JP6369848B2 - Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material - Google Patents

Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material Download PDF

Info

Publication number
JP6369848B2
JP6369848B2 JP2013231393A JP2013231393A JP6369848B2 JP 6369848 B2 JP6369848 B2 JP 6369848B2 JP 2013231393 A JP2013231393 A JP 2013231393A JP 2013231393 A JP2013231393 A JP 2013231393A JP 6369848 B2 JP6369848 B2 JP 6369848B2
Authority
JP
Japan
Prior art keywords
acid
carbon material
metal nanoparticle
acetylene black
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013231393A
Other languages
Japanese (ja)
Other versions
JP2015090855A (en
Inventor
松見 紀佳
紀佳 松見
ラーマン ヴェーダラージャン
ラーマン ヴェーダラージャン
ラージャシェーカル バダム
ラージャシェーカル バダム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2013231393A priority Critical patent/JP6369848B2/en
Publication of JP2015090855A publication Critical patent/JP2015090855A/en
Application granted granted Critical
Publication of JP6369848B2 publication Critical patent/JP6369848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、金属ナノ粒子担持炭素材料およびその製造方法、並びに、官能化剥離炭素材料の製造方法に関する。   The present invention relates to a metal nanoparticle-supporting carbon material, a method for producing the same, and a method for producing a functionalized exfoliated carbon material.

燃料電池やリチウム−空気電池は、従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しないために、次世代のクリーンエネルギーシステムとして注目されている。
これら電池に使用される電極として、白金などに代表される金属が担持された、カーボンなどの炭素材料が使用されている(特許文献1)。
Unlike conventional internal combustion engines, fuel cells and lithium-air cells are attracting attention as next-generation clean energy systems because they do not generate environmentally harmful gases such as carbon dioxide.
As an electrode used in these batteries, a carbon material such as carbon carrying a metal typified by platinum or the like is used (Patent Document 1).

特開2005−122925号公報JP 2005-122925 A

一方、近年、電池に求められる性能の高まりに応じて、電池に使用される電極の酸素還元反応(ORR:oxygen reduction reaction)特性のより一層の向上が求められている。   On the other hand, in recent years, further improvement in the oxygen reduction reaction (ORR) characteristics of electrodes used in batteries has been demanded in accordance with the increase in performance required for batteries.

本発明は、上記実情に鑑みて、酸素還元反応特性がより優れた電池用電極の形成に用いられる金属ナノ粒子担持炭素材料を簡便に製造することができる、金属ナノ粒子担持炭素材料の製造方法、および、該方法により製造される金属ナノ粒子担持炭素材料を提供することを目的とする。
また、本発明は、該金属ナノ粒子担持炭素材料の製造に使用される官能化剥離炭素材料の製造方法を提供することも目的とする。
In view of the above circumstances, the present invention provides a method for producing a metal nanoparticle-supported carbon material, which can easily produce a metal nanoparticle-supported carbon material used for forming a battery electrode having more excellent oxygen reduction reaction characteristics. And it aims at providing the metal nanoparticle carrying | support carbon material manufactured by this method.
Another object of the present invention is to provide a method for producing a functionalized exfoliated carbon material used for producing the metal nanoparticle-supporting carbon material.

本発明者らは、従来技術の問題点について鋭意検討した結果、アセチレンブラックを出発原料とした方法により所望の特性を示す金属ナノ粒子担持炭素材料が得られることを見出し、本発明を完成するに至った。
すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the problems of the prior art, the present inventors have found that a metal nanoparticle-supported carbon material exhibiting desired characteristics can be obtained by a method using acetylene black as a starting material, and to complete the present invention. It came.
That is, it has been found that the above object can be achieved by the following configuration.

(1) 酸の存在下、アセチレンブラックに超音波を照射する工程と、
超音波処理が施されたアセチレンブラック、および、金属イオンを混合して、還元処理を施し、金属ナノ粒子が担持された炭素材料を製造する工程とを備える、金属ナノ粒子担持炭素材料の製造方法。
(2) 前記酸が、硝酸、硝酸、塩酸、臭酸、フッ酸、トリフルオロメタンスルホン酸、トリフルオロメタン酢酸、過塩素酸、クロム酸塩、二クロム酸塩、および過マンガン酸塩からなる群から選択される少なくとも1種を含む、(1)に記載の金属ナノ粒子担持炭素材料の製造方法。
(3) 前記金属イオンが、白金イオン、パラジウムイオン、ロジウムイオン、イリジウムイオン、ルテニウムイオン、および、金イオンからなる群から選択される少なくとも1種を含む、(1)または(2)に記載の金属ナノ粒子担持炭素材料の製造方法。
(4) 前記金属ナノ粒子の平均粒径が、1〜100nmである、(1)〜(3)のいずれかに記載の金属ナノ粒子担持炭素材料の製造方法。
(5) (1)〜(4)のいずれかに記載の製造方法より製造される金属ナノ粒子担持炭素材料を含む電池用電極。
(6) (5)に記載の電池用電極を含む燃料電池。
(7) (5)に記載の電池用電極を含むリチウム空気電池。
(8) (5)に記載の電池用電極を含むマグネシウム空気電池。
(9) (5)に記載の電池用電極を含む亜鉛空気電池。
(10) 酸の存在下、アセチレンブラックに超音波を照射する工程を有する、官能化剥離炭素材料の製造方法。
(11) 前記酸が、硝酸、硝酸、塩酸、臭酸、フッ酸、トリフルオロメタンスルホン酸、トリフルオロメタン酢酸過塩素酸、クロム酸塩、二クロム酸塩、および過マンガン酸塩からなる群から選択される少なくとも1種を含む、(10)に記載の官能化剥離炭素材料の製造方法。
(12) 酸の存在下、アセチレンブラックに超音波を照射する工程と、
超音波処理が施されたアセチレンブラックおよび金属イオンを混合して、還元処理を施す工程とを備える製造方法により製造される金属ナノ粒子担持炭素材料。
(1) irradiating acetylene black with ultrasonic waves in the presence of an acid;
A process for producing a carbon material carrying a metal nanoparticle, comprising: acetylene black subjected to ultrasonic treatment; and a step of producing a carbon material carrying a metal nanoparticle by performing reduction treatment by mixing metal ions .
(2) The acid is selected from the group consisting of nitric acid, nitric acid, hydrochloric acid, odorous acid, hydrofluoric acid, trifluoromethanesulfonic acid, trifluoromethaneacetic acid, perchloric acid, chromate, dichromate, and permanganate. The manufacturing method of the metal nanoparticle carrying | support carbon material as described in (1) containing at least 1 sort (s) selected.
(3) The metal ion includes at least one selected from the group consisting of platinum ion, palladium ion, rhodium ion, iridium ion, ruthenium ion, and gold ion, according to (1) or (2) A method for producing a metal nanoparticle-supporting carbon material.
(4) The manufacturing method of the metal nanoparticle carrying | support carbon material in any one of (1)-(3) whose average particle diameter of the said metal nanoparticle is 1-100 nm.
(5) A battery electrode comprising a metal nanoparticle-supported carbon material produced by the production method according to any one of (1) to (4).
(6) A fuel cell comprising the battery electrode according to (5).
(7) A lithium air battery including the battery electrode according to (5).
(8) A magnesium-air battery including the battery electrode according to (5).
(9) A zinc-air battery including the battery electrode according to (5).
(10) A method for producing a functionalized release carbon material, comprising a step of irradiating acetylene black with ultrasonic waves in the presence of an acid.
(11) The acid is selected from the group consisting of nitric acid, nitric acid, hydrochloric acid, odorous acid, hydrofluoric acid, trifluoromethanesulfonic acid, trifluoromethaneacetic acid perchloric acid, chromate, dichromate, and permanganate. The method for producing a functionalized exfoliated carbon material according to (10), comprising at least one selected from the group consisting of:
(12) irradiating acetylene black with ultrasonic waves in the presence of an acid;
A metal nanoparticle-supporting carbon material produced by a production method comprising a step of mixing acetylene black and metal ions subjected to ultrasonic treatment and subjecting to reduction treatment.

本発明によれば、酸素還元反応特性がより優れた電池用電極の形成に用いられる金属ナノ粒子担持炭素材料を簡便に製造することができる、金属ナノ粒子担持炭素材料の製造方法、および、該方法により製造される金属ナノ粒子担持炭素材料を提供することができる。
また、本発明によれば、該金属ナノ粒子担持炭素材料の製造に使用される官能化剥離炭素材料の製造方法を提供することもできる。
According to the present invention, a method for producing a metal nanoparticle-carrying carbon material, which can easily produce a metal nanoparticle-carrying carbon material used for forming a battery electrode having more excellent oxygen reduction reaction characteristics, and The metal nanoparticle carrying | support carbon material manufactured by the method can be provided.
Moreover, according to this invention, the manufacturing method of the functionalized peeling carbon material used for manufacture of this metal nanoparticle carrying | support carbon material can also be provided.

作用電極E2およびC1を用いて測定したサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram measured using the working electrodes E2 and C1. 作用電極E2およびC1を用いたサイクリックボルタンメトリー測定より求められるORRの相対クーロン効率を示す図である。It is a figure which shows the relative coulomb efficiency of ORR calculated | required from the cyclic voltammetry measurement using the working electrodes E2 and C1. 作用電極E1〜E3を用いたサイクリックボルタンメトリー測定より求められるORRの相対クーロン効率を示す図である。It is a figure which shows the relative coulomb efficiency of ORR calculated | required from the cyclic voltammetry measurement using the working electrodes E1-E3.

以下に、本発明の金属ナノ粒子担持炭素材料およびその製造方法、並びに、官能化剥離炭素材料の製造方法の好適態様について詳述する。
まず、本発明の特徴点の一つとしては、酸存在下にて、アセチレンブラックに超音波処理を施す工程と、超音波処理が施されたアセチレンブラックに金属ナノ粒子を担持する工程とを備える。酸の存在下、出発原料であるアセチレンブラックに超音波処理を施すことにより、アセチレンブラックを構成するグラフェンシートに酸素含有基などの官能基が導入されると共に、グラフェンシートが剥離(exfoliated)され、その剥離したグラフェンシート間に金属ナノ粒子が担持されると推測される。このような構成をとることにより、粒径の小さい金属ナノ粒子の安定性が向上し、結果としてORR活性に優れた電池用電極が形成されると考えられる。
Below, the metal nanoparticle carrying | support carbon material of this invention, its manufacturing method, and the suitable aspect of the manufacturing method of a functionalized peeling carbon material are explained in full detail.
First, as one of the features of the present invention, the method includes a step of subjecting acetylene black to ultrasonic treatment in the presence of an acid, and a step of supporting metal nanoparticles on acetylene black that has been subjected to ultrasonic treatment. . By subjecting the acetylene black as a starting material to ultrasonic treatment in the presence of an acid, a functional group such as an oxygen-containing group is introduced into the graphene sheet constituting the acetylene black, and the graphene sheet is exfoliated. It is presumed that metal nanoparticles are supported between the separated graphene sheets. By adopting such a configuration, it is considered that the stability of metal nanoparticles having a small particle size is improved, and as a result, a battery electrode having excellent ORR activity is formed.

本発明の金属ナノ粒子担持炭素材料の製造方法は、以下の2つの工程を少なくとも含む。
(工程1)酸の存在下、アセチレンブラックに超音波を照射する工程
(工程2)超音波処理が施されたアセチレンブラック、および、金属イオンを混合して、還元処理を施し、金属ナノ粒子が担持された炭素材料を製造する工程
以下、工程毎に使用される材料や、工程の手順について詳述する。
The method for producing a metal nanoparticle-supporting carbon material of the present invention includes at least the following two steps.
(Step 1) A step of irradiating acetylene black with ultrasonic waves in the presence of an acid (Step 2) Acetylene black subjected to ultrasonic treatment and metal ions are mixed and subjected to a reduction treatment, whereby metal nanoparticles are formed. Process for producing supported carbon material Hereinafter, materials used for each process and process procedures will be described in detail.

<工程1(超音波照射工程)>
本工程は、酸の存在下、アセチレンブラックに超音波を照射する工程である。本工程を実施することにより、アセチレンブラックを構成するグラフェンシートが酸化されて酸素含有基(例えば、カルボキシル基、アルデヒド基、アルコール基、ケトン基など)などが導入されて官能基化されると共に、グラフェンシートの一部が剥離(exfoliated)される。
まず、本工程で使用される材料(酸、アセチレンブラックなど)について詳述し、その後本工程の手順について詳述する。
<Process 1 (Ultrasonic irradiation process)>
This step is a step of irradiating acetylene black with ultrasonic waves in the presence of an acid. By carrying out this step, the graphene sheet constituting acetylene black is oxidized and oxygen-containing groups (for example, carboxyl group, aldehyde group, alcohol group, ketone group, etc.) are introduced and functionalized, Part of the graphene sheet is exfoliated.
First, the materials (acid, acetylene black, etc.) used in this step will be described in detail, and then the procedure of this step will be described in detail.

(アセチレンブラック)
本工程では、アセチレンを熱分解してつくるカーボンブラックである、アセチレンブラックが使用される。
アセチレンブラックの平均一次粒径は特に制限されないが、製造される電池用電極のORR特性がより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、10〜100nmが好ましく、10〜40nmがより好ましい。
また、アセチレンブラックの比表面積は特に制限されないが、本発明の効果がより優れる点で、10〜200m2/gが好ましい。
また、アセチレンブラックの密度は特に制限されないが、本発明の効果がより優れる点で、0.01〜0.1g/mlが好ましい。
(Acetylene black)
In this step, acetylene black, which is carbon black produced by thermally decomposing acetylene, is used.
The average primary particle size of acetylene black is not particularly limited, but is preferably 10 to 100 nm in that the ORR characteristics of the produced battery electrode are more excellent (hereinafter also referred to simply as “the effect of the present invention is more excellent”). 10 to 40 nm is more preferable.
Further, the specific surface area of acetylene black is not particularly limited, but is preferably 10 to 200 m 2 / g in terms of more excellent effects of the present invention.
The density of acetylene black is not particularly limited, but is preferably 0.01 to 0.1 g / ml from the viewpoint that the effect of the present invention is more excellent.

(酸)
本工程で使用される酸の種類は特に制限されないが、本発明の効果がより優れる点で、いわゆる強酸であることが好ましい。なお、強酸とは、pKaが2以下である酸を意図する。
酸の好適な態様としては、本発明の効果がより優れる点で、硫酸、硝酸、塩酸、過塩素酸、臭酸、トリフルオロメタンスルホン酸、トリフルオロメタン酢酸、クロム酸塩、二クロム酸塩、および過マンガン酸塩からなる群から選択される少なくとも1種を含むことが好ましく、硫酸と硝酸との混合物(特に、王水)がより好ましい。
なお、酸としては、1種のみを用いてもよいし、2種以上を合わせて使用してもよい。
(acid)
Although the kind of acid used at this process is not restrict | limited in particular, It is preferable that it is what is called a strong acid at the point which the effect of this invention is more excellent. In addition, a strong acid intends the acid whose pKa is 2 or less.
As a preferred embodiment of the acid, sulfuric acid, nitric acid, hydrochloric acid, perchloric acid, odoric acid, trifluoromethanesulfonic acid, trifluoromethaneacetic acid, chromate, dichromate, and It is preferable to include at least one selected from the group consisting of permanganates, and a mixture of sulfuric acid and nitric acid (particularly aqua regia) is more preferable.
In addition, as an acid, only 1 type may be used and 2 or more types may be used together.

(工程手順)
本工程としては、上記酸の存在下、アセチレンブラックに超音波を照射する。
酸とアセチレンブラックとの質量比(アセチレンブラックの質量/酸の質量)は特に制限されないが、本発明の効果がより優れる点で、1×10−6〜1×10−1が好ましく、1×10−5〜1×10−2がより好ましい。
(Process procedure)
In this step, acetylene black is irradiated with ultrasonic waves in the presence of the acid.
The mass ratio between the acid and acetylene black (the mass of acetylene black / the mass of acid) is not particularly limited, but is preferably 1 × 10 −6 to 1 × 10 −1 in terms of more excellent effects of the present invention. 10 −5 to 1 × 10 −2 is more preferable.

超音波照射の条件は特に制限されないが、本発明の効果がより優れる点で、周波数は2〜5MHzが好ましく(より好ましくは、3〜4.5MHz)、温度は15〜198℃が好ましく(より好ましくは、50〜100℃)、照射時間は1〜24時間が好ましい(より好ましくは、3〜10時間)。
なお、超音波照射を行う装置として、例えば、超音波発振機、超音波ホモジナイザー、卓上型超音波洗浄機等の従来公知の超音波装置が挙げられる。
Although the conditions for ultrasonic irradiation are not particularly limited, the frequency is preferably 2 to 5 MHz (more preferably, 3 to 4.5 MHz) and the temperature is preferably 15 to 198 ° C. (more preferably) because the effects of the present invention are more excellent. Preferably, the irradiation time is preferably 1 to 24 hours (more preferably 3 to 10 hours).
In addition, as an apparatus which performs ultrasonic irradiation, conventionally well-known ultrasonic apparatuses, such as an ultrasonic oscillator, an ultrasonic homogenizer, a table-type ultrasonic cleaner, are mentioned, for example.

上記工程1の後、必要に応じて、超音波処理が施されたアセチレンブラックを洗浄する工程(洗浄工程)を設けてもよい。
洗浄工程で使用される洗浄液の種類は特に制限されず、水や、有機溶媒(例えば、アルコール系溶媒)などが挙げられる。
After the above step 1, if necessary, a step (cleaning step) for cleaning the acetylene black subjected to the ultrasonic treatment may be provided.
The type of the cleaning liquid used in the cleaning process is not particularly limited, and examples thereof include water and organic solvents (for example, alcohol solvents).

上記工程1を経ることにより、アセチレンブラック中のグラフェンシートを酸化して、ケトン基やアルコール基などの酸素含有基(官能基)が導入された、官能化剥離炭素材料(官能基が導入され、一部のグラフェンシートが剥離した炭素材料)が得られる。言い換えると、グラフェンオキシドが得られる。
なお、従来技術においては、グラフェンからグラフェンオキシドを得るために複数の工程(少なくとも2工程)を経る必要があったが、上記工程であればワンポット(one pot)でアセチレンブラックからグラフェンオキシドを得ることができ、工程の簡略化が可能となる。つまり、上記工程は、官能化剥離炭素材料(グラフェンオキシド)を得る好適な方法ともいえる。
By passing through the above step 1, the graphene sheet in acetylene black is oxidized, and a functionalized release carbon material (functional group is introduced) into which oxygen-containing groups (functional groups) such as ketone groups and alcohol groups are introduced, A carbon material from which some graphene sheets are peeled off) is obtained. In other words, graphene oxide is obtained.
In the prior art, in order to obtain graphene oxide from graphene, it was necessary to go through a plurality of steps (at least two steps), but in the case of the above step, graphene oxide can be obtained from acetylene black in one pot. And the process can be simplified. That is, the above process can be said to be a suitable method for obtaining a functionalized exfoliated carbon material (graphene oxide).

<工程2(金属ナノ粒子製造工程)>
本工程は、超音波処理が施されたアセチレンブラックおよび金属イオンを混合して、還元処理を施し、金属ナノ粒子が担持された炭素材料を製造する工程である。超音波処理が施されたアセチレンブラックには酸素含有基が導入されており、該基を介して金属イオンとの相互作用が形成される。金属イオンはその後の還元処理により、金属ナノ粒子となる。
まず、本工程で使用される材料(酸、アセチレンブラックなど)について詳述し、その後本工程の手順について詳述する。
<Process 2 (metal nanoparticle manufacturing process)>
In this step, acetylene black and metal ions that have been subjected to ultrasonic treatment are mixed and subjected to reduction treatment to produce a carbon material carrying metal nanoparticles. An oxygen-containing group is introduced into the acetylene black subjected to ultrasonic treatment, and an interaction with a metal ion is formed through the group. The metal ions become metal nanoparticles by the subsequent reduction treatment.
First, the materials (acid, acetylene black, etc.) used in this step will be described in detail, and then the procedure of this step will be described in detail.

(金属イオン)
金属イオンの種類は特に制限されず、公知の金属イオンが用いられる。
なかでも、本発明の効果がより優れる点で、白金イオン、パラジウムイオン、ロジウムイオン、イリジウムイオン、ルテニウムイオン、および、金イオンからなる群から選択される少なくとも1種を含むことが好ましく、白金イオンがより好ましい。
上記金属イオンの供給源としては、上記金属イオンを含む化合物(例えば、塩化物、炭酸塩、酸化物、硝酸塩、硫酸塩、リン酸塩、フッ化物、フルオロ酸(塩)、有機錯化合物など)が挙げられる。
(Metal ions)
The kind in particular of metal ion is not restrict | limited, A well-known metal ion is used.
Among these, it is preferable that at least one selected from the group consisting of platinum ions, palladium ions, rhodium ions, iridium ions, ruthenium ions, and gold ions is contained in terms of more excellent effects of the present invention. Is more preferable.
As a source of the metal ion, a compound containing the metal ion (for example, chloride, carbonate, oxide, nitrate, sulfate, phosphate, fluoride, fluoro acid (salt), organic complex compound, etc.) Is mentioned.

(工程の手順)
上述した超音波処理が施されたアセチレンブラックと金属イオンとの混合方法は特に制限されず、通常、溶媒の存在下、超音波処理が施されたアセチレンブラックと、上記金属イオンを含む化合物とを混合する方法が挙げられる。
上記方法で使用される溶媒の種類は特に制限されず、例えば、水や、有機溶媒(例えば、アルコール系溶媒、ケトン系溶媒、炭化水素系溶媒、アミド系溶媒、ニトリル系溶媒、エステル系溶媒、カーボネート系溶媒、エーテル系溶媒、ハロゲン系溶媒など)が挙げられる。
混合条件は特に制限されないが、本発明の効果がより優れる点で、混合温度は120〜198℃が好ましく(より好ましくは、150〜198℃)、混合時間は12〜48時間が好ましい(より好ましくは、20〜30時間)。
(Process procedure)
The mixing method of acetylene black subjected to the above-described ultrasonic treatment and metal ions is not particularly limited, and usually, acetylene black subjected to ultrasonic treatment in the presence of a solvent and a compound containing the above metal ions. The method of mixing is mentioned.
The type of the solvent used in the above method is not particularly limited, and examples thereof include water and organic solvents (for example, alcohol solvents, ketone solvents, hydrocarbon solvents, amide solvents, nitrile solvents, ester solvents, Carbonate solvent, ether solvent, halogen solvent, etc.).
The mixing conditions are not particularly limited, but the mixing temperature is preferably 120 to 198 ° C. (more preferably 150 to 198 ° C.) and the mixing time is preferably 12 to 48 hours (more preferably) in that the effect of the present invention is more excellent. Is 20 to 30 hours).

次に、上記で得られた混合物に対して、還元処理が施される。還元処理により金属イオンが還元され、金属ナノ粒子が生成される。
還元処理の方法は特に制限されず、公知の方法を採用できる。例えば、公知の還元剤(例えば、水素化ホウ素ナトリウム、アルコール系溶媒(例えば、エチレングリコールなど))を添加して、必要に応じて加熱する方法や、還元性気体(例えば、水素)中で還元する方法や、超音波処理を施す方法などが挙げられる。
Next, a reduction process is performed on the mixture obtained above. Metal ions are reduced by the reduction treatment, and metal nanoparticles are generated.
The method for the reduction treatment is not particularly limited, and a known method can be adopted. For example, a known reducing agent (for example, sodium borohydride, alcohol solvent (for example, ethylene glycol)) is added and heated as necessary, or reduced in a reducing gas (for example, hydrogen). And a method of performing ultrasonic treatment.

上記工程2の後、必要に応じて、金属ナノ粒子が担持された炭素材料を洗浄する工程(洗浄工程)を設けてもよい。
洗浄工程で使用される洗浄液の種類は特に制限されず、水や、有機溶媒(例えば、アルコール系溶媒)などが挙げられる。
After the step 2, a step (cleaning step) of cleaning the carbon material on which the metal nanoparticles are supported may be provided as necessary.
The type of the cleaning liquid used in the cleaning process is not particularly limited, and examples thereof include water and organic solvents (for example, alcohol solvents).

<金属ナノ粒子が担持された炭素材料(金属ナノ粒子担持炭素材料)>
上記処理により、金属ナノ粒子が担持された炭素材料が製造される。より具体的には、上記処理により、超音波処理が施されたアセチレンブラックに金属ナノ粒子が担持された炭素材料が得られる。
金属ナノ粒子が担持された炭素材料中における金属ナノ粒子の含有量は特に制限されないが、本発明の効果がより優れる点で、炭素材料(アセチレンブラック)100質量部に対して、1〜50質量部が好ましく、10〜50質量部がより好ましく、15〜25質量部がさらに好ましい。
金属ナノ粒子の平均粒径は特に制限されないが、本発明の効果がより優れる点で、1〜100nmが好ましく、1〜20nmがより好ましく、1〜10nmがさらに好ましい。
<Carbon material carrying metal nanoparticles (carbon material carrying metal nanoparticles)>
By the above process, a carbon material carrying metal nanoparticles is produced. More specifically, a carbon material in which metal nanoparticles are supported on acetylene black that has been subjected to ultrasonic treatment is obtained by the above treatment.
The content of the metal nanoparticles in the carbon material carrying the metal nanoparticles is not particularly limited, but 1 to 50 masses with respect to 100 mass parts of the carbon material (acetylene black) in that the effect of the present invention is more excellent. Part is preferable, 10 to 50 parts by mass is more preferable, and 15 to 25 parts by mass is further preferable.
The average particle size of the metal nanoparticles is not particularly limited, but 1 to 100 nm is preferable, 1 to 20 nm is more preferable, and 1 to 10 nm is more preferable in that the effect of the present invention is more excellent.

上記金属ナノ粒子が担持された炭素材料を用いて形成される電池用電極は優れたORR特性を示す。
電池用電極の製造方法は特に制限されず、公知の方法を採用することができ、例えば、上記金属ナノ粒子が担持された炭素材料および溶媒を含む電極形成用組成物を、導電性基板上に塗布して、電極を形成する方法が挙げられる。
上記金属ナノ粒子が担持された炭素材料を用いて形成される電池用電極は、燃料電池、リチウム空気電池、マグネシウム空気電池、亜鉛空気電池、各種有機合成用触媒に好適に用いることができる。
A battery electrode formed using a carbon material carrying the metal nanoparticles exhibits excellent ORR characteristics.
The method for producing the battery electrode is not particularly limited, and a known method can be adopted. For example, an electrode-forming composition containing a carbon material on which the metal nanoparticles are supported and a solvent is formed on a conductive substrate. The method of apply | coating and forming an electrode is mentioned.
The battery electrode formed using the carbon material on which the metal nanoparticles are supported can be suitably used for a fuel cell, a lithium air cell, a magnesium air cell, a zinc air cell, and various organic synthesis catalysts.

以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

<実施例1>
丸底フラスコに、アセチレンブラック(1mg)と、硫酸および硝酸の混合液(10ml、硫酸:硝酸(質量比)=3:1)とを加えて、アセチレンブラックを溶液中に浸漬させた。得られた溶液に対して、室温にて3時間超音波(周波数3.8MHz)を照射した。その後、溶液を蒸留水(100ml)に注ぎ、その後、ナイロンフィルター膜(孔径0.1μm)を用いて濾過し、固形分を回収した。得られた固形分を蒸留水で洗浄し、その後、さらにメタノールで洗浄し、数分乾燥させた。その後、さらに真空オーブン中にて100℃でさらに乾燥して、官能基化されたアセチレンブラック(以後、FABとも称する)を回収した。
<Example 1>
Acetylene black (1 mg) and a mixed solution of sulfuric acid and nitric acid (10 ml, sulfuric acid: nitric acid (mass ratio) = 3: 1) were added to the round bottom flask, and the acetylene black was immersed in the solution. The obtained solution was irradiated with ultrasonic waves (frequency 3.8 MHz) at room temperature for 3 hours. Thereafter, the solution was poured into distilled water (100 ml), and then filtered using a nylon filter membrane (pore diameter 0.1 μm) to recover the solid content. The obtained solid content was washed with distilled water, then further washed with methanol and dried for several minutes. Thereafter, it was further dried at 100 ° C. in a vacuum oven to recover functionalized acetylene black (hereinafter also referred to as FAB).

次に、以下に示す、化学還元法により、得られたFABの表面に白金ナノ粒子を形成した。具体的には、まず、ヘキサクロロ白金(IV)酸(H2PtCl6)を0.0443Mで含む水溶液(1.16ml)、脱イオン水(8.84ml)、および、エチレングリコール(40ml)を含む丸形フラスコに、FAB(90mg)を加えた。得られた溶液に対して、4時間超音波照射を行った。その後、得られた溶液を120℃で24時間加熱した。次に、ナイロンフィルター膜を用いて、得られた溶液を濾過し、得られた固形分を水およびメタノールで洗浄した。その後、固形分を100℃で2時間乾燥して、白金ナノ粒子が担持されたFABを得た。なお、アセチレンブラックの質量に対する白金ナノ粒子の担持量は、8質量%であった(つまり、(白金ナノ粒子の質量/アセチレンブラックの質量)×100=8質量%であった)。また、TEM観察より、白金ナノ粒子の平均粒径は2.5nmであった。 Next, platinum nanoparticles were formed on the surface of the obtained FAB by the chemical reduction method shown below. Specifically, first, an aqueous solution (1.16 ml) containing hexachloroplatinic (IV) acid (H 2 PtCl 6 ) at 0.0443 M, deionized water (8.84 ml), and ethylene glycol (40 ml) are contained. To the round flask, FAB (90 mg) was added. The obtained solution was subjected to ultrasonic irradiation for 4 hours. The resulting solution was then heated at 120 ° C. for 24 hours. Next, the obtained solution was filtered using a nylon filter membrane, and the obtained solid content was washed with water and methanol. Then, solid content was dried at 100 degreeC for 2 hours, and FAB with which the platinum nanoparticle was carry | supported was obtained. The supported amount of platinum nanoparticles with respect to the mass of acetylene black was 8 mass% (that is, (mass of platinum nanoparticles / mass of acetylene black) × 100 = 8 mass%). From the TEM observation, the average particle size of the platinum nanoparticles was 2.5 nm.

<実施例2>
ヘキサクロロ白金(IV)酸(H2PtCl6)を含む水溶液の使用量を1.16mlから3.27mlに変更した以外は、実施例1と同様の手順に従って、白金ナノ粒子が担持されたFABを得た。なお、アセチレンブラックの質量に対する白金ナノ粒子の担持量は、20質量%であった。また、TEM観察より、白金ナノ粒子の平均粒径は4.5nmであった。
<Example 2>
According to the same procedure as in Example 1, except that the amount of the aqueous solution containing hexachloroplatinic (IV) acid (H 2 PtCl 6 ) was changed from 1.16 ml to 3.27 ml, the FAB supporting platinum nanoparticles was changed. Obtained. The supported amount of platinum nanoparticles with respect to the mass of acetylene black was 20% by mass. From the TEM observation, the average particle diameter of the platinum nanoparticles was 4.5 nm.

<実施例3>
ヘキサクロロ白金(IV)酸(H2PtCl6)を含む水溶液の使用量を1.16mlから6.54mlに変更した以外は、実施例1と同様の手順に従って、白金ナノ粒子が担持されたFABを得た。なお、アセチレンブラックの質量に対する白金ナノ粒子の担持量は、40質量%であった。また、TEM観察より、白金ナノ粒子の平均粒径は6.5nmであった。
<Example 3>
According to the same procedure as in Example 1, except that the amount of the aqueous solution containing hexachloroplatinic (IV) acid (H 2 PtCl 6 ) was changed from 1.16 ml to 6.54 ml, the FAB on which platinum nanoparticles were supported was changed. Obtained. The supported amount of platinum nanoparticles with respect to the mass of acetylene black was 40% by mass. From the TEM observation, the average particle size of the platinum nanoparticles was 6.5 nm.

<電極の作製>
上記実施例1で作製した白金ナノ粒子が担持されたFAB(1.35mg)と、蒸留水(60μl)と、イソプロピルアルコール(40μl)と、5%ナフィオン(15μl、溶媒:イソプロピルアルコール)とをサンプル瓶に入れ、5分間超音波を照射して均一なスラリーを得た。得られたスラリーを、ガラス状炭素電極(5mm直径)上にキャストして、作用電極E1を製造した。
なお、実施例1で作製した白金ナノ粒子が担持されたFABの代わりに、実施例2で作製した白金ナノ粒子が担持されたFABまたは実施例3で作製した白金ナノ粒子が担持されたFABを用いた以外は、上記と同様の手順に従って、それぞれ作用電極E2または作用電極E3を製造した。
また、実施例1で作製した白金ナノ粒子が担持されたFABの代わりに、市販品である20wt% Pt−Graphite(Sigma)を用いた以外は、上記と同様の手順に従って、作用電極C1を製造した。なお、上記市販品は、本発明の製造方法とは異なる方法で作製されている。
<Production of electrode>
Sample of FAB (1.35 mg) carrying platinum nanoparticles prepared in Example 1 above, distilled water (60 μl), isopropyl alcohol (40 μl), and 5% Nafion (15 μl, solvent: isopropyl alcohol). It was put in a bottle and irradiated with ultrasonic waves for 5 minutes to obtain a uniform slurry. The obtained slurry was cast on a glassy carbon electrode (5 mm diameter) to produce a working electrode E1.
Instead of the FAB carrying the platinum nanoparticles produced in Example 1, the FAB carrying the platinum nanoparticles produced in Example 2 or the FAB carrying the platinum nanoparticles produced in Example 3 was used. Working electrode E2 or working electrode E3 was produced according to the same procedure as described above except that it was used.
Further, the working electrode C1 was produced according to the same procedure as described above except that a commercially available 20 wt% Pt-Graphite (Sigma) was used instead of the FAB carrying the platinum nanoparticles produced in Example 1. did. In addition, the said commercial item is produced by the method different from the manufacturing method of this invention.

<サイクリックボルタンメトリー測定(その1)>
上記で得られた作用電極E2またはC1をそれぞれ用いて、サイクリックボルタンメトリー測定(ALS600C)を実施した。
なお、参照極としてAg/AgCl電極、対極としてPt電極、電解液として0.1MのHClO4を用い、掃引速度:20mV/s、掃引範囲:−0.5〜1.2V(Ag/Ag)、温度:室温、空気雰囲気下といった条件で測定を行った。結果を図1に示す。なお、図1中、作用電極E2の結果を「20% Pt−FAB」、作用電極C1の結果を「20wt% Pt−Graphite Sigma」と記載する。
図1に示すように、作用電極E2を使用した場合は、0.4〜0.6Vにおいてより大きなピークが確認され、酸素還元反応(ORR)活性がより大きいことが確認された。
<Cyclic voltammetry measurement (1)>
Using the working electrode E2 or C1 obtained above, cyclic voltammetry measurement (ALS600C) was performed.
In addition, an Ag / AgCl electrode is used as a reference electrode, a Pt electrode is used as a counter electrode, and 0.1 M HClO 4 is used as an electrolyte solution. Sweep speed: 20 mV / s, sweep range: −0.5 to 1.2 V (Ag / Ag + ), Temperature: measured under conditions such as room temperature and air atmosphere. The results are shown in FIG. In FIG. 1, the result of the working electrode E2 is described as “20% Pt-FAB”, and the result of the working electrode C1 is described as “20 wt% Pt-Graphite Sigma”.
As shown in FIG. 1, when the working electrode E2 was used, a larger peak was confirmed at 0.4 to 0.6 V, and it was confirmed that the oxygen reduction reaction (ORR) activity was larger.

<サイクリックボルタンメトリー測定(その2)>
上記で得られた作用電極E2またはC1をそれぞれ用いて、サイクリックボルタンメトリー測定(ALC600C)を実施した。
なお、参照極としてAg/AgCl電極、対極としてPt電極、電解液として0.1MのHClO4を用い、掃引速度:20mV/s、掃引範囲:−0.5〜1.2V(Ag/Ag)、温度:室温、空気雰囲気下といった条件で100サイクル掃引し、酸素還元反応(ORR)活性の程度を測定した。結果を図2に示す。なお、図2中、作用電極E2の結果を「20% Pt−FAB」、作用電極C1の結果を「20wt% Pt−Graphite Sigma」と記載する。
なお、図2においては、作用電極E1を用いて1サイクル掃引した際の酸素還元反応(ORR)活性を「100」とした相対値として記載した。酸素還元反応(ORR)活性の程度は、ピーク強度により評価した。
図2に示すように、作用電極E2を用いた場合、100サイクル掃引した後もより高い酸素還元反応(ORR)活性を示すことが確認された。
<Cyclic voltammetry measurement (2)>
Using the working electrode E2 or C1 obtained above, cyclic voltammetry measurement (ALC600C) was performed.
In addition, an Ag / AgCl electrode is used as a reference electrode, a Pt electrode is used as a counter electrode, and 0.1 M HClO 4 is used as an electrolyte solution. Sweep speed: 20 mV / s, sweep range: −0.5 to 1.2 V (Ag / Ag + ), Temperature: swept 100 cycles under conditions such as room temperature and air atmosphere, and the degree of oxygen reduction reaction (ORR) activity was measured. The results are shown in FIG. In FIG. 2, the result of the working electrode E2 is described as “20% Pt-FAB”, and the result of the working electrode C1 is described as “20 wt% Pt-Graphite Sigma”.
In FIG. 2, the oxygen reduction reaction (ORR) activity when sweeping for one cycle using the working electrode E1 is shown as a relative value with “100”. The degree of oxygen reduction reaction (ORR) activity was evaluated by peak intensity.
As shown in FIG. 2, when the working electrode E2 was used, it was confirmed that the oxygen reduction reaction (ORR) activity was higher after 100 cycles of sweeping.

<サイクリックボルタンメトリー測定(その3)>
上記で得られた作用電極E1〜E3をそれぞれ用いて、サイクリックボルタンメトリー測定(ALS600C)を実施した。
なお、参照極としてAg/AgCl電極、対極としてPt電極、電解液として0.1MのHClO4を用い、掃引速度:20mV/s、掃引範囲:−0.5〜1.2V(Ag/Ag)、温度:室温、空気雰囲気下といった条件で500サイクル掃引し、酸素還元反応(ORR)活性の程度を測定した。結果を図3に示す。なお、図3中、作用電極E1の結果を「8% Pt−FAB」、作用電極E2の結果を「20% Pt−FAB」、作用電極E3の結果を「40% Pt−FAB」と記載する。
なお、図3においては、作用電極E3を用いて1サイクル掃引した際の酸素還元反応(ORR)活性を「100」とした相対値として記載した。酸素還元反応(ORR)活性の程度は、ピーク強度により評価した。
図3に示すように、作用電極E3を用いた場合、500サイクル掃引した後もより高い酸素還元反応(ORR)活性を示すことが確認された。
<Cyclic voltammetry measurement (3)>
Using the working electrodes E1 to E3 obtained above, cyclic voltammetry measurement (ALS600C) was performed.
In addition, an Ag / AgCl electrode is used as a reference electrode, a Pt electrode is used as a counter electrode, and 0.1 M HClO 4 is used as an electrolyte solution. Sweep speed: 20 mV / s, sweep range: −0.5 to 1.2 V (Ag / Ag + ), Temperature: swept for 500 cycles under conditions such as room temperature and air atmosphere, and the degree of oxygen reduction reaction (ORR) activity was measured. The results are shown in FIG. In FIG. 3, the result of the working electrode E1 is described as “8% Pt-FAB”, the result of the working electrode E2 is described as “20% Pt-FAB”, and the result of the working electrode E3 is described as “40% Pt-FAB”. .
In FIG. 3, the oxygen reduction reaction (ORR) activity when sweeping for 1 cycle using the working electrode E3 is shown as a relative value with “100”. The degree of oxygen reduction reaction (ORR) activity was evaluated by peak intensity.
As shown in FIG. 3, it was confirmed that when the working electrode E3 was used, higher oxygen reduction reaction (ORR) activity was exhibited even after sweeping for 500 cycles.

Claims (4)

酸の存在下、アセチレンブラックに超音波を照射する工程と、
超音波処理が施されたアセチレンブラック、および、金属イオンを混合して、還元処理を施し、金属ナノ粒子が担持された炭素材料を製造する工程とを備える、金属ナノ粒子担持炭素材料の製造方法であって、
前記酸と前記アセチレンブラックとの質量比(前記アセチレンブラックの質量/前記酸の質量)が、1×10 −6 〜1×10 −1 であり、
前記超音波の照射時間が1〜24時間である、金属ナノ粒子担持炭素材料の製造方法。
Irradiating acetylene black with ultrasonic waves in the presence of an acid;
A process for producing a carbon material carrying a metal nanoparticle, comprising: acetylene black subjected to ultrasonic treatment; and a step of producing a carbon material carrying a metal nanoparticle by performing reduction treatment by mixing metal ions Because
The mass ratio of the acid to the acetylene black (the mass of the acetylene black / the mass of the acid) is 1 × 10 −6 to 1 × 10 −1 .
The manufacturing method of the metal nanoparticle carrying | support carbon material whose irradiation time of the said ultrasonic wave is 1 to 24 hours.
前記酸が、硝酸、硝酸、塩酸、臭酸、フッ酸、トリフルオロメタンスルホン酸、トリフルオロメタン酢酸、過塩素酸、クロム酸塩、二クロム酸塩、および過マンガン酸塩からなる群から選択される少なくとも1種を含む、請求項1に記載の金属ナノ粒子担持炭素材料の製造方法。   The acid is selected from the group consisting of nitric acid, nitric acid, hydrochloric acid, odorous acid, hydrofluoric acid, trifluoromethanesulfonic acid, trifluoromethaneacetic acid, perchloric acid, chromate, dichromate, and permanganate. The manufacturing method of the metal nanoparticle carrying | support carbon material of Claim 1 containing at least 1 sort (s). 前記金属イオンが、白金イオン、パラジウムイオン、ロジウムイオン、イリジウムイオン、ルテニウムイオン、および、金イオンからなる群から選択される少なくとも1種を含む、請求項1または2に記載の金属ナノ粒子担持炭素材料の製造方法。   The metal nanoparticle carrying | support carbon of Claim 1 or 2 in which the said metal ion contains at least 1 sort (s) selected from the group which consists of platinum ion, palladium ion, rhodium ion, iridium ion, ruthenium ion, and gold ion. Material manufacturing method. 前記金属ナノ粒子の平均粒径が、1〜100nmである、請求項1〜3のいずれか1項に記載の金属ナノ粒子担持炭素材料の製造方法。   The manufacturing method of the metal nanoparticle carrying | support carbon material of any one of Claims 1-3 whose average particle diameter of the said metal nanoparticle is 1-100 nm.
JP2013231393A 2013-11-07 2013-11-07 Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material Expired - Fee Related JP6369848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231393A JP6369848B2 (en) 2013-11-07 2013-11-07 Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013231393A JP6369848B2 (en) 2013-11-07 2013-11-07 Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material

Publications (2)

Publication Number Publication Date
JP2015090855A JP2015090855A (en) 2015-05-11
JP6369848B2 true JP6369848B2 (en) 2018-08-08

Family

ID=53194267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231393A Expired - Fee Related JP6369848B2 (en) 2013-11-07 2013-11-07 Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material

Country Status (1)

Country Link
JP (1) JP6369848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110921B2 (en) 2018-11-07 2022-08-02 トヨタ自動車株式会社 vehicle differential

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761998B2 (en) * 2015-02-28 2020-09-30 株式会社フルヤ金属 Method for manufacturing polymer protective material-free supported catalyst
JP7177667B2 (en) * 2018-11-16 2022-11-24 フタムラ化学株式会社 Metal-supported activated carbon and its production method
KR102448706B1 (en) * 2020-09-28 2022-09-29 한국생산기술연구원 Method for fabricating polymer electrolyte fuel cell catalyst using small graphene and fuel cell catalyst using thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269097A (en) * 2005-03-22 2006-10-05 Hitachi Maxell Ltd Fuel cell and membrane electrode assembly
JP5294235B2 (en) * 2006-05-25 2013-09-18 日産自動車株式会社 Electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110921B2 (en) 2018-11-07 2022-08-02 トヨタ自動車株式会社 vehicle differential

Also Published As

Publication number Publication date
JP2015090855A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
Yang et al. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts
US9123964B2 (en) Fuel cell electrode and production process thereof
Lüsi et al. Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media
Cantane et al. Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS
Zhang et al. Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation
CN105814723A (en) Mould with sectors for a tyre including insulating supporting plates, and associated moulding method
Zhang et al. Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability
Jukk et al. PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media
JP6369848B2 (en) Metal nanoparticle-supporting carbon material and method for producing the same, and method for producing functionalized exfoliated carbon material
CN111509242A (en) Electrode catalyst for fuel cell and method for activating catalyst
Al-Akraa et al. Advances in direct formic acid fuel cells: fabrication of efficient Ir/Pd nanocatalysts for formic acid electro-oxidation
Sahin et al. The effect of iridium addition to platinum on the alcohol electrooxidation activity
El-Nowihy et al. Boosted electrocatalytic oxidation of formic acid at CoOx/Pd/Au nanoparticle-based ternary catalyst
Khan et al. Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER
Naik et al. Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO 2 nanosheet electrocatalyst for electrochemical water splitting
JP2015188808A (en) Oxidation-reduction catalyst, electrode material, electrode, solar battery, membrane battery assembly for fuel battery, and fuel battery
Hassan et al. Functionalization of electrochemically prepared titania nanotubes with Pt for application as catalyst for fuel cells
RU2456717C1 (en) Method of forming catalyst layer for solid-polymer fuel cell
JP6547696B2 (en) Fuel cell electrode catalyst, method for producing the same, and fuel cell
Ribeiro et al. Platinum nanoparticles supported on nitrogen-doped carbon for ammonia electro-oxidation
Kim et al. Fabrication of iridium oxide nanoparticles supported on activated carbon powder by flashlight irradiation for oxygen evolutions
Zhang et al. Enhanced redox catalysis of electrochemical alcohol oxidation in alkaline medium by using Pt-Cu/C catalyst
Hosseini et al. MnNi2O4-MWCNTs as a nano-electrocatalyst for methanol oxidation reaction
Holade et al. Electrochemical behavior of organics oxidation on palladium-based nanocatalysts synthesized from bromide anion exchange
Li et al. Electrocatalyst with fluorinated protective layer for efficient oxygen reduction in the operating temperature of PEMFCs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6369848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees