JP6372288B2 - Capacitance type pressure measuring apparatus and linearity correction method thereof - Google Patents

Capacitance type pressure measuring apparatus and linearity correction method thereof Download PDF

Info

Publication number
JP6372288B2
JP6372288B2 JP2014205225A JP2014205225A JP6372288B2 JP 6372288 B2 JP6372288 B2 JP 6372288B2 JP 2014205225 A JP2014205225 A JP 2014205225A JP 2014205225 A JP2014205225 A JP 2014205225A JP 6372288 B2 JP6372288 B2 JP 6372288B2
Authority
JP
Japan
Prior art keywords
current
capacitance
voltage
capacitor
stray capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205225A
Other languages
Japanese (ja)
Other versions
JP2016075538A (en
Inventor
中村 悟
悟 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014205225A priority Critical patent/JP6372288B2/en
Publication of JP2016075538A publication Critical patent/JP2016075538A/en
Application granted granted Critical
Publication of JP6372288B2 publication Critical patent/JP6372288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、第1の圧力と第2の圧力との差圧の大きに応じた変位量を、第1及び第2のセンサキャパシタによる差動的静電容量の変化として検出して電流出力する静電容量式圧力測定装置及びその直線性補正方法に関する。   In the present invention, a displacement amount corresponding to the magnitude of the differential pressure between the first pressure and the second pressure is detected as a change in differential capacitance by the first and second sensor capacitors, and current is output. The present invention relates to a capacitance type pressure measuring device and a linearity correction method thereof.

従来から、工業プロセスにおける差圧を、この差圧に比例した機械的微小変位として検出し、電気信号の形で出力する静電容量式圧力測定装置がある。   2. Description of the Related Art Conventionally, there is a capacitance type pressure measuring device that detects a differential pressure in an industrial process as a mechanical minute displacement proportional to the differential pressure and outputs it as an electrical signal.

例えば、特許文献1では、第1の圧力と第2の圧力との差圧の大きに応じた変位量を、第1及び第2のセンサキャパシタによる差動的静電容量の変化として検出して電流出力する変位変換器が記載されている。そして、特許文献1では、検出された変位量の差圧に対する直線性を補正するために第1及び第2の直線性補正用キャパシタを設けている。第1及び第2の直線性補正用キャパシタは、それぞれ第1及び第2のセンサキャパシタの浮遊容量の影響をなくして、第1及び第2のセンサキャパシタによって検出された変位量の差圧に対する直線性を良くするように、それぞれの静電容量が調整される。   For example, in Patent Document 1, the amount of displacement corresponding to the magnitude of the differential pressure between the first pressure and the second pressure is detected as a change in differential capacitance by the first and second sensor capacitors. A displacement transducer that outputs current is described. And in patent document 1, in order to correct the linearity with respect to the differential pressure | voltage of the detected displacement amount, the 1st and 2nd linearity correction capacitor is provided. The first and second linearity correcting capacitors eliminate the influence of the stray capacitance of the first and second sensor capacitors, respectively, and are straight lines for the differential pressures of the displacement amounts detected by the first and second sensor capacitors. Each capacitance is adjusted to improve the performance.

特開平2−120614号公報JP-A-2-120614

しかしながら、第1及び第2の直線性補正用キャパシタの静電容量の調整によって良好な直線性を実現するためには、第1及び第2の直線性補正用キャパシタの静電容量の調整作業と、この調整作業による、第1及び第2のセンサキャパシタによる差動的静電容量の変化である出力電流の確認作業とを何度も繰り返し行う必要があるという問題があった。   However, in order to achieve good linearity by adjusting the capacitances of the first and second linearity correction capacitors, the adjustment work of the capacitances of the first and second linearity correction capacitors There is a problem that it is necessary to repeatedly perform the output current check operation, which is a change in the differential capacitance by the first and second sensor capacitors, by this adjustment operation.

本発明は、上記に鑑みてなされたものであって、第1及び第2の直線性補正用キャパシタの静電容量の調整による直線性補正の調整を容易に行うことができる静電容量式圧力測定装置及びその直線性補正方法を提供することを目的とする。   The present invention has been made in view of the above, and is a capacitance type pressure that can easily adjust the linearity correction by adjusting the capacitance of the first and second linearity correction capacitors. It is an object of the present invention to provide a measuring apparatus and a linearity correction method thereof.

上述した課題を解決し、目的を達成するために、本発明にかかる静電容量式圧力測定装置は、第1の圧力と第2の圧力との差圧の大きさに応じた変位量を、第1のセンサキャパシタと第2のセンサキャパシタとによる差動的静電容量の変化として電流出力する静電容量式圧力測定装置であって、前記差圧に対する前記変位量の直線性を補正する第1及び第2の直線性補正用キャパシタと、発振回路と、前記発振回路から出力される発振電圧を整流して前記第1のセンサキャパシタ、前記第2のセンサキャパシタ、前記第1の直線性補正用キャパシタ、及び前記第2の直線性補正用キャパシタに大きさの等しい交流電圧として印加して充電し、次に放電させる充放電を繰り返すとともに、前記第1のセンサキャパシタに対する充放電電流の整流値から前記第1の直線性補正用キャパシタに対する充放電電流の整流値を減算した第1電流と、前記第2のセンサキャパシタに対する充放電電流の整流値から前記第2の直線性補正用キャパシタに対する充放電電流の整流値を減算した第2電流と、前記第1電流と前記第2電流との和電流を生成する充放電回路と、前記和電流が一定となるように前記発振回路の発振周波数及び/または発振電圧の振幅を制御する発振回路制御回路と、前記第1電流と前記第2電流との差に対応する出力電流を出力する出力制御回路と、前記発振回路の発振周波数、発振電圧の振幅、前記第1電流及び前記第2電流に対応する第1電圧、前記第1電流及び前記第2電流の和に対応する第2電圧、前記第1電流及び前記第2電流の差に対応する第3電圧を検出する検出部と、外部から複数の圧力差を印加した状態の前記発振周波数、前記発振電圧の振幅、前記第1電圧、前記第2電圧、及び前記第3電圧をもとに、前記第1のセンサキャパシタの第1浮遊容量及び前記第2のセンサキャパシタの第2浮遊容量を算出する浮遊容量算出部と、を備え、前記浮遊容量算出部が算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする。   In order to solve the above-described problems and achieve the object, the capacitance-type pressure measuring device according to the present invention has a displacement amount corresponding to the magnitude of the differential pressure between the first pressure and the second pressure. A capacitance-type pressure measuring device that outputs a current as a change in differential capacitance caused by a first sensor capacitor and a second sensor capacitor, wherein the linearity of the displacement amount with respect to the differential pressure is corrected. First and second linearity correction capacitors, an oscillation circuit, and an oscillation voltage output from the oscillation circuit to rectify the first sensor capacitor, the second sensor capacitor, and the first linearity correction The capacitor for charging and the second linearity correcting capacitor are charged by applying an alternating voltage of the same magnitude and then repeatedly charged / discharged, and the charge / discharge current rectification for the first sensor capacitor is repeated. From the first current obtained by subtracting the rectified value of the charge / discharge current for the first linearity correction capacitor from the rectified value of the charge / discharge current for the second sensor capacitor, the charge / discharge current for the second linearity correction capacitor is charged. A second current obtained by subtracting a rectified value of the discharge current; a charge / discharge circuit that generates a sum current of the first current and the second current; an oscillation frequency of the oscillation circuit so that the sum current is constant; And / or an oscillation circuit control circuit that controls the amplitude of the oscillation voltage, an output control circuit that outputs an output current corresponding to the difference between the first current and the second current, and the oscillation frequency and oscillation voltage of the oscillation circuit Corresponds to the amplitude, the first voltage corresponding to the first current and the second current, the second voltage corresponding to the sum of the first current and the second current, the difference between the first current and the second current. Detect third voltage The first sensor based on the detection unit, the oscillation frequency in a state where a plurality of pressure differences are applied from the outside, the amplitude of the oscillation voltage, the first voltage, the second voltage, and the third voltage A stray capacitance calculation unit that calculates a first stray capacitance of a capacitor and a second stray capacitance of the second sensor capacitor, and the first stray capacitance calculated by the stray capacitance calculation unit The capacitance of the linearity correction capacitor is adjusted, and the capacitance of the second linearity correction capacitor is adjusted based on the second floating capacitance calculated by the floating capacitance calculation unit. .

また、本発明にかかる静電容量式圧力測定装置は、上記の発明において、前記第1及び前記第2の直線性補正用キャパシタに流れる電流を遮断する遮断スイッチを設け、前記遮断スイッチを遮断した状態で、前記浮遊容量算出部が算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする。   Further, the capacitance type pressure measuring device according to the present invention is the above-described invention, wherein a shut-off switch for shutting off a current flowing through the first and second linearity correcting capacitors is provided, and the shut-off switch is shut off. In the state, the capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated by the stray capacitance calculation unit, and the second stray capacitance calculated by the stray capacitance calculation unit is also obtained. And adjusting the capacitance of the second linearity correcting capacitor.

また、本発明にかかる静電容量式圧力測定装置は、上記の発明において、前記第1及び前記第2の直線性補正用キャパシタの静電容量は固定であり、前記第1及び前記第2の直線性補正用キャパシタのそれぞれに第1及び第2の可変直列抵抗と第1及び第2の整流用キャパシタとを接続し、前記浮遊容量算出部が算出した第1浮遊容量をもとに第1の可変直列抵抗を調整して、前記第1の直線性補正用キャパシタの実効静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに第2の可変直列抵抗を調整して、前記第2の直線性補正用キャパシタの実効静電容量を調整することを特徴とする。   In the capacitance-type pressure measuring device according to the present invention, in the above invention, the first and second linearity correcting capacitors have fixed capacitances, and the first and second The first and second variable series resistors and the first and second rectifying capacitors are connected to the respective linearity correcting capacitors, and the first stray capacitance calculated by the stray capacitance calculating unit is used as the first stray capacitance. The effective series capacitance of the first linearity correction capacitor is adjusted, and the second variable series resistance is adjusted based on the second stray capacitance calculated by the stray capacitance calculation unit. By adjusting, the effective capacitance of the second linearity correcting capacitor is adjusted.

また、本発明にかかる静電容量式圧力測定装置の直線性補正方法は、第1及び第2のセンサキャパシタと、発振回路と、前記発振回路から出力される発振電圧を整流して前記第1のセンサキャパシタ、前記第2のセンサキャパシタ、第1の直線性補正用キャパシタ、及び第2の直線性補正用キャパシタに大きさの等しい交流電圧として印加して充電し、次に放電させる充放電を繰り返すとともに、前記第1のセンサキャパシタに対する充放電電流の整流値から前記第1の直線性補正用キャパシタに対する充放電電流の整流値を減算した第1電流と、前記第2のセンサキャパシタに対する充放電電流の整流値から前記第2の直線性補正用キャパシタに対する充放電電流の整流値を減算した第2電流と、前記第1電流と前記第2電流との和電流を生成する充放電回路と、前記和電流が一定となるように前記発振回路の発振周波数及び/または発振電圧の振幅を制御する発振回路制御回路と、前記第1電流と前記第2電流との差に対応する出力電流を出力する出力制御回路と、を備え、第1の圧力と第2の圧力との差圧の大きさに応じた変位量を、前記第1のセンサキャパシタと前記第2のセンサキャパシタとによる差動的静電容量の変化として電流出力する静電容量式圧力測定装置の直線性補正方法であって、外部から複数の圧力差を印加した状態における、前記発振回路の発振周波数、発振電圧の振幅、前記第1電流及び前記第2電流に対応する第1電圧、前記第1電流及び前記第2電流の和に対応する第2電圧、前記第1電流及び前記第2電流の差に対応する第3電圧を検出する検出ステップと、前記発振周波数、前記発振電圧の振幅、前記第1電圧、前記第2電圧、及び前記第3電圧をもとに、前記第1のセンサキャパシタの第1浮遊容量及び前記第2のセンサキャパシタの第2浮遊容量を算出する浮遊容量算出ステップと、を含み、前記浮遊容量算出ステップが算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする。   Further, the linearity correction method for the capacitance type pressure measuring device according to the present invention includes the first and second sensor capacitors, the oscillation circuit, and the first voltage obtained by rectifying the oscillation voltage output from the oscillation circuit. Charge and discharge to be applied to the sensor capacitor, the second sensor capacitor, the first linearity correction capacitor, and the second linearity correction capacitor by applying an alternating voltage of equal magnitude, and then discharging. The first current obtained by subtracting the rectified value of the charge / discharge current for the first linearity correction capacitor from the rectified value of the charge / discharge current for the first sensor capacitor and the charge / discharge for the second sensor capacitor are repeated. A second current obtained by subtracting a rectified value of charge / discharge current for the second linearity correction capacitor from a rectified value of current, and a sum current of the first current and the second current A difference between the first current and the second current; a charge / discharge circuit to be configured; an oscillation circuit control circuit that controls an oscillation frequency and / or an amplitude of an oscillation voltage of the oscillation circuit so that the sum current is constant; And an output control circuit for outputting an output current corresponding to the first sensor capacitor and the second sensor, and a displacement amount corresponding to a differential pressure between the first pressure and the second pressure. A method for correcting the linearity of a capacitance-type pressure measuring device that outputs current as a change in differential capacitance due to a sensor capacitor, the oscillation frequency of the oscillation circuit in a state where a plurality of pressure differences are applied from the outside The amplitude of the oscillation voltage, the first voltage corresponding to the first current and the second current, the second voltage corresponding to the sum of the first current and the second current, the first current and the second current Detection to detect the third voltage corresponding to the difference A first stray capacitance of the first sensor capacitor and the second sensor based on the oscillation frequency, the amplitude of the oscillation voltage, the first voltage, the second voltage, and the third voltage. A stray capacitance calculation step for calculating a second stray capacitance of the capacitor, and adjusting a capacitance of the first linearity correction capacitor based on the first stray capacitance calculated by the stray capacitance calculation step. The capacitance of the second linearity correction capacitor is adjusted based on the second stray capacitance calculated in the stray capacitance calculation step.

また、本発明にかかる静電容量式圧力測定装置の直線性補正方法は、上記の発明において、前記第1及び前記第2の直線性補正用キャパシタに流れる電流を遮断する電流遮断ステップを含み、前記電流遮断ステップで電流が遮断された状態で、前記浮遊容量算出ステップが算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする。   Moreover, the linearity correction method of the capacitance-type pressure measuring device according to the present invention includes a current interruption step of interrupting a current flowing through the first and second linearity correction capacitors in the above invention, In the state where the current is interrupted in the current interrupting step, the capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated in the stray capacitance calculating step, and the stray capacitance calculation is performed. The capacitance of the second linearity correction capacitor is adjusted based on the second stray capacitance calculated in the step.

また、本発明にかかる静電容量式圧力測定装置の直線性補正方法は、上記の発明において、前記第1及び前記第2の直線性補正用キャパシタの静電容量は固定であり、前記第1及び前記第2の直線性補正用キャパシタのそれぞれに第1及び第2の可変直列抵抗と第1及び第2の整流用キャパシタとが接続され、前記浮遊容量算出ステップが算出した第1浮遊容量をもとに第1の可変直列抵抗を調整して、前記第1の直線性補正用キャパシタの実効静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに第2の可変直列抵抗を調整して、前記第2の直線性補正用キャパシタの実効静電容量を調整することを特徴とする。   In the linearity correction method for a capacitance-type pressure measuring device according to the present invention, the capacitance of the first and second linearity correction capacitors is fixed in the above invention, and the first The first and second variable series resistors and the first and second rectifying capacitors are connected to the second linearity correcting capacitors, and the first stray capacitance calculated by the stray capacitance calculating step is used. Based on the second stray capacitance calculated by the stray capacitance calculation step, the first variable series resistance is adjusted to adjust the effective capacitance of the first linearity correction capacitor. The effective series capacitance of the second linearity correcting capacitor is adjusted by adjusting the variable series resistance.

本発明によれば、検出部が、発振回路の発振周波数、発振電圧の振幅、第1のセンサキャパシタに対する充放電電流の整流値から第1の直線性補正用キャパシタに対する充放電電流の整流値を減算した第1電流及び第2のセンサキャパシタに対する充放電電流の整流値から第2の直線性補正用キャパシタに対する充放電電流の整流値を減算した第2電流に対応する第1電圧、前記第1電流及び前記第2電流の和に対応する第2電圧、前記第1電流及び前記第2電流の差に対応する第3電圧を検出し、浮遊容量算出部が、外部から複数の圧力差を印加した状態の前記発振周波数、前記発振電圧の振幅、前記第1電圧、前記第2電圧及び前記第3電圧をもとに、前記第1のセンサキャパシタの第1浮遊容量及び前記第2のセンサキャパシタの第2浮遊容量を算出し、前記浮遊容量算出部が算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整するようにしている。この結果、第1及び第2の直線性補正用キャパシタの静電容量の調整作業と、この調整作業による出力電流の確認作業との繰り返しを行うことなく、直線性補正の調整を容易に行うことができる。   According to the present invention, the detection unit calculates the rectification value of the charge / discharge current for the first linearity correction capacitor from the oscillation frequency of the oscillation circuit, the amplitude of the oscillation voltage, and the rectification value of the charge / discharge current for the first sensor capacitor. A first voltage corresponding to a second current obtained by subtracting a rectified value of the charge / discharge current for the second linearity correction capacitor from a rectified value of the charge / discharge current for the second sensor capacitor and the subtracted first current; The second voltage corresponding to the sum of the current and the second current and the third voltage corresponding to the difference between the first current and the second current are detected, and the stray capacitance calculation unit applies a plurality of pressure differences from the outside. Based on the oscillation frequency, the amplitude of the oscillation voltage, the first voltage, the second voltage, and the third voltage, the first stray capacitance of the first sensor capacitor and the second sensor capacitor Second of The free capacitance is calculated, the capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated by the stray capacitance calculation unit, and the second stray capacitance calculated by the stray capacitance calculation unit is calculated. The capacitance of the second linearity correcting capacitor is adjusted based on the capacitance. As a result, it is possible to easily adjust the linearity correction without repeating the adjustment work of the capacitances of the first and second linearity correction capacitors and the operation of checking the output current by the adjustment work. Can do.

図1は、本発明の実施の形態1である静電容量式圧力測定装置の概要構成を模式的に示したブロック図である。FIG. 1 is a block diagram schematically showing a schematic configuration of a capacitance-type pressure measuring apparatus according to Embodiment 1 of the present invention. 図2は、図1に示した静電容量式圧力測定装置の詳細構成を示す回路図である。FIG. 2 is a circuit diagram showing a detailed configuration of the capacitance type pressure measuring apparatus shown in FIG. 図3は、図2に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。FIG. 3 is a flowchart showing the linearity correction processing procedure of the capacitive pressure measuring device shown in FIG. 図4は、本発明の実施の形態2である静電容量式圧力測定装置の詳細構成を示す回路図である。FIG. 4 is a circuit diagram showing a detailed configuration of the capacitance-type pressure measuring device according to the second embodiment of the present invention. 図5は、図4に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a linearity correction processing procedure of the capacitive pressure measuring device shown in FIG. 図6は、本発明の実施の形態3である静電容量式圧力測定装置の詳細構成を示す回路図である。FIG. 6 is a circuit diagram showing a detailed configuration of the capacitance-type pressure measuring device according to the third embodiment of the present invention. 図7は、図6に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。FIG. 7 is a flowchart showing the linearity correction processing procedure of the capacitance-type pressure measuring device shown in FIG.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
[概要構成]
図1は、本発明の実施の形態1である静電容量式圧力測定装置の概要構成を模式的に示したブロック図である。図1に示した静電容量式圧力測定装置は、第1の圧力と第2の圧力との差圧、例えば差圧p0の大きさに応じた変位量を、第1のセンサキャパシタ1と第2のセンサキャパシタ2とによる差動的静電容量の変化として電流出力するものである。
(Embodiment 1)
[Overview configuration]
FIG. 1 is a block diagram schematically showing a schematic configuration of a capacitance-type pressure measuring apparatus according to Embodiment 1 of the present invention. The capacitance-type pressure measuring device shown in FIG. 1 is configured so that a displacement amount corresponding to a differential pressure between the first pressure and the second pressure, for example, the differential pressure p0, is compared with the first sensor capacitor 1 and the first pressure. Current is output as a change in differential capacitance due to the two sensor capacitors 2.

図1に示すように、静電容量式圧力測定装置は、第1及び第2のセンサキャパシタ1,2、第1及び第2の直線性補正用キャパシタ43,44、発振回路3、充放電回路4、発振回路制御回路5、出力制御回路6、検出部7、及び浮遊容量算出部8を有する。   As shown in FIG. 1, the capacitance-type pressure measuring device includes first and second sensor capacitors 1 and 2, first and second linearity correcting capacitors 43 and 44, an oscillation circuit 3, and a charge / discharge circuit. 4, an oscillation circuit control circuit 5, an output control circuit 6, a detection unit 7, and a stray capacitance calculation unit 8.

第1及び第2のセンサキャパシタ1,2は、例えば、ダイヤフラムなどの可動電極を挟んだ2つの固定電極を有し、第1のセンサキャパシタ1は、一方の固定電極と可動電極とで形成され、第2のセンサキャパシタ2は、他方の固定電極と可動電極とで形成される。そして、第1のセンサキャパシタ1のギャップ及び第2のセンサキャパシタ2のギャップにそれぞれ圧力が印加され、それぞれのギャップ間の圧力差によって可動電極が変位する。この変位に応じて第1及び第2のセンサキャパシタ1,2の静電容量C1,C2が差動的に変化する。   The first and second sensor capacitors 1 and 2 have, for example, two fixed electrodes sandwiching a movable electrode such as a diaphragm, and the first sensor capacitor 1 is formed by one fixed electrode and the movable electrode. The second sensor capacitor 2 is formed of the other fixed electrode and movable electrode. Then, pressure is applied to the gap of the first sensor capacitor 1 and the gap of the second sensor capacitor 2, and the movable electrode is displaced by the pressure difference between the gaps. In accordance with this displacement, the capacitances C1 and C2 of the first and second sensor capacitors 1 and 2 change differentially.

第1及び第2の直線性補正用キャパシタ43,44は、圧力差に対する静電容量C1,C2の差動的変位量の直線性を補正する。   The first and second linearity correction capacitors 43 and 44 correct the linearity of the differential displacement amounts of the capacitances C1 and C2 with respect to the pressure difference.

充放電回路4は、発振回路3から出力される発振電圧を整流して第1のセンサキャパシタ1、第2のセンサキャパシタ2、第1の直線性補正用キャパシタ43、及び第2の直線性補正用キャパシタ44に大きさの等しい交流電圧として印加して充電し、次に放電させる充放電を繰り返す。また、充放電回路4は、第1のセンサキャパシタ1に対する充放電電流の整流値I1から第1の直線性補正用キャパシタ43に対する充放電電流の整流値Ic1を減算した第1電流Δ1(=I1−Ic1)と、第2のセンサキャパシタ2に対する充放電電流の整流値I2から第2の直線性補正用キャパシタ44に対する充放電電流の整流値Ic2を減算した第2電流Δ2(=I2−Ic2)と、第1電流Δ1と第2電流Δ2との和電流Ikを生成する。   The charge / discharge circuit 4 rectifies the oscillation voltage output from the oscillation circuit 3 to rectify the first sensor capacitor 1, the second sensor capacitor 2, the first linearity correction capacitor 43, and the second linearity correction. The capacitor 44 is charged as an alternating voltage having the same magnitude, and then charged and discharged repeatedly. The charge / discharge circuit 4 also subtracts the charge / discharge current rectified value Ic1 for the first linearity correction capacitor 43 from the charge / discharge current rectified value I1 for the first sensor capacitor 1 to obtain a first current Δ1 (= I1). −Ic1) and a second current Δ2 (= I2−Ic2) obtained by subtracting the rectified value Ic2 of the charge / discharge current for the second linearity correction capacitor 44 from the rectified value I2 of the charge / discharge current for the second sensor capacitor 2. Then, a sum current Ik of the first current Δ1 and the second current Δ2 is generated.

発振回路制御回路5は、和電流Ikが一定となるように発振回路3の発振周波数f及び/または発振電圧の振幅Vmを制御する。   The oscillation circuit control circuit 5 controls the oscillation frequency f of the oscillation circuit 3 and / or the amplitude Vm of the oscillation voltage so that the sum current Ik is constant.

出力制御回路6は、第1電流Δ1と第2電流Δ2との差に対応する出力電流Ioを出力する。   The output control circuit 6 outputs an output current Io corresponding to the difference between the first current Δ1 and the second current Δ2.

検出部7は、発振回路3の発振周波数f、発振電圧の振幅Vm、第1電流Δ1及び第2電流Δ2に対応する第1電圧V1、第1電流Δ1及び第2電流Δ2の和に対応する第2電圧Vc、第1電流Δ1及び第2電流Δ2の差に対応する第2電圧V3を検出する。   The detection unit 7 corresponds to the sum of the oscillation frequency f of the oscillation circuit 3, the amplitude Vm of the oscillation voltage, the first voltage V1 corresponding to the first current Δ1 and the second current Δ2, the first current Δ1 and the second current Δ2. A second voltage V3 corresponding to the difference between the second voltage Vc, the first current Δ1, and the second current Δ2 is detected.

浮遊容量算出部8は、外部から複数の圧力差、すなわち差圧p0,p1,p2などを印加した状態の発振周波数f、発振電圧の振幅Vm、第1電圧V1(=V2)、第2電圧Vc、及び第3の電圧V3をもとに、第1のセンサキャパシタ1の第1浮遊容量Cs1及び第2のセンサキャパシタ2の第2浮遊容量Cs2を算出する。   The stray capacitance calculation unit 8 includes an oscillation frequency f, an oscillation voltage amplitude Vm, a first voltage V1 (= V2), and a second voltage when a plurality of pressure differences are applied from the outside, that is, differential pressures p0, p1, and p2. Based on Vc and the third voltage V3, the first stray capacitance Cs1 of the first sensor capacitor 1 and the second stray capacitance Cs2 of the second sensor capacitor 2 are calculated.

そして、浮遊容量算出部8が算出した第1浮遊容量Cs1をもとに第1の直線性補正用キャパシタ43の静電容量C43が第1浮遊容量Cs1となるように調整する。また、浮遊容量算出部8が算出した第2浮遊容量Cs2をもとに第2の直線性補正用キャパシタ44の静電容量C44が第2浮遊容量Cs2となるように調整する。この第1及び第2の直線性補正用キャパシタ43,44の静電容量C43,C44をそれぞれ第1及び第2の浮遊容量Cs1,Cs2に調整するのみで、良好な直線性補正を行うことができる。   Then, based on the first stray capacitance Cs1 calculated by the stray capacitance calculation unit 8, the capacitance C43 of the first linearity correction capacitor 43 is adjusted to be the first stray capacitance Cs1. Further, based on the second stray capacitance Cs2 calculated by the stray capacitance calculation unit 8, the capacitance C44 of the second linearity correction capacitor 44 is adjusted to become the second stray capacitance Cs2. By simply adjusting the capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44 to the first and second stray capacitances Cs1 and Cs2, respectively, good linearity correction can be performed. it can.

[詳細構成及び圧力測定動作]
図2は、図1に示した静電容量式圧力測定装置の詳細構成を示す回路図である。なお、図1に対応する構成部分は同一符号を付している。図1において、抵抗9は、外部の負荷抵抗である。さらに、電源Vは、この静電容量式圧力測定装置に電力を供給する外部直流電源である。検出部7及び浮遊容量算出部8を除いた静電容量式圧力測定装置は、第1及び第2のセンサキャパシタ1,2が検出した微小差圧(微小変位)に比例した直流電流信号である出力電流Ioを抵抗9に出力する。この出力電流Ioは、例えば、4〜20mAである。
[Detailed configuration and pressure measurement operation]
FIG. 2 is a circuit diagram showing a detailed configuration of the capacitance type pressure measuring apparatus shown in FIG. In addition, the same code | symbol is attached | subjected to the component corresponding to FIG. In FIG. 1, a resistor 9 is an external load resistor. Further, the power source V is an external DC power source that supplies power to the capacitance type pressure measuring device. The capacitance type pressure measuring device excluding the detection unit 7 and the stray capacitance calculation unit 8 is a direct current signal proportional to a minute differential pressure (minute displacement) detected by the first and second sensor capacitors 1 and 2. The output current Io is output to the resistor 9. This output current Io is, for example, 4 to 20 mA.

符号31〜34は、定電圧回路101を構成する。符号71〜78は、正弦波信号を発振する発振回路3を構成する。符号80〜82は、基準電圧源102を構成する。符号83〜86は、発振回路制御回路5を構成する。この発振回路制御回路5は、発振回路3の発振電圧の振幅を制御している。充放電回路4内の巻線10,11,12は、発振回路3内の1次巻線である巻線72に一体に巻回された2次巻線であり、巻数が等しい。また、巻線99も巻線72に一体に巻回された2次巻線であるが、必ずしも巻数が等しい必要はない。   Reference numerals 31 to 34 constitute the constant voltage circuit 101. Reference numerals 71 to 78 form an oscillation circuit 3 that oscillates a sine wave signal. Reference numerals 80 to 82 constitute the reference voltage source 102. Reference numerals 83 to 86 constitute the oscillation circuit control circuit 5. The oscillation circuit control circuit 5 controls the amplitude of the oscillation voltage of the oscillation circuit 3. The windings 10, 11, and 12 in the charge / discharge circuit 4 are secondary windings that are integrally wound around the winding 72 that is the primary winding in the oscillation circuit 3, and have the same number of turns. The winding 99 is also a secondary winding integrally wound around the winding 72, but the number of turns is not necessarily equal.

充放電回路4では、巻線10,11,12に誘起された交流電圧が第1及び第2のセンサキャパシタ1,2に印加され、充放電が繰り返される。第1(第2)のセンサキャパシタ1(2)に対する充電ルートは、巻線12、ダイオード15(16)、第1(第2)のセンサキャパシタ1(2)、抵抗39、巻線12の順となる。一方、放電ルートは、第1(第2)のセンサキャパシタ1(2)、ダイオード13(14)、巻線10(11)、抵抗35(36,37)、第1(第2)のセンサキャパシタ1(2)の順である。なお、この場合の充電電流と放電電流とは互いに等しい。   In the charging / discharging circuit 4, the AC voltage induced in the windings 10, 11, 12 is applied to the first and second sensor capacitors 1, 2, and charging / discharging is repeated. The charging route for the first (second) sensor capacitor 1 (2) is as follows: winding 12, diode 15 (16), first (second) sensor capacitor 1 (2), resistor 39, winding 12 in this order. It becomes. On the other hand, the discharge route includes the first (second) sensor capacitor 1 (2), the diode 13 (14), the winding 10 (11), the resistor 35 (36, 37), and the first (second) sensor capacitor. The order is 1 (2). In this case, the charging current and the discharging current are equal to each other.

また、充放電回路4では、第1及び第2の直線性補正用キャパシタ43,44にも巻線10,11,12に誘起された交流電圧が印加され、充放電が繰り返される。第1(第2)の直線性補正用キャパシタ43(44)の放電ルートは、第1の直線性補正用キャパシタ43(44)、ダイオード47(48)、オペアンプ40の出力、オペアンプ40のマイナス電源端子、巻線12、第1(第2)の直線性補正用キャパシタ43(44)の順である。一方、充電ルートは、巻線12、抵抗39、抵抗35(36,37)、ダイオード45(46)、第1(第2)の直線性補正用キャパシタ43(44)、巻線12の順である。なお、この場合の充電電流と放電電流とは互いに等しい。   In the charging / discharging circuit 4, the AC voltage induced in the windings 10, 11, 12 is also applied to the first and second linearity correcting capacitors 43, 44, and charging / discharging is repeated. The discharge route of the first (second) linearity correction capacitor 43 (44) is the first linearity correction capacitor 43 (44), the diode 47 (48), the output of the operational amplifier 40, and the negative power supply of the operational amplifier 40. The order is the terminal, the winding 12, and the first (second) linearity correcting capacitor 43 (44). On the other hand, the charging route is in the order of the winding 12, the resistor 39, the resistor 35 (36, 37), the diode 45 (46), the first (second) linearity correcting capacitor 43 (44), and the winding 12. is there. In this case, the charging current and the discharging current are equal to each other.

なお、上述した充電電流及び放電電流は、キャパシタ20〜22によって平滑される。そして、ダイオード13〜16,45〜48の順方向電圧を無視すると、第1及び第2のセンサキャパシタ1,2に対する充放電電流I1,I2、及び第1及び第2の直線性補正用キャパシタ43,44に対する充放電電流Ic1,Ic2は、次式(1)〜(4)で示される。
I1=f(2Vm−V1−Vc)C1 …(1)
I2=f(2Vm−V2−Vc)C2 …(2)
Ic1=f{2Vm−(1+R41/R42)(V1+Vc)+(V1+Vc)}C43 …(3)
Ic2=f{2Vm−(1+R41/R42)(V1+Vc)+(V1+Vc)}C44 …(4)
なお、fは発振周波数である。Vmは発振電圧の振幅である。V1は抵抗35の端子間電圧である。V2は、抵抗36〜37の端子間電圧である。Vcは抵抗39の端子間電圧である。
The charging current and discharging current described above are smoothed by the capacitors 20-22. When the forward voltages of the diodes 13 to 16 and 45 to 48 are ignored, the charge / discharge currents I1 and I2 for the first and second sensor capacitors 1 and 2 and the first and second linearity correction capacitors 43 are ignored. , 44 are represented by the following equations (1) to (4).
I1 = f (2Vm-V1-Vc) C1 (1)
I2 = f (2Vm-V2-Vc) C2 (2)
Ic1 = f {2Vm− (1 + R41 / R42) (V1 + Vc) + (V1 + Vc)} C43 (3)
Ic2 = f {2Vm- (1 + R41 / R42) (V1 + Vc) + (V1 + Vc)} C44 (4)
Note that f is an oscillation frequency. Vm is the amplitude of the oscillation voltage. V <b> 1 is a voltage between the terminals of the resistor 35. V2 is the voltage across the resistors 36-37. Vc is a voltage between the terminals of the resistor 39.

ここで、出力制御回路6のオペアンプ63及びトランジスタ67は、点aと点bとの電位が等しくなるようにフィードバック電流Ifを抵抗37に供給する。この結果、V1=V2となる。また、R41=R42であるとする。この場合の式(1)〜(4)は、次式(5〜8)となる。
I1=f(2Vm−V1−Vc)C1 …(5)
I2=f(2Vm−V1−Vc)C2 …(6)
Ic1=f(2Vm−V1−Vc)C43 …(7)
Ic2=f(2Vm−V1−Vc)C44 …(8)
したがって、第1及び第2のセンサキャパシタ1,2及び第1及び第2の直線性補正用キャパシタ43,44には、同一の大きさの電圧が印加されていることがわかる。
Here, the operational amplifier 63 and the transistor 67 of the output control circuit 6 supply the feedback current If to the resistor 37 so that the potentials at the points a and b are equal. As a result, V1 = V2. Further, it is assumed that R41 = R42. Expressions (1) to (4) in this case become the following expressions (5 to 8).
I1 = f (2Vm-V1-Vc) C1 (5)
I2 = f (2Vm-V1-Vc) C2 (6)
Ic1 = f (2Vm-V1-Vc) C43 (7)
Ic2 = f (2Vm-V1-Vc) C44 (8)
Therefore, it can be seen that the same voltage is applied to the first and second sensor capacitors 1 and 2 and the first and second linearity correction capacitors 43 and 44.

一方、発振回路制御回路5は、基準電圧源102内のツェナーダイオード82のツェナー電圧Vzと、抵抗39の端子間電圧Vcとが等しくなるように、発振電圧の振幅Vmを制御する。したがって、
Vc=R39(I1−Ic1+I2−Ic2)
Vz=R39(I1−Ic1+I2−Ic2) …(9)
On the other hand, the oscillation circuit control circuit 5 controls the amplitude Vm of the oscillation voltage so that the Zener voltage Vz of the Zener diode 82 in the reference voltage source 102 is equal to the terminal voltage Vc of the resistor 39. Therefore,
Vc = R39 (I1-Ic1 + I2-Ic2)
Vz = R39 (I1-Ic1 + I2-Ic2) (9)

式(5)〜(8)を式(9)に代入すると、
f(2Vm−V1−Vc)=Vz/R39/(C1−C43+C2−C44)
…(10)
したがって、式(5)〜(8),(10)を用いると、
I1−Ic1=(C1−C43)/(C1−C43+C2−C44)・Vz/R39
…(11)
I2−Ic2=(C2−C44)/(C1−C43+C2−C44)・Vz/R39
…(12)
Substituting equations (5) to (8) into equation (9),
f (2Vm-V1-Vc) = Vz / R39 / (C1-C43 + C2-C44)
(10)
Therefore, when using the equations (5) to (8) and (10),
I1-Ic1 = (C1-C43) / (C1-C43 + C2-C44) .Vz / R39
... (11)
I2-Ic2 = (C2-C44) / (C1-C43 + C2-C44) .Vz / R39
(12)

ここで、
R59・If1+Vps=R60・If3 …(13)
If3=If+If´−If1 …(14)
式(13)、(14)から、
If1={R60(If+If´)−Vps}/(R59+R60) …(15)
If3={R59(If+If´)+Vps}/(R59+R60) …(16)
here,
R59 · If1 + Vps = R60 · If3 (13)
If3 = If + If′−If1 (14)
From equations (13) and (14),
If1 = {R60 (If + If ′) − Vps} / (R59 + R60) (15)
If3 = {R59 (If + If ′) + Vps} / (R59 + R60) (16)

また、
R69・If2=V4+R59・If1 …(17)
式(17)から、
If2=(V4+R59・If1)/R69 …(18)
Also,
R69 · If2 = V4 + R59 · If1 (17)
From equation (17)
If2 = (V4 + R59 · If1) / R69 (18)

一方、
V1=R35(I1−Ic1)=(R36+R37)(I2−Ic2)+R37・If
…(19)
R35=R36+R37とすれば、式(19)から
If=R35/R37・{(I1−Ic1)−(I2−Ic2)} …(20)
on the other hand,
V1 = R35 (I1-Ic1) = (R36 + R37) (I2-Ic2) + R37 · If
... (19)
If R35 = R36 + R37, then from equation (19), If = R35 / R37. {(I1-Ic1)-(I2-Ic2)} (20)

ここで、発振回路制御回路5により第2電圧Vcは定電圧になる。すなわち、抵抗39に流れる電流Ikが定電流となる。この電流Ikは、次式(21)で表せる。
Ik=I1−Ic1+I2−Ic2 …(21)
式(20)、(21)から
I2−Ic2=(1/2)Ik−R37/(2・R35)If …(22)
また、
V3=R37(I2−Ic2+If)
=R37(R35+R36)/(2・R35)If+(R37/2)Ik
…(23)
さらに、
R69・If2=R59・If1+R61・If´ …(24)
式(15)、(24)から
If2=(R59/R69)If1+(R61/R69)If´
=(R59/R69){R60(If+If´)−Vps}/(R59+R60)+(R61/R69)If´
=(R59/R69)・R60/(R59+R60)If+{(R59/R69)・R60/(R59+R60)+(R61/R69)}If´−(R59/R69)/(R59+R60)Vps …(25)
また、
R61・If´=R62・If+V3 …(26)
式(23)、(26)から
If´=(R62/R61)If+(R37/R61)(R35+R36)/(2・R35)If+(R37/R61/2)Ik
={(R62/R61)+(R37/R61)(R35+R36)/(2・R35)}If+(R37/R61/2)Ik …(27)
Here, the second voltage Vc becomes a constant voltage by the oscillation circuit control circuit 5. That is, the current Ik flowing through the resistor 39 is a constant current. This current Ik can be expressed by the following equation (21).
Ik = I1-Ic1 + I2-Ic2 (21)
From Expressions (20) and (21) I2-Ic2 = (1/2) Ik-R37 / (2.R35) If (22)
Also,
V3 = R37 (I2-Ic2 + If)
= R37 (R35 + R36) / (2.R35) If + (R37 / 2) Ik
... (23)
further,
R69 · If2 = R59 · If1 + R61 · If ′ (24)
From Expressions (15) and (24), If2 = (R59 / R69) If1 + (R61 / R69) If ′
= (R59 / R69) {R60 (If + If ′) − Vps} / (R59 + R60) + (R61 / R69) If ′
= (R59 / R69) · R60 / (R59 + R60) If + {(R59 / R69) · R60 / (R59 + R60) + (R61 / R69)} If ′ − (R59 / R69) / (R59 + R60) Vps (25)
Also,
R61 · If ′ = R62 · If + V3 (26)
From formulas (23) and (26), If ′ = (R62 / R61) If + (R37 / R61) (R35 + R36) / (2.R35) If + (R37 / R61 / 2) Ik
= {(R62 / R61) + (R37 / R61) (R35 + R36) / (2.R35)} If + (R37 / R61 / 2) Ik (27)

ここで、
Io=If2+If´+If …(28)
式(25)、(27)、(28)から
Io=(R59/R69)・R60/(R59+R60)If+{(R59/R69)・R60/(R59+R60)+(R61/R69)}If´−(R59/R69)/(R59+R60)Vps+If´+If
={(R59/R69)・R60/(R59+R60)+1}If+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}If´−(R59/R69)/(R59+R60)Vps
=[{(R59/R69)・R60/(R59+R60)+1}+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}{(R62/R61)+(R37/R61)(R35+R36)/(2・R35)}]If+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}(R37/R61/2)Ik−(R59/R69)/(R59+R60)Vps …(29)
here,
Io = If2 + If ′ + If (28)
From Expressions (25), (27), and (28), Io = (R59 / R69) · R60 / (R59 + R60) If + {(R59 / R69) · R60 / (R59 + R60) + (R61 / R69)} If ′ − ( R59 / R69) / (R59 + R60) Vps + If ′ + If
= {(R59 / R69) · R60 / (R59 + R60) +1} If + {(R59 / R69) · R60 / (R59 + R60) + (R61 / R69) +1} If ′ − (R59 / R69) / (R59 + R60) Vps
= [{(R59 / R69) .R60 / (R59 + R60) +1} + {(R59 / R69) .R60 / (R59 + R60) + (R61 / R69) +1} {(R62 / R61) + (R37 / R61) ( R35 + R36) / (2.R35)}] If + {(R59 / R69) .R60 / (R59 + R60) + (R61 / R69) +1} (R37 / R61 / 2) Ik− (R59 / R69) / (R59 + R60) Vps ... (29)

式(11),(12)、(20)、(29)から、出力電流Ioは、
Io=[{(R59/R69)・R60/(R59+R60)+1}+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}{(R62/R61)+(R37/R61)(R35+R36)/(2・R35)}]・R35/R37・{(I1−Ic1)−(I2−Ic2)}+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}(R37/R61/2)Ik−(R59/R69)/(R59+R60)Vps
=[{(R59/R69)・R60/(R59+R60)+1}+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}{(R62/R61)+(R37/R61)(R35+R36)/(2・R35)}]・R35/R37・{C1−C43−(C2−C44)}/(C1−C43+C2−C44)・Vz/R39+{(R59/R69)・R60/(R59+R60)+(R61/R69)+1}(R37/R61/2)Ik−(R59/R69)/(R59+R60)Vps
…(30)
となる。ここで、Ik及びVpsは一定であるため、C43=Cs1,C44=Cs2となるようにC43及びC44を調整すれば、C1及びC2にそれぞれ含まれる浮遊容量Cs1,Cs2が除かれ、第1及第2のセンサキャパシタ1,2の微小変位に比例した直流電流信号である出力電流Ioを負荷抵抗である抵抗9に出力することができる。
From the equations (11), (12), (20), (29), the output current Io is
Io = [{(R59 / R69) · R60 / (R59 + R60) +1} + {(R59 / R69) · R60 / (R59 + R60) + (R61 / R69) +1} {(R62 / R61) + (R37 / R61) (R35 + R36) / (2.R35)}] R35 / R37. {(I1-Ic1)-(I2-Ic2)} + {(R59 / R69) .R60 / (R59 + R60) + (R61 / R69) +1} (R37 / R61 / 2) Ik- (R59 / R69) / (R59 + R60) Vps
= [{(R59 / R69) .R60 / (R59 + R60) +1} + {(R59 / R69) .R60 / (R59 + R60) + (R61 / R69) +1} {(R62 / R61) + (R37 / R61) ( R35 + R36) / (2.R35)}]. R35 / R37. {C1-C43- (C2-C44)} / (C1-C43 + C2-C44) .Vz / R39 + {(R59 / R69) .R60 / (R59 + R60) + (R61 / R69) +1} (R37 / R61 / 2) Ik- (R59 / R69) / (R59 + R60) Vps
... (30)
It becomes. Here, since Ik and Vps are constant, if C43 and C44 are adjusted so that C43 = Cs1, C44 = Cs2, stray capacitances Cs1 and Cs2 included in C1 and C2 are removed, respectively, An output current Io that is a direct current signal proportional to the minute displacement of the second sensor capacitors 1 and 2 can be output to the resistor 9 that is a load resistance.

[直線性補正用キャパシタの調整]
次に、上述した第1及び第2の直線性補正用キャパシタ43,44の調整について図2及び図3を参照して説明する。なお、図3は、図2に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。まず、検出部7は、電圧測定用端子90〜94に接続される。検出部7は、差圧p0,p1,p2が第1及び第2のセンサキャパシタ1,2に印加された状態で、電圧測定用端子90,91間の電圧を第1電圧V1(V1(p0),V1(p1),V1(p2))として検出し、電圧測定用端子90,92間の電圧を第2電圧Vcとして検出し、電圧測定用端子90,94間の電圧を第3電圧V3(V3(p0),V3(p1),V3(p2))として検出し、電圧測定用端子92,93間の電圧を観測して発振周波数f及び発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))を検出する(ステップS101)。
[Adjustment of linearity correction capacitor]
Next, adjustment of the first and second linearity correcting capacitors 43 and 44 described above will be described with reference to FIGS. FIG. 3 is a flowchart showing the linearity correction processing procedure of the capacitance-type pressure measuring device shown in FIG. First, the detection unit 7 is connected to the voltage measurement terminals 90 to 94. In the state where the differential pressures p0, p1, and p2 are applied to the first and second sensor capacitors 1 and 2, the detection unit 7 determines the voltage between the voltage measurement terminals 90 and 91 as the first voltage V1 (V1 (p0 ), V1 (p1), V1 (p2)), the voltage between the voltage measuring terminals 90, 92 is detected as the second voltage Vc, and the voltage between the voltage measuring terminals 90, 94 is the third voltage V3. (V3 (p0), V3 (p1), V3 (p2)), the voltage between the voltage measuring terminals 92 and 93 is observed, and the oscillation frequency f and the amplitude Vm (Vm (p0), Vm (P1), Vm (p2)) are detected (step S101).

その後、浮遊容量算出部8は、検出部7によって検出された、第1電圧V1(V1(p0),V1(p1),V1(p2))、第2電圧Vc、第3電圧V3(V3(p0),V3(p1),V3(p2))、発振周波数f、発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))に加えて、抵抗35〜37の既知の抵抗値R35〜R37、第1及び第2の直線性補正キャパシタ43,44の既知の静電容量C43,C44、及び既知の比rを用いて、浮遊容量Cs1,Cs2を算出する(ステップS102)。ここで、比rは、
r=(p1−p0)/(p2−p1) …(31)
である。
Thereafter, the stray capacitance calculator 8 detects the first voltage V1 (V1 (p0), V1 (p1), V1 (p2)), the second voltage Vc, and the third voltage V3 (V3 (V3 ( p0), V3 (p1), V3 (p2)), oscillation frequency f, oscillation voltage amplitude Vm (Vm (p0), Vm (p1), Vm (p2)), as well as known resistances 35 to 37 The stray capacitances Cs1 and Cs2 are calculated using the resistance values R35 to R37, the known capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44, and the known ratio r (step S102). . Where the ratio r is
r = (p1-p0) / (p2-p1) (31)
It is.

その後、ステップS102で算出した浮遊容量Cs1,Cs2を用いて、第1及び第2の直線性補正用キャパシタ43,44の静電容量C43,C44がそれぞれ浮遊容量Cs1,Cs2となるように調整する(ステップS103)。このステップS103では、調整すべき浮遊容量Cs1,Cs2が既に分かっているので、静電容量C43,C44の調整を容易に行うことができる。   Thereafter, by using the stray capacitances Cs1 and Cs2 calculated in step S102, the first and second linearity correction capacitors 43 and 44 are adjusted so that the electrostatic capacitances C43 and C44 become the stray capacitances Cs1 and Cs2, respectively. (Step S103). In step S103, since the stray capacitances Cs1 and Cs2 to be adjusted are already known, the capacitances C43 and C44 can be easily adjusted.

[浮遊容量Cs1,Cs2の算出原理]
ここで、検出部7が検出した第1電圧V1(V1(p0),V1(p1),V1(p2))、第2電圧Vc、第3電圧V3(V3(p0)、V3(p1)、V3(p2))、発振周波数f、発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))を用いて浮遊容量Cs1,Cs2が算出できる原理について説明する。
[Calculation principle of stray capacitances Cs1, Cs2]
Here, the first voltage V1 (V1 (p0), V1 (p1), V1 (p2)), the second voltage Vc, the third voltage V3 (V3 (p0), V3 (p1)) detected by the detection unit 7, The principle by which the stray capacitances Cs1 and Cs2 can be calculated using V3 (p2)), the oscillation frequency f, and the oscillation voltage amplitude Vm (Vm (p0), Vm (p1), Vm (p2)) will be described.

まず、式(5),(7)より、
I1−Ic1=f(2Vm−V1−Vc)(C1−C43) …(32)
となり、式(6),(8)より、
I2−Ic2=f(2Vm−V1−Vc)(C2−C44) …(33)
となる。
一方、
V1=R35(I1−Ic1) …(34)
V1=R36(I2−Ic2)+V3 …(35)
である。したがって、式(32)〜(35)より、
C1−C43-=V1/R35/{f(2Vm−V1−Vc)} …(36)
C2−C44=(V1−V3)/R36/{f(2Vm−V1−Vc)}
…(37)
が得られる。
First, from equations (5) and (7),
I1-Ic1 = f (2Vm-V1-Vc) (C1-C43) (32)
From equations (6) and (8),
I2-Ic2 = f (2Vm-V1-Vc) (C2-C44) (33)
It becomes.
on the other hand,
V1 = R35 (I1-Ic1) (34)
V1 = R36 (I2-Ic2) + V3 (35)
It is. Therefore, from the equations (32) to (35),
C1-C43- = V1 / R35 / {f (2Vm-V1-Vc)} (36)
C2-C44 = (V1-V3) / R36 / {f (2Vm-V1-Vc)}
... (37)
Is obtained.

ここで、第1及び第2のセンサキャパシタ1,2に加わる差圧をpとすると、式(36),(37)より、
C1(p)=V1(p)/R35/{f(2Vm(p)−V1(p)−Vc)}+C43- …(38)
C2(p)={V1(p)−V3(p)}/R36/{f(2Vm(p)−V1(p)−Vc)}+C44 …(39)
として表すことができる。
Here, when the differential pressure applied to the first and second sensor capacitors 1 and 2 is p, from the equations (36) and (37),
C1 (p) = V1 (p) / R35 / {f (2Vm (p) −V1 (p) −Vc)} + C43− (38)
C2 (p) = {V1 (p) −V3 (p)} / R36 / {f (2Vm (p) −V1 (p) −Vc)} + C44 (39)
Can be expressed as

一方、
C1(p)=ε・A/{d−δ−Δ(p)}+Cs1 …(40)
C2(p)=ε・A/{d+δ+Δ(p)}+Cs2 …(41)
である。ここで、εは、第1及び第2のセンサキャパシタ1,2の電極間の誘電率である。また、Aは、第1及び第2のセンサキャパシタ1,2の電極面積である。また、dは、第1及び第2のセンサキャパシタ1,2の固定電極間距離の1/2の値である。また、δは、第1及び第2のセンサキャパシタ1,2が共有するダイヤフラムなどの可動電極の差圧無し時(p=0)における位置ずれ量である。また、Δ(p)は、第1及び第2のセンサキャパシタ1,2が共有するダイヤフラムなどの可動電極の差圧p時の変位である。
この式(40),(41)より、
1/{C1(p)−Cs1}={d−δ−Δ(p)}/(ε・A) …(42)
1/{C2(p)−Cs2}={d+δ+Δ(p)}/(ε・A) …(43)
が得られる。
on the other hand,
C1 (p) = ε · A / {d−δ−Δ (p)} + Cs1 (40)
C2 (p) = ε · A / {d + δ + Δ (p)} + Cs2 (41)
It is. Here, ε is a dielectric constant between the electrodes of the first and second sensor capacitors 1 and 2. A is the electrode area of the first and second sensor capacitors 1 and 2. Further, d is a value that is ½ of the distance between the fixed electrodes of the first and second sensor capacitors 1 and 2. Further, δ is a positional deviation amount when there is no differential pressure (p = 0) of a movable electrode such as a diaphragm shared by the first and second sensor capacitors 1 and 2. Δ (p) is the displacement of the movable electrode such as a diaphragm shared by the first and second sensor capacitors 1 and 2 at the time of the differential pressure p.
From these equations (40) and (41),
1 / {C1 (p) −Cs1} = {d−δ−Δ (p)} / (ε · A) (42)
1 / {C2 (p) −Cs2} = {d + δ + Δ (p)} / (ε · A) (43)
Is obtained.

ここで、異なる差圧p0,p1,p2は、
p0<p1<p2 …(44)
の関係を持たせている。
また、変位Δ(p)は、差圧pに比例するので、その比例係数をkとすると、
Δ(p)=k・p …(45)
と表すことができる。
Here, the different differential pressures p0, p1, and p2 are
p0 <p1 <p2 (44)
Have a relationship.
Moreover, since the displacement Δ (p) is proportional to the differential pressure p, if the proportionality coefficient is k,
Δ (p) = k · p (45)
It can be expressed as.

第1のセンサキャパシタ1の静電容量C1(p)及び浮遊容量Cs1について、式(42),(44),(45)より、差圧p=p0,p1に対して次式が成り立つ。
1/{C1(p0)−Cs1}−1/{C1(p1)−Cs1}
-={d−δ−Δ(p0)}/(ε・A)−{d−δ−Δ(p1)}/(ε・A)
={Δ(p1)−Δ(p0)}/(ε・A)
=k(p1−p0)/(ε・A) …(46)
式(46)を変形すると、
[1/{C1(p0)−Cs1}−1/{C1(p1)−Cs1}]/(p1−p0)=k/(ε・A) …(47)
となる。
同様にして、第1のセンサキャパシタ1の静電容量C1(p)及び浮遊容量Cs1について、差圧p=p1,p2に対して次式が成り立つ。
[1/{C1(p1)−Cs1}−1/{C1(p2)−Cs1}]/(p2−p1)=k/(ε・A) …(48)
With respect to the electrostatic capacitance C1 (p) and the stray capacitance Cs1 of the first sensor capacitor 1, the following equation holds for the differential pressure p = p0, p1 from the equations (42), (44), and (45).
1 / {C1 (p0) -Cs1} -1 / {C1 (p1) -Cs1}
-= {D-δ-Δ (p0)} / (ε · A)-{d-δ-Δ (p1)} / (ε · A)
= {Δ (p1) −Δ (p0)} / (ε · A)
= K (p1-p0) / (ε · A) (46)
When formula (46) is transformed,
[1 / {C1 (p0) −Cs1} −1 / {C1 (p1) −Cs1}] / (p1−p0) = k / (ε · A) (47)
It becomes.
Similarly, the following equation holds for the differential pressure p = p1, p2 for the capacitance C1 (p) and the stray capacitance Cs1 of the first sensor capacitor 1.
[1 / {C1 (p1) −Cs1} −1 / {C1 (p2) −Cs1}] / (p2−p1) = k / (ε · A) (48)

式(47),(48)の左辺は等しいので、
[1/{C1(p0)−Cs1}−1/{C1(p1)−Cs1}]/(p1−p0)
=[1/{C1(p1)−Cs1}−1/{C1(p2)−Cs1}]/(p2−p1)
…(49)
が得られる。式(31)を用いると、式(49)は、
[1/{C1(p0)−Cs1}−1/{C1(p1)−Cs1}]−r[1/{C1(p1)−Cs1}−1/{C1(p2)−Cs1}]=0 …(50)
となる。
式(50)の両辺に、{C1(p0)−Cs1}{C1(p1)−Cs1}{C1(p2)−Cs1}を乗算すると、
{C1(p1)−Cs1}{C1(p2)−Cs1}−{C1(p0)−Cs1}{C1(p2)−Cs1}−r{C1(p0)−Cs1}{C1(p2)−Cs1}+r{C1(p0)−Cs1}{C1(p1)−Cs1}
=C1(p1)・C1(p2)−C1(p1)・Cs1−C1(p2)・Cs1+Cs1
−C1(p0)・C1(p2)+C1(p0)・Cs1+C1(p2)・Cs1−Cs1
−r・C1(p0)・C1(p2)+r・C1(p0)・Cs1+r・C1(p2)・Cs1−r・Cs1
+r・C1(p0)・C1(p1)−r・C1(p0)・Cs1−r・C1(p1)・Cs1+r・Cs1
=C1(p1)・C1(p2)−(1+r)C1(p0)・C1(p2)+r・C1(p0)・C1(p1)+[C1(p0)−(1+r)C1(p1)+r・C1(p2)]Cs1
=0 …(51)
となる。この結果、
Cs1=−[C1(p1)・C1(p2)−(1+r)C1(p0)・C1(p2)+r・C1(p0)・C1(p1)]/[C1(p0)−(1+r)C1(p1)+r・C1(p2)] …(52)
となる。すなわち、浮遊容量Cs1を算出することができる。
Since the left sides of equations (47) and (48) are equal,
[1 / {C1 (p0) -Cs1} -1 / {C1 (p1) -Cs1}] / (p1-p0)
= [1 / {C1 (p1) -Cs1} -1 / {C1 (p2) -Cs1}] / (p2-p1)
... (49)
Is obtained. Using equation (31), equation (49) becomes
[1 / {C1 (p0) -Cs1} -1 / {C1 (p1) -Cs1}]-r [1 / {C1 (p1) -Cs1} -1 / {C1 (p2) -Cs1}] = 0 ... (50)
It becomes.
Multiplying both sides of equation (50) by {C1 (p0) −Cs1} {C1 (p1) −Cs1} {C1 (p2) −Cs1}
{C1 (p1) -Cs1} {C1 (p2) -Cs1}-{C1 (p0) -Cs1} {C1 (p2) -Cs1} -r {C1 (p0) -Cs1} {C1 (p2) -Cs1 } + R {C1 (p0) -Cs1} {C1 (p1) -Cs1}
= C1 (p1) .C1 (p2) -C1 (p1) .Cs1-C1 (p2) .Cs1 + Cs1 2
-C1 (p0) .C1 (p2) + C1 (p0) .Cs1 + C1 (p2) .Cs1-Cs1 2
-R.C1 (p0) .C1 (p2) + r.C1 (p0) .Cs1 + r.C1 (p2) .Cs1-r.Cs1 2
+ R * C1 (p0) * C1 (p1) -r * C1 (p0) * Cs1-r * C1 (p1) * Cs1 + r * Cs1 2
= C1 (p1) .C1 (p2)-(1 + r) C1 (p0) .C1 (p2) + r.C1 (p0) .C1 (p1) + [C1 (p0)-(1 + r) C1 (p1) + r. C1 (p2)] Cs1
= 0 (51)
It becomes. As a result,
Cs1 = − [C1 (p1) · C1 (p2) − (1 + r) C1 (p0) · C1 (p2) + r · C1 (p0) · C1 (p1)] / [C1 (p0) − (1 + r) C1 ( p1) + r · C1 (p2)] (52)
It becomes. That is, the stray capacitance Cs1 can be calculated.

同様にして、第2のセンサキャパシタ2の静電容量C2(p)について、差圧p=p0,p1及びp=p1,p2を与えることによって、浮遊容量Cs1と同様に浮遊容量Cs2を求める式(53)が得られる。
Cs2=−[C2(p1)・C2(p2)−(1+r)C2(p0)・C2(p2)+r・C2(p0)・C2(p1)]/[C2(p0)−(1+r)C2(p1)+r・C2(p2)] …(53)
すなわち、浮遊容量Cs2を算出することができる。
Similarly, by giving differential pressures p = p0, p1 and p = p1, p2 with respect to the capacitance C2 (p) of the second sensor capacitor 2, an equation for obtaining the stray capacitance Cs2 similarly to the stray capacitance Cs1. (53) is obtained.
Cs2 =-[C2 (p1) .C2 (p2)-(1 + r) C2 (p0) .C2 (p2) + r.C2 (p0) .C2 (p1)] / [C2 (p0)-(1 + r) C2 ( p1) + r · C2 (p2)] (53)
That is, the stray capacitance Cs2 can be calculated.

したがって、第1及び第2の直線性補正用キャパシタ43,44の調整後の静電容量をC43´,C44´とすると、算出したCs1,Cs2を用いて、
C43´=Cs1 …(54)
C44´-=Cs2 …(55)
とする調整を行えばよい。この結果、第1及び第2の直線性補正用キャパシタ43,44の調整後の静電容量は、浮遊容量Cs1,Cs2となる。
Therefore, assuming that the capacitance after adjustment of the first and second linearity correcting capacitors 43 and 44 is C43 ′ and C44 ′, the calculated Cs1 and Cs2 are used.
C43 ′ = Cs1 (54)
C44 '-= Cs2 (55)
Adjustment may be performed. As a result, the adjusted capacitances of the first and second linearity correction capacitors 43 and 44 become the stray capacitances Cs1 and Cs2.

(実施の形態2)
次に、本実施の形態2について説明する。本実施の形態2では、図4に示すように、第1及び第2の直線性補正キャパシタ43,44に流れる電流を遮断する遮断スイッチ111を設けている。遮断スイッチ111は、ダイオード47,48とオペアンプ40の出力端との間に設けられている。その他の構成は、図2に示した構成と同じであり、同一構成部分には同一符号を付している。
(Embodiment 2)
Next, the second embodiment will be described. In the second embodiment, as shown in FIG. 4, a cutoff switch 111 is provided that cuts off the current flowing through the first and second linearity correction capacitors 43 and 44. The cutoff switch 111 is provided between the diodes 47 and 48 and the output terminal of the operational amplifier 40. Other configurations are the same as those shown in FIG. 2, and the same components are denoted by the same reference numerals.

[直線性補正用キャパシタの調整]
次に、実施の形態2による第1及び第2の直線性補正用キャパシタ43,44の調整について図4及び図5を参照して説明する。なお、図5は、図4に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。まず、検出部7は、電圧測定用端子90〜94に接続される。検出部7は、遮断スイッチ111をオフにし(ステップS201)、第1及び第2の直線性補正キャパシタ43,44に流れる電流を遮断する。続いて、差圧p0,p1,p2が第1及び第2のセンサキャパシタに印加された状態で、電圧測定用端子90,91間の電圧を第1電圧V1(V1(p0),V1(p1),V1(p2))として検出し、電圧測定用端子90,92間の電圧を第2電圧Vcとして検出し、電圧測定用端子90,94間の電圧を第3電圧V3(V3(p0),V3(p1),V3(p2))として検出し、電圧測定用端子92,93間の電圧を観測して発振周波数f及び発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))を検出する(ステップS202)。
[Adjustment of linearity correction capacitor]
Next, adjustment of the first and second linearity correcting capacitors 43 and 44 according to the second embodiment will be described with reference to FIGS. FIG. 5 is a flowchart showing the linearity correction processing procedure of the capacitance-type pressure measuring device shown in FIG. First, the detection unit 7 is connected to the voltage measurement terminals 90 to 94. The detection unit 7 turns off the cutoff switch 111 (step S201), and cuts off the current flowing through the first and second linearity correction capacitors 43 and 44. Subsequently, in a state where the differential pressures p0, p1, and p2 are applied to the first and second sensor capacitors, the voltage between the voltage measurement terminals 90 and 91 is set to the first voltage V1 (V1 (p0), V1 (p1 ), V1 (p2)), the voltage between the voltage measuring terminals 90, 92 is detected as the second voltage Vc, and the voltage between the voltage measuring terminals 90, 94 is detected as the third voltage V3 (V3 (p0)). , V3 (p1), V3 (p2)), the voltage between the voltage measuring terminals 92, 93 is observed, and the oscillation frequency f and the amplitude of the oscillation voltage Vm (Vm (p0), Vm (p1), Vm) are detected. (P2)) is detected (step S202).

その後、浮遊容量算出部8は、検出部7によって検出された、第1電圧V1(V1(p0),V1(p1),V1(p2))、第2電圧Vc、第3電圧V3(V3(p0)、V3(p1)、V3(p2))、発振周波数f、発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))に加えて、抵抗35〜37の既知の抵抗値R35〜R37、及び既知の比rを用いて、浮遊容量Cs1,Cs2を算出する(ステップS203)。この時の第1及び第2の直線性補正キャパシタ43,44の静電容量C43,C44は、C43=C44=0になる。   Thereafter, the stray capacitance calculator 8 detects the first voltage V1 (V1 (p0), V1 (p1), V1 (p2)), the second voltage Vc, and the third voltage V3 (V3 (V3 ( p0), V3 (p1), V3 (p2)), oscillation frequency f, oscillation voltage amplitude Vm (Vm (p0), Vm (p1), Vm (p2)), as well as known resistances 35 to 37 The stray capacitances Cs1 and Cs2 are calculated using the resistance values R35 to R37 and the known ratio r (step S203). At this time, the capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44 are C43 = C44 = 0.

その後、ステップS203で算出した浮遊容量Cs1,Cs2を用いて、第1及び第2の直線性補正用キャパシタ43,44の静電容量C43,C44がそれぞれ浮遊容量Cs1,Cs2となるように調整する(ステップS204)。このステップS204では、調整すべき浮遊容量Cs1,Cs2が既に分かっているので、静電容量C43,C44の調整を容易に行うことができる。   Thereafter, by using the stray capacitances Cs1 and Cs2 calculated in step S203, the first and second linearity correction capacitors 43 and 44 are adjusted so that the electrostatic capacitances C43 and C44 become the stray capacitances Cs1 and Cs2, respectively. (Step S204). In step S204, since the stray capacitances Cs1 and Cs2 to be adjusted are already known, the capacitances C43 and C44 can be easily adjusted.

なお、遮断スイッチ111によって第1及び第2の直線性補正用キャパシタ43,44に流れる電流が遮断されるため、第1及び第2の直線性補正用キャパシタ43,44による直線性補正は無効となる。この状態で、第1及び第2の直線性補正用キャパシタ43,44を直接、浮遊容量Cs1,Cs2に調整すればよい。   Since the current flowing through the first and second linearity correction capacitors 43 and 44 is interrupted by the cutoff switch 111, the linearity correction by the first and second linearity correction capacitors 43 and 44 is invalid. Become. In this state, the first and second linearity correcting capacitors 43 and 44 may be directly adjusted to the stray capacitances Cs1 and Cs2.

すなわち、第1及び第2の直線性補正用キャパシタ43,44の調整後の静電容量をC43´,C44´とすると、算出したCs1,Cs2を用いて、
C43´=Cs1 …(56)
C44´-=Cs2 …(57)
とする調整を行えばよい。この結果、第1及び第2の直線性補正用キャパシタ43,44の調整後の静電容量は、浮遊容量Cs1,Cs2となる。
That is, assuming that the capacitance after adjustment of the first and second linearity correction capacitors 43 and 44 is C43 ′ and C44 ′, the calculated Cs1 and Cs2 are used.
C43 ′ = Cs1 (56)
C44 '-= Cs2 (57)
Adjustment may be performed. As a result, the adjusted capacitances of the first and second linearity correction capacitors 43 and 44 become the stray capacitances Cs1 and Cs2.

この調整完了後、遮断スイッチ111をオン(ステップS205)とし、本処理を終了する。   After this adjustment is completed, the cutoff switch 111 is turned on (step S205), and this process is terminated.

(実施の形態3)
次に、本実施の形態2について説明する。本実施の形態2では、図6に示すように、第1及び前記第2の直線性補正用キャパシタ43,44の静電容量C43,C44を可変ではなく、固定としている。また、図4に示した遮断スイッチ111の位置に、第1及び第2の可変抵抗49,50と第1及び第2の整流用キャパシタ51,52とを設けている。すなわち、ダイオード47に可変抵抗49を直列接続し、ダイオード48に可変抵抗50を直列接続している。さらに、整流用キャパシタ51,52をそれぞれ可変抵抗49,50に並列接続している。その他の構成は、図2に示した構成と同じであり、同一構成部分には同一符号を付している。
(Embodiment 3)
Next, the second embodiment will be described. In the second embodiment, as shown in FIG. 6, the capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44 are not variable but fixed. Also, first and second variable resistors 49 and 50 and first and second rectifying capacitors 51 and 52 are provided at the position of the cutoff switch 111 shown in FIG. That is, the variable resistor 49 is connected in series to the diode 47, and the variable resistor 50 is connected in series to the diode 48. Furthermore, rectifying capacitors 51 and 52 are connected in parallel to variable resistors 49 and 50, respectively. Other configurations are the same as those shown in FIG. 2, and the same components are denoted by the same reference numerals.

[直線性補正用キャパシタの調整]
次に、実施の形態3による第1及び第2の直線性補正用キャパシタ43,44の調整について図6及び図7を参照して説明する。なお、図7は、図6に示した静電容量式圧力測定装置の直線性補正処理手順を示すフローチャートである。まず、検出部7は、電圧測定用端子90〜94に接続される。検出部7は、差圧p0,p1,p2が第1及び第2のセンサキャパシタに印加された状態で、電圧測定用端子90,91間の電圧を第1電圧V1(V1(p0),V1(p1),V1(p2))として検出し、電圧測定用端子90,92間の電圧を第2電圧Vcとして検出し、電圧測定用端子90,94間の電圧を第3電圧V3(V3(p0),V3(p1),V3(p2))として検出し、電圧測定用端子92,93間の電圧を観測して発振周波数f及び発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))を検出する(ステップS301)。
[Adjustment of linearity correction capacitor]
Next, adjustment of the first and second linearity correcting capacitors 43 and 44 according to the third embodiment will be described with reference to FIGS. FIG. 7 is a flowchart showing the linearity correction processing procedure of the capacitive pressure measuring device shown in FIG. First, the detection unit 7 is connected to the voltage measurement terminals 90 to 94. In the state where the differential pressures p0, p1, and p2 are applied to the first and second sensor capacitors, the detection unit 7 determines the voltage between the voltage measurement terminals 90 and 91 as the first voltage V1 (V1 (p0), V1). (P1), V1 (p2)), the voltage between the voltage measuring terminals 90, 92 is detected as the second voltage Vc, and the voltage between the voltage measuring terminals 90, 94 is detected as the third voltage V3 (V3 (V3 ( p0), V3 (p1), V3 (p2)), and the voltage between the voltage measuring terminals 92 and 93 is observed to determine the oscillation frequency f and the amplitude of the oscillation voltage Vm (Vm (p0), Vm (p1)). , Vm (p2)) is detected (step S301).

その後、浮遊容量算出部8は、検出部7によって検出された、第1電圧V1(V1(p0),V1(p1),V1(p2))、第2電圧Vc、第3電圧V3(V3(p0)、V3(p1)、V3(p2))、発振周波数f、発振電圧の振幅Vm(Vm(p0),Vm(p1),Vm(p2))に加えて、抵抗35〜37の既知の抵抗値R35〜R37、第1及び第2の直線性補正キャパシタ43,44の既知の静電容量C43,C44、及び既知の比rを用いて、浮遊容量Cs1,Cs2を算出する(ステップS302)。   Thereafter, the stray capacitance calculator 8 detects the first voltage V1 (V1 (p0), V1 (p1), V1 (p2)), the second voltage Vc, and the third voltage V3 (V3 (V3 ( p0), V3 (p1), V3 (p2)), oscillation frequency f, oscillation voltage amplitude Vm (Vm (p0), Vm (p1), Vm (p2)), as well as known resistances 35 to 37 The stray capacitances Cs1 and Cs2 are calculated using the resistance values R35 to R37, the known capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44, and the known ratio r (step S302). .

この時のC1(p)およびC2(p)の算出式は、式(38)、(39)に対応した次式(58)、(59)となる。
C1(p)=V1(p)/R35/{f(2Vm(p)−V1(p)−Vc)}
+C43/(1+f・R49・C43) …(58)
C2(p)={V1(p)−V3(p)}/R36/{f(2Vm(p)−V1(p)
−Vc)}+C44/(1+f・R50・C44) …(59)
The calculation formulas of C1 (p) and C2 (p) at this time are the following formulas (58) and (59) corresponding to formulas (38) and (39).
C1 (p) = V1 (p) / R35 / {f (2Vm (p) −V1 (p) −Vc)}
+ C43 / (1 + f · R49 · C43) (58)
C2 (p) = {V1 (p) -V3 (p)} / R36 / {f (2Vm (p) -V1 (p)
−Vc)} + C44 / (1 + f · R50 · C44) (59)

その後、ステップS302で算出した浮遊容量Cs1,Cs2を用いて、第1及び第2の直線性補正用キャパシタ43,44の静電容量C43,C44に対し、その実効容量C43/(1+f・R49・C43),C44/(1+f・R50・C44)がそれぞれ浮遊容量Cs1,Cs2となるように可変抵抗49,50を調整する(ステップS303)。すなわち、可変抵抗49,50の抵抗値R49,R50が次式(60)、(61)となるように調整する。
R49=(C43−CS1)/(f・C43・Cs1) …(60)
R50=(C44−CS2)/(f・C44・Cs2) …(61)
Thereafter, using the stray capacitances Cs1 and Cs2 calculated in step S302, the effective capacitance C43 / (1 + f · R49 ·) is obtained with respect to the capacitances C43 and C44 of the first and second linearity correction capacitors 43 and 44. The variable resistors 49 and 50 are adjusted so that C43) and C44 / (1 + f · R50 · C44) become the stray capacitances Cs1 and Cs2, respectively (step S303). In other words, the resistance values R49 and R50 of the variable resistors 49 and 50 are adjusted to satisfy the following expressions (60) and (61).
R49 = (C43−CS1) / (f · C43 · Cs1) (60)
R50 = (C44−CS2) / (f · C44 · Cs2) (61)

1 第1のセンサキャパシタ
2 第2のセンサキャパシタ
3 発振回路
4 充放電回路
5 発振回路制御回路
6 出力制御回路
7 検出部
8 浮遊容量算出部
9,35〜37,39,41,42,59〜62 抵抗
10,11,12,72,99 巻線
13〜16,45〜48 ダイオード
20〜22,51,52 整流用キャパシタ
40,63 オペアンプ
43 第1の直線性補正用キャパシタ
44 第2の直線性補正用キャパシタ
49,50 可変抵抗
67 トランジスタ
82 ツェナーダイオード
90〜94 電圧測定用端子
101 定電圧回路
102 基準電圧源
111 遮断スイッチ
C1,C2,C43,C44,C43´,C44´ 静電容量
Cs1,Cs2 浮遊容量
f 発振周波数
I1,I2,Ic1,Ic2 充放電電流
Δ1 第1電流(=I1−Ic1)
Δ2 第2電流(=I2−Ic2)
Ik 和電流(=Δ1+Δ2)
If フィードバック電流
If´ 抵抗61に流れる電流
If1 抵抗59に流れる電流
If2 抵抗69に流れる電流
If3 抵抗60に流れる電流
If4 電流If1と電流If2の合計電流
Io 出力電流
p,p0,p1,p2 差圧
V 電源
V1,V2 第1電圧
Vc 第2電圧
V3 第3電圧
Vm 発振電圧の振幅
V4 抵抗61の両端に発生する電圧
Vz ツェナーダイオード82のツェナー電圧
Vps 定電圧回路101の回路電圧
R35〜R37,R39,R41,R42,R49,R50,R59〜R62,
R69 抵抗値
ε 第1及び第2のセンサキャパシタ1,2の電極間の誘電率
A 第1及び第2のセンサキャパシタ1,2の電極面積
d 第1及び第2のセンサキャパシタ1,2の固定電極間距離の1/2の値
δ 第1及び第2のセンサキャパシタ1,2が共有するダイヤフラムなどの可動電極の差圧無し時(p=0)における位置ずれ量
Δ(p) 第1及び第2のセンサキャパシタ1,2が共有するダイヤフラムなどの可動電極の差圧p時の変位
k 差圧pに対する変位Δ(p)の比例係数
r 差圧p1,p0及び,p2,p1の差の比(=(p1−p0)/(p2−p1))
DESCRIPTION OF SYMBOLS 1 1st sensor capacitor 2 2nd sensor capacitor 3 Oscillation circuit 4 Charging / discharging circuit 5 Oscillation circuit control circuit 6 Output control circuit 7 Detection part 8 Stray capacitance calculation part 9,35-37,39,41,42,59- 62 Resistor 10, 11, 12, 72, 99 Winding 13-16, 45-48 Diode 20-22, 51, 52 Rectifier capacitor 40, 63 Operational amplifier 43 First linearity correcting capacitor 44 Second linearity Correction capacitor 49, 50 Variable resistance 67 Transistor 82 Zener diode 90-94 Voltage measurement terminal 101 Constant voltage circuit 102 Reference voltage source 111 Cutoff switch C1, C2, C43, C44, C43 ', C44' Capacitance Cs1, Cs2 Floating capacitance f Oscillation frequency I1, I2, Ic1, Ic2 Charge / discharge current Δ1 First current (= I -Ic1)
Δ2 Second current (= I2−Ic2)
Ik Sum current (= Δ1 + Δ2)
If feedback current If 'current flowing through resistor 61 If1 current flowing through resistor 59 If2 current flowing through resistor 69 If3 current flowing through resistor 60 If4 total current of current If1 and current If2 Io output current p, p0, p1, p2 differential pressure V Power supply V1, V2 First voltage Vc Second voltage V3 Third voltage Vm Oscillation voltage amplitude V4 Voltage generated across resistor 61 Vz Zener voltage of Zener diode 82 Vps Circuit voltage of constant voltage circuit 101 R35 to R37, R39, R41, R42, R49, R50, R59 to R62,
R69 Resistance value ε Dielectric constant between the electrodes of the first and second sensor capacitors 1 and 2 A Electrode area of the first and second sensor capacitors 1 and 2 d Fixing of the first and second sensor capacitors 1 and 2 ½ value of distance between electrodes δ Amount of displacement Δ (p) when there is no differential pressure of a movable electrode such as a diaphragm shared by the first and second sensor capacitors 1 and 2 (p = 0) Displacement of a movable electrode such as a diaphragm shared by the second sensor capacitors 1 and 2 at the time of differential pressure p k Proportional coefficient of displacement Δ (p) with respect to differential pressure p r Difference between differential pressures p1 and p0 and p2 and p1 Ratio (= (p1-p0) / (p2-p1))

Claims (6)

第1の圧力と第2の圧力との差圧の大きさに応じた変位量を、第1のセンサキャパシタと第2のセンサキャパシタとによる差動的静電容量の変化として電流出力する静電容量式圧力測定装置であって、
前記差圧に対する前記変位量の直線性を補正する第1及び第2の直線性補正用キャパシタと、
発振回路と、
前記発振回路から出力される発振電圧を整流して前記第1のセンサキャパシタ、前記第2のセンサキャパシタ、前記第1の直線性補正用キャパシタ、及び前記第2の直線性補正用キャパシタに大きさの等しい交流電圧として印加して充電し、次に放電させる充放電を繰り返すとともに、前記第1のセンサキャパシタに対する充放電電流の整流値から前記第1の直線性補正用キャパシタに対する充放電電流の整流値を減算した第1電流と、前記第2のセンサキャパシタに対する充放電電流の整流値から前記第2の直線性補正用キャパシタに対する充放電電流の整流値を減算した第2電流と、前記第1電流と前記第2電流との和電流を生成する充放電回路と、
前記和電流が一定となるように前記発振回路の発振周波数及び/または発振電圧の振幅を制御する発振回路制御回路と、
前記第1電流と前記第2電流との差に対応する出力電流を出力する出力制御回路と、
前記発振回路の発振周波数、発振電圧の振幅、前記第1電流及び前記第2電流に対応する第1電圧、前記第1電流及び前記第2電流の和に対応する第2電圧、前記第1電流及び前記第2電流の差に対応する第3電圧を検出する検出部と、
外部から複数の圧力差を印加した状態の前記発振周波数、前記発振電圧の振幅、前記第1電圧、前記第2電圧、及び前記第3電圧をもとに、前記第1のセンサキャパシタの第1浮遊容量及び前記第2のセンサキャパシタの第2浮遊容量を算出する浮遊容量算出部と、
を備え、
前記浮遊容量算出部が算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする静電容量式圧力測定装置。
An electrostatic current that outputs a displacement amount corresponding to the magnitude of a differential pressure between the first pressure and the second pressure as a change in differential capacitance between the first sensor capacitor and the second sensor capacitor. A capacitive pressure measuring device comprising:
First and second linearity correcting capacitors for correcting linearity of the displacement with respect to the differential pressure;
An oscillation circuit;
The oscillating voltage output from the oscillation circuit is rectified and is sized to the first sensor capacitor, the second sensor capacitor, the first linearity correction capacitor, and the second linearity correction capacitor. The charging and discharging to be charged and then discharged are repeated, and the charge / discharge current rectified to the first linearity correction capacitor is determined from the rectified value of the charge / discharge current to the first sensor capacitor. A first current obtained by subtracting a value; a second current obtained by subtracting a rectified value of charge / discharge current for the second linearity correcting capacitor from a rectified value of charge / discharge current for the second sensor capacitor; A charge / discharge circuit for generating a sum of current and the second current;
An oscillation circuit control circuit for controlling the oscillation frequency and / or the amplitude of the oscillation voltage of the oscillation circuit so that the sum current is constant;
An output control circuit that outputs an output current corresponding to a difference between the first current and the second current;
The oscillation frequency of the oscillation circuit, the amplitude of the oscillation voltage, the first voltage corresponding to the first current and the second current, the second voltage corresponding to the sum of the first current and the second current, the first current And a detection unit for detecting a third voltage corresponding to the difference between the second currents;
Based on the oscillation frequency, the amplitude of the oscillation voltage, the first voltage, the second voltage, and the third voltage when a plurality of pressure differences are applied from the outside, the first sensor capacitor first A stray capacitance calculator for calculating stray capacitance and a second stray capacitance of the second sensor capacitor;
With
The capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated by the stray capacitance calculation unit, and the second stray capacitance calculated by the stray capacitance calculation unit is used to adjust the capacitance. A capacitance-type pressure measuring device that adjusts the capacitance of the second linearity correcting capacitor.
前記第1及び前記第2の直線性補正用キャパシタに流れる電流を遮断する遮断スイッチを設け、前記遮断スイッチを遮断した状態で、前記浮遊容量算出部が算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする請求項1に記載の静電容量式圧力測定装置。   Provided is a cut-off switch that cuts off the current flowing through the first and second linearity correction capacitors, and the cut-off switch is cut off, based on the first stray capacitance calculated by the stray capacitance calculation unit. Adjusting the capacitance of the first linearity correction capacitor and adjusting the capacitance of the second linearity correction capacitor based on the second floating capacitance calculated by the floating capacitance calculation unit; The capacitive pressure measuring device according to claim 1, wherein 前記第1及び前記第2の直線性補正用キャパシタの静電容量は固定であり、
前記第1及び前記第2の直線性補正用キャパシタのそれぞれに第1及び第2の可変直列抵抗と第1及び第2の整流用キャパシタとを接続し、
前記浮遊容量算出部が算出した第1浮遊容量をもとに第1の可変直列抵抗を調整して、前記第1の直線性補正用キャパシタの実効静電容量を調整し、前記浮遊容量算出部が算出した第2浮遊容量をもとに第2の可変直列抵抗を調整して、前記第2の直線性補正用キャパシタの実効静電容量を調整することを特徴とする請求項1に記載の静電容量式圧力測定装置。
Capacitances of the first and second linearity correcting capacitors are fixed,
Connecting the first and second variable series resistors and the first and second rectifying capacitors to each of the first and second linearity correcting capacitors;
The first variable series resistance is adjusted based on the first stray capacitance calculated by the stray capacitance calculation unit, the effective capacitance of the first linearity correction capacitor is adjusted, and the stray capacitance calculation unit 2. The effective capacitance of the second linearity correction capacitor is adjusted by adjusting a second variable series resistance based on the second stray capacitance calculated by the method of claim 1. Capacitance type pressure measuring device.
第1及び第2のセンサキャパシタと、
発振回路と、
前記発振回路から出力される発振電圧を整流して前記第1のセンサキャパシタ、前記第2のセンサキャパシタ、第1の直線性補正用キャパシタ、及び第2の直線性補正用キャパシタに大きさの等しい交流電圧として印加して充電し、次に放電させる充放電を繰り返すとともに、前記第1のセンサキャパシタに対する充放電電流の整流値から前記第1の直線性補正用キャパシタに対する充放電電流の整流値を減算した第1電流と、前記第2のセンサキャパシタに対する充放電電流の整流値から前記第2の直線性補正用キャパシタに対する充放電電流の整流値を減算した第2電流と、前記第1電流と前記第2電流との和電流を生成する充放電回路と、
前記和電流が一定となるように前記発振回路の発振周波数及び/または発振電圧の振幅を制御する発振回路制御回路と、
前記第1電流と前記第2電流との差に対応する出力電流を出力する出力制御回路と、
を備え、
第1の圧力と第2の圧力との差圧の大きさに応じた変位量を、前記第1のセンサキャパシタと前記第2のセンサキャパシタとによる差動的静電容量の変化として電流出力する静電容量式圧力測定装置の直線性補正方法であって、
外部から複数の圧力差を印加した状態における、前記発振回路の発振周波数、発振電圧の振幅、前記第1電流及び前記第2電流に対応する第1電圧、前記第1電流及び前記第2電流の和に対応する第2電圧、前記第1電流及び前記第2電流の差に対応する第3電圧を検出する検出ステップと、
前記発振周波数、前記発振電圧の振幅、前記第1電圧、前記第2電圧、及び前記第3電圧をもとに、前記第1のセンサキャパシタの第1浮遊容量及び前記第2のセンサキャパシタの第2浮遊容量を算出する浮遊容量算出ステップと、
を含み、
前記浮遊容量算出ステップが算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする静電容量式圧力測定装置の直線性補正方法。
First and second sensor capacitors;
An oscillation circuit;
The oscillation voltage output from the oscillation circuit is rectified to have the same magnitude as the first sensor capacitor, the second sensor capacitor, the first linearity correction capacitor, and the second linearity correction capacitor. The charging / discharging is repeated by applying and charging as an alternating voltage, and the rectification value of the charging / discharging current for the first linearity correction capacitor is determined from the rectification value of the charging / discharging current for the first sensor capacitor. A first current obtained by subtracting, a second current obtained by subtracting a rectified value of charge / discharge current for the second linearity correcting capacitor from a rectified value of charge / discharge current for the second sensor capacitor, and the first current, A charge / discharge circuit for generating a sum current with the second current;
An oscillation circuit control circuit for controlling the oscillation frequency and / or the amplitude of the oscillation voltage of the oscillation circuit so that the sum current is constant;
An output control circuit that outputs an output current corresponding to a difference between the first current and the second current;
With
A displacement amount corresponding to the magnitude of the differential pressure between the first pressure and the second pressure is output as a change in differential capacitance caused by the first sensor capacitor and the second sensor capacitor. A linearity correction method for a capacitance-type pressure measuring device,
The oscillation frequency of the oscillation circuit, the oscillation voltage amplitude, the first voltage corresponding to the first current and the second current, the first current and the second current in a state where a plurality of pressure differences are applied from the outside. A detection step of detecting a second voltage corresponding to a sum, a third voltage corresponding to a difference between the first current and the second current;
Based on the oscillation frequency, the amplitude of the oscillation voltage, the first voltage, the second voltage, and the third voltage, the first stray capacitance of the first sensor capacitor and the second of the second sensor capacitor 2 stray capacitance calculation step for calculating stray capacitance;
Including
The capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated in the stray capacitance calculation step, and the second stray capacitance calculated in the stray capacitance calculation step is used to adjust the capacitance. A method for correcting linearity of a capacitance-type pressure measuring device, comprising adjusting the capacitance of a second linearity correcting capacitor.
前記第1及び前記第2の直線性補正用キャパシタに流れる電流を遮断する電流遮断ステップを含み、
前記電流遮断ステップで電流が遮断された状態で、前記浮遊容量算出ステップが算出した第1浮遊容量をもとに前記第1の直線性補正用キャパシタの静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに前記第2の直線性補正用キャパシタの静電容量を調整することを特徴とする請求項4に記載の静電容量式圧力測定装置の直線性補正方法。
A current interruption step of interrupting a current flowing through the first and second linearity correction capacitors;
In the state where the current is interrupted in the current interrupting step, the capacitance of the first linearity correction capacitor is adjusted based on the first stray capacitance calculated in the stray capacitance calculating step, and the stray capacitance calculation is performed. 5. The linearity correction of the capacitance type pressure measuring device according to claim 4, wherein the capacitance of the second linearity correction capacitor is adjusted based on the second stray capacitance calculated in the step. Method.
前記第1及び前記第2の直線性補正用キャパシタの静電容量は固定であり、
前記第1及び前記第2の直線性補正用キャパシタのそれぞれに第1及び第2の可変直列抵抗と第1及び第2の整流用キャパシタとが接続され、
前記浮遊容量算出ステップが算出した第1浮遊容量をもとに第1の可変直列抵抗を調整して、前記第1の直線性補正用キャパシタの実効静電容量を調整し、前記浮遊容量算出ステップが算出した第2浮遊容量をもとに第2の可変直列抵抗を調整して、前記第2の直線性補正用キャパシタの実効静電容量を調整することを特徴とする請求項4に記載の静電容量式圧力測定装置の直線性補正方法。
Capacitances of the first and second linearity correcting capacitors are fixed,
The first and second variable series resistors and the first and second rectifying capacitors are connected to the first and second linearity correcting capacitors, respectively.
The first variable series resistance is adjusted based on the first stray capacitance calculated in the stray capacitance calculation step, the effective capacitance of the first linearity correction capacitor is adjusted, and the stray capacitance calculation step 5. The effective capacitance of the second linearity correction capacitor is adjusted by adjusting a second variable series resistance based on the second stray capacitance calculated by the method of claim 4. Linearity correction method for capacitance pressure measuring device.
JP2014205225A 2014-10-03 2014-10-03 Capacitance type pressure measuring apparatus and linearity correction method thereof Active JP6372288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205225A JP6372288B2 (en) 2014-10-03 2014-10-03 Capacitance type pressure measuring apparatus and linearity correction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205225A JP6372288B2 (en) 2014-10-03 2014-10-03 Capacitance type pressure measuring apparatus and linearity correction method thereof

Publications (2)

Publication Number Publication Date
JP2016075538A JP2016075538A (en) 2016-05-12
JP6372288B2 true JP6372288B2 (en) 2018-08-15

Family

ID=55951298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205225A Active JP6372288B2 (en) 2014-10-03 2014-10-03 Capacitance type pressure measuring apparatus and linearity correction method thereof

Country Status (1)

Country Link
JP (1) JP6372288B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519741B1 (en) * 2016-08-26 2023-04-11 주식회사 로보터스 Capacitive sensor and calibration method for a capacitive sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227419A (en) * 1979-09-04 1980-10-14 Kavlico Corporation Capacitive pressure transducer
JPS59613A (en) * 1982-06-28 1984-01-05 Fuji Electric Co Ltd Two-wire displacement converter
US4878012A (en) * 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
JPH0749968B2 (en) * 1988-10-31 1995-05-31 富士電機株式会社 Displacement converter
JPH04113238A (en) * 1990-09-01 1992-04-14 Fuji Electric Co Ltd Displacement converter

Also Published As

Publication number Publication date
JP2016075538A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP4111348B2 (en) Static eliminator
WO2015083618A1 (en) Contactless voltage measurement device and method
WO2001067118A1 (en) Impedance detector circuit, impedance detector and method of impedance detection
JP6372288B2 (en) Capacitance type pressure measuring apparatus and linearity correction method thereof
JP2011053201A (en) Voltage detection device and line voltage detection device
WO2003023417A1 (en) Sensor capacity sensing apparatus and sensor capacity sensing method
JP5057143B2 (en) Non-contact detection system
JP3501401B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP4072030B2 (en) Sensor capacity detection device and sensor capacity detection method
US20220229096A1 (en) Power measurement apparatus and power measurement method
JP6646380B2 (en) Current detection circuit
JP6054100B2 (en) Power measuring apparatus and power measuring method
JP2012233738A (en) Instrument transformer
JP2018087719A5 (en)
JP2013007694A (en) Surface potential measuring apparatus
US20170097386A1 (en) Apparatus and methods for measuring electrical current
JP6610880B2 (en) Electromagnetic flow meter
JP2007240286A (en) Measuring method and measuring instrument
JP5877262B1 (en) Calibrator for electromagnetic flowmeter
JP5851316B2 (en) Voltage detector
JP6320077B2 (en) Measurement method of partial pressure error
JP7368728B2 (en) Physical quantity measuring device
JP5091898B2 (en) Power measurement system
JP2006276273A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250