオン構造であることから、水との親和性が高く高水溶性を発揮したと考えられる。   The hydrophilic room temperature ionic liquid of the present invention has no substituent consisting of only a hydrophobic alkyl group as a cation, and is a cation of only a hydrogen atom capable of hydrogen bonding with a water molecule, a (poly) hydroxyalkyl group, It has multiple hydrogen bonding sites in one ionic liquid molecule, and it can be hydrated with more water molecules. In addition, since the hydrophobicity due to the alkyl group and the alkylene group in the cation is reduced because two or more hydroxyl groups exist in one substituent, the affinity with water is high and the high water solubility is exhibited. it is conceivable that.

すなわち、本発明の親水性室温イオン液体は高い水溶性を有しており、様々な用途への優位な展開が期待される。   That is, the hydrophilic room temperature ionic liquid of the present invention has high water solubility, and is expected to be developed for various applications.

3.生分解性試験
表22に示す実施例19、20、比較例77、78の化合物について、生分解性試験を行った。生分解性試験は、OECDテストガイドライン301C法に準拠して行った。この試験には一般活性汚泥を微生物源として使用し、調製した標準試験培養液300mlに、微生物源30mg/l、被験物質100mg/lの濃度になるようにそれぞれ投入し、25±1℃、試験期間28日、標準物質にアニリンを使用して行った。アクタック製BODセンサ−を使用して生化学的酸素要求量(BOD;biochemical oxygen demand)を測定し、算出した理論的酸素要求量の値から分解度(分解率)を算出した。結果を表22に示す。
3. Biodegradability Test The compounds of Examples 19, 20 and Comparative Examples 77, 78 shown in Table 22 were tested for biodegradability. The biodegradability test was conducted in accordance with the OECD Test Guideline 301C method. In this test, general activated sludge is used as a microorganism source, and each 300 ml of a standard test culture solution prepared is fed with a concentration of 30 mg / l of the microorganism source and 100 mg / l of a test substance, 25 ± 1 ° C., test For a period of 28 days, aniline was used as a standard substance. The biochemical oxygen demand (BOD) was measured using an Actac BOD sensor, and the decomposition rate (decomposition rate) was calculated from the calculated theoretical oxygen demand value. The results are shown in Table 22.

その結果、比較例77、78の化合物と比較して、実施例19、20の化合物は、短期間で分解率100%となり生分解性速度が速かった。   As a result, compared with the compounds of Comparative Examples 77 and 78, the compounds of Examples 19 and 20 had a degradation rate of 100% in a short period of time, and the biodegradability rate was fast.

すなわち、カチオンに疎水性のアルキル基のみで構成される置換基はなく、水素原子、(ポリ)ヒドロキシアルキル基のみのカチオンであり、カチオン構造が生分解性速度に影響を及ぼすことが認められ、環境負荷の低減を図ることができ、環境適性に優れるものである。   That is, it is recognized that the cation has no substituent composed of only a hydrophobic alkyl group, but is a cation of only a hydrogen atom and a (poly) hydroxyalkyl group, and the cation structure has an influence on the biodegradable rate. The environmental load can be reduced and the environmental suitability is excellent.

4.タンパク質溶解試験
[タンパク質(シトクロムC)溶解濃度]
表23と表24に示す各実施例、比較例79〜81、87および比較例96(室温(25℃)で固体、融点30℃)の化合物について、タンパク質溶解濃度を測定した。表23、24に示すイオン液体に室温(25℃)でタンパク質(シトクロムC Horse Heart 分子量12384)を所定濃度添加し、混合後、タンパク質の溶解を目視にて判別した。各実施例におけるタンパク質の溶解は、イオン液体中の水分量を約7〜12%として行った。なお、比較例79、80、96の化合物は、室温では固体であったため、非特許文献(Chemical Communications, 2005, 4804−4806)のシトクロムCの溶解試験方法を参考に、シトクロムCに対して良溶媒である水で溶解して85%水溶液で評価した(表23、24タンパク(シトクロムC)溶解濃度(1))。実施例23、24、42、43、84、85、及び比較例79〜81、96の化合物については、水分率を一定にして(14%±0.5%)、同様にタンパク質の溶解性を再測定した。水分量はカールフィッシャー法により測定した。(表23、24タンパク(シトクロムC)溶解濃度(2))。溶液が透明均一である完全溶解の状態を○、シトクロムCの残存が目視で確認できる状態を×と評価し、結果を表23と表24に示す。
4. Protein dissolution test
[Protein (cytochrome C) dissolution concentration]
The concentrations of dissolved proteins in the compounds of Examples shown in Table 23 and Table 24, Comparative Examples 79 to 81, 87 and Comparative Example 96 (solid at room temperature (25 ° C.), melting point 30 ° C.) were measured. A predetermined concentration of protein (cytochrome C Horse Heart molecular weight 12384) was added to the ionic liquid shown in Tables 23 and 24 at room temperature (25 ° C.), and after mixing, the dissolution of the protein was visually determined. The dissolution of the protein in each example was performed with the amount of water in the ionic liquid being about 7 to 12%. Since the compounds of Comparative Examples 79, 80 and 96 were solid at room temperature, the compounds of Comparative Examples 79, 80 and 96 were good against Cytochrome C, referring to the dissolution test method of Cytochrome C of Non Patent Literature (Chemical Communications, 2005, 4804-4806). It dissolved in water which is a solvent, and evaluated in 85% aqueous solution (Table 23, 24 protein (cytochrome C) dissolution concentration (1)). For the compounds of Examples 23, 24, 42, 43, 84, 85, and Comparative Examples 79 to 81, 96, the moisture content is kept constant (14% ± 0.5%), and the protein solubility is similarly measured again. did. The water content was measured by the Karl Fischer method. (Table 23, 24 protein (cytochrome C) dissolution concentration (2)). It was evaluated that the solution was transparent and homogeneous and the state of complete dissolution was ○, and the state in which the remaining of cytochrome C could be visually confirmed was x, and the results are shown in Tables 23 and 24.

その結果、表23、24タンパク(シトクロムC)溶解濃度(1)から比較例79〜81、96の化合物はいずれも40.0mg/mL以下、しかも比較例80の化合物では37mg/mL未満であるのに対して、実施例化合物は、いずれも50mg/mL以上の溶解性を示し、特に実施例34の化合物は75mg/mL以上と高い溶解性を示した。   As a result, in Tables 23 and 24, since the dissolution concentration of protein (cytochrome C) 24 (1), the compounds of Comparative Examples 79 to 81 and 96 are each 40.0 mg / mL or less, and the compound of Comparative Example 80 is less than 37 mg / mL. On the other hand, all of the Example compounds showed a solubility of 50 mg / mL or more, and in particular, the compound of Example 34 showed a high solubility of 75 mg / mL or more.

表23、24のタンパク(シトクロムC)溶解濃度(2)において、実施例23、24、42、43、84、85及び比較例79〜81、96の化合物について、水分率を一定にした試料でも同様にタンパク質の溶解性を再測定したところ、タンパク質の溶解度は全体的に若干上昇したが、イオン液体のタンパク質に対する溶解性の順位は同じであり、溶解性の傾向は共通していた。   In the proteins (cytochrome C) dissolution concentrations (2) in Tables 23 and 24, even for the compounds of Examples 23, 24, 42, 43, 84, 85 and Comparative Examples 79 to 81, 96, the moisture content is constant. Similarly, when the protein solubility was re-measured, the protein solubility was slightly increased overall, but the order of solubility of the ionic liquid to protein was the same, and the tendency of solubility was common.

また、比較例96の化合物は、実施例23、24、42、43、84、85よりシトクロムCに対する溶解性が低く、ケトン基を持つモノカルボン酸アニオンは、他のアニオンと比較してタンパク質の溶解性が低い傾向を示した。   In addition, the compound of Comparative Example 96 has lower solubility in cytochrome C than Examples 23, 24, 42, 43, 84, 85, and the monocarboxylate anion having a ketone group has a protein compared to other anions. The solubility tended to be low.

すなわち、本発明の親水性室温イオン液体のカチオンは、水素原子やポリヒドロキシアルキル基からなる多点水素結合性部位をもち、立体的に嵩高い構造的特徴を活かして、水素結合受容性であるシトクロムCとの間で、安定した構造で、より多くの水素結合を形成し、比較例化合物に比べて高い溶解性を示したと考えられる。   That is, the cation of the hydrophilic room temperature ionic liquid of the present invention has a multipoint hydrogen bonding site composed of a hydrogen atom or a polyhydroxyalkyl group, and is a hydrogen bond accepting property by utilizing sterically bulky structural features It is considered that a stable structure, more hydrogen bonds were formed with cytochrome C, and the compound exhibited higher solubility than the comparative example compound.

更に、アニオンに、水素と電気陰性度が高い酸素が共有結合した水酸基やカルボキシル基等が存在すると、2分子のシトクロムCと、アニオンおよびカチオンの双方の水素結合部位により、安定した構造で水素結合が可能となり、よりシトクロムCの分子間構造にイオン液体が入り込み、シトクロムCの分子間の距離を一定に保ち、分子間の相互作用を軽減できるため、溶解性が向上すると考えられる。   Furthermore, when an anion has a hydroxyl group or a carboxyl group or the like in which hydrogen and oxygen having high electronegativity are covalently bonded, a stable structure and hydrogen bond can be obtained by two molecules of cytochrome C and hydrogen bond sites of both anion and cation. It is thought that the solubility improves because the ionic liquid can enter the intermolecular structure of cytochrome C, keep the intermolecular distance of cytochrome C constant, and reduce the intermolecular interaction.

すなわち、本発明の親水性室温イオン液体は、シトクロムCを高濃度溶解し、アルカリ性タンパク質溶解溶媒として有用であることが示された。
[長期安定性]
実施例23、24、42、43、84、85、及び比較例79、87の化合物について、イオン液体中の水分率を一定(14%±0.5%)にした試料にシトクロムCを溶解して、次の方法でタンパク質のイオン液体中での構造変化(変性)を確認した。なお比較例87として、一般的なタンパク質の溶解溶媒であるpH=7.4の50mMリン酸バッファー(50mMリン酸2水素カリウム及び50mMリン酸水素2カリウムで調製)もタンパク質を溶解した直後の試料を用いて同様に確認を行った。
That is, it was shown that the hydrophilic room temperature ionic liquid of the present invention dissolves cytochrome C at a high concentration and is useful as an alkaline protein dissolving solvent.
Long-term stability
Regarding the compounds of Examples 23, 24, 42, 43, 84, 85 and Comparative Examples 79, 87, cytochrome C was dissolved in a sample in which the moisture content in the ionic liquid was constant (14% ± 0.5%), The structural change (denaturation) of the protein in the ionic liquid was confirmed by the following method. As Comparative Example 87, 50 mM phosphate buffer (prepared with 50 mM potassium dihydrogen phosphate and 50 mM dipotassium hydrogen phosphate), which is a general solvent for dissolving proteins, was used as a sample immediately after dissolving the protein as well. The same check was made.

まず、IRスペクトルによるアミド吸収の変化を詳細に確認し、溶解時のタンパク質の高次構造(ターン、α-へリックス、ランダムコイル、β-シート)を確認した。アミドI領域(1600-1700cm-1)、アミドII領域(1500-1600cm-1)をフーリエ変換赤外分光光度計 (FT/IR-6100 日本分光)によるATR法を用いて測定し、シトクロムC未溶解のイオン液体試料(ブランク)とシトクロムCを溶解したイオン液体試料の差からピークを検出した。 First, the change in the amide absorption by IR spectrum was confirmed in detail, and the higher-order structure (turn, α-helix, random coil, β-sheet) of the protein upon dissolution was confirmed. The amide I region (16000-1700 cm -1 ) and the amide II region (1500-1600 cm -1 ) were measured using the ATR method with a Fourier transform infrared spectrophotometer (FT / IR-6100 Japan Spectroscopy), and cytochrome C was not detected. The peak was detected from the difference between the dissolved ionic liquid sample (blank) and the ionic liquid sample in which cytochrome C was dissolved.

また、UVスペクトルの吸収によりシトクロムCの活性状態(Fe2+:還元型、Fe3+:酸化型)を確認した。シトクロムCを溶解したイオン液体試料をpH=7.4の50mMリン酸バッファー(50mMリン酸2水素カリウム及び50mMリン酸水素2カリウムで調製)で1%に希釈した直後に、紫外可視分光光度計(V-550 日本分光)で光路幅2mmの石英セルにて測定した。 Moreover, the active state (Fe 2+ : reduced type, Fe 3+ : oxidized type) of cytochrome C was confirmed by the absorption of the UV spectrum. A UV-visible spectrophotometer (V) immediately after diluting an ionic liquid sample in which cytochrome C is dissolved to 1% with 50 mM phosphate buffer (prepared with 50 mM potassium dihydrogen phosphate and 50 mM dipotassium hydrogen phosphate) at pH = 7.4. Measurement with a quartz cell having a light path width of 2 mm according to JASCO-550.

これらの結果を表23と表24に示す。   The results are shown in Tables 23 and 24.

IRスペクトルによるアミド吸収の同定では、溶解時のタンパクの高次構造を文献値(Chem.Commun 2005, 4804-4806 Biomacromolecules 2010, 11, 2944-2948 蛋白質科学会アーカイブ, 2, e054(2009))と対比して確認した。溶解前のシトクロムCの粉末をIR測定したところ、アミドI領域の1645cm-1並びにアミドII領域の1537cm-1に吸収が認められ、
ランダムコイルに変性していた。次に、リン酸バッファー中のシトクロムC(比較例87)は変性せず(アミドI領域:1653cm-1、アミドII領域:1547cm-1)、α-へリックス構造であることを確認し、実施例23、24、42、43、84、85のイオン液体中のシトクロムCが、リン酸バッファーと同等の測定結果で(アミドI領域:1652-1655cm-1
アミドII領域:1545-1549cm-1)、いずれも、変性した構造ではなく、α-ヘリックス構造を維持していることを確認した。つまり、実施例23、24、42、43、84、85のイオン液体は、高濃度条件下でも、リフォールティングの効果を発現してシトクロムCを変性することなく溶解していることを示した。
In the identification of amide absorption by IR spectrum, the higher-order structure of the protein at the time of dissolution is compared with the literature value (Chem. Commun 2005, 4804-4806 Biomacromolecules 2010, 11, 2944-2948, Protein Science Society Archive, 2, e 054 (2009)). It confirmed by contrast. An IR measurement of the powder of cytochrome C before dissolution shows absorption at 1645 cm -1 in the amide I region and 1537 cm -1 in the amide II region,
It was denatured into a random coil. Next, it was confirmed that cytochrome C (comparative example 87) in the phosphate buffer was not denatured (amide I region: 1653 cm −1 , amide II region: 1547 cm −1 ), and had an α-helix structure. Cytochrome C in the ionic liquid of Examples 23, 24, 42, 43, 84, 85 has a measurement result equivalent to that of the phosphate buffer (Amid I region: 1652-1655 cm -1 ,
In the amide II region: 1545-1549 cm -1 ), it was confirmed that none of them had the denatured structure but maintained the α-helix structure. That is, it was shown that the ionic liquids of Examples 23, 24, 42, 43, 84 and 85 exhibited the effect of refolding even under high concentration conditions and dissolved cytochrome C without being denatured.

シトクロムCは細胞内の電子伝達の際にFe2+(還元型)とFe3+(酸化型)に可逆的に状態が変わり、活性状態では二次構造を維持し、UVスペクトルの吸収において還元型はα帯で550nm、β帯で521nm、γ帯で415nm付近にそれぞれピークを持ち、酸化型ではα帯とβ帯は明確なピークがなくγ帯では396nm付近に低波長シフトする。失活状態では変性し、α帯とβ帯とγ帯のピークが消失する。比較例87のリン酸バッファーのピークと比較して、実施例23、24、42、43、84、85のイオン液体中のシトクロムCはほぼ同様のピークが得られ、α帯、β帯、γ帯のそれぞれに還元型のピークを示した。これにより、イオン液体中で保存したシトクロムCは還元型の活性状態で、二次構造を維持していることが確認された。 Cytochrome C reversibly changes to Fe 2+ (reduced) and Fe 3+ (oxidized) during intracellular electron transfer, maintains the secondary structure in the active state, and reduces in UV spectrum absorption The type has peaks at 550 nm in the α band, 521 nm in the β band, and 415 nm in the γ band, and in the oxidized type, the α band and the β band do not have clear peaks and shift to a low wavelength around 396 nm in the γ band. In the inactivated state, denaturation occurs, and the peaks of the α band, β band and γ band disappear. Cytochrome C in the ionic liquid of Examples 23, 24, 42, 43, 84, 85 gives substantially the same peak as compared with the peak of the phosphate buffer of Comparative Example 87, and the α band, β band, γ A reduced type peak was shown in each of the bands. This confirms that the cytochrome C stored in the ionic liquid maintains the secondary structure in the reduced active state.

次に、シトクロムCをそれぞれの最高濃度で溶解したイオン液体試料を0℃、25℃(実施例23、24、42、43、84、85、比較例79、87)、80℃(実施例23、24、比較例79、87)で保存し、上記のIR及びUVスペクトルと同様の測定により、シトクロムCが構造変化、すなわち変性していないか否かを確認した。結果を表23と表24に示す。   Next, ionic liquid samples in which cytochrome C was dissolved at respective maximum concentrations were subjected to 0 ° C., 25 ° C. (Examples 23, 24, 42, 43, 84, 85, Comparative Examples 79, 87), 80 ° C. (Example 23) , 24 and Comparative Examples 79 and 87), and by the measurement similar to the above IR and UV spectra, it was confirmed whether or not the cytochrome C was structurally changed, ie, not denatured. The results are shown in Tables 23 and 24.

リン酸バッファーを用いた比較例87では0℃で1週間以内、25℃で1日以内で変性が確認されたのに対し、実施例の試料は0℃で180日、25℃で90日経過してもIR、UVの数値の変化は全く無く、構造変化していないことが示された。80℃でもリン酸バッファーを用いた比較例87と比べて良好な結果を得た。また、比較例79は、80℃では、1日(24時間)も構造を保持することができず、溶解直後に変性したのに対して、実施例23、24のイオン液体は1日(24時間)以上、変性せず、比較例79のようなイオン液体より長期安定性に優れていることを示した。   In Comparative Example 87 in which phosphate buffer was used, denaturation was confirmed within 1 week at 0 ° C. and within 1 day at 25 ° C., while the samples of the example were 180 days at 0 ° C. and 90 days at 25 ° C. However, it was shown that there was no change in the numerical values of IR and UV, and no structural change. Favorable results were obtained at 80 ° C. as compared with Comparative Example 87 using a phosphate buffer. In Comparative Example 79, the structure could not be maintained for 1 day (24 hours) at 80 ° C., and the ionic liquid of Examples 23 and 24 was modified for 1 day (24 days), while it was denatured immediately after dissolution. It showed that it did not denature, and was superior to long-term stability like an ionic liquid like comparative example 79 for time).

すなわち、本発明の親水性室温イオン液体は、高濃度で室温条件でも長期に渡りタンパク質を変性させない、優れたタンパク質の保存溶媒であり、さらに、タンパク質リフォールディング剤として有用であることが示された。   That is, the hydrophilic room temperature ionic liquid of the present invention was an excellent protein storage solvent which does not denature the protein for a long time under high concentration and room temperature conditions, and was further shown to be useful as a protein refolding agent .

[タンパク質(ヘモグロビン、アルブミン)溶解濃度]
タンパク質として、前記のシトクロムC(アルカリ性)に加えて、ヘモグロビン(中性)、アルブミン(酸性)に対するイオン液体の溶解性を確認した。実施例23、24、42、43、84、85、及び比較例79、80の化合物について、水分率を一定(14%±0.5%)にした試料にヘモグロビン、アルブミンを所定濃度溶解して、前記のシトクロムCと同様の方法でタンパク質溶解濃度を測定した。結果を表25と表26に示す。
[Protein (hemoglobin, albumin) dissolution concentration]
As a protein, in addition to the above-mentioned cytochrome C (alkaline), the solubility of the ionic liquid in hemoglobin (neutral) and albumin (acidic) was confirmed. With respect to the compounds of Examples 23, 24, 42, 43, 84, 85 and Comparative Examples 79, 80, hemoglobin and albumin are dissolved in a predetermined concentration in a sample having a constant moisture content (14% ± 0.5%), The concentration of dissolved protein was measured in the same manner as in the case of cytochrome c. The results are shown in Tables 25 and 26.

その結果、実施例のイオン液体によるヘモグロビンとアルブミンの溶解性は、いずれも比較例に比べて高く、前記のシトクロムCと同様な傾向で高い溶解性を確認した。   As a result, the solubility of hemoglobin and albumin by the ionic liquid of the example was both higher than that of the comparative example, and high solubility was confirmed with the same tendency as the above-mentioned cytochrome C.

すなわち、本発明の親水性室温イオン液体は、中性及び酸性タンパク質溶解溶媒として有用であることが示された。   That is, the hydrophilic room temperature ionic liquid of the present invention was shown to be useful as a neutral and acidic protein dissolving solvent.

5.DNA溶解試験
[DNAの抽出方法]
中性洗剤(陰イオン界面活性剤)(1.5g)を水(200g)で溶解させ、鶏レバー(47g)と共にミキサーで2分間混合した。そこへ2mol/l のNaOH水溶液(250ml)を加え軽く撹拌し、100℃で5分間加熱した。加熱後、常温に戻し、遠心分離(3000rpm、15分)を行って、ろ液を回収した。
5. DNA lysis test
[Method of extracting DNA]
Neutral detergent (anionic surfactant) (1.5 g) was dissolved in water (200 g) and mixed with chicken liver (47 g) in a mixer for 2 minutes. A 2 mol / l aqueous solution of NaOH (250 ml) was added thereto, and the mixture was lightly stirred and heated at 100 ° C. for 5 minutes. After heating, the temperature was returned to normal temperature, and centrifugation (3000 rpm, 15 minutes) was performed to recover the filtrate.

回収したろ液は、0〜5℃に冷却し、そこに0〜5℃に冷却したエタノール(500ml)を静かに加えた。その後、この混合溶液を0〜5℃で保持し、析出したDNAをパスツールピペットで回収した。回収したDNAは液体窒素による凍結乾燥を行い、冷所で保管した。
[DNA溶解濃度]
表27に示す実施例20〜24、28、30、34、43、56、58及び比較例79、80、96の化合物について、DNA溶解濃度を測定した。各実施例のイオン液体は、カールフィッシャー法により水分量を測定し、水分量が14%±0.5%になるように調製した。なお、比較例79、96の化合物は、室温で固体であったため、非特許文献(ChemicalCommunications, 2005, 4804−4806)のシトクロムCの溶解試験方法を参考に、DNAの良溶媒である水で14%±0.5%になるように溶解して評価した。これらの化合物に、上記の方法で抽出したDNAを室温(25℃)で所定濃度添加し、混合後、DNAの溶解を目視にて判別した。溶液が透明均一である完全溶解の状態を○、DNAの残存が目視で確認できるの状態を×と評価した。結果を表27に示す。
The collected filtrate was cooled to 0-5 ° C, and ethanol (500 ml) cooled to 0-5 ° C was gently added thereto. Thereafter, the mixed solution was kept at 0 to 5 ° C., and the precipitated DNA was recovered with a Pasteur pipette. The recovered DNA was lyophilized with liquid nitrogen and stored in a cold place.
[DNA lysis concentration]
For the compounds of Examples 20-24, 28, 30, 34, 43, 56, 58 and Comparative Examples 79, 80, 96 shown in Table 27, the concentration of dissolved DNA was measured. The ionic liquid of each example was measured for water content by the Karl Fischer method, and was prepared so that the water content was 14% ± 0.5%. In addition, since the compounds of Comparative Examples 79 and 96 were solid at room temperature, 14 with water which is a good solvent for DNA, 14 was referred to in reference to the dissolution test method of Cytochrome C of Non Patent Literature (Chemical Communications, 2005, 4804-4806). It melt | dissolved and evaluated so that it might become% +/- 0.5%. A predetermined concentration of DNA extracted by the above method was added to these compounds at room temperature (25 ° C.), and after mixing, the dissolution of DNA was visually determined. The solution was clear and homogeneous, and the state of complete dissolution was evaluated as ○, and the state in which the remaining DNA could be visually confirmed was evaluated as x. The results are shown in Table 27.

その結果、実施例のイオン液体は、いずれも比較例に比べて、DNAに対する高い溶解性を示した。また、比較例96の化合物は、実施例20〜24、28、30、34、43、56、58よりDNAに対する溶解性が低く、ケトン基を持つモノカルボン酸アニオンは、他のアニオンと比較してDNAの溶解性が低い傾向を示した。   As a result, all of the ionic liquids of Examples exhibited high solubility in DNA as compared with Comparative Examples. In addition, the compound of Comparative Example 96 has lower solubility in DNA than Examples 20-24, 28, 30, 34, 43, 56, 58, and the monocarboxylate anion having a ketone group is compared with other anions. The DNA had a tendency to be less soluble.

DNAは活性状態では二重らせん構造を維持し、UVスペクトルの吸収において260nm付近にピークを持つが、変性した場合、DNAのUV吸収の相対吸光度が大きく増加する。表27に示す実施例化合物はいずれも0.1wt%DNA溶液とDNA未溶解のイオン液体試料(ブランク)との差から、イオン液体溶液中のDNAの吸収を表すピークが258nmに得られ、水に溶解した(1wt%)DNAの吸収(259nm)と同様のピークであり、イオン液体中に溶解したDNAは活性状態の二重らせん構造を保持していることを確認した。   The DNA maintains a double helix structure in the active state, and has a peak at around 260 nm in the absorption of the UV spectrum, but when denatured, the relative absorbance of the UV absorption of the DNA greatly increases. A peak representing the absorption of DNA in the ionic liquid solution is obtained at 258 nm from the difference between the 0.1 wt% DNA solution and the ionic liquid sample (blank) in which no DNA is dissolved in any of the example compounds shown in Table 27. It is a peak similar to the absorption (259 nm) of the dissolved (1 wt%) DNA, and it was confirmed that the DNA dissolved in the ionic liquid retains a double helix structure in an active state.

次に、表27に示す最高濃度でDNAを実施例化合物に溶解した溶液を0℃、25℃、80℃で保存し、水で0.1wt%に希釈した後、同様にUV測定し(80℃保存試料は25℃に急冷して測定した)、DNAの二重らせん構造の変化、すなわち変性するか否かを確認した。0℃、25℃、80℃で保存した実施例試料のUV吸収は、いずれも258nmにピークを持ち、相対吸光度の増加は、ほとんど見られず、DNAは変性せず、二重らせん構造は保持して活性状態であった。   Next, a solution of the DNA in the example compound at the highest concentration shown in Table 27 was stored at 0 ° C, 25 ° C and 80 ° C, diluted to 0.1 wt% with water, and similarly subjected to UV measurement (80 ° C The stored sample was measured by quenching at 25 ° C.), and the change in the double helix structure of the DNA, ie, whether it was denatured or not was confirmed. The UV absorption of the example samples stored at 0 ° C., 25 ° C. and 80 ° C. both have peaks at 258 nm, almost no increase in relative absorbance is seen, the DNA is not denatured, and the double helix structure is retained And was in an active state.

すなわち、本発明の親水性室温イオン液体は、DNAに対する保存安定性に優れ、DNAなどの核酸の溶解溶媒として有用であることが示された。   That is, it was shown that the hydrophilic room temperature ionic liquid of the present invention is excellent in storage stability to DNA and is useful as a dissolution solvent for nucleic acid such as DNA.

6.カルボニル基含有化合物溶解性試験(メチルエチルケトンの溶解性試験)
表28に示す各実施例、比較例83の化合物について、各化合物0.5gにメチルエチルケトンを0.5g加え、マグネチックスタ−ラ−で10分間混合し、溶解状態を目視にて確認した。結果を表28に示す。
6. Carbonyl group containing compound solubility test (solubility test of methyl ethyl ketone)
About the compound of each Example and comparative example 83 which are shown in Table 28, 0.5g of methyl ethyl ketone was added to 0.5g of each compound, it mixed for 10 minutes with a magnetic stirrer, and the dissolution state was confirmed visually. The results are shown in Table 28.

その結果、実施例化合物は、いずれもメチルエチルケトンを溶解したが、カチオンに水酸基を有さない比較例83は分離し不溶であった。   As a result, all of the example compounds dissolved methyl ethyl ketone, but the comparative example 83 having no hydroxyl group in the cation was separated and insoluble.

すなわち、本発明の親水性室温イオン液体は、第4級アンモニウカチオンに、水素結合供与性、電子供与性及び配位性の水素原子やポリヒドロキシアルキル基を有するカチオンで構成された構造的特徴を活かして、水素結合受容性のカルボニル基を有するメチルエチルケトンとの親和性が高くなり溶解したと考えられ、有機化合物などの水素結合性材料の溶解溶媒として有用であることが示された。   That is, the hydrophilic room temperature ionic liquid of the present invention has a structural feature in which the quaternary ammonium cation is composed of a cation having a hydrogen bond donating property, an electron donating property and a coordinating property hydrogen atom and a polyhydroxyalkyl group. It was considered that the affinity to methyl ethyl ketone having a hydrogen bond accepting carbonyl group was high and it was dissolved to be useful, and it was shown to be useful as a solvent for dissolving a hydrogen bondable material such as an organic compound.

7.金属酸化物分散性試験
表29と表30に示す各実施例、比較例82〜84の化合物について、各化合物0.5gと酸化ジルコニウム(IV)(和光純薬工業(株)、試薬特級、約5〜30μm)0.5gとを自転公転ミキサー((株)シンキー、ARE-310)で2000rpm、1min×5回混合した後の分散状態を目視で確認した。酸化ジルコニウムが分散し、分散液が低粘度である状態を◎、分散しているものの増粘した状態を○、分散せず沈降している状態を×で評価した。結果を表29と表30に示す。
7. Metal Oxide Dispersion Test For the compounds of Examples and Comparative Examples 82 to 84 shown in Table 29 and Table 30, 0.5 g of each compound and zirconium oxide (IV) (Wako Pure Chemical Industries, Ltd., reagent special grade, about 5 A dispersion state after mixing of 0.5 g of 1 to 30 .mu.m and 0.5 g with a rotation and revolution mixer (Shinky Co., Ltd., ARE-310) at 2000 rpm for 1 min.times.5 times was visually confirmed. A state where the zirconium oxide was dispersed and the dispersion had a low viscosity was evaluated as ◎, a state where the dispersion was dispersed but thickened was evaluated as ○, and a state where it was not dispersed and precipitated was evaluated as x. The results are shown in Table 29 and Table 30.

その結果、実施例化合物はいずれも酸化ジルコニウムを良好に分散し、ハンドリングが良い低粘度の分散液が得られた。一方、比較例83の化合物は直ちに酸化ジルコニウムが沈降し分散しなかった。比較例82、84の化合物は酸化ジルコニウムが分散したものの増粘した。   As a result, in each of the example compounds, zirconium oxide was well dispersed, and a low viscosity dispersion liquid with good handling was obtained. On the other hand, in the compound of Comparative Example 83, zirconium oxide immediately settled and did not disperse. The compounds of Comparative Examples 82 and 84 were thickened although the zirconium oxide was dispersed.

すなわち、本発明の親水性室温イオン液体は、第4級アンモニウムカチオンに、水素結合供与性、電子供与性及び配位性の水酸基を多く持つポリヒドロキシアルキル基を有するカチオンで構成された構造的特徴を活かして、水素結合受容性、電子受容性の酸化ジルコニウムとの親和性が高くなり、酸化ジルコニウムを良好に分散したと考えられ、無機化合物などの水素結合性材料の溶解又は分散溶媒として有用であることが示された。   That is, the hydrophilic room temperature ionic liquid of the present invention is structurally composed of a quaternary ammonium cation, a cation having a polyhydroxyalkyl group having many hydrogen bond donating, electron donating and coordinating hydroxyl groups. It is considered that the affinity to hydrogen bond acceptability and electron acceptability with zirconium oxide is enhanced, and zirconium oxide is well dispersed, and it is useful as a solvent for dissolving or dispersing hydrogen bondable materials such as inorganic compounds. It was shown to be.

8.比熱容量測定試験
表31に示す実施例19〜24、33、37、43と比較例74、79〜81、88〜95の化合物について、比熱容量測定を行った。比熱容量測定試験はJIS K 7123に従って測定した。
8. Specific Heat Capacity Measurement Test Specific heat capacity measurement was performed on the compounds of Examples 19 to 24, 33, 37, and 43 and Comparative Examples 74, 79 to 81, and 88 to 95 shown in Table 31. The specific heat capacity measurement test was measured according to JIS K 7123.

試験は基準物質にα-アルミナを用いた。測定容器にはアルミニウム製容器を用い、試料又は基準物質を目安15mg採取後、精秤し、測定温度−90〜90℃、昇温速度10℃/minの条件にてDSCによる熱流束示差走査熱量測定を行った。比熱容量は、下記式を用いて算出した。結果を表31に示す。   The test used α-alumina as a reference material. Use a container made of aluminum for the measurement container and collect 15 mg of the sample or reference material, and weigh it precisely, and measure the heat flux differential scanning calorific value by DSC under the conditions of measurement temperature -90 to 90 ° C and heating rate 10 ° C / min. It measured. The specific heat capacity was calculated using the following equation. The results are shown in Table 31.

その結果、比較例化合物は−50℃では2.22J/g・℃、−20℃では2.39J/g・℃、0℃では2.37J/g・℃、20℃では2.39J/g・℃、50℃では2.62J/g・℃、80℃では2.63J/g・℃以下あるのに対して、実施例化合物は、いずれの温度においても比較例化合物に比べて高い比熱容量を示し、高い蓄熱性を示した。比較例化合物のうち特開2012−241018号公報のイオン液体に比べても実施例化合物の比熱容量は大幅に向上した。 As a result, the comparative example compound is 2.22 J / g · ° C. at −50 ° C., 2.39 J / g · ° C. at −20 ° C., 2.37 J / g · ° C. at 0 ° C., 2.39 J / g · ° C. at 20 ° C. The compound of Example shows high specific heat capacity at any temperature compared with the compound of Comparative Example at a temperature of 2.62 J / g · ° C. and 2.63 J / g · ° C. or less at 80 ° C. showed that. The specific heat capacity of the example compound was significantly improved as compared with the ionic liquid of JP-A-2012-241018 among the compounds of the comparative examples.

すなわち、本発明の親水性室温イオン液体は、カチオンには水素原子やヒドロキシアルキル基、アニオンには水酸基やエーテル基等の水素結合性官能基を有しているため、分子内及び分子間において水素結合を形成し、分子間及び分子内との相互作用が強いため、比熱容量は大きくなり、比較例化合物に比べて高い蓄熱性を示したと考えられ、熱媒体、さらには、例えば、金属などの媒体の加工、摩擦時に発生する摩擦熱を冷却する効果が高く、不燃性、不揮発性、低環境負荷から水溶性潤滑油として有用であることが示された。   That is, since the hydrophilic room temperature ionic liquid of the present invention has a hydrogen atom or a hydroxyalkyl group as a cation, and a hydrogen bonding functional group such as a hydroxyl group or an ether group as an anion, hydrogen can be generated in the molecule and between molecules The specific heat capacity is increased due to the formation of a bond and strong interaction with molecules and intramolecules, which is considered to exhibit high heat storage property as compared with the comparative example compound, and the heat medium, further, for example, metal, etc. It has been shown to be highly effective in cooling the friction heat generated during processing and friction of the medium, and to be useful as a water-soluble lubricating oil because of its nonflammability, non-volatility and low environmental impact.

Claims (8)

室温(25℃)で液状であり、カチオン及びアニオンを含む親水性室温イオン液体であって、該カチオンと該アニオンが次の(1)〜(9)のいずれかの組み合わせであることを特徴とする親水性室温イオン液体:
(1)カチオンが次式:
で表わされ、Rが、水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基、Rが水素原子を示し、nが1である第1級アンモニウムカチオンであり、アニオンが、次のいずれかである;
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
リノール酸アニオン
(R 2 ) 3 C(C(R 3 ) 2 ) s COO - (sは1〜3の整数を示し、3個のR 2 及び2×s個のR 3 はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
炭素数4〜6で水酸基を1〜3個有する飽和ヒドロキシジ又はトリカルボン酸アニオン
CH 3 (CH 2 ) v O(CH 2 ) w COO - (v及びwは1〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
メタンスルホン酸イオン(CH 3 SO 3 - )、またはエタンスルホン酸イオン(CH 3 CH 2 SO 3 -
BF4 -
NO3 -
(2)カチオンが1,3-ジヒドロキシ-iso-プロピル基を1個有する第1級アンモニウムカチオンであり、アニオンが、次のいずれかである;
HCOO-
CH3(CH2)pCOO-(pは0〜1の整数を示す。)で表わされる飽和脂肪族モノカルボン酸アニオン
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオン
リノール酸アニオン
HOCH 2 COO - 、または(R2)3C(C(R3)2)sCOO-(sは1〜3の整数を示し、3個のR2及び2×s個のR3はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
HOOC(CH2)xCOO-(xは1〜3の整数を示す。)で表わされる飽和ジカルボン酸アニオン
リンゴ酸アニオン、酒石酸アニオン、またはHOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオン
サリチル酸アニオン
マンデル酸アニオン
炭素数3〜22の飽和カルボニルモノカルボン酸アニオン
CH3(CH2)vO(CH2)wCOO-(v及びwは0〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
トリフルオロ酢酸またはペンタフルオロプロピオン酸からプロトンが解離したハロゲンカルボン酸アニオン
ハロゲン化物イオン
メタンスルホン酸イオン(CH 3 SO 3 - )、またはエタンスルホン酸イオン(CH 3 CH 2 SO 3 -
BF4 -
硫酸イオン(SO 4 2- )、硝酸イオン(NO 3 - )、炭酸イオン(CO 3 2- )、またはリン酸イオン(H 2 PO 4 -
(3)カチオンが1,3-ジヒドロキシ-2-エチル-iso-プロピル基を1個有する第1級アンモニウムカチオンであり、アニオンが、次のいずれかである;
CH3(CH2)pCOO-(pは2〜4の整数を示す。)から選ばれるいずれかの飽和脂肪族モノカルボン酸アニオン
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
リノール酸アニオン
(R 2 ) 3 C(C(R 3 ) 2 ) s COO - (sは1〜3の整数を示し、3個のR 2 及び2×s個のR 3 はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
HOOC(CH 2 ) 2 COO -
リンゴ酸アニオン、酒石酸アニオン、またはHOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオン
炭素数3〜22の飽和カルボニルモノカルボン酸アニオン
CH3(CH2)vO(CH2)wCOO-(v及びwは1〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
ハロゲン化物イオン
メタンスルホン酸イオン(CH 3 SO 3 - )、またはエタンスルホン酸イオン(CH 3 CH 2 SO 3 -
BF 4 -
硫酸イオン(SO 4 2- )、硝酸イオン(NO 3 - )、炭酸イオン(CO 3 2- )、またはリン酸イオン(H 2 PO 4 -
ジシアナミドイオン(N(CN) 2 - )、トリシアノメタニドイオン(C(CN) 3 - )、またはチオシアネートイオン(SCN -
(4)カチオンが1,3-ジヒドロキシ-2-ヒドロキシメチル-iso-プロピル基を1個有する第1級アンモニウムカチオンであり、アニオンが、次のいずれかである;
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオン
リノール酸アニオン
(R 2 ) 3 C(C(R 3 ) 2 ) s COO - (sは1〜3の整数を示し、3個のR 2 及び2×s個のR 3 はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
キナ酸アニオ
リンゴ酸アニオン、酒石酸アニオン、またはHOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオン
炭素数3〜22の飽和カルボニルモノカルボン酸アニオン
CH3(CH2)vO(CH2)wCOO-(v及びwは0〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
メタンスルホン酸イオン(CH 3 SO 3 - )、またはエタンスルホン酸イオン(CH 3 CH 2 SO 3 -
BF 4 -
NO3 -
(5)カチオンがペンタヒドロキシ-n-ヘキシル基を1個有する第1級アンモニウムカチオンであり、アニオンが、次のいずれかである;
CH3(CH2)pCOO-(pは0〜1の整数を示す。)で表される飽和脂肪族モノカルボン酸アニオン
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオン
リノール酸アニオン
HOCH 2 COO - 、または(R2)3C(C(R3)2)sCOO-(sは1〜3の整数を示し、3個のR2及び2×s個のR3はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
キナ酸アニオン
HOOC(CH 2 ) 2 COO -
リンゴ酸アニオン、酒石酸アニオン、またはHOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオン
サリチル酸アニオン
CH3(CH2)vO(CH2)wCOO-(v及びwは0〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
トリフルオロ酢酸またはペンタフルオロプロピオン酸からプロトンが解離したハロゲンカルボン酸アニオン
Br -
メタンスルホン酸イオン(CH 3 SO 3 - )、またはエタンスルホン酸イオン(CH 3 CH 2 SO 3 -
BF 4 -
NO3 -
(6)カチオンが次式:
で表わされ、Rが、水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基、Rが水素原子を示し、nが2である第2級アンモニウムカチオンであり、アニオンが、次のものである;
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオ
(7)カチオンが次式:
で表わされ、R が、水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基を示し、nが4である第4級アンモニウムカチオンであり、アニオンが、次のいずれかである;
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオン
(R2)3C(C(R3)2)sCOO-(sは1〜3の整数を示し、3個のR2及び2×s個のR3はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
(8)カチオンがペンタヒドロキシ-n-ヘキシル基を1個、2,3-ジヒドロキシ-n-プロピル基を3個有する第4級アンモニウムカチオンであり、アニオンが、次のいずれかである;
炭素数5〜22の分岐鎖を有する飽和脂肪族モノカルボン酸アニオン
R1CH=CH(CH2)rCOO-(R1は水素原子又はCH3(CH2)q-(qは0〜7の整数を示す。)を示し、rは0〜7の整数を示す。)で表わされる不飽和脂肪族モノカルボン酸アニオン
(R2)3C(C(R3)2)sCOO-(sは1〜3の整数を示し、3個のR2及び2×s個のR3はそれぞれ独立に水素原子又は水酸基を示し、水酸基の合計数は1〜2である。)で表わされる飽和ヒドロキシモノカルボン酸アニオン
HOOCC(R4R5)C(R6R7)C(R8R9)COO-(R4〜R9はそれぞれ独立に水素原子、水酸基、又はカルボキシル基を示し、水酸基は合計1〜2個、カルボキシル基は合計0〜1個である。)で表わされる飽和ヒドロキシジ又はトリカルボン酸アニオン
炭素数6〜20、水酸基の個数1〜2のヒドロキシ芳香族モノカルボン酸アニオン
CH3(CH2)vO(CH2)wCOO-(v及びwは0〜4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオン
トリフルオロ酢酸またはペンタフルオロプロピオン酸からプロトンが解離したハロゲンカルボン酸アニオン
(9)カチオンが次式:
で表わされ、R が、水酸基を2個以上有する炭素数2〜8の直鎖又は分岐のポリヒドロキシアルキル基、R が水素原子を示し、nが1〜4であるアンモニウムカチオンであり、アニオンが、乳酸アニオンである。
A hydrophilic room temperature ionic liquid which is liquid at room temperature (25 ° C.) and contains a cation and an anion, wherein the cation and the anion are any combination of the following (1) to (9): Hydrophilic room temperature ionic liquids:
(1) The cation has the following formula:
R 1 is a linear or branched polyhydroxyalkyl group having 2 to 8 carbon atoms having two or more hydroxyl groups, and a primary ammonium cation in which R 2 is a hydrogen atom and n is 1 Yes, the anion is one of the following;
Saturated aliphatic monocarboxylic acid anion having a branched chain having 5 to 22 carbon atoms
Linoleate anion
(R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3; 3 R 2 and 2 × s R 3 each independently represent a hydrogen atom or a hydroxyl group In the formula, the total number of hydroxyl groups is 1 to 2.) saturated hydroxy monocarboxylic acid anion represented by the formula : saturated hydroxy di or tri carboxylic acid anion having 4 to 6 carbon atoms and 1 to 3 hydroxy groups.
Alkyl ether carboxylate anion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent an integer of 1 to 4)
Methanesulfonate ion (CH 3 SO 3 -), or ethane sulfonic acid ion (CH 3 CH 2 SO 3 - )
BF 4 -
NO 3 -
(2) The cation is a primary ammonium cation having one 1,3-dihydroxy-iso-propyl group, and the anion is any of the following;
HCOO -
Saturated aliphatic monocarboxylic acid anion represented by CH 3 (CH 2 ) p COO (p represents an integer of 0 to 1). Saturated aliphatic monocarboxylic acid anion having a branched chain having 5 to 22 carbon atoms.
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 Unsaturated aliphatic monocarboxylic acid anion represented by
Linoleate anion
HOCH 2 COO or (R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3 and 3 R 2 and 2 × s R 3 are each independently And the total number of hydroxyl groups is 1 to 2.) a saturated hydroxymonocarboxylic acid anion represented by
Saturated dicarboxylic acid anion represented by HOOC (CH 2 ) x COO (x is an integer of 1 to 3). Malate anion, tartrate anion, or HOOCC (R 4 R 5 ) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represent a hydrogen atom, a hydroxyl group or a carboxyl group, and a total of 1 to 2 hydroxyl groups and a total of 0 to 1 carboxyl groups). Saturated hydroxydi or tricarboxylic acid anion salicylic acid anion mandelic acid anion C3-C22 saturated carbonyl monocarboxylic acid anion
Alkyl ether carboxylic acid anion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent integers of 0 to 4) The proton is dissociated from trifluoroacetic acid or pentafluoropropionic acid Halogen carboxylic acid anion halide ion
Methanesulfonate ion (CH 3 SO 3 -), or ethane sulfonic acid ion (CH 3 CH 2 SO 3 - )
BF 4 -
Sulfate ion (SO 4 2-), nitrate ion (NO 3 -), (2- CO 3) carbonate ions, or phosphate ion (H 2 PO 4 -)
(3) The cation is a primary ammonium cation having one 1,3-dihydroxy-2-ethyl-iso-propyl group, and the anion is any of the following:
CH 3 (CH 2 ) p COO (p represents an integer of 2 to 4) Any saturated aliphatic monocarboxylic acid anion A saturated aliphatic monocarboxylic acid having a branched chain having 5 to 22 carbon atoms Anion
Linoleate anion
(R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3; 3 R 2 and 2 × s R 3 each independently represent a hydrogen atom or a hydroxyl group And the total number of hydroxyl groups is 1 to 2.) saturated hydroxymonocarboxylic acid anion represented by
HOOC (CH 2) 2 COO -
Malate anion, tartrate anion, or HOOCC (R 4 R 5 ) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represent a hydrogen atom, a hydroxyl group or a carboxyl group Saturated hydroxydi or tricarboxylic acid anion represented by 1 to 2 hydroxyl groups in total and 0 to 1 carboxyl groups in total). Saturated carbonyl monocarboxylic acid anion having 3 to 22 carbon atoms.
Alkyl ether carboxylic acid anion halide ion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent an integer of 1 to 4)
Methanesulfonate ion (CH 3 SO 3 -), or ethane sulfonic acid ion (CH 3 CH 2 SO 3 - )
BF 4 -
Sulfate ion (SO 4 2-), nitrate ion (NO 3 -), (2- CO 3) carbonate ions, or phosphate ion (H 2 PO 4 -)
Dicyanamide ion (N (CN) 2 -) , tricyanopropene meth acetonide ions (C (CN) 3 -) , or thiocyanate ion (SCN -)
(4) The cation is a primary ammonium cation having one 1,3-dihydroxy-2-hydroxymethyl-iso-propyl group, and the anion is any of the following;
Saturated aliphatic monocarboxylic acid anion having a branched chain having 5 to 22 carbon atoms
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 Unsaturated aliphatic monocarboxylic acid anion represented by
Linoleate anion
(R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3; 3 R 2 and 2 × s R 3 each independently represent a hydrogen atom or a hydroxyl group indicates the total number of hydroxyl groups is 1-2.) saturated hydroxy monocarboxylic acids represented by anion <br/> quinic acid anion emission <br/> malic acid anions, tartrate anions, or HOOCC, (R 4 R 5) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represent a hydrogen atom, a hydroxyl group or a carboxyl group, wherein the total number of hydroxyl groups is 1 to 2 and the number of carboxyl groups is 0 Saturated hydroxydi or tricarboxylic acid anion represented by (1) to 3) saturated carbonyl monocarboxylic acid anion having 3 to 22 carbon atoms
Alkyl ether carboxylate anion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent an integer of 0 to 4)
Methanesulfonate ion (CH 3 SO 3 -), or ethane sulfonic acid ion (CH 3 CH 2 SO 3 - )
BF 4 -
NO 3 -
(5) The cation is a primary ammonium cation having one pentahydroxy-n-hexyl group, and the anion is any of the following;
Saturated aliphatic monocarboxylic acid anion represented by CH 3 (CH 2 ) p COO (where p represents an integer of 0 to 1). Saturated aliphatic monocarboxylic acid anion having a branched chain having 5 to 22 carbon atoms.
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 Unsaturated aliphatic monocarboxylic acid anion represented by
Linoleate anion
HOCH 2 COO or (R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3 and 3 R 2 and 2 × s R 3 are each independently Is a hydrogen atom or a hydroxyl group, and the total number of hydroxyl groups is 1 to 2.) a saturated hydroxymonocarboxylic acid anion quinic acid anion
HOOC (CH 2) 2 COO -
Malate anion, tartrate anion, or HOOCC (R 4 R 5 ) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represent a hydrogen atom, a hydroxyl group or a carboxyl group Saturated hydroxydi or tricarboxylic acid anion represented by 1 to 2 hydroxyl groups and 0 to 1 carboxyl groups.
Salicylic acid anion
Alkyl ether carboxylic acid anion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent integers of 0 to 4) The proton is dissociated from trifluoroacetic acid or pentafluoropropionic acid Halogen carboxylic acid anion
Br -
Methanesulfonate ion (CH 3 SO 3 -), or ethane sulfonic acid ion (CH 3 CH 2 SO 3 - )
BF 4 -
NO 3 -
(6) The cation has the following formula:
And R 1 is a linear or branched polyhydroxyalkyl group having 2 to 8 carbon atoms having two or more hydroxyl groups, and a secondary ammonium cation in which R 2 is a hydrogen atom and n is 2 Yes, the anion is:
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 shown. unsaturated aliphatic represented by) a monocarboxylic acid anion emission
(7) The cation has the following formula:
In expressed, R 1 is a hydroxyl group are shown two or more having a straight-chain or branched polyhydroxyalkyl group having 2 to 8 carbon atoms or a quaternary ammonium cation and n is 4, A anion is, One of the following;
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 Unsaturated aliphatic monocarboxylic acid anion represented by
(R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3; 3 R 2 and 2 × s R 3 each independently represent a hydrogen atom or a hydroxyl group And the total number of hydroxyl groups is 1 to 2.) saturated hydroxymonocarboxylic acid anion represented by
(8) The cation is a quaternary ammonium cation having one pentahydroxy-n-hexyl group and three 2,3-dihydroxy-n-propyl groups, and the anion is any of the following:
Saturated aliphatic monocarboxylic acid anion having a branched chain having 5 to 22 carbon atoms
R 1 CH = CH (CH 2 ) r COO (R 1 is a hydrogen atom or CH 3 (CH 2 ) q- (q is an integer of 0 to 7)), and r is an integer of 0 to 7 Unsaturated aliphatic monocarboxylic acid anion represented by
(R 2 ) 3 C (C (R 3 ) 2 ) s COO (s represents an integer of 1 to 3; 3 R 2 and 2 × s R 3 each independently represent a hydrogen atom or a hydroxyl group And the total number of hydroxyl groups is 1 to 2.) saturated hydroxymonocarboxylic acid anion represented by
HOOCC (R 4 R 5 ) C (R 6 R 7 ) C (R 8 R 9 ) COO (R 4 to R 9 each independently represent a hydrogen atom, a hydroxyl group or a carboxyl group, and the hydroxyl groups are a total of 1 to 2 The total number of carboxyl groups is 0 to 1.) Saturated hydroxydi or tricarboxylic acid anion having 6 to 20 carbon atoms, and 1 to 2 hydroxyaromatic monocarboxylic acid anions having hydroxyl groups
Alkyl ether carboxylic acid anion represented by CH 3 (CH 2 ) v O (CH 2 ) w COO (where v and w represent integers of 0 to 4) The proton is dissociated from trifluoroacetic acid or pentafluoropropionic acid Halogen carboxylic acid anion
(9) The cation has the following formula:
R 1 is a linear or branched polyhydroxyalkyl group having 2 to 8 carbon atoms having two or more hydroxyl groups, and an ammonium cation in which R 2 is a hydrogen atom and n is 1 to 4 The anion is a lactate anion.
請求項1に記載の親水性室温イオン液体を含む、水素結合性材料に対する溶解又は分散用溶媒。   A solvent for dissolving or dispersing a hydrogen bonding material, comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、水素結合性の有機化合物材料に対する溶解又は分散用溶媒。   A solvent for dissolving or dispersing a hydrogen bonding organic compound material, comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、水素結合性の無機化合物材料に対する溶解又は分散用溶媒。   A solvent for dissolving or dispersing a hydrogen bonding inorganic compound material comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、タンパク質溶解溶媒。   A protein dissolving solvent comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、核酸溶解溶媒。   A nucleic acid dissolving solvent comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、タンパク質リフォールディング剤。   A protein refolding agent comprising the hydrophilic room temperature ionic liquid according to claim 1. 請求項1に記載の親水性室温イオン液体を含む、熱媒体。   A heat transfer medium comprising the hydrophilic room temperature ionic liquid according to claim 1.
JP2013205316A 2012-12-05 2013-09-30 Hydrophilic room temperature ionic liquid and its application Active JP6378475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205316A JP6378475B2 (en) 2012-12-05 2013-09-30 Hydrophilic room temperature ionic liquid and its application

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012266146 2012-12-05
JP2012266146 2012-12-05
JP2013205316A JP6378475B2 (en) 2012-12-05 2013-09-30 Hydrophilic room temperature ionic liquid and its application

Publications (2)

Publication Number Publication Date
JP2014131974A JP2014131974A (en) 2014-07-17
JP6378475B2 true JP6378475B2 (en) 2018-08-22

Family

ID=51411247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205316A Active JP6378475B2 (en) 2012-12-05 2013-09-30 Hydrophilic room temperature ionic liquid and its application

Country Status (1)

Country Link
JP (1) JP6378475B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766969B1 (en) * 2014-04-10 2023-10-04 Miyoshi Oil & Fat Co., Ltd. Biocatalyst solvent using ionic liquid, and biocatalyst solution containing biocatalyst and said solvent
US20220098515A1 (en) * 2019-02-13 2022-03-31 Miyoshi Oil & Fat Co., Ltd. Composition containing organic ammonium salt
EP3925671A4 (en) * 2019-02-13 2023-05-31 Miyoshi Oil & Fat Co., Ltd. Cosmetic ingredient, cosmetic, and production method for cosmetic
JP7337508B2 (en) * 2019-02-13 2023-09-04 ミヨシ油脂株式会社 Fiber treatment agent
JP2021080175A (en) 2019-11-14 2021-05-27 ミヨシ油脂株式会社 Organic ammonium salt and hydrogen bond material treating agent using the same
CN113540563B (en) * 2020-04-17 2023-04-07 中国石油化工股份有限公司 Additive and modification method of lithium battery electrolyte
US20230340356A1 (en) 2020-06-16 2023-10-26 Miyoshi Oil & Fat Co., Ltd. Additive or composition for imparting lubricity
WO2022074740A1 (en) 2020-10-06 2022-04-14 エンバイロ・ビジョン株式会社 Wastewater treatment apparatus and wastewater treatment method
CN112920063B (en) * 2021-01-28 2022-12-02 北京工业大学 Synthesis and application of alcohol amine with lengthened main carbon chain
CN117203302A (en) 2021-04-23 2023-12-08 三吉油脂株式会社 Complexes, organic salts and compositions containing them and uses thereof
JPWO2022225046A1 (en) * 2021-04-23 2022-10-27

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893963A (en) * 1970-10-13 1975-07-08 Commercial Solvents Corp Composition
FR2574400B1 (en) * 1984-12-12 1988-05-20 Interox ORGANIC QUATERNARY AMMONIUM COMPOUNDS AND PROCESS FOR THEIR MANUFACTURE
IT1244500B (en) * 1991-03-21 1994-07-15 Pulitzer Italiana USE OF TROMETAMINE MINERAL SALTS IN PHARMACEUTICAL COMPOSITIONS BASED ON CALCITONIN ADMINISTRABLE BY RECTAL ROUTE IN HUMAN THERAPY
US5243015A (en) * 1992-06-25 1993-09-07 Georgia-Pacific Resins, Inc. Latent catalyzed phenolic resole resin composition
US5998669A (en) * 1998-09-17 1999-12-07 Abbott Laboratories Process for production of 2-amino-1,3-propanediol
DE10145747A1 (en) * 2001-09-17 2003-04-03 Solvent Innovation Gmbh Ionic liquids
DE10361519A1 (en) * 2003-12-23 2005-07-28 Basf Ag Process for the production of chlorine by gas phase oxidation of hydrogen chloride
JP5059380B2 (en) * 2006-11-17 2012-10-24 Kbセーレン株式会社 Production method of polyester resin
JP5117732B2 (en) * 2007-01-29 2013-01-16 株式会社 メドレックス Hypoallergenic dissolution aid for external use
WO2009046840A1 (en) * 2007-10-12 2009-04-16 Merck Patent Gmbh Method and agent for refolding proteins
MY145289A (en) * 2008-08-22 2012-01-13 Mimos Berhad Durable planar reference electrode
JP5887065B2 (en) * 2010-06-29 2016-03-16 ミヨシ油脂株式会社 Hydrophilic ionic liquid
JP5786218B2 (en) * 2012-03-26 2015-09-30 樫原 宏 Synthesis and utilization of new ferromagnetic organic ferrofluids

Also Published As

Publication number Publication date
JP2014131974A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP6378475B2 (en) Hydrophilic room temperature ionic liquid and its application
JP6559394B2 (en) Hydrophilic room temperature ionic liquid and its application
Lomax Amphoteric surfactants
CN101675023B (en) Ionic liquids comprising polyethercarboxylates as anions, production and use thereof
CA2155486A1 (en) Amphoteric surfactants having multiple hydrophobic and hydrophilic groups
JPH08103646A (en) Anionic surface active agent and detergent composition containing same
Miao et al. Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions
JP5887065B2 (en) Hydrophilic ionic liquid
EA017866B1 (en) Use of lactamide derivatives in formulations to reduce toxicity
HU184618B (en) Surface active materials containing carboxyl group stable in hard water
JPWO2011046170A1 (en) Liquid detergent composition
JP6000846B2 (en) NOVEL GEMINI TYPE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND CATIONIC SURFACTANT AND DISPERSANT USING SAME
Al-Mohammed et al. Tetrakis-imidazolium and benzimidazolium ionic liquids: a new class of biodegradable surfactants
JPH01304034A (en) Metal soap
Carreira et al. Amino-acid-based chiral ionic liquids characterization and application in aqueous biphasic systems
Čaplar et al. Chiral Gelators Constructed from 11‐Aminoundecanoic (AUDA), Lauric and Amino Acid Units. Synthesis, Gelling Properties and Preferred Gelation of Racemates vs. the Pure Enantiomers
CN113930249B (en) Benzyloxy-oleoyl quaternary ammonium surfactant and its preparation method and use
Sharma et al. Introduction to ionic liquids, applications and micellization behaviour in presence of different additives
Xie et al. Synthesis and properties of alkylbetaine zwitterionic gemini surfactants
DE10036522A1 (en) Novel linear aminoacid modified polyquaternary polysiloxanes are useful in cosmetic formulations for skin and hair care, in polishes and as softeners
JP5864381B2 (en) Novel fluorocarbon chain-containing compound, its production method and use
EP3115104A1 (en) Method for reducing critical micelle concentration, and surfactant composition
Gyani Devi et al. Research progress on the synthesis of different types of gemini surfactants with a functionalized hydrophobic moiety and spacer
JP5727995B2 (en) Surfactant for stabilizing water / supercritical carbon dioxide microemulsions
Janardhanan et al. Synthesis and characterisation of sulfonated dimeric malenised soya fatty acid: a novel gemini surfactant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180727

R150 Certificate of patent or registration of utility model

Ref document number: 6378475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250