JP6367140B2 - Radar apparatus and radar signal processing method - Google Patents
Radar apparatus and radar signal processing method Download PDFInfo
- Publication number
- JP6367140B2 JP6367140B2 JP2015049598A JP2015049598A JP6367140B2 JP 6367140 B2 JP6367140 B2 JP 6367140B2 JP 2015049598 A JP2015049598 A JP 2015049598A JP 2015049598 A JP2015049598 A JP 2015049598A JP 6367140 B2 JP6367140 B2 JP 6367140B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- value
- frequency domain
- amplitude
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
本実施形態は、レーダ装置及びレーダ信号処理方法に関する。 The present embodiment relates to a radar apparatus and a radar signal processing method.
従来のレーダ装置では、熱雑音やクラッタ等の不要波環境の中で、小目標を検出する場合、一般にクラッタの抑圧にCFAR(Constant False Alarm Rate)処理を用いることが多い。しかしながら、CFAR処理では、小目標を検出する際に、その小目標の振幅強度がCFARのスレショルドを超えず、非検出になる場合があった。また、メインローブが地表面や海面等を向く場合には、固定クラッタを受信してしまい、検出性能が劣化する課題があった。 In a conventional radar apparatus, when detecting a small target in an unnecessary wave environment such as thermal noise or clutter, generally, CFAR (Constant False Alarm Rate) processing is often used for clutter suppression. However, in the CFAR processing, when detecting a small target, the amplitude intensity of the small target does not exceed the threshold of the CFAR and may not be detected. Further, when the main lobe faces the ground surface, the sea surface, etc., there is a problem that the fixed clutter is received and the detection performance deteriorates.
以上述べたように、従来のレーダ装置では、クラッタ抑圧のためにCFAR(Constant False Alarm Rate)処理を採用した場合に、RCS(Radar Cross Section)が小さい小目標の検出の際にその信号強度がスレショルドを超えず、非検出になる場合があった。また、メインローブが地表面や海面等を向く場合には、固定クラッタ成分を抑圧することができず、検出性能が劣化する課題があった。 As described above, in the conventional radar apparatus, when CFAR (Constant False Alarm Rate) processing is adopted for clutter suppression, the signal strength is small when detecting a small target with a small RCS (Radar Cross Section). In some cases, the threshold was not exceeded and it was not detected. Further, when the main lobe faces the ground surface, the sea surface, etc., there is a problem that the fixed clutter component cannot be suppressed and the detection performance deteriorates.
本実施形態は上記課題に鑑みなされたもので、クラッタ等の不要環境下でCFAR等により検出できないような、RCS(Radar Cross Section)が小さい目標を検出可能とする、高い検出能力を発揮することのできるレーダ装置とそのレーダ信号処理方法を提供することを目的とする。 The present embodiment has been made in view of the above problems, and exhibits a high detection capability that enables detection of a target having a small RCS (Radar Cross Section) that cannot be detected by CFAR or the like under an unnecessary environment such as clutter. An object of the present invention is to provide a radar apparatus capable of performing the same and a radar signal processing method thereof.
上記の課題を解決するために、本実施形態は、N(N>1)個のパルスを任意の方向に送受信し、その受信信号から目標を検出するレーダ装置において、前記パルスの受信信号をPRI軸に対して周波数領域に変換し、前記周波数領域に変換された受信信号からFRデータを時間をずらせてP(P≧2)回分取得し、前記P回分のFRデータよりオプティカルフロー図と振幅強度図を作成し、前記オプティカルフロー図及び振幅強度図に基づいて速度ベクトルと振幅強度による特徴量を算出し、前記特徴量が所定のスレショルドを超える場合に、目標として検出する。 In order to solve the above-described problems, the present embodiment transmits and receives N (N> 1) pulses in an arbitrary direction, and in a radar apparatus that detects a target from the received signal, the received signal of the pulse is converted to PRI. The frequency domain is converted to the frequency domain, and FR data is acquired from the received signal converted to the frequency domain by shifting the time by P (P ≧ 2) times, and an optical flow diagram and amplitude intensity are obtained from the FR data for the P times. A figure is created, a feature quantity based on the velocity vector and the amplitude intensity is calculated based on the optical flow diagram and the amplitude intensity diagram, and when the feature quantity exceeds a predetermined threshold, it is detected as a target.
以下、実施形態について、図面を参照して説明する。尚、各実施形態の説明において、同一部分には同一符号を付して示し、重複する説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In the description of each embodiment, the same portions are denoted by the same reference numerals, and redundant description is omitted.
(第1の実施形態)
以下、図1乃至図4を参照して、第1の実施形態に係るレーダ装置について説明する。
(First embodiment)
Hereinafter, the radar apparatus according to the first embodiment will be described with reference to FIGS. 1 to 4.
図1は第1の実施形態に係るレーダ装置の構成を示すブロック図である。図1に示すレーダ装置において、アンテナ1は複数のアンテナ素子を配列して大開口アレイを形成してなるフェーズドアレイアンテナであり、送受信器2の送受信部21から特定の周期で繰り返し供給される特定周波数の送信パルス信号(以下、PRF(Pulse Repetition Frequency)信号)を指定方向に送出してその反射波を受信する。送受信器2は、送受信部21において、アンテナ1の複数のアンテナ素子でそれぞれ受信された信号をビーム制御部22からの指示に従って位相制御を施し合成することで、任意の方向に受信ビームを形成してPRF受信信号を取得する。ここで、ビーム制御部22は指定された目標方向の測角値に基づいてΣビーム、Δビームを形成するように、送受信部21に対して各ビームに対応する位相制御を施す。これにより、送受信部21はΣ信号、Δ信号を生成して信号処理器3に出力する。
FIG. 1 is a block diagram showing the configuration of the radar apparatus according to the first embodiment. In the radar apparatus shown in FIG. 1, the
上記信号処理器3に入力されたΣ信号、Δ信号は、それぞれの系統において、AD(Analog-Digital)変換部A11,B11で系統別にデジタル信号に変換された後、レンジ軸フーリエ変換部(FFTx)A12,B12に送られる。レンジ軸フーリエ変換部(FFTx)A12,B12は、入力されたΣ信号、Δ信号について、時間軸に対するフーリエ変換を行うことで、レンジ軸に沿った周波数領域信号に変換する。レンジ参照信号乗算部A13,B13は、Σ信号、Δ信号のレンジ軸の周波数領域信号にレンジ圧縮用の参照信号を乗算することでパルス圧縮を施す。逆フーリエ変換部(IFFTx)A14,B14は、レンジ参照信号が乗算された周波数領域のΣ信号、Δ信号について逆フーリエ変換を施すことで時間領域の信号に戻す。PRI(Pulse Repetition Interval)軸フーリエ変換部(FFTy)A15,B15は、時間領域に戻されたΣ信号、Δ信号をPRI軸上の周波数領域の信号に変換する。尚、FFTxとFFTyの処理は順番が逆であってもよい。
The Σ signal and Δ signal input to the
上記参照信号によるパルス圧縮について、例えばリニアチャープの場合で定式化すると次の通りである(非特許文献1参照)。パルス圧縮は、入力信号とレンジ圧縮用の参照信号との相関処理であり、これを周波数領域で行う。
パルス圧縮の出力fpは、fcsのω軸に関するIFFTにより算出できる。
これを用いて、PRI軸でFFTy処理して信号fcs(t,fd)を得る。
時間とレンジの関係は、次式となる。
続いて、FRデータ保存部A16,B16は、複数CPI(coherent Processing Interval)による処理のために、FFTx処理及びFFTy処理されたΣ信号、Δ信号をそれぞれドップラ−レンジ軸のデータ(以下、FRデータ)として保存する。CPI処理のために保存されたFRデータの例を図2(a)に示す。ここでは、FRデータを時間をずらせてP回(P≧2)取得した様子を示している。 Subsequently, the FR data storage units A16 and B16 respectively process the Σ signal and Δ signal that have been subjected to FFTx processing and FFTy processing for Doppler-range axis data (hereinafter referred to as FR data) for processing by a plurality of coherent processing intervals (CPI). ). An example of FR data stored for CPI processing is shown in FIG. Here, a state is shown in which FR data is acquired P times (P ≧ 2) by shifting the time.
ここで、Σ系において、振幅強度算出部A17は上記FRデータ保存部A16に保存されているFRデータについて振幅強度の絶対値を算出する。オプティカルフロー処理部A18は、上記FRデータ保存部A16に保存された複数のCPI信号によるFRデータを用いて、振幅強度図とオプティカルフロー図(非特許文献4参照)を作成する。オプティカルフロー図は、時間の異なる複数のFRデータ等(一般には画像振幅強度データを用い、レーダの場合はCPI毎のFRデータ)の振幅強度図を作成し、この振幅強度図から対応するセルの移動量を求め、その移動量から速度ベクトルを算出したベクトル分布図である。CPI毎の振幅強度図の例を図2(b)に示し、オプティカルフロー図を図2(c)に示す。FRデータの場合は、2次元表示がドップラ−レンジ軸であるので、ドップラ軸が目標とレーダの相対速度変化、レンジ軸が目標とレーダの相対距離の変化を表し、両者の変化を速度ベクトルと呼ぶ。 Here, in the Σ system, the amplitude intensity calculation unit A17 calculates the absolute value of the amplitude intensity for the FR data stored in the FR data storage unit A16. The optical flow processing unit A18 creates an amplitude intensity diagram and an optical flow diagram (see Non-Patent Document 4) using the FR data based on a plurality of CPI signals stored in the FR data storage unit A16. The optical flow diagram creates an amplitude strength diagram of a plurality of FR data having different times (generally using image amplitude strength data, and in the case of radar, FR data for each CPI). It is the vector distribution figure which calculated | required the movement amount and calculated the velocity vector from the movement amount. An example of an amplitude intensity diagram for each CPI is shown in FIG. 2B, and an optical flow diagram is shown in FIG. In the case of FR data, since the two-dimensional display is the Doppler range axis, the Doppler axis represents a change in the relative speed between the target and the radar, the range axis represents a change in the relative distance between the target and the radar, and both changes are expressed as a velocity vector. Call.
特徴量抽出部A19は、上記のオプティカルフローによって作成される速度ベクトルの特徴量を抽出する。すなわち、熱雑音は速度ベクトルがランダム方向に向き、クラッタも目標に比べて各反射点の強度変化が大きく速度ベクトルの向きが揃いにくい。これに対して、目標は剛体であり、異なる時間でも比較的反射点の変動が小さく、速度ベクトルが揃いやすい。そこで、両者の特性を利用することで、オプティカルフローから速度ベクトルの特徴量を抽出することができる。 The feature quantity extraction unit A19 extracts the feature quantity of the velocity vector created by the above optical flow. In other words, thermal noise has a velocity vector oriented in a random direction, and clutter also has a large intensity change at each reflection point compared to the target, making it difficult to align the velocity vectors. On the other hand, the target is a rigid body, the reflection point fluctuations are relatively small even at different times, and the velocity vectors are easily aligned. Therefore, by using the characteristics of both, the feature quantity of the velocity vector can be extracted from the optical flow.
具体的には、上記特徴量抽出部A19において、複数CPIのFRデータのうち、少なくとも1つのデータか、複数のFRデータの振幅強度の最大値か平均値等を用いて、その値が所定のスレショルド以上になるセルCell(n)(n=1〜N)を抽出する。振幅強度に基づくセルの信号抽出結果の一例を図2(d)に示す。さらに、Cell(n)を中心に、所定のゲート範囲Cell-gate(n)(n=1〜N)のセル内の速度ベクトルを抽出し、その速度ベクトルの最大値または平均値等を特徴量として出力する。速度ベクトル抽出の一例を図2(e)に示す。目標検出部A20は、特徴量抽出部A19で抽出された特徴量の値が所定のスレショルドを超える場合に目標検出結果として出力する。目標検出結果を一例を図2(f)に示す。 Specifically, in the feature amount extraction unit A19, at least one of the FR data of the plurality of CPIs, the maximum value or the average value of the amplitude intensity of the plurality of FR data, or the like is used. Cells Cell (n) (n = 1 to N) that are equal to or higher than the threshold are extracted. An example of the cell signal extraction result based on the amplitude intensity is shown in FIG. In addition, centering on Cell (n), it extracts the velocity vector in the cell of the predetermined gate range Cell-gate (n) (n = 1 to N), and features the maximum or average value of the velocity vector as the feature quantity. Output as. An example of velocity vector extraction is shown in FIG. The target detection unit A20 outputs a target detection result when the value of the feature amount extracted by the feature amount extraction unit A19 exceeds a predetermined threshold. An example of the target detection result is shown in FIG.
ここで、目標検出部A20の目標検出結果はセル検出部B17に送られる。セル検出部B17は、Δ系列のFRデータ保存部B16に保存されているFRデータからΣ系列の目標検出セルに対応するセルのFRデータを検出する。 Here, the target detection result of the target detection unit A20 is sent to the cell detection unit B17. The cell detection unit B17 detects the FR data of the cell corresponding to the Σ-sequence target detection cell from the FR data stored in the Δ-sequence FR data storage unit B16.
次に、測距・測速処理部A21は、目標検出部A20で得られたPRIの異なる複数CPIのFRデータのセル番号を用いて、MPRF処理(非特許文献5参照)によりアンビギュイティの抑圧を行うレゾルバ処理を行う。時間軸(レンジ軸)でアンビギュイティがある場合の目標距離は、図3に示すように、複数PRI方向に反射点を配列し、複数PRI間で同じ時間(レンジ)になるレンジを抽出すればよい。測速についても、図4に示すように、複数PRF方向に反射点を配列し、複数PRF間で同じドップラ(速度)になるドップラを抽出し、速度に換算すればよい。この処理は、レンジ−ドップラ軸の2次元の面で処理することにより、レンジ及び速度を同時に算出できる。 Next, the distance measurement / speed measurement processing unit A21 suppresses ambiguity by MPRF processing (see Non-Patent Document 5) using cell numbers of FR data of a plurality of CPIs having different PRIs obtained by the target detection unit A20. Perform resolver processing. As shown in FIG. 3, the target distance when there is ambiguity on the time axis (range axis) is to extract the ranges that have the same time (range) between multiple PRIs by arranging reflection points in multiple PRI directions. That's fine. As for speed measurement, as shown in FIG. 4, reflection points are arranged in a plurality of PRF directions, a Doppler having the same Doppler (speed) is extracted between the plurality of PRFs, and converted into a speed. This processing is performed on the two-dimensional surface of the range-Doppler axis, whereby the range and speed can be calculated simultaneously.
次に、測角処理部A22の測角手法について述べる。まず、セル検出部B17において、アンテナのΔビーム(ΔAZ、ΔEL)の出力からΣビームと同様にレンジ−ドップラ画像を得る。次にΣビームで、前述のオプティカルフローを用いて検出したセル(レンジ−ドップラ軸のセル)と同様のΔビームのセルを抽出し、次式の誤差電圧を算出する。
ΣとΔのビームパターンにおいて、予め取得した角度特性により、基準となる誤差電圧εrefと角度の関係をテーブル化しておき、εを観測し、テーブルを引用して角度を抽出すれば、測角値が得られる。AZ角、EL角について同様の処理を行うことで、両者の軸の測角を実施することができる(非特許文献3参照)。 In the beam patterns of Σ and Δ, if the angle relationship obtained in advance is used as a table, the relationship between the reference error voltage εref and the angle is tabulated, ε is observed, and the angle is extracted by quoting the table. Is obtained. By performing similar processing for the AZ angle and the EL angle, angle measurement of both axes can be performed (see Non-Patent Document 3).
以上のように、第1の実施形態に係るレーダ装置によれば、PRI軸に対してFFT処理し、パルス圧縮したドップラ−レンジデータ(FRデータ)を時間をずらせてP回(P≧2)取得し、P個のFRデータよりオプティカルフロー図と振幅強度図を作成し、速度ベクトルと振幅強度による特徴量を算出し、所定のスレショルドを超える場合に、目標検出する。このように、ドップラ−レンジの振幅強度であるFRデータを用いて、各目標の複数反射点を利用して、オプティカルフロー図と振幅強度図を作成し、特徴量を抽出することにより、クラッタ等の不要環境下でCFAR等により検出できないような、RCSが小さい目標であっても、その目標を検出して距離・速度・角度を取得することができる。 As described above, according to the radar apparatus of the first embodiment, the Doppler range data (FR data) subjected to FFT processing on the PRI axis and pulse-compressed is shifted P times (P ≧ 2). An optical flow diagram and an amplitude intensity diagram are created from the P pieces of FR data, a feature quantity based on the velocity vector and the amplitude intensity is calculated, and a target is detected when a predetermined threshold is exceeded. In this way, by using the FR data that is the amplitude intensity of the Doppler range, using the plurality of reflection points of each target, an optical flow diagram and an amplitude intensity diagram are created, and a feature amount is extracted, so that clutter or the like is obtained. Even if the target has a small RCS that cannot be detected by CFAR or the like in the unnecessary environment, the target can be detected to obtain the distance, speed, and angle.
(第2の実施形態)
以下、図5及び図6を参照して、第2の実施形態に係るレーダ装置について説明する。
(Second Embodiment)
Hereinafter, a radar apparatus according to the second embodiment will be described with reference to FIGS. 5 and 6.
図5は第2の実施形態に係るレーダ装置の構成を示すブロック図、図6はその処理の流れを示す概念図である。尚、図5において図1と同一部分には同一符号を付して示し、ここでは重複する説明を省略する。 FIG. 5 is a block diagram showing the configuration of the radar apparatus according to the second embodiment, and FIG. 6 is a conceptual diagram showing the flow of the processing. In FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted here.
図5に示すレーダ装置において、図1に示した第1の実施形態との違いは、信号処理器3のオプティカルフロー処理部A18と特徴量抽出部A19との間に加算部A23を介在させたことにある。すなわち、この実施形態では、オプティカルフロー処理部A18において、FRデータ保存部A16に保存された複数のCPI信号によるFRデータ(図6(a))を用いて、振幅強度図(図6(b))とオプティカルフロー図(図6(c))を作成した後、加算部A23により、Cell−gate内の振幅強度の加算値Amp-sum(n)(n=1〜N)(図6(d))と、オプティカルフローの中で、前述のCell−gate内の速度ベクトルの加算ベクトルVel-sum(n)(n=1〜N)(図6(e))を得る。このAmp-sumとVel-sumを特徴量として、目標検出部A20において、両者が各々の所定スレショルドを超える場合に目標を検出したものとする。
In the radar apparatus shown in FIG. 5, the difference from the first embodiment shown in FIG. 1 is that an adder A23 is interposed between the optical flow processor A18 and the feature quantity extractor A19 of the
以上のように、第2の実施形態によれば、特徴量として、振幅強度図の極値を中心に、所定のセル範囲の振幅強度の加算値と速度ベクトルの加算値の絶対値が、各々所定のスレショルドを超える場合に目標検出とする。すなわち、ドップラ−レンジの振幅強度であるFRデータを用いて、各目標の複数反射点を利用して、オプティカルフロー図と振幅強度図を作成し、振幅極値の周囲の速度ベクトルと振幅強度の加算値による特徴量を抽出する。これにより、クラッタ等の不要環境下でCFAR等により検出できないような、RCSが小さい目標であっても、その目標を検出して距離・速度・角度を取得することができる。 As described above, according to the second embodiment, the feature value is centered on the extreme value of the amplitude intensity diagram, and the absolute value of the added value of the amplitude intensity of the predetermined cell range and the added value of the velocity vector are respectively Target detection is performed when a predetermined threshold is exceeded. That is, by using the FR data that is the amplitude intensity of the Doppler range, an optical flow diagram and an amplitude intensity diagram are created using a plurality of reflection points of each target, and the velocity vector and amplitude intensity around the amplitude extreme value are generated. A feature value based on the added value is extracted. Thereby, even if the target has a small RCS that cannot be detected by CFAR or the like under an unnecessary environment such as clutter, the target can be detected and the distance, speed, and angle can be acquired.
(第3の実施形態)
第1の実施形態では、パルスヒット数が少ない場合や周波数帯域が狭くレンジ分解能が低い場合に、FRデータのセル数が少なく、オプティカルフローによる速度ベクトルが正しく算出できない場合も考えられる。第3の実施形態では、この対策として、FRデータのセル数を増加する方式を提案する。
(Third embodiment)
In the first embodiment, when the number of pulse hits is small, or when the frequency band is narrow and the range resolution is low, there may be a case where the number of cells of FR data is small and the velocity vector based on the optical flow cannot be calculated correctly. In the third embodiment, a method for increasing the number of cells of FR data is proposed as a countermeasure.
以下、図7及び図8を参照して、第3の実施形態に係るレーダ装置について説明する。 Hereinafter, a radar apparatus according to the third embodiment will be described with reference to FIGS. 7 and 8.
図7は第3の実施形態に係るレーダ装置の構成を示すブロック図、図8はその処理の流れを示す概念図である。尚、図7において図1と同一部分には同一符号を付して示し、ここでは重複する説明を省略する。 FIG. 7 is a block diagram showing the configuration of the radar apparatus according to the third embodiment, and FIG. 8 is a conceptual diagram showing the flow of the processing. In FIG. 7, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted here.
本実施形態では、Σ信号、Δ信号それぞれの系列で、FFTy処理後に、FFTxy処理部A24,B18において、レンジ軸、ドップラ軸それぞれのフーリエ変換によって周波数領域の信号に変換し、ゼロ埋め部A25,B19において周波数軸上のゼロ埋めを施し、IFFTxy処理部A26,B20において、レンジ軸、ドップラ軸それぞれの逆フーリエ変換によって時間領域の信号に変換する。以下に定式化を行う。
まず、FRデータを
First, the FR data
これを2次元IFFTして、参照信号の周波数軸の信号を得る。
このFR_allをFRデータ(図8(a))として、第1の実施形態と同様の処理を行えば、図8(b)に示すように、極値周囲で高分解能化されたセル数の多い状態で処理することができ、振幅強度とオプティカルフローの速度ベクトルの特徴量を抽出しやすくなって、目標検出の感度が向上する。 If this FR_all is used as FR data (FIG. 8A) and the same processing as in the first embodiment is performed, as shown in FIG. 8B, the number of cells with high resolution around the extreme value is large. It is easy to extract the feature quantity of the amplitude intensity and the velocity vector of the optical flow, and the sensitivity of target detection is improved.
このように、第3の実施形態によれば、FRデータを2次元FFTした後、2次元の軸にゼロ埋めし、再度2次元逆FFTしたFRデータに第1の実施形態または第2の実施形態の処理を行う。この場合、各目標の反射点数が少ない場合にも、周波数軸のゼロ埋め後、逆FFTすることにより、反射点数を増やすことができるので、振幅強度と速度ベクトルによる特徴量を効率よく抽出して、目標検出性能を向上させることができる。 As described above, according to the third embodiment, after the FR data is two-dimensionally FFTed, zero-padded on the two-dimensional axis, and the two-dimensional inverse FFT is performed again on the FR data of the first or second embodiment. Perform the form processing. In this case, even when the number of reflection points for each target is small, the number of reflection points can be increased by performing inverse FFT after zero filling of the frequency axis. The target detection performance can be improved.
(第4の実施形態)
第3の実施形態では、周波数軸におけるゼロ埋めによりFRデータを高分解能化してセル数を増やす手法について述べた。ゼロ埋めの手法では、目標反射点の付近の反射点が増えるが、図8(b)の極値周囲内の中央に反射点の間の空隙も増える場合があり、速度ベクトルが正しく算出できない可能性もある。そこで、第4の実施形態では、オプティカルフローによる速度ベクトルが、反射点が固まって多い場合に正しく算出しやすいことに鑑みて、反射点数を増やす手法を提案する。
(Fourth embodiment)
In the third embodiment, the method of increasing the number of cells by increasing the resolution of FR data by zero padding on the frequency axis has been described. In the zero padding method, the number of reflection points in the vicinity of the target reflection point increases, but the gap between the reflection points may increase at the center in the periphery of the extreme value in FIG. 8B, and the velocity vector cannot be calculated correctly. There is also sex. Therefore, in the fourth embodiment, a method of increasing the number of reflection points is proposed in view of the fact that the velocity vector based on the optical flow is easily calculated correctly when there are many reflection points.
以下、図9及び図10を参照して、第4の実施形態に係るレーダ装置について説明する。 Hereinafter, a radar apparatus according to the fourth embodiment will be described with reference to FIGS. 9 and 10.
図9は第4の実施形態に係るレーダ装置の構成を示すブロック図、図10はその処理の流れを示す概念図である。尚、図9において図7と同一部分には同一符号を付して示し、ここでは重複する説明を省略する。 FIG. 9 is a block diagram showing the configuration of the radar apparatus according to the fourth embodiment, and FIG. 10 is a conceptual diagram showing the flow of the processing. In FIG. 9, the same parts as those in FIG. 7 are denoted by the same reference numerals, and redundant description is omitted here.
本実施形態では、Σ信号、Δ信号それぞれの系列で、FFTxy処理(A24,B18)、ゼロ埋め(A25,B19)、IFFTxy処理(A26,B20)を施した後、ストレッチ処理部A27,B21にて反射点をストレッチしてFRデータ保存部A16,B16へ出力する。 In the present embodiment, the FFTxy processing (A24, B18), zero padding (A25, B19), and IFFTxy processing (A26, B20) are applied to each of the Σ signal and Δ signal sequences, and then the stretch processing units A27, B21 are applied. The reflection points are stretched and output to the FR data storage units A16 and B16.
上記ストレッチ処理部A27,B21は、FRデータの振幅強度(図10(a))において、所定のスレショルドを超える極値を抽出する(図10(b))。その極値を中心に所定のゲート範囲の振幅強度を極大値と同一の値か、それに係数を乗算した値に設定する(図10(c))。 The stretch processing units A27 and B21 extract extreme values exceeding a predetermined threshold in the amplitude intensity of FR data (FIG. 10A) (FIG. 10B). Centering on the extreme value, the amplitude intensity of a predetermined gate range is set to the same value as the maximum value or a value obtained by multiplying it by a coefficient (FIG. 10C).
この極大値をストレッチしたFRデータを用いて、第3の実施形態のゼロ埋め処理を実施する。尚、第3の実施形態に限らず、第1または第2の実施形態の処理のみでもよい。 The zero padding process of the third embodiment is performed using the FR data obtained by stretching the maximum value. Note that the processing is not limited to the third embodiment, and only the processing of the first or second embodiment may be performed.
このように、第4の実施形態によれば、FRデータか、またはFRデータを2次元FFT後、2次元の軸にゼロ埋めした後、2次元逆FFTしたFRデータより、所定のスレショルドを超える振幅極値を抽出し、極値の周囲のセルに極値の振幅値に所定の係数を乗算した振幅値に置き換えてストレッチした後に、第1乃至第3の実施形態のいずれかの処理を行うことで、各目標の反射点数が少ない場合にも、振幅極値の周囲のセル数をストレッチ処理により増やし、振幅強度と速度ベクトルによる特徴量を効率よく抽出することができるので、目標検出性能を向上させることができる。 Thus, according to the fourth embodiment, the FR data or the FR data is two-dimensionally FFTed, zero-padded on the two-dimensional axis, and then exceeds a predetermined threshold than the two-dimensional inverse FFT FR data. After the amplitude extreme value is extracted and replaced by an amplitude value obtained by multiplying a cell around the extreme value by a predetermined coefficient by the amplitude value of the extreme value, the process according to any of the first to third embodiments is performed. Thus, even when the number of reflection points for each target is small, the number of cells around the amplitude extreme value can be increased by the stretch process, and the feature quantity based on the amplitude intensity and the velocity vector can be extracted efficiently. Can be improved.
本実施形態は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present embodiment is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
1…アンテナ、2…送受信器、21…送受信部、22…ビーム制御部、3…信号処理器、A11,B11…AD(Analog-Digital)変換部、A12,B12…レンジ軸フーリエ変換部(FFTx)、A13,B13…レンジ参照信号乗算部、A14,B14…逆フーリエ変換部(IFFTx)、A15,B15…PRI(Pulse Repetition Interval)軸フーリエ変換部(FFTy)、A16,B16…FRデータ保存部、A17…振幅強度算出部、A18…オプティカルフロー処理部、A19…特徴量抽出部、A20…目標検出部、B17…セル検出部、A21…測距・測速処理部、A22…測角処理部、A23…加算部、A24,B18…FFTxy処理部、A25,B19…ゼロ埋め部、A26,B20…IFFTxy処理部、A27,B21…ストレッチ処理部。
DESCRIPTION OF
Claims (8)
前記パルスの受信信号をPRI(Pulse Repetition Interval)軸に対して周波数領域に変換する変換手段と、
前記変換手段により変換された周波数領域の受信信号からFRデータ(ドップラ−レンジデータ)を時間をずらせてP(P≧2)回分取得する取得手段と、
前記P回分のFRデータよりオプティカルフロー図と振幅強度図を作成する作成手段と、
前記作成手段で作成されたオプティカルフロー図及び振幅強度図に基づいて速度ベクトルと振幅強度による特徴量を算出する算出手段と、
前記特徴量が所定のスレショルドを超える場合に、目標として検出する検出手段と
を具備するレーダ装置。 In a radar apparatus that transmits and receives N (N> 1) pulses in an arbitrary direction and detects a target from the received signal,
Conversion means for converting the received signal of the pulse into a frequency domain with respect to a PRI (Pulse Repetition Interval) axis;
An acquisition means for acquiring FR data (Doppler range data) for P (P ≧ 2) times by shifting the time from the received signal in the frequency domain converted by the conversion means;
Creating means for creating an optical flow diagram and an amplitude intensity diagram from the FR data for the P times;
Calculation means for calculating a feature quantity based on a velocity vector and amplitude intensity based on the optical flow diagram and amplitude intensity diagram created by the creation means;
A radar apparatus comprising: detecting means for detecting as a target when the feature amount exceeds a predetermined threshold.
前記検出手段は、前記所定のセル範囲の振幅強度の加算値と速度ベクトルの加算値の絶対値が各々所定のスレショルドを超える場合に目標として検出する請求項1記載のレーダ装置。 The calculation means calculates the absolute value of the addition value of the amplitude intensity and the addition value of the velocity vector around the extreme value of the amplitude intensity diagram as the feature amount,
The radar apparatus according to claim 1, wherein the detection unit detects a target when an absolute value of an addition value of an amplitude intensity and an addition value of a velocity vector of the predetermined cell range exceeds a predetermined threshold.
前記検出手段は、前記取得手段で取得されたFRデータまたはゼロ埋め後のFRデータから所定のスレショルドを超える振幅極値を抽出し、極値の周囲のセルに極値の振幅値に所定の係数を乗算した振幅値に置き換えてストレッチした後に前記目標を検出する請求項1乃至3のいずれか記載のレーダ装置。 The acquisition means converts the FR data acquired from the frequency domain signal or the FR data into a frequency domain using a two-dimensional FFT (Fast Fourier Transform), fills a two-dimensional axis with zeros, and then converts the two-dimensional inverse Obtain the FR data converted to the time domain by FFT,
The detection unit extracts an amplitude extreme value exceeding a predetermined threshold from the FR data acquired by the acquisition unit or the FR data after zero padding, and a predetermined coefficient is added to the extreme amplitude value in a cell around the extreme value. The radar apparatus according to claim 1, wherein the target is detected after stretching by replacing with an amplitude value multiplied by.
前記パルスの受信信号をPRI(Pulse Repetition Interval)軸に対して周波数領域に変換し、
前記周波数領域に変換された受信信号からFRデータ(ドップラ−レンジデータ)を時間をずらせてP(P≧2)回分取得し、
前記P回分のFRデータよりオプティカルフロー図と振幅強度図を作成し、
前記オプティカルフロー図及び振幅強度図に基づいて速度ベクトルと振幅強度による特徴量を算出し、
前記特徴量が所定のスレショルドを超える場合に、目標として検出するレーダ装置のレーダ信号処理方法。 In a radar signal processing method of a radar apparatus that transmits and receives N (N> 1) pulses in an arbitrary direction and detects a target from the received signal,
The received signal of the pulse is converted into a frequency domain with respect to a PRI (Pulse Repetition Interval) axis,
Obtain FR data (Doppler range data) from the received signal converted into the frequency domain by shifting the time by P (P ≧ 2) times,
Create an optical flow diagram and amplitude intensity diagram from the FR data for P times,
Based on the optical flow diagram and the amplitude intensity diagram, the feature quantity by the velocity vector and the amplitude intensity is calculated,
A radar signal processing method of a radar apparatus that detects a target when the feature amount exceeds a predetermined threshold.
前記所定のセル範囲の振幅強度の加算値と速度ベクトルの加算値の絶対値が各々所定のスレショルドを超える場合に目標として検出する請求項5記載のレーダ装置のレーダ信号処理方法。 Centering on the extreme value of the amplitude intensity diagram, the absolute value of the added value of the amplitude intensity of the predetermined cell range and the added value of the velocity vector is calculated as the feature amount,
6. The radar signal processing method of a radar apparatus according to claim 5, wherein a detection is made as a target when the absolute value of the sum of the amplitude intensity and the sum of the velocity vector in the predetermined cell range exceeds a predetermined threshold.
前記周波数領域の信号から取得したFRデータまたはゼロ埋め後のFRデータから所定のスレショルドを超える振幅極値を抽出し、極値の周囲のセルに極値の振幅値に所定の係数を乗算した振幅値に置き換えてストレッチした後に前記目標を検出する請求項5乃至7のいずれか記載のレーダ装置のレーダ信号処理方法。 The FR data acquired from the signal in the frequency domain, or the FR data is converted into the frequency domain by two-dimensional FFT (Fast Fourier Transform), zero-padded in the two-dimensional axis, and then converted into the time domain by two-dimensional inverse FFT Obtain the converted FR data,
Amplitude extreme values exceeding a predetermined threshold are extracted from the FR data acquired from the signal in the frequency domain or the FR data after zero padding, and an amplitude obtained by multiplying a cell around the extreme value by a predetermined coefficient to the amplitude value of the extreme value The radar signal processing method of a radar apparatus according to claim 5, wherein the target is detected after being replaced with a value and stretched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049598A JP6367140B2 (en) | 2015-03-12 | 2015-03-12 | Radar apparatus and radar signal processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049598A JP6367140B2 (en) | 2015-03-12 | 2015-03-12 | Radar apparatus and radar signal processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016170023A JP2016170023A (en) | 2016-09-23 |
JP6367140B2 true JP6367140B2 (en) | 2018-08-01 |
Family
ID=56982379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015049598A Active JP6367140B2 (en) | 2015-03-12 | 2015-03-12 | Radar apparatus and radar signal processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6367140B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102207003B1 (en) * | 2019-08-30 | 2021-01-25 | 한화시스템 주식회사 | Method for detecting maritime target |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7170948B2 (en) * | 2020-08-04 | 2022-11-14 | 三菱電機株式会社 | SIGNAL PROCESSING DEVICE, RADAR AND RADAR SIGNAL PROCESSING METHOD |
CN112485783B (en) * | 2020-09-29 | 2024-05-10 | 北京清瑞维航技术发展有限公司 | Object detection method, device, computer equipment and storage medium |
CN112363118B (en) * | 2021-01-12 | 2021-03-26 | 中国人民解放军国防科技大学 | Rapid high-precision batching method and system for satellite reconnaissance radar signals |
CN114299108B (en) * | 2021-11-19 | 2024-10-15 | 湖北航天飞行器研究所 | Outdoor camouflage military target identification method based on optical flow tracking |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6750804B2 (en) * | 2002-04-04 | 2004-06-15 | Raytheon Company | System and method for detecting and estimating the direction of near-stationary targets in monostatic clutter using phase information |
JP2010038832A (en) * | 2008-08-07 | 2010-02-18 | Mitsubishi Electric Corp | Pulse radar apparatus |
JP5911719B2 (en) * | 2011-12-20 | 2016-04-27 | 株式会社東芝 | Target detection device, guidance device, and target detection method |
WO2015001892A1 (en) * | 2013-07-04 | 2015-01-08 | 古野電気株式会社 | Hydrographic phenomenon detection device, radar device, hydrographic phenomenon detection method, and program |
-
2015
- 2015-03-12 JP JP2015049598A patent/JP6367140B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102207003B1 (en) * | 2019-08-30 | 2021-01-25 | 한화시스템 주식회사 | Method for detecting maritime target |
Also Published As
Publication number | Publication date |
---|---|
JP2016170023A (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6367140B2 (en) | Radar apparatus and radar signal processing method | |
JP6352688B2 (en) | Radar apparatus and radar signal processing method thereof | |
JP6301749B2 (en) | Doppler radar apparatus and radar signal processing method thereof | |
US9612324B2 (en) | Multi-sector radar | |
JP6470152B2 (en) | Radar apparatus and radar signal processing method | |
JP6346082B2 (en) | Pulse compression radar apparatus and radar signal processing method thereof | |
JP2018205174A (en) | Radar device and radar signal processing method thereof | |
JP2014182010A (en) | Radar apparatus | |
JP2019168255A (en) | Pulse compression radar device and radar signal processing method therefor | |
JP6755790B2 (en) | Radar device and its radar signal processing method | |
JP2019105601A (en) | Rader system and radar signal processing method for the same | |
JP6324327B2 (en) | Passive radar equipment | |
JP6296907B2 (en) | Radar apparatus and radar signal processing method thereof | |
JP6466263B2 (en) | Radar apparatus and radar signal processing method | |
JP2010175457A (en) | Radar apparatus | |
KR102158740B1 (en) | SYSTEM AND METHOD FOR ESTIMATING RADAR DoA | |
JP6367134B2 (en) | Radar apparatus and radar signal processing method | |
Lu et al. | Robust direction of arrival estimation approach for unmanned aerial vehicles at low signal‐to‐noise ratios | |
JP7086784B2 (en) | Radar system and its radar signal processing method | |
JP2021099244A (en) | Radar system and radar signal processing method | |
JP2010025576A (en) | Wave number estimating apparatus | |
Sheng et al. | Angular superresolution for phased antenna array by phase weighting | |
JP6400340B2 (en) | Pulse compression radar apparatus and radar signal processing method thereof | |
JP2015129695A (en) | Pulse compression radar device and radar signal processing method therefor | |
JP2014228515A (en) | Radar device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170815 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170911 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170911 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180530 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6367140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |