JP6375958B2 - Sliding nozzle plate for Ca-treated steel - Google Patents

Sliding nozzle plate for Ca-treated steel Download PDF

Info

Publication number
JP6375958B2
JP6375958B2 JP2015007050A JP2015007050A JP6375958B2 JP 6375958 B2 JP6375958 B2 JP 6375958B2 JP 2015007050 A JP2015007050 A JP 2015007050A JP 2015007050 A JP2015007050 A JP 2015007050A JP 6375958 B2 JP6375958 B2 JP 6375958B2
Authority
JP
Japan
Prior art keywords
aggregate
sliding nozzle
nozzle plate
treated steel
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015007050A
Other languages
Japanese (ja)
Other versions
JP2016131987A (en
Inventor
加藤 雄一
雄一 加藤
伊藤 智
智 伊藤
河野 幸次
幸次 河野
正 池本
正 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015007050A priority Critical patent/JP6375958B2/en
Publication of JP2016131987A publication Critical patent/JP2016131987A/en
Application granted granted Critical
Publication of JP6375958B2 publication Critical patent/JP6375958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶鋼の流量を制御するスライディングノズル装置に用いられるプレートに関する。   The present invention relates to a plate used in a sliding nozzle device for controlling the flow rate of molten steel.

スライディングノズルプレートは内孔を持つ2枚乃至は3枚のプレートから構成され、摺動により孔の重なり度合いを変化させることで取鍋やタンディッシュなどの溶融金属容器から排出される溶鋼の流量を制御する装置である。プレートの面間からの溶鋼漏洩を防止するためスライディングノズルプレートは拘束条件下で、面圧が付加された状態で使用される。   The sliding nozzle plate is composed of two or three plates with inner holes, and the flow rate of molten steel discharged from a molten metal container such as a ladle or tundish is changed by changing the overlapping degree of the holes by sliding. It is a device to control. In order to prevent molten steel leakage from between the surfaces of the plate, the sliding nozzle plate is used under restraint conditions and with surface pressure applied.

このことから、スライディングノズルプレートには、拘束条件での使用が可能な機械的強度、溶鋼成分や介在物等に対する耐食性、摺動面が受ける摩擦に対する耐摩耗性、溶鋼受鋼時の急激な熱衝撃に対する耐スポーリング性などの特性が要求される。   For this reason, the sliding nozzle plate has mechanical strength that can be used under restraint conditions, corrosion resistance to molten steel components and inclusions, wear resistance to friction received by the sliding surface, and rapid heat when receiving molten steel. Characteristics such as spalling resistance against impact are required.

このような理由から、スライディングノズルプレートにはAl−C質耐火物が広く使用されている。 For these reasons, Al 2 O 3 —C refractories are widely used for sliding nozzle plates.

ところで、操業中の浸漬ノズルへのAl介在物付着に伴うノズル閉塞の防止や、圧延時鋼片の傷の原因となる硬質のAl系介在物の無害化を目的として溶鋼中にCaを添加する処理(Ca処理)を行う鋼種がある。通常、Ca処理は二次精錬後の溶鋼に対してCa濃度10〜30 ppm程度となるようにCaSiワイヤもしくはCaSi粉体の形態でCaを添加することで行われている。Ca処理鋼は、非Ca処理鋼に比較して、耐火物の損耗が著しく大きくなる。この理由は、溶鋼中のCaが耐火物中のAlと反応し、溶鋼の温度よりも融点が低いCaO−Al−SiO系化合物が生成されることにより、耐火物が損耗(溶損)するためであると考えられている。その結果、Ca処理鋼において、Caが耐火物の損耗に与える影響は、無視できないほどに大きくなる。 By the way, molten steel is used for the purpose of preventing nozzle clogging due to adhesion of Al 2 O 3 inclusions to the immersion nozzle during operation and detoxifying hard Al 2 O 3 inclusions that cause damage to the steel pieces during rolling. There are steel types that perform a process of adding Ca therein (Ca process). Usually, Ca treatment is performed by adding Ca in the form of CaSi wire or CaSi powder so that the Ca concentration is about 10 to 30 ppm with respect to the molten steel after the secondary refining. The Ca-treated steel has significantly increased wear of the refractory compared to the non-Ca-treated steel. The reason for this is that Ca in the molten steel reacts with Al 2 O 3 in the refractory, and a CaO—Al 2 O 3 —SiO 2 based compound having a melting point lower than the temperature of the molten steel is generated. This is considered to be due to wear (melting damage). As a result, in Ca-treated steel, the influence of Ca on the wear of the refractory is so great that it cannot be ignored.

その対策として、特許文献1には耐火物骨材をAl骨材ではなくCa処理鋼中のCaと反応しても低融点層を生成しにくいZrO骨材に置換したZrO−C系材質の採用が提案され、Ca処理鋼による溶損量の低減が認められている。 As a countermeasure, ZrO 2 in Patent Document 1 is replaced with refractory aggregate the Al 2 O 3 also react with Ca in the Ca-treated steels rather than aggregate produces a low melting point layer hard ZrO 2 aggregates - Adoption of a C-based material has been proposed, and a reduction in the amount of erosion caused by Ca-treated steel is recognized.

また、Al骨材に替えてCaOと低融点相を生成しにくいMgO骨材を用いたMgO−C材質についても検討がなされている。例えば、特許文献2ではMgO骨材の使用により、耐食性を高めるとともに金属Alと炭素原料を添加することで耐面荒れ性の両立を図った材質を開示している。 In addition, MgO—C materials using MgO aggregates that hardly generate CaO and a low melting point phase instead of Al 2 O 3 aggregates have been studied. For example, Patent Document 2 discloses a material that has improved corrosion resistance by using MgO aggregates and that has both surface roughness resistance by adding metal Al and a carbon raw material.

上記のように、スライディングノズルプレートの耐CaO性を改善するため、Al−C中のAl骨材をZrO骨材やMgO骨材に置換した従来技術があるが、其々別の課題がある。 As described above, in order to improve the CaO resistance of the sliding nozzle plate, there is a conventional technique in which Al 2 O 3 aggregate in Al 2 O 3 -C is replaced with ZrO 2 aggregate or MgO aggregate. There are different challenges.

特開昭64−24069号公報JP-A 64-24069 特開2004−141899号公報JP 2004-141899 A

ZrO−C質はCaと低融点相を生成しないという点でCa処理鋼に対する耐用の向上が見られたものの、ZrOのかさ密度の大きさからスライディングノズルプレートの重量が大きくなり作業性が悪くなるという問題があった。 Although ZrO 2 -C material has improved durability against Ca-treated steel in that it does not form a low melting point phase with Ca, the weight of the sliding nozzle plate increases due to the bulk density of ZrO 2 , and workability is improved. There was a problem of getting worse.

MgO−C質ではMgOの持つ高い熱膨張率のため、受鋼時の耐熱衝撃性に難があり、頻繁に割れが生じるため使用回数が限られるという課題があった。   The MgO—C material has a problem that the thermal expansion coefficient of MgO is difficult, and the thermal shock resistance at the time of receiving steel is difficult, and cracks frequently occur, so the number of uses is limited.

本発明の目的はスライディングノズルプレートに要求される耐熱衝撃性、耐摩耗性、機械的強度が適正にバランス化されており、耐火物の溶損を拡大させるCa処理鋼に対しても高い耐食性を有するスライディングノズルプレートを提供することにある。   The object of the present invention is to properly balance the thermal shock resistance, wear resistance, and mechanical strength required for a sliding nozzle plate, and to provide high corrosion resistance even to Ca-treated steel that expands the refractory erosion. It is to provide a sliding nozzle plate having the same.

上記の課題を解決するために、本発明は以下の構成を要旨とする。
(1)耐火物骨材が、CA6骨材と、Al骨材とAl−ZrO骨材の少なくともいずれか一方とを含有し、前記CA6骨材が、前記耐火物骨材の3〜30質量%であることを特徴とするCa処理鋼用スライディングノズルプレート。
(2)前記CA6骨材が、80質量%以上のヒボナイト鉱物からなることを特徴とする(1)に記載のCa処理鋼用スライディングノズルプレート。
(3)前記CA6骨材の気孔率が、10%以下であることを特徴とする(1)又は(2)に記載のCa処理鋼用スライディングノズルプレート。
In order to solve the above-described problems, the present invention has the following configuration.
(1) refractory aggregate, and CA6 aggregate, contain and at least one of Al 2 O 3 aggregate and Al 2 O 3 -ZrO 2 aggregates, the CA6 aggregate, the refractory bone A sliding nozzle plate for Ca-treated steel, characterized by being 3 to 30% by mass of the material.
(2) The sliding nozzle plate for Ca-treated steel according to (1), wherein the CA6 aggregate is composed of 80% by mass or more of a hibonite mineral.
(3) The sliding nozzle plate for Ca-treated steel according to (1) or (2), wherein the porosity of the CA6 aggregate is 10% or less.

高温下で空孔の生じやすい耐火物骨材に替えて、酸化物として安定で気相化しにくいCA6骨材を適用することにより、実使用下においても耐火物が空孔を生じず緻密に保たれる。これにより浸食作用の強いCaO−Al−SiO系化合物とスライディングノズル材質との反応界面積を最小限に抑えることができ、耐溶損性を向上させることが可能となる。さらに、本発明は、耐熱衝撃性、耐摩耗性、及び機械的強度も適正にバランス化されている。 In place of refractory aggregates that are prone to vacancies at high temperatures, the use of CA6 aggregates that are stable and difficult to vaporize as oxides ensures that refractories do not form vacancies even under actual use. Be drunk. As a result, the reaction interface area between the CaO—Al 2 O 3 —SiO 2 -based compound having a strong erosion action and the sliding nozzle material can be minimized, and the resistance to erosion can be improved. Furthermore, the present invention also has an appropriate balance of thermal shock resistance, wear resistance, and mechanical strength.

1600℃における各種酸化物ガスの分圧と酸素分圧の関係を示すグラフである。It is a graph which shows the relationship between the partial pressure of various oxide gas in 1600 degreeC, and oxygen partial pressure.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明で耐火物骨材、例えばAl骨材とは、主成分がAlであって不可避的不純物を含み、通常の耐火物用原料として用いるものである。また、本発明の対象とするスライディングノズルプレートは、耐火物骨材以外にバインダーや、酸化防止、強度向上を目的とした金属や炭化物がマトリックス部を構成している。 In the present invention, a refractory aggregate, such as an Al 2 O 3 aggregate, is mainly used as a raw material for a refractory, containing Al 2 O 3 as a main component and containing inevitable impurities. In addition to the refractory aggregate, the sliding nozzle plate that is the subject of the present invention comprises a matrix portion of a binder, a metal or carbide for the purpose of preventing oxidation and improving strength.

上述のように、Ca処理鋼による耐火物損耗は、マトリックス部および骨材部に存在するAlとCa処理鋼中のCaO含有介在物との反応による低融点化が一つの要因である。しかし、実際にCa処理鋼に対して使用したアルミナカーボン質プレートを調査すると、非Ca処理鋼に対して使用した場合には見られない顕著な空隙が観察された。さらにその空隙部分にはCaO含有相が浸潤している様子が確認された。 As described above, the refractory wear due to the Ca-treated steel is caused by the low melting point due to the reaction between Al 2 O 3 present in the matrix part and the aggregate part and the CaO-containing inclusions in the Ca-treated steel. . However, when the alumina carbonaceous plate actually used for the Ca-treated steel was investigated, remarkable voids that were not seen when used for the non-Ca-treated steel were observed. Further, it was confirmed that the CaO-containing phase was infiltrated into the void portion.

そこで空隙生成について熱力学的に検討を実施した。耐火物中の各種酸化物と炭素との反応は以下の式(化1)〜(化4)で表わされる。また、(化1)〜(化4)で示す反応式におけるギブスの自由エネルギー変化ΔGは、温度をTとすると、それぞれ以下の数式(数1)〜(数4)で表される。

1/2C+1/2Al=AlO(g)+1/2CO(g) (化1)
2C+Al=AlO(g)+2CO(g) (化2)
C+ZrO=ZrO(g)+CO(g) (化3)
C+SiO=SiO(g)+CO(g) (化4)
Therefore, the void formation was studied thermodynamically. The reaction between various oxides and carbon in the refractory is represented by the following formulas (Chemical Formula 1) to (Chemical Formula 4). Also, Gibbs free energy change ΔG 0 in the reaction formulas shown in (Chemical Formula 1) to (Chemical Formula 4) is expressed by the following formulas (Formula 1) to (Formula 4), where T is the temperature.

1 / 2C + 1 / 2Al 2 O 3 = AlO (g) + 1 / 2CO (g)
2C + Al 2 O 3 = Al 2 O (g) + 2CO (g)
C + ZrO 2 = ZrO (g) + CO (g)
C + SiO 2 = SiO (g) + CO (g)

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

図1に(数1)〜(数4)をもとに1600℃における酸素分圧と酸化物ガス分圧との関係を示す。低酸素分圧では、SiOやAlから生成される酸化物ガスの分圧が高いことが分かる。すなわち、従来のスライディングノズルプレートに使用されていた酸化物は、高温化(即ち低酸素分圧下)において分解しやすいといえる。 FIG. 1 shows the relationship between the oxygen partial pressure and the oxide gas partial pressure at 1600 ° C. based on (Equation 1) to (Equation 4). It can be seen that at a low oxygen partial pressure, the partial pressure of the oxide gas generated from SiO 2 or Al 2 O 3 is high. That is, it can be said that the oxide used in the conventional sliding nozzle plate is easily decomposed at a high temperature (that is, under a low oxygen partial pressure).

すなわち、高温下における酸化物の分解により骨材まわりに空隙が生じることで、耐火物を浸食させる溶融酸化物が浸透しやすい環境になることが考察された。こうして発明者は、Ca処理鋼においては骨材とCとの反応により生じる耐火物組織中の空隙が耐火物を浸食させる促進要因であることを知見した。すなわち、気相生成反応の抑制により耐火物組織の空隙生成を防止することで総合的な耐食性向上が図れると考えた。   That is, it was considered that a void is generated around the aggregate due to the decomposition of the oxide at a high temperature, so that the molten oxide that erodes the refractory easily penetrates. Thus, the inventor has found that in the Ca-treated steel, voids in the refractory structure generated by the reaction between the aggregate and C are an accelerating factor for eroding the refractory. That is, it was thought that the overall corrosion resistance could be improved by preventing the formation of voids in the refractory structure by suppressing the gas phase formation reaction.

そこでCaに対して耐食性を向上させるためには、低酸素分圧でも酸化物として安定で分解しにくい骨材が必要である。CaO含有骨材は酸化物として非常に安定であるが、たとえばドロマイト(ドロマイト:CaCO−MgCO)は消化に伴う粉化の問題があり、またCaZrOは加熱時にZrOの脱安定化に伴う骨材の分解が生じるため物理的にも過酷な環境で用いられるスライディングノズルプレート材質には不適当である。 Therefore, in order to improve the corrosion resistance with respect to Ca, an aggregate which is stable as an oxide and hardly decomposes even at a low oxygen partial pressure is required. Although CaO-containing aggregates are very stable as an oxide, for example dolomite (dolomite: CaCO 3 -MgCO 3) has a problem of powder of accompanying digestion also CaZrO 3 to destabilization of ZrO 2 upon heating Since the accompanying aggregate decomposition occurs, it is unsuitable for a sliding nozzle plate material used in physically severe environments.

ところで、従来、カルシウムヘキサアルミネート(CA6)骨材はAl骨材よりも低融点であるため、化学的耐食性の要求される耐火物への適用は試みられてこなかった。単体での耐食性としてはAl骨材やAl−ZrO骨材よりも劣るものの、CA6骨材は消化や加熱による分解反応が生じず安定に使用できるとともに、気相生成反応を生じにくい骨材である。すなわちスライディングノズルプレート耐火物用として用いることで耐食性の向上が可能であると考え、本発明を成すに至った。 By the way, conventionally, calcium hexaaluminate (CA6) aggregate has a lower melting point than Al 2 O 3 aggregate, so that it has not been tried to be applied to a refractory requiring chemical corrosion resistance. Although inferior to Al 2 O 3 aggregate and Al 2 O 3 -ZrO 2 aggregate as corrosion resistance alone, in conjunction with the CA6 aggregate usable stably without causing a decomposition reaction by digestive and heating, gas phase formation reaction It is an aggregate that is difficult to produce. That is, it was considered that the corrosion resistance could be improved by using the sliding nozzle plate for refractories, and the present invention was achieved.

そこで本発明は、耐火物骨材としてAl骨材又はAl−ZrO骨材の少なくとも一方と、CA6骨材とを使用するCa処理鋼用スライディングノズルプレートを提供する。 Therefore, the present invention provides a sliding nozzle plate for Ca-treated steel using at least one of Al 2 O 3 aggregate or Al 2 O 3 —ZrO 2 aggregate as a refractory aggregate and CA6 aggregate.

CA6骨材の配合量は質量比で3〜30質量%であることを推奨する。CA6骨材の配合量が3質量%より小さい場合には耐火物骨材とCとの反応による気相生成を抑制する効果が小さく、耐用の向上が見込めない。一方、CA6骨材が30質量%より多い場合には、気相生成は抑制できるものの、CA6骨材そのものとCaO−Al−SiO系介在物との反応による低融点化が進行し耐用の向上が見込めない。 It is recommended that the blending amount of CA6 aggregate is 3 to 30% by mass. When the blending amount of the CA6 aggregate is smaller than 3% by mass, the effect of suppressing the gas phase generation due to the reaction between the refractory aggregate and C is small, and the improvement in durability cannot be expected. On the other hand, when the amount of CA6 aggregate is more than 30% by mass, although vapor phase generation can be suppressed, the melting point is lowered by the reaction between the CA6 aggregate itself and the CaO—Al 2 O 3 —SiO 2 inclusion. Cannot be expected to improve durability.

CA6骨材以外の耐火物骨材としては、Al−ZrO骨材又はAl骨材の少なくとも一方を用いる。Al−ZrO骨材は、CaO−Al−SiO系介在物と低融点相を生成しにくい原料種として含有することが望ましいことから、本発明は、より好ましくは両骨材を用いることを推奨する。全骨材に占めるAl−ZrO骨材の配合量が30質量%より少量な場合にはCaO−Al−SiO系介在物に対する耐食性向上の寄与が小さい。しかし、Al−ZrO骨材量が67質量%より多量となると価格が高価になるだけでなく、その重量の大きさから作業性に難が生じうる。 As the refractory aggregate other than the CA6 aggregate, at least one of Al 2 O 3 —ZrO 2 aggregate and Al 2 O 3 aggregate is used. Since it is desirable that the Al 2 O 3 —ZrO 2 aggregate contains a CaO—Al 2 O 3 —SiO 2 inclusion and a low-melting-point phase as a raw material species, the present invention is more preferably both It is recommended to use aggregate. When the blending amount of Al 2 O 3 —ZrO 2 aggregate in the total aggregate is less than 30% by mass, the contribution of improving corrosion resistance to CaO—Al 2 O 3 —SiO 2 inclusions is small. However, if the amount of the Al 2 O 3 —ZrO 2 aggregate is greater than 67% by mass, not only the price becomes expensive, but also the workability may be difficult due to the size of the weight.

一方、Al骨材の配合量を67質量%以上とするとCa処理鋼中のCaO−Al−SiO系介在物との反応による低融点化が進行し耐用の低下を招く。そのため、耐食性、価格、重量のバランスに優れたスライディングノズルプレートの骨材としてはCA6骨材、Al−ZrO骨材、Al骨材からなることが最も好ましい。なお、Al−ZrO、Alは、従来よりスライディングノズルプレートに用いられた耐火物でよい。 On the other hand, when the blending amount of the Al 2 O 3 aggregate is 67% by mass or more, the melting point is lowered due to the reaction with the CaO—Al 2 O 3 —SiO 2 inclusions in the Ca-treated steel, and the durability is lowered. . Therefore, the aggregate of the sliding nozzle plate having an excellent balance of corrosion resistance, price, and weight is most preferably composed of CA6 aggregate, Al 2 O 3 —ZrO 2 aggregate, and Al 2 O 3 aggregate. Al 2 O 3 —ZrO 2 and Al 2 O 3 may be refractories conventionally used for sliding nozzle plates.

また本発明では、CA6骨材は80質量%以上のヒボナイト鉱物からなることが望ましい。ヒボナイト鉱物の定量はリートベルト法を用いる。このヒボナイト鉱物が80質量%未満ではCA6骨材による気孔生成抑制効果が小さく、耐食性向上への寄与が小さい。   In the present invention, it is desirable that the CA6 aggregate is composed of 80% by mass or more of a hibonite mineral. Rietveld method is used for quantitative determination of the hibonite mineral. When this hibonite mineral is less than 80% by mass, the effect of suppressing pore formation by CA6 aggregate is small, and the contribution to improving corrosion resistance is small.

さらに本発明では、CA6骨材の気孔率は10%以下であることが望ましい。気孔率はJIS R 2205により測定を行う。骨材の気孔率が10%より大きい場合には、骨材の気孔へCaO−Al−SiO系介在物の浸潤が生じやすくなるため、耐食性の向上への寄与が小さくなる。 Furthermore, in the present invention, the porosity of CA6 aggregate is preferably 10% or less. The porosity is measured according to JIS R 2205. When the porosity of the aggregate is larger than 10%, CaO—Al 2 O 3 —SiO 2 inclusions tend to be infiltrated into the pores of the aggregate, so that the contribution to the improvement of the corrosion resistance becomes small.

本発明のCa処理鋼用スライディングノズルプレートは、上記CA6骨材と、少なくともAl骨材又はAl−ZrO骨材とを耐火物骨材にして、バインダーとしてフェノールレジン等を添加した配合物を混練し、フリクションでスライディングノズル形状に成形し、1200℃程度で焼成した後、タール含浸処理を施すことにより作製される。骨材の種類、配合量以外は、従来と同様の方法によって製造可能である。 The sliding nozzle plate for Ca-treated steel according to the present invention uses the above-mentioned CA6 aggregate and at least Al 2 O 3 aggregate or Al 2 O 3 —ZrO 2 aggregate as a refractory aggregate, and a phenol resin or the like as a binder. The added compound is kneaded, formed into a sliding nozzle shape by friction, fired at about 1200 ° C., and then subjected to tar impregnation treatment. Except for the type and blending amount of the aggregate, it can be produced by the same method as in the prior art.

表1〜6に本発明の実施例、表7、8に比較例を一覧する。   Tables 1 to 6 list examples of the present invention, and Tables 7 and 8 list comparative examples.

(実施例1〜28)
表1〜6に記載の、気孔率、ヒボナイト含有量のCA6骨材と、少なくともAl骨材又はAl−ZrO骨材とを所定量配合し、バインダーとしてフェノールレジンを外掛けで5質量%添加した配合物を混練し、フリクションでスライディングノズルプレート形状に成形し、1200℃で焼成した後、ピッチ含浸処理を施した。
(Examples 1 to 28)
A predetermined amount of a CA6 aggregate having a porosity and a hibonite content described in Tables 1 to 6 and at least Al 2 O 3 aggregate or Al 2 O 3 —ZrO 2 aggregate is blended, and a phenol resin is used as a binder. The blend added at 5% by mass was kneaded, formed into a sliding nozzle plate shape by friction, fired at 1200 ° C., and then subjected to pitch impregnation treatment.

(比較例1〜7)
比較のために、Al骨材、Al−ZrO骨材、CA6骨材を用いて表5、6に記載のように配合し、バインダーとしてフェノールレジンを外掛けで5質量%添加した配合物を混練し、フリクションでスライディングノズルプレート形状に成形し、1200℃で焼成した後、タール含浸処理を施した。
(Comparative Examples 1-7)
For comparison, Al 2 O 3 aggregate, Al 2 O 3 —ZrO 2 aggregate, and CA6 aggregate are used as shown in Tables 5 and 6, and 5 mass of phenol resin as a binder is used as a binder. % Of the added compound was kneaded, formed into a sliding nozzle plate shape by friction, baked at 1200 ° C., and then subjected to tar impregnation treatment.

実施例、比較例で作製したスライディングノズルプレートについて、かさ密度、見掛気孔率、曲げ強度、耐熱衝撃性、耐摩耗性、浸食性を評価した。かさ密度および見掛気孔率は煮沸法(JIS R 2205)により測定を行った。CA6骨材の置換量が増えるに従い、かさ密度は小さくなる傾向が見られた。特に気孔率が15%のCA6骨材を適用した、実施例1〜10でその傾向が顕著であった。見掛気孔率についてはCA6骨材の置換量が増えるに従い、増加する傾向が見られ、気孔率が15%であるCA6骨材を適用した実施例1〜15でその傾向が顕著であった。しかし本発明の適用範囲内においての見掛気孔率は耐用性に影響しなかった。   The sliding nozzle plates produced in the examples and comparative examples were evaluated for bulk density, apparent porosity, bending strength, thermal shock resistance, wear resistance, and erosion resistance. The bulk density and the apparent porosity were measured by a boiling method (JIS R 2205). As the replacement amount of CA6 aggregate increased, the bulk density tended to decrease. In particular, the tendency was remarkable in Examples 1 to 10 in which CA6 aggregate having a porosity of 15% was applied. The apparent porosity tends to increase as the replacement amount of the CA6 aggregate increases, and this tendency is remarkable in Examples 1 to 15 in which the CA6 aggregate having a porosity of 15% is applied. However, the apparent porosity within the scope of the present invention did not affect the durability.

曲げ強度は3点曲げ試験法(JIS R 2213−1978)により測定を行った。曲げ強度は骨材の種類、置換量に依らずいずれも28MPa前後の値をとっており、CA6骨材に置換してもスライディングノズルプレートに求められる強度を維持することが可能であった。   The bending strength was measured by a three-point bending test method (JIS R 2213-1978). The bending strength was about 28 MPa regardless of the type of aggregate and the amount of replacement, and it was possible to maintain the strength required for the sliding nozzle plate even when replaced with CA6 aggregate.

耐熱衝撃性の評価は1600℃に維持した溶鋼中に40mm×40mm×160mmに加工した試験サンプルを5分間浸漬させた後、引き上げ5分間空冷するサイクルを5回行い、試験後のサンプルの断面の亀裂発生の程度により評価を行った。比較例1を基準に亀裂量が同等程度であれば○と、比較例1より亀裂発生量が小さいものを◎で表記した。一方、比較例1より亀裂発生量が大きいものを△で表記した。Al−ZrO骨材の量が多い場合に耐熱衝撃性は良好になる傾向が見られた。CA6骨材の量に依らず耐熱衝撃性は比較例1と同等か、比較例1よりも良好な結果であり、スライディングノズルプレートに求められる耐熱衝撃性を維持することが可能であった。 Evaluation of thermal shock resistance was performed by immersing a test sample processed to 40 mm × 40 mm × 160 mm in molten steel maintained at 1600 ° C. for 5 minutes and then pulling it up for 5 minutes and air-cooling it 5 times. Evaluation was made according to the degree of cracking. If the amount of cracks is about the same with reference to Comparative Example 1, the symbol “◯” indicates that the amount of crack generation is smaller than that of Comparative Example 1, and “◎” indicates that. On the other hand, the case where the crack generation amount is larger than that of Comparative Example 1 is indicated by Δ. When the amount of the Al 2 O 3 —ZrO 2 aggregate is large, the thermal shock resistance tends to be good. Regardless of the amount of CA6 aggregate, the thermal shock resistance was the same as or better than Comparative Example 1, and the thermal shock resistance required for the sliding nozzle plate could be maintained.

耐摩耗性の評価は熱間摩耗試験法(JIS R 2252−2)により行った。100mm×100mm×10mmの形状の試験片を用いた。試験温度は800℃とした。摩耗材であるSiC粒を吹付け、摩耗量を測定した。比較例1を基準に摩耗量が同等程度であれば○と、比較例1より摩耗量が小さいものを◎で表記した。一方、比較例1より摩耗量が大きいものを△で表記した。Al−ZrO骨材の量が多い場合に耐摩耗性は良好になる傾向が見られた。一方、CA6骨材の量に依らず耐摩耗性は比較例1と同等か、比較例1よりも良好な結果であり、スライディングノズルプレートに求められる耐摩耗性を維持することが可能であった。 The wear resistance was evaluated by a hot wear test method (JIS R2252-2). A test piece having a shape of 100 mm × 100 mm × 10 mm was used. The test temperature was 800 ° C. SiC particles as a wear material were sprayed to measure the amount of wear. If the amount of wear was approximately the same as that of Comparative Example 1, it was marked with ◯, and the amount with less wear than Comparative Example 1 was marked with ◎. On the other hand, those having a larger amount of wear than Comparative Example 1 are indicated by Δ. When the amount of the Al 2 O 3 —ZrO 2 aggregate is large, the wear resistance tends to be good. On the other hand, regardless of the amount of CA6 aggregate, the wear resistance is equal to or better than Comparative Example 1, and it was possible to maintain the wear resistance required for the sliding nozzle plate. .

浸食試験ではCa処理鋼を模擬した鋼を高周波誘導加熱炉により1600℃に加熱した後、直径20mm、高さ120mmの円筒形状の試験サンプルを浸漬させ1時間保持した。その後、気相と溶鋼の界面における試験サンプルの直径の変化量をノギスにて測定した。表1〜4に、比較例1における直径変化量を基準として、実施例1〜28、比較例2〜8の寸法変化を百分率にて表わした。   In the erosion test, a steel simulating Ca-treated steel was heated to 1600 ° C. by a high-frequency induction heating furnace, and then a cylindrical test sample having a diameter of 20 mm and a height of 120 mm was immersed and held for 1 hour. Then, the amount of change in the diameter of the test sample at the interface between the gas phase and the molten steel was measured with calipers. In Tables 1 to 4, the dimensional changes of Examples 1 to 28 and Comparative Examples 2 to 8 are expressed as percentages based on the diameter change amount in Comparative Example 1.

浸食試験の結果を見ると、CA6骨材の量を40質量%とした比較例2、3、4のいずれの場合も比較例1と比べ耐食性が低下する結果であった。また、すべての骨材をAl骨材とした比較例5の場合には比較例1と比べ耐食性が低下する結果となった。一方、CA6骨材量が5、15、25質量%のいずれの実施例においても比較例1より耐食性が向上する結果となった。更に、CA6骨材の置換量が5質量%である実施例1、6、11を比較するとCA6骨材中のヒボナイト含有量が多いほど、またCA6骨材の気孔率が小さいほど耐食性が向上する結果となった。この傾向はCA6骨材の置換量を15質量%、25質量%にした場合にも同様であった。 Looking at the results of the erosion test, the results of Comparative Examples 2, 3, and 4 in which the amount of CA6 aggregate was 40 mass% were lower than those of Comparative Example 1. Moreover, all the aggregate in the case of Comparative Example 5 in which the Al 2 O 3 aggregate resulted in reduced corrosion resistance as compared with Comparative Example 1. On the other hand, in any of Examples in which the amount of CA6 aggregate was 5, 15, and 25% by mass, the corrosion resistance was improved as compared with Comparative Example 1. Furthermore, when Examples 1, 6, and 11 in which the replacement amount of CA6 aggregate is 5% by mass are compared, the corrosion resistance improves as the content of hibonite in CA6 aggregate increases and the porosity of CA6 aggregate decreases. As a result. This tendency was the same when the replacement amount of CA6 aggregate was 15% by mass and 25% by mass.

以上の実施例、比較例の結果から、30〜67質量%のAl骨材と、30〜67質量%のAl−ZrO骨材と、3〜30質量%のCA6骨材とからなるスライディングノズルプレートがCa処理鋼に対してより好ましい耐食性を有し、CA6骨材中のヒボナイト含有量を80質量%以上、CA6骨材の気孔率を10%以下とすることで更に高い耐食性を得られた。
From the results of the above Examples and Comparative Examples, 30 to 67% by mass of Al 2 O 3 aggregate, 30 to 67% by mass of Al 2 O 3 —ZrO 2 aggregate, and 3 to 30% by mass of CA6 bone. The sliding nozzle plate made of the material has more preferable corrosion resistance with respect to the Ca-treated steel, and further, the hibonite content in the CA6 aggregate is 80% by mass or more, and the porosity of the CA6 aggregate is 10% or less. High corrosion resistance was obtained.

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

Figure 0006375958
Figure 0006375958

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

Claims (3)

耐火物骨材が、CA6骨材と、Al骨材とAl−ZrO骨材の少なくともいずれか一方とを含有し、
前記CA6骨材が、前記耐火物骨材の3〜30質量%であることを特徴とするCa処理鋼用スライディングノズルプレート。
The refractory aggregate contains CA6 aggregate, Al 2 O 3 aggregate and at least one of Al 2 O 3 —ZrO 2 aggregate,
The sliding nozzle plate for Ca-treated steel, wherein the CA6 aggregate is 3 to 30% by mass of the refractory aggregate.
前記CA6骨材が、80質量%以上のヒボナイト鉱物からなることを特徴とする請求項1に記載のCa処理鋼用スライディングノズルプレート。   The sliding nozzle plate for Ca-treated steel according to claim 1, wherein the CA6 aggregate is composed of 80% by mass or more of a hibonite mineral. 前記CA6骨材の気孔率が、10%以下であることを特徴とする請求項1又は2に記載のCa処理鋼用スライディングノズルプレート。

The sliding nozzle plate for Ca-treated steel according to claim 1 or 2, wherein the porosity of the CA6 aggregate is 10% or less.

JP2015007050A 2015-01-16 2015-01-16 Sliding nozzle plate for Ca-treated steel Active JP6375958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015007050A JP6375958B2 (en) 2015-01-16 2015-01-16 Sliding nozzle plate for Ca-treated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015007050A JP6375958B2 (en) 2015-01-16 2015-01-16 Sliding nozzle plate for Ca-treated steel

Publications (2)

Publication Number Publication Date
JP2016131987A JP2016131987A (en) 2016-07-25
JP6375958B2 true JP6375958B2 (en) 2018-08-22

Family

ID=56437147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015007050A Active JP6375958B2 (en) 2015-01-16 2015-01-16 Sliding nozzle plate for Ca-treated steel

Country Status (1)

Country Link
JP (1) JP6375958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842870A (en) * 2020-06-19 2020-10-30 北京科技大学 Al containing ZrO2O3-ZrO2-Al composite sliding plate and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2719105B2 (en) * 1977-04-29 1979-10-31 Didier-Werke Ag, 6200 Wiesbaden Fireproof plate for slide valve closures on metallurgical vessels
JPS6016858A (en) * 1984-06-04 1985-01-28 黒崎窯業株式会社 Upper or lower nozzle for sliding nozzle
JP2660147B2 (en) * 1993-07-09 1997-10-08 日本原子力研究所 Once-through reactor fuel compound
JP2002274973A (en) * 2001-03-21 2002-09-25 Asahi Glass Co Ltd Method of producing alumina porous body
DE10259826B4 (en) * 2002-12-19 2004-11-25 Refratechnik Holding Gmbh Coarse ceramic molded article, process for its production and use
FR2943055B1 (en) * 2009-03-10 2011-04-08 Saint Gobain Ct Recherches ZIRCONIA POWDER
JP5950398B2 (en) * 2012-09-06 2016-07-13 新日鐵住金株式会社 Lining structure

Also Published As

Publication number Publication date
JP2016131987A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
RU2637196C2 (en) Refractory material and nozzle
JP5565907B2 (en) Plate brick and manufacturing method thereof
JP4634263B2 (en) Magnesia carbon brick
JP4681456B2 (en) Low carbon magnesia carbon brick
JP6279068B2 (en) Steel casting refractories, sliding nozzle device plate, and method for producing steel casting refractories
JP6026495B2 (en) Low carbon MgO-C brick
WO2008056655A1 (en) Durable sleeve bricks
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP5777561B2 (en) Brick for stainless steel refining ladle and stainless steel refining ladle
JP6193793B2 (en) Cast refractories, and casting nozzle and sliding nozzle plate using the same
JP6375958B2 (en) Sliding nozzle plate for Ca-treated steel
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
WO2011058811A1 (en) Sliding nozzle plate
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6219729B2 (en) Magnesia carbon brick
JP2020163458A (en) Method of manufacturing sliding nozzle plate
JP5737503B2 (en) Plate refractory for sliding nozzle
JP5920412B2 (en) Continuous casting nozzle
JP2012192430A (en) Alumina carbon-based slide gate plate
JP6348071B2 (en) Magnesia refractory
JP6826282B2 (en) Magnesia-Chromium converter How to manufacture steel outlet sleeve bricks
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP5578680B2 (en) Carbon-containing refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R151 Written notification of patent or utility model registration

Ref document number: 6375958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350