JP6367047B2 - Vacuum heat insulating material and manufacturing method thereof - Google Patents

Vacuum heat insulating material and manufacturing method thereof Download PDF

Info

Publication number
JP6367047B2
JP6367047B2 JP2014172127A JP2014172127A JP6367047B2 JP 6367047 B2 JP6367047 B2 JP 6367047B2 JP 2014172127 A JP2014172127 A JP 2014172127A JP 2014172127 A JP2014172127 A JP 2014172127A JP 6367047 B2 JP6367047 B2 JP 6367047B2
Authority
JP
Japan
Prior art keywords
core material
heat insulating
core
vacuum heat
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014172127A
Other languages
Japanese (ja)
Other versions
JP2016044800A (en
Inventor
中納 暁洋
暁洋 中納
伊藤 博
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014172127A priority Critical patent/JP6367047B2/en
Publication of JP2016044800A publication Critical patent/JP2016044800A/en
Application granted granted Critical
Publication of JP6367047B2 publication Critical patent/JP6367047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

本発明は、真空断熱材及びその製造方法に関し、特に、曲面形状壁に対応できる真空断熱材及びその製造方法に関する。   The present invention relates to a vacuum heat insulating material and a method for manufacturing the same, and more particularly to a vacuum heat insulating material that can handle a curved wall and a method for manufacturing the same.

従来、曲面を有する被断熱体に対する断熱材としては、エアロフレックス(登録商標、独立気泡構造の柔軟な特殊エラストマー断熱材)や発泡ウレタンといったやわらかい素材の断熱材を使用していた。
また、折り曲げ可能な真空断熱材として、例えば特許文献1〜3等が提案されている。
特許文献1は、対向する2つの伝熱面を有する板状の芯材をガスバリア性の外被材で覆い、外被材の内部を減圧して密封した真空断熱材であって、真空断熱材は外被材における芯材の少なくとも一方の伝熱面を覆っている部分に、3方向以上の複数の折曲線を形成して折り曲げられる網状の凹部を有し、被断熱材における真空断熱材を配設しようとする曲面の形状に添うように、網状の凹部の複数箇所で折り曲げて真空断熱材を変形させて、被断熱体の曲がった表面に沿うように真空断熱材を配設するものである。
特許文献2は、真空断熱材は、熱溶着によって正方形に区画区分された連続包装体である内包材に粉末からなる芯材をガスバリア性の外被材で覆い内部を減圧して成り、この複数の芯材3は、内包材と外被材の表裏で熱溶着し一体化することによって、それぞれが独立した空間内を形成する。そのため、熱溶着部で折り曲げられる柔軟性を有する。また、熱溶着部で切断すれば任意形状で、有効断面積が大きい真空断熱材とすることができる。
特許文献3は、複数個の略正八角形に形成されたガラス繊維からなる芯材をガスバリア性の外被材で覆い内部を減圧して成り、この芯材は、八角形の各辺に平行に、縦、横、斜め45度の4方向の折曲線を形成できるように格子状に所定間隔離して配置されており、複数個の芯材が独立した空間に位置するように芯材周囲の外被材を熱溶着部としたもので、4方向に折り曲げられる柔軟性を有する。また、芯材に沿った熱溶着部を周囲3mm程度が残るように切断すれば任意形状で、有効断熱面積が大きい真空断熱材とすることができる。更に、芯材自体の形状を任意として複雑な形状や貫通孔等にも対応でき、いずれもきわめて広範囲の目的に対応できる真空断熱材となる。
Conventionally, as a heat insulating material for a heat-insulated body having a curved surface, a heat insulating material made of a soft material such as Aeroflex (registered trademark, flexible special elastomer heat insulating material having a closed cell structure) or urethane foam has been used.
Further, for example, Patent Documents 1 to 3 have been proposed as foldable vacuum heat insulating materials.
Patent Document 1 is a vacuum heat insulating material in which a plate-shaped core material having two opposing heat transfer surfaces is covered with a gas barrier outer covering material, and the inner portion of the outer covering member is decompressed and sealed. Has a net-like recess that is bent by forming a plurality of folding lines in three or more directions in a portion covering at least one heat transfer surface of the core material in the jacket material, and a vacuum heat insulating material in the heat insulating material The vacuum heat insulating material is arranged along the curved surface of the body to be insulated by bending the plurality of portions of the net-like recesses to deform the vacuum heat insulating material so as to conform to the shape of the curved surface to be arranged. is there.
In Patent Document 2, a vacuum heat insulating material is formed by covering a core material made of powder with an inner packaging material, which is a continuous packaging body divided into squares by thermal welding, with a gas barrier outer covering material, and reducing the inside. The core material 3 is thermally welded and integrated on the front and back of the inner packaging material and the outer covering material, thereby forming an independent space. Therefore, it has the softness | flexibility bent at a heat welding part. Moreover, if it cut | disconnects in a heat welding part, it can be set as the vacuum heat insulating material with an arbitrary shape and a large effective cross-sectional area.
Patent Document 3 is formed by covering a core material made of glass fibers formed in a plurality of substantially regular octagons with a gas barrier outer covering material and reducing the inside, and the core material is parallel to each side of the octagon. Are arranged at predetermined intervals in a lattice shape so as to form vertical, horizontal, and diagonal 45-degree folding lines, and the outer periphery of the core material is positioned so that a plurality of core materials are located in independent spaces. The material is a heat-welded part and has flexibility to be bent in four directions. Moreover, if the heat welding part along a core material is cut | disconnected so that a circumference | surroundings of about 3 mm may remain | survive, it can be set as a vacuum heat insulating material with an arbitrary shape and a large effective heat insulation area. Furthermore, the shape of the core material itself can be arbitrarily set to cope with complicated shapes, through holes, and the like, and any of them can be a vacuum heat insulating material capable of meeting a very wide range of purposes.

特開2008−202709号公報JP 2008-202709 A 特開2007−132425号公報JP 2007-132425 A 特開2004−197935号公報JP 2004-197935 A

例えば、曲面を有する被断熱体として、水素吸蔵合金タンクを例にとって説明すると、水素吸蔵合金の水素の吸蔵・放出に伴う合金反応熱の利用を行う場合、なるべく多くの合金反応熱を回収するため、水素吸蔵合金タンクから周囲に熱が逃げないよう合金タンク外壁を断熱材で覆う必要がある。合金タンクの外筒は円筒形状であることが一般的であるため、エアロフレックス(登録商標、独立気泡構造の柔軟な特殊エラストマー断熱材)や発泡ウレタンといったやわらかい素材の断熱材を使用していた。しかし、これらの断熱材を使用して十分な断熱性能を得ようとすると厚みが増し、断熱材を含めた合金タンクの容量が大きくなり設置場所の確保に問題が生じる。
そこで、上記の特許文献1〜3等の従来の真空断熱材に着目したが、水素吸蔵合金タンクは円筒形状をしており、これら従来の真空断熱材ではタンク側面の曲面に対し密着できず隙間が生じてしまうため十分な断熱性能が得られない。なぜなら、折り曲げ可能にした上記従来技術では、図1に示すように、芯材部は平面で構成されるためタンクの円筒形の曲面に十分な密着ができないのに加え、折り曲げに対応する折り曲げ部では外被材部は真空断熱されておらず、そこから熱侵入、又は熱が逃げ、十分な断熱性能が得られないという問題が生じる。
したがって、本発明の解決しようとする課題は、被断熱体の曲面形状壁にぴったりと密着可能な真空断熱材を提供するとともに、その製造方法を提供することにある。
For example, a hydrogen storage alloy tank will be described as an example of a heat-insulated body having a curved surface. When using the alloy reaction heat associated with the storage and release of hydrogen in the hydrogen storage alloy, as much alloy reaction heat as possible is recovered. In order to prevent heat from escaping from the hydrogen storage alloy tank, it is necessary to cover the outer wall of the alloy tank with a heat insulating material. Since the outer cylinder of the alloy tank is generally cylindrical, a heat insulating material made of a soft material such as Aeroflex (registered trademark, flexible special elastomer heat insulating material with closed cell structure) or urethane foam has been used. However, when these heat insulating materials are used to obtain sufficient heat insulating performance, the thickness increases, and the capacity of the alloy tank including the heat insulating materials increases, which causes a problem in securing the installation location.
Therefore, attention has been paid to the conventional vacuum heat insulating materials such as the above-mentioned Patent Documents 1 to 3, but the hydrogen storage alloy tank has a cylindrical shape, and these conventional vacuum heat insulating materials cannot be in close contact with the curved surface of the tank side surface. As a result, sufficient heat insulation performance cannot be obtained. This is because, in the above-described prior art that can be folded, as shown in FIG. 1, the core portion is formed of a flat surface, so that it cannot sufficiently adhere to the cylindrical curved surface of the tank. Then, the jacket material part is not thermally insulated from the vacuum, and there arises a problem that heat penetration or heat escapes from there and a sufficient heat insulation performance cannot be obtained.
Therefore, the problem to be solved by the present invention is to provide a vacuum heat insulating material that can be tightly attached to the curved wall of the object to be heat-insulated and to provide a manufacturing method thereof.

上記課題を解決するために、本発明は、フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートと、前記芯材シートを覆うガスバリア性の外被材とからなり、前記芯材シートを前記外被材で覆った内部空間が減圧密封されてなる真空断熱材である。
また、本発明は、フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートであって、該芯材シートには複数の穴状空間が形成されており、前記芯材シートが複数枚積層され、互いに隣接する層の芯材シート同士の穴状空間がずらすように配置積層されてなる芯材と、前記芯材を覆うガスバリア性の外被材とからなり、前記芯材を前記外被材で覆った内部空間が減圧密封されてなる真空断熱材である。
また、本発明は、上記真空断熱材において、前記突起状微細構造物は、面ファスナーの雄片と雌片であることを特徴とする。
また、本発明は、フレキシブルな基材の両面に面ファスナーの雄片と雌片が配設された帯状面ファスナーを格子状に重ね、前記格子状に重ねた格子の空間部分を覆うようにさらに帯状面ファスナーを少なくとも1層以上重ねて構成された芯材と、前記芯材を覆うガスバリア性の外被材とからなり、前記芯材を前記外被材で覆った内部空間が減圧密封されてなる真空断熱材である。
また、本発明は、上記真空断熱材において、前記帯状面ファスナーは結束バンドであることを特徴とする。
また、本発明は、フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートをガスバリア性の外被材で覆う工程と、前記芯材シートを前記外被材で覆った内部空間を減圧密封する工程とからなる真空断熱材の製造方法である。
また、本発明は、フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートであって、かつ、複数の穴状空間が形成されている芯材シートを、複数枚積層し、互いに隣接する層の芯材シート同士の穴状空間がずらすように配置積層して芯材を構築する工程と、前記芯材をガスバリア性の外被材で覆う工程と、前記芯材をガスバリア性の外被材で覆った内部空間を減圧密封する工程からなる真空断熱材の製造方法である。
また、本発明は、フレキシブルな基材の両面に面ファスナーの雄片と雌片が配設された帯状面ファスナーを格子状に重ね、該格子状に重ねた格子の空間部分を覆うようにさらに帯状面ファスナーを少なくとも1層以上重ねて芯材を構築する工程と、前記芯材をガスバリア性の外被材で覆う工程と、前記芯材をガスバリア性の外被材で覆った内部空間を減圧密封する工程からなる真空断熱材の製造方法である。
In order to solve the above-described problems, the present invention provides a core material sheet in which protruding microstructures for ensuring a vacuum space are provided on both surfaces of a flexible base material, and a gas barrier property covering the core material sheet. It is a vacuum heat insulating material made of a jacket material, in which an inner space in which the core sheet is covered with the jacket material is sealed under reduced pressure.
The present invention also provides a core material sheet in which projecting microstructures for securing a vacuum space are provided on both surfaces of a flexible base material, wherein a plurality of hole-like spaces are formed in the core material sheet. A plurality of the core material sheets are laminated, and the core material is arranged and laminated so that the hole-like spaces between the core material sheets of the adjacent layers are shifted from each other; and a gas barrier outer covering covering the core material It is a vacuum heat insulating material made of a material, in which an inner space in which the core material is covered with the jacket material is sealed under reduced pressure.
In the vacuum heat insulating material according to the present invention, the protruding microstructure is a male piece and a female piece of a hook-and-loop fastener.
The present invention further includes a belt-like surface fastener in which male and female surface fasteners are arranged on both surfaces of a flexible base material in a lattice shape, and further covers a space portion of the lattice overlapped in the lattice shape. A core material configured by stacking at least one layer of belt-shaped surface fasteners and a gas barrier outer covering material that covers the core material, and an internal space in which the core material is covered with the outer covering material is sealed under reduced pressure. It is a vacuum heat insulating material.
In the vacuum heat insulating material according to the present invention, the belt-shaped surface fastener is a binding band.
The present invention also includes a step of covering a core material sheet provided with a projecting microstructure for securing a vacuum space on both surfaces of a flexible base material with a gas barrier outer covering material, and the core material sheet A method for manufacturing a vacuum heat insulating material, comprising: a step of sealing an inner space covered with the jacket material under reduced pressure.
The present invention also provides a core sheet in which protruding microstructures for securing a vacuum space are provided on both surfaces of a flexible base material, and a core in which a plurality of hole-shaped spaces are formed. A step of constructing a core material by laminating a plurality of material sheets and arranging and laminating so that the hole-like spaces between the core material sheets of adjacent layers are shifted, and covering the core material with a gas barrier covering material It is a method for producing a vacuum heat insulating material comprising a step and a step of sealing the inner space in which the core material is covered with a gas barrier covering material under reduced pressure.
The present invention further includes a belt-like surface fastener in which male and female surface fasteners are disposed on both sides of a flexible base material in a lattice shape, and further covers a space portion of the lattice overlapped in the lattice shape. A step of constructing a core material by stacking at least one layer of belt-shaped surface fasteners, a step of covering the core material with a gas barrier outer covering material, and a decompression of an internal space where the core material is covered with a gas barrier outer covering material It is a manufacturing method of the vacuum heat insulating material which consists of a process to seal.

本発明では、芯材自体がフレキシブルで曲がる構造であるため広い真空断熱部を確保することができ、また、芯材を積層構造にすれば、真空の空間を増大させることができ、所望の断熱性能を実現できる。
更に、外被材としてガスバリア性を持つ熱溶着できる真空パック用包装材、それに脱気シーラーがあれば低コストで簡単に製作可能である。また、芯材の構成部材と外被材を高温に対応できるものにすることにより高温領域で使用できる真空断熱材となる。
In the present invention, since the core material itself is a flexible and bent structure, a wide vacuum heat insulating portion can be secured, and if the core material has a laminated structure, a vacuum space can be increased and desired heat insulation can be achieved. Performance can be realized.
Furthermore, if a packaging material for a vacuum pack having a gas barrier property and a degassing sealer as a covering material and a degassing sealer are available, it can be easily manufactured at low cost. Moreover, it becomes a vacuum heat insulating material which can be used in a high temperature area | region by making the structural member of a core material, and a covering material respond | correspond to high temperature.

図1は、従来の真空断熱材を示した図である。FIG. 1 is a view showing a conventional vacuum heat insulating material. 図2は、本発明の実施例1の真空断熱材における芯材を説明した図である。なお、真空断熱材として完成するには、図示の芯材をガスバリア性の外被材で覆い内部を減圧密封して真空断熱材とする。FIG. 2 is a diagram illustrating a core material in the vacuum heat insulating material according to the first embodiment of the present invention. In order to complete the vacuum heat insulating material, the illustrated core material is covered with a gas barrier covering material, and the inside is sealed under reduced pressure to obtain a vacuum heat insulating material. 図3は、外径16.5cmφの水素吸蔵合金タンクに、従来のエアロフレックス(登録商標)断熱材と実施例1の真空断熱材とを適用した例を示しており、(a)が厚さ6cmの従来のエアロフレックス(登録商標)断熱材を使用、(b)が厚さ6mmの実施例1の真空断熱材と化粧用に厚さ1cmの従来のエアロフレックス(登録商標)断熱材を使用したものである。FIG. 3 shows an example in which the conventional Aeroflex (registered trademark) heat insulating material and the vacuum heat insulating material of Example 1 are applied to a hydrogen storage alloy tank having an outer diameter of 16.5 cmφ, where (a) is the thickness. 6 cm of conventional Aeroflex (registered trademark) insulation material is used, (b) uses the vacuum insulation material of Example 1 with a thickness of 6 mm and conventional Aeroflex (registered trademark) insulation material with a thickness of 1 cm for cosmetic use. It is a thing. 図4は、図3aと図3bの断熱性能を比較した実験結果を示した図である。図4における、(a),(b),(c)は厚さ6cm従来型断熱材エアロフレックス(登録商標)のみ使用(図3a参照)した時の圧力−組成−温度(PCT)曲線、水素吸蔵時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化、水素放出時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化である。図4の(d),(e),(f)は実施例1の真空断熱材を採用(図3b参照)した時の圧力−組成−温度(PCT)曲線、水素吸蔵時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化、水素放出時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化である。FIG. 4 is a diagram showing experimental results comparing the heat insulation performance of FIGS. 3a and 3b. In FIG. 4, (a), (b), and (c) are pressure-composition-temperature (PCT) curves when only 6 cm thick conventional thermal insulation material Aeroflex (registered trademark) is used (see FIG. 3a), hydrogen These are the time variation of the tank internal temperature, circulating water inlet / outlet temperature and tank internal pressure during occlusion, and the time variation of the tank internal temperature, circulating water inlet / outlet temperature and tank internal pressure during hydrogen release. 4 (d), (e), and (f) are pressure-composition-temperature (PCT) curves when the vacuum heat insulating material of Example 1 is employed (see FIG. 3b), the tank internal temperature during hydrogen storage, These are time changes in circulating water inlet / outlet temperature and tank internal pressure, tank internal temperature at the time of hydrogen release, circulating water inlet / outlet temperature and tank internal pressure. 図5は、本発明の実施例2の真空断熱材における芯材を説明した図である。なお、真空断熱材として完成するには、図示の芯材をガスバリア性の外被材で覆い内部を減圧密封して真空断熱材とする。FIG. 5 is a diagram illustrating a core material in the vacuum heat insulating material according to the second embodiment of the present invention. In order to complete the vacuum heat insulating material, the illustrated core material is covered with a gas barrier covering material, and the inside is sealed under reduced pressure to obtain a vacuum heat insulating material. 図6は、本発明の実施例3の真空断熱材における芯材を説明した図である。なお、真空断熱材として完成するには、図示の芯材をガスバリア性の外被材で覆い内部を減圧密封して真空断熱材とする。FIG. 6 is a diagram illustrating the core material in the vacuum heat insulating material according to the third embodiment of the present invention. In order to complete the vacuum heat insulating material, the illustrated core material is covered with a gas barrier covering material, and the inside is sealed under reduced pressure to obtain a vacuum heat insulating material.

本発明者等は、真空断熱材の芯材に柔らかく折り曲げ可能で、且つ微細な真空の空間が確保できる結束バンド等の帯状の面ファスナーを用い、帯状の面ファスナーを格子状に重ねたものを芯材として採用し、これをガスバリア性がある外被材で覆い内部を減圧密封し曲面形状壁に対して密着できるフレキシブルな真空断熱材を開発した。
また、薄くフレキシブルな基材の表裏両面に真空の空間を確保できる突起状微細構造物を配した柔らかく折り曲げ可能な芯材を、ガスバリア性がある外被材で覆い内部を減圧密封し曲面形状壁に対して密着できるフレキシブルな真空断熱材を開発した。
さらに、真空の空間による断熱部の増加と芯材による熱伝導の低減を図るために、前記薄くフレキシブルな基材の表裏両面に真空の空間を確保できる突起状微細構造物を配した柔らかく折り曲げ可能な芯材に複数個の空間(穴)を空けるとともに芯材を重ねて多層化し、重なり合う層の芯材の空間がずれるように重ねて配置し、多層化した芯材を、ガスバリア性がある外被材で覆い内部を減圧密封し曲面形状壁に対して密着できるフレキシブルな真空断熱材を開発した。なお、多層化する場合には、突起状微細構造物を面ファスナーの雄片と雌片とで構成しておけば、多層化する際に重なり合う芯材同士が雄片と雌片の係合により適度にくっつき、型崩れ等を防ぐことができる。
The inventors of the present invention used a band-shaped surface fastener such as a binding band that can be softly bent and can secure a fine vacuum space on the core material of the vacuum heat insulating material, and the band-shaped surface fasteners stacked in a lattice shape. We have developed a flexible vacuum heat insulating material that can be used as a core material, covered with a jacket material with a gas barrier property, and sealed inside under reduced pressure to adhere to a curved wall.
In addition, a soft and foldable core material with protruding microstructures that can secure a vacuum space on both the front and back sides of a thin and flexible substrate is covered with a jacket material that has gas barrier properties, and the inside is sealed under reduced pressure to provide a curved wall Developed a flexible vacuum insulation material that can adhere to the surface.
Furthermore, in order to increase the heat insulation by the vacuum space and reduce the heat conduction by the core material, it can be bent softly by arranging the protruding microstructures that can secure the vacuum space on both the front and back sides of the thin and flexible substrate. A plurality of spaces (holes) are made in the core material and the core materials are stacked to be multi-layered, and the core materials of the overlapping layers are arranged so as to be displaced so that the multi-layer core material has gas barrier properties. We have developed a flexible vacuum heat insulating material that can be covered with a substrate and sealed inside under reduced pressure to adhere to the curved wall. In addition, in the case of multilayering, if the projecting microstructure is composed of male and female pieces of a hook-and-loop fastener, the overlapping core members are formed by the engagement of the male and female pieces when multilayered. Appropriate sticking and loss of shape can be prevented.

(実施例1)
図2は本発明の一実施例である実施例1の真空断熱材における芯材を説明するための図であり、実施例1では芯材として結束バンド等で知られている帯状の面ファスナーを用いる。帯状の面ファスナーは、図2の右図に示すように帯状のフレキシブルな基材の両面に面ファスナーの雄片と雌片を備えており、図では雄片、雌片の典型例であるフックとループで示してあるが、雄片、雌片の構造についてはフックとループに限らず面ファスナーに用いられている雄片、雌片の構造であれば採用可能である。図からわかるように、雄片と雌片であるフックとループの根元部分に微細な空間が存在し、この空間を真空にすることにより熱伝導による伝熱が大幅に制限され性能の良い断熱材を構成することができる。さらに帯状の面ファスナー自体による熱伝導を抑えるため、帯状の面ファスナーを図2の左図に示したように、格子状に重ね帯状面ファスナーの使用量を低減するとともに、できるだけ真空の空間を増大させるよう工夫した(図では、説明をわかりやすくするために、横に3本の帯状面ファスナーを置き、それに縦に7本の帯状面ファスナーを重ねている)。
そして、図2の左図の状態から、格子の空間部分を覆うように横に帯状面ファスナーを重ね(図の場合には横に2本となる)、縦に帯状面ファスナーを重ね(図の場合には縦に6本となる)、順次帯状面ファスナーを積層させて作成した構造体を真空断熱材の芯材とし、これをガスバリア性がある外被材で覆い、内部を減圧密封することで、曲面形状壁に対応できるフレキシブルな真空断熱材が実現できる。
帯状面ファスナーを重ねる際には、雄片と雌片とが係合し重なった帯状面ファスナー同士を繋ぎ合わせ、あるいは、一旦繋げた帯状面ファスナーは剥ぎ取ることも可能である。また、雄片と雌片の係合により繋ぎ合わせているので型崩れが防止できるとともに、曲面に合わせてある程度変形させることもできる。
Example 1
FIG. 2 is a view for explaining the core material in the vacuum heat insulating material of Example 1 which is an embodiment of the present invention. In Example 1, a belt-shaped surface fastener known as a binding band or the like is used as the core material. Use. As shown in the right figure of FIG. 2, the belt-shaped hook-and-loop fastener has male and female pieces of hook-and-loop fasteners on both sides of the belt-like flexible base material. In the figure, the hook is a typical example of male and female pieces. Although the structure of the male piece and the female piece is not limited to the hook and the loop, any structure can be adopted as long as the structure is a male piece and a female piece used in the hook-and-loop fastener. As can be seen from the figure, there is a fine space at the base of the hooks and loops that are male and female pieces, and heat transfer due to heat conduction is greatly limited by evacuating this space, and it has good performance Can be configured. Furthermore, in order to suppress heat conduction by the belt-shaped surface fastener itself, as shown in the left figure of FIG. 2, the amount of the belt-shaped surface fastener is reduced and the space for vacuum is increased as much as possible. (In the figure, in order to make the explanation easy to understand, three strip surface fasteners are placed on the side, and seven strip surface fasteners are stacked vertically).
Then, from the state of the left figure in FIG. 2, the belt-like surface fasteners are overlapped horizontally so as to cover the space portion of the lattice (in the case of the figure, it is two horizontally), and the belt-like surface fasteners are vertically stacked (in the figure). (In some cases, the length is six), and a structure made by sequentially laminating belt-shaped surface fasteners is used as the core material of the vacuum heat insulating material, which is covered with a jacket material having a gas barrier property, and the inside is sealed under reduced pressure. Thus, a flexible vacuum heat insulating material that can cope with a curved wall can be realized.
When the belt-shaped surface fasteners are stacked, the belt-shaped surface fasteners in which the male pieces and the female pieces are engaged and overlapped with each other can be connected to each other, or the once-connected belt-shaped surface fasteners can be peeled off. In addition, since the male piece and the female piece are connected to each other, they can be prevented from being deformed and can be deformed to some extent according to the curved surface.

図3は、水素吸蔵合金タンクに、従来の断熱材であるエアロフレックス(登録商標)と本発明の実施例1の真空断熱材を適用した場合を比較したものである。水素吸蔵合金タンクの長さは1m、外径が約16.5cmφである。図3の(a)は全て従来の断熱材であるエアロフレックス(登録商標)を使用したもので外径は約28.5cmφである。一方、図3(b)は実施例1の厚さ約6mmの真空断熱材を円筒形の側壁に適用し、化粧用に厚さ1cmのエアロフレックス(登録商標)断熱材を適用したもので、外径は約19.7cmφとスリムになっていることが分かる。なお、この厚さ約6mmの真空断熱材は、帯状面ファスナー(結束バンド)を、上記説明のように順次重ね合わせて横−縦−横−縦−横−縦に積層して芯材を構成したものを用いた。
図4は、図3(a)の全て従来の断熱材であるエアロフレックス(登録商標)を使用した外径約28.5cmφのものと、図3(b)の実施例1の厚さ約6mmの真空断熱材を円筒形の側壁に適用し、化粧用に厚さ1cmのエアロフレックス(登録商標)断熱材を適用した外径約19.7cmφのものが同じ断熱性能を有することを示した実験結果である。
図4中の左列の図4a,4b,4cが厚さ6cmの従来の断熱材エアロフレックス(登録商標)のみ使用した時の圧力−組成−温度(PCT)曲線、水素吸蔵時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化、水素放出時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化を表し、図4中の右列の図4d,4e,4fが実施例1の真空断熱材を採用した時の圧力−組成−温度(PCT)曲線、水素吸蔵時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化、水素放出時のタンク内部温度、循環水出入口温度及びタンク内圧力の時間変化を表す。なお、水素の吸蔵・放出時の水素流量、循環水の温度、及び流量は同じ条件で行っている。左右の図を見比べて分かるように水素の吸蔵・放出に関し特に差異は見られない。厚さ6cmの従来型断熱材エアロフレックス(登録商標)を使用した時の合金反応熱の回収率は水素吸蔵時で89.4%、水素放出時で89.8%であったのに対し、本実施例1の真空断熱材を採用した時の合金反応熱の回収率は水素吸蔵時で88.6%、水素放出時で89.1%とほんの僅か回収率が下がっているように見えるが、これは測定誤差の範囲でありほぼ同等の回収性能であることが実験的に確認できた。つまり、厚さ6cmの従来型断熱材の性能を、僅か厚さ6mmの実施例1の真空断熱材と化粧用に使用した厚さ1cmの断熱材で引き出せていることが分かる。したがって、本発明の真空断熱材により断熱性能を落とさず水素貯蔵装置の大幅なサイズ低減を図ることが確認できた。
FIG. 3 compares the case where Aeroflex (registered trademark), which is a conventional heat insulating material, and the vacuum heat insulating material of Example 1 of the present invention are applied to a hydrogen storage alloy tank. The length of the hydrogen storage alloy tank is 1 m, and the outer diameter is about 16.5 cmφ. FIG. 3 (a) all uses Aeroflex (registered trademark), which is a conventional heat insulating material, and has an outer diameter of about 28.5 cmφ. On the other hand, FIG. 3B shows a case where the vacuum heat insulating material having a thickness of about 6 mm of Example 1 is applied to a cylindrical side wall, and Aeroflex (registered trademark) heat insulating material having a thickness of 1 cm is applied for makeup. It can be seen that the outer diameter is slim, about 19.7 cmφ. The vacuum heat insulating material having a thickness of about 6 mm is formed by sequentially laminating strip-shaped surface fasteners (binding bands) as described above, and laminating in a horizontal-vertical-horizontal-vertical-horizontal-vertical manner. What was done was used.
FIG. 4 shows an outer diameter of about 28.5 cmφ using Aeroflex (registered trademark), which is a conventional heat insulating material of FIG. 3 (a), and a thickness of about 6 mm of Example 1 of FIG. 3 (b). An experiment in which a vacuum insulation material of about 19.7 cmφ with a 1 cm thick Aeroflex (registered trademark) insulation material was applied to a cylindrical side wall and had the same insulation performance. It is a result.
4a, 4b, and 4c in the left column of FIG. 4 are a pressure-composition-temperature (PCT) curve when only a conventional heat insulating material Aeroflex (registered trademark) having a thickness of 6 cm is used, and a tank internal temperature when storing hydrogen 4 represents the time variation of the circulating water inlet / outlet temperature and the tank internal pressure, the tank internal temperature at the time of hydrogen release, the circulating water inlet / outlet temperature and the tank internal pressure, and FIGS. 4d, 4e and 4f in the right column in FIG. Pressure-composition-temperature (PCT) curve when the vacuum heat insulating material of Example 1 is adopted, tank internal temperature at the time of storing hydrogen, circulating water inlet / outlet temperature and tank pressure over time, tank internal temperature at the time of hydrogen release, circulation It represents the time change of water inlet / outlet temperature and tank pressure. In addition, the hydrogen flow rate at the time of occlusion / release of hydrogen, the temperature of circulating water, and the flow rate are performed on the same conditions. As can be seen by comparing the left and right figures, there is no particular difference in the storage and release of hydrogen. The recovery rate of alloy reaction heat when using a conventional thermal insulation material Aeroflex (registered trademark) with a thickness of 6 cm was 89.4% when storing hydrogen and 89.8% when releasing hydrogen. Although the recovery rate of the alloy reaction heat when the vacuum heat insulating material of Example 1 is adopted is 88.6% at the time of hydrogen occlusion and 89.1% at the time of hydrogen release, it seems that the recovery rate is only slightly decreased. It was confirmed experimentally that this is the range of measurement error and the recovery performance is almost equivalent. That is, it can be seen that the performance of the conventional heat insulating material having a thickness of 6 cm can be drawn out by the vacuum heat insulating material of Example 1 having a thickness of only 6 mm and the heat insulating material having a thickness of 1 cm used for makeup. Therefore, it has been confirmed that the vacuum heat insulating material of the present invention can significantly reduce the size of the hydrogen storage device without deteriorating the heat insulating performance.

(実施例2)
上記実施例1では真空の空間を増大させるために帯状面ファスナーを格子状に重ね合わせた芯材を採用したが、本実施例2では、薄くフレキシブルな基材の表裏両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートを採用し、当該芯材シートをガスバリア性がある外被材で覆い内部を減圧密封して曲面形状壁に対して密着できるフレキシブルな真空断熱材を実現したものである。要求される断熱性能に応じた真空の空間がそれほど必要でない場合には、本実施例2の真空断熱材を用いることもできる。
図5は、実施例2の真空断熱材で採用する芯材を説明した図であり、左図が芯材シートの平面図および断面図であり、右図が芯材シートの断面図を拡大した断面拡大図である。芯材シートは、フレキシブルな基材の両面には空間を確保するための突起状微細構造物を配設したものから構成されており、このように構成された芯材シートをガスバリア性がある外被材で覆い内部を減圧密封すると、突起状微細構造物により外被材が支持されているので外被材が凹変形しても隣り合う突起状微細構造物の間の基材表面に接触するまで変形するには至らず、突起状微細構造物の根元部に連続する真空の空間が形成され、被断熱物の曲面形状壁に対して密着できるフレキシブルな真空断熱材が実現できる。
突起状微細構造物の形状は、図5ではフック状のもので示したが、突起形状はこれに限定されず、外被材で覆い内部を減圧密封したときに外被材が凹変形しても隣り合う突起状微細構造物の間の基材表面に接触するまで凹変形するには至らず、突起状微細構造物の根元部に連続する真空の空間が形成されるものであればよい。なお、凹変形した外被材が隣り合う突起状微細構造物の間の基材表面に接触すると、接触した部分では真空の空間による断熱が実現できないので、採用する外被材の厚みや強度、突起状微細構造物の高さや隣り合う突起状微細構造物同士の間隔などを調整して接触しないようにすればよい。
(Example 2)
In Example 1 above, a core material in which strip-shaped surface fasteners are stacked in a lattice shape is used to increase the vacuum space. However, in Example 2, vacuum space is secured on both the front and back surfaces of a thin and flexible substrate. A flexible vacuum that uses a core material sheet with protruding microstructures to cover it, covers the core material sheet with a jacket material that has a gas barrier property, and seals the inside under reduced pressure to adhere to the curved wall Insulating material is realized. When the vacuum space corresponding to the required heat insulation performance is not so necessary, the vacuum heat insulating material of the second embodiment can be used.
FIG. 5 is a diagram illustrating a core material used in the vacuum heat insulating material of Example 2, the left diagram is a plan view and a cross-sectional view of the core material sheet, and the right diagram is an enlarged cross-sectional view of the core material sheet. It is a cross-sectional enlarged view. The core sheet is composed of a flexible base material provided with protruding microstructures for securing a space on both sides, and the core sheet thus configured has a gas barrier property. When the inside of the covering is covered with the covering material and the inside is decompressed and sealed, the covering material is supported by the protruding fine structure, so that even if the covering material is deformed, it contacts the substrate surface between adjacent protruding fine structures. Thus, a vacuum space is formed continuously at the base of the protruding microstructure, and a flexible vacuum heat insulating material that can be in close contact with the curved wall of the object to be insulated can be realized.
The shape of the protrusion-like microstructure is shown as a hook in FIG. 5, but the protrusion shape is not limited to this, and when the cover material is covered with a cover material and the inside is sealed under reduced pressure, the cover material is deformed in a concave shape. Also, it is only necessary that the concave deformation does not occur until the surface of the base material between adjacent projecting microstructures comes into contact, and a continuous vacuum space is formed at the base of the projecting microstructure. In addition, when the envelope material deformed in concave contact with the base material surface between adjacent projecting microstructures, heat insulation by a vacuum space cannot be realized in the contacted portion, so the thickness and strength of the jacket material to be adopted, What is necessary is just to adjust the height of a protruding fine structure, the space | interval of adjacent protruding fine structures, etc. so that it may not contact.

(実施例3)
実施例3は、真空の空間を増大させて断熱性能を上げるために、上記実施例2の芯材シートを複数枚積層したものを芯材とし、この芯材をガスバリア性がある外被材で覆い内部を減圧密封して曲面形状壁に対して密着できるフレキシブルな真空断熱材を実現したものである。ただし、芯材シートには、芯材自体による熱伝導の低減を図り、かつ芯材の使用量を低減するために、図6に示すように複数の空間(穴)を空け、互いに重ね合わせる芯材シートの空間(穴)がずらすように配置されている。図6で示した例は、2層目の芯材シートの空間(穴)は、1層目の芯材シートの空間(穴)からずらした位置に配置されており、3層目には1層目の芯材シートと同じものを用いれば、2層目の芯材シートと3層目の芯材シートの空間(穴)は互いにずらした配置となっている。図示の例では、奇数層に1層目と同じ芯材シートを、偶数層に2層目と同じ芯材シートを用いれば、所望の断熱性能に応じた複数層の芯材を構成でき、この芯材をガスバリア性がある外被材で覆い内部を減圧密封して曲面形状壁に対して密着できるフレキシブルな真空断熱材を実現ことができる。
さらに、芯材シートを重ねて芯材とした本実施例3では、芯材シートの両面に配設する突起状微細構造物を、面ファスナーの雄片と雌片にすれば、芯材シートを重ね合わせて積層する際に、雄片と雌片とが係合することにより重なった芯材シート同士を繋ぎ合わせ、あるいは、一旦繋げた芯材シートは剥ぎ取ることも可能であり、また、雄片と雌片の係合により適度に繋ぎ合わせているので型崩れが防止できるとともに、曲面に合わせて変形させることも可能である。
(Example 3)
In Example 3, in order to increase the vacuum space and improve the heat insulation performance, a core material is formed by laminating a plurality of core material sheets of Example 2 above, and this core material is a jacket material having gas barrier properties. This realizes a flexible vacuum heat insulating material that can be tightly sealed against a curved wall by sealing the inside of the cover under reduced pressure. However, in order to reduce the heat conduction by the core material itself and reduce the amount of the core material used, the core sheet has a plurality of spaces (holes) as shown in FIG. It is arranged so that the space (hole) of the material sheet is shifted. In the example shown in FIG. 6, the space (hole) of the second-layer core material sheet is arranged at a position shifted from the space (hole) of the first-layer core material sheet. If the same core material sheet as the layer is used, the spaces (holes) of the second core material sheet and the third core material sheet are shifted from each other. In the illustrated example, if the same core material sheet as the first layer is used for the odd layers and the same core material sheet as the second layer is used for the even layers, a multi-layer core material corresponding to the desired heat insulation performance can be configured. It is possible to realize a flexible vacuum heat insulating material that covers a core material with a jacket material having a gas barrier property and seals the inside under reduced pressure to be in close contact with a curved wall.
Further, in this Example 3 in which the core material sheet is overlapped and used as the core material, if the protruding fine structures disposed on both surfaces of the core material sheet are made into the male piece and the female piece of the hook-and-loop fastener, the core material sheet is obtained. When overlapping and laminating, it is possible to connect the overlapping core sheets by engaging the male and female pieces, or to peel off the core sheets once connected. Since the piece and the female piece are appropriately connected to each other, they can be prevented from being deformed and can be deformed according to the curved surface.

上記実施例1〜3において、外被材としてガスバリア性を持つ熱溶着できる真空パック用包装材、それに脱気シーラーがあれば低コストで簡単に製作可能である。
また、芯材の構成部材と外被材を高温に対応できる材質にすることにより高温領域で使用できる真空断熱材となる。
In Examples 1 to 3, if a packaging material for a vacuum pack capable of heat welding having a gas barrier property as a covering material and a degassing sealer are provided, it can be easily manufactured at low cost.
Moreover, it becomes a vacuum heat insulating material which can be used in a high temperature area | region by making the structural member of a core material, and a jacket material into the material which can respond to high temperature.

本発明は、熱利用を行う水素吸蔵合金タンク用に開発したものであるが、断熱材を必要とするあらゆる分野に利用することができる。
例えば、冷蔵庫やエアコンなど民生品においても需要が見込まれ、また、保温・保冷が必要な工業製品一般に対しても活用可能である。また、自動車産業・建設業などで使用されるパイプラインの断熱にも応用可能である。更に、プラントなどで高温対象物に対する断熱が必要な場合は各部材を高温対応のものにすれば適用可能で、用途の幅は非常に広範囲である。
The present invention was developed for a hydrogen storage alloy tank that utilizes heat, but can be used in any field that requires a heat insulating material.
For example, demand is expected for consumer products such as refrigerators and air conditioners, and it can also be used for general industrial products that need to be kept warm. It can also be applied to the insulation of pipelines used in the automobile and construction industries. Furthermore, when heat insulation for a high-temperature object is necessary in a plant or the like, it can be applied by making each member compatible with high temperature, and the range of uses is very wide.

Claims (7)

フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートと、
前記芯材シートを覆うガスバリア性の外被材とからなり、
前記突起状微細構造物は、前記芯材シートが積層される場合に互いに隣接する層の芯材シート同士の前記突起状微細構造物が脱着可能に係合できる形状を有し、
前記芯材シートを前記外被材で覆った内部空間が減圧密封されてなる真空断熱材。
A core sheet in which protruding microstructures for securing a vacuum space on both surfaces of a flexible substrate are disposed;
It consists of a gas barrier covering material covering the core sheet,
The protruding fine structure has a shape that allows the protruding fine structures of the core material sheets of layers adjacent to each other to be detachably engaged when the core material sheets are laminated,
A vacuum heat insulating material in which an inner space in which the core sheet is covered with the jacket material is sealed under reduced pressure.
フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートであって、該芯材シートには複数の穴状空間が形成されており、
前記芯材シートが複数枚積層され、互いに隣接する層の芯材シート同士の穴状空間がずらすように配置積層され、当該芯材シート同士の前記突起状微細構造物は脱着可能に係合する芯材と、
前記芯材を覆うガスバリア性の外被材とからなり、
前記芯材を前記外被材で覆った内部空間が減圧密封されてなる真空断熱材。
A core material sheet in which projecting microstructures for securing a vacuum space on both surfaces of a flexible base material are disposed, and a plurality of hole-like spaces are formed in the core material sheet,
A plurality of the core material sheets are laminated and arranged so that the hole-like spaces between the core material sheets of adjacent layers are shifted, and the protruding microstructures of the core material sheets are detachably engaged. A core material,
It consists of a gas barrier covering material covering the core material,
A vacuum heat insulating material in which an internal space in which the core material is covered with the jacket material is sealed under reduced pressure.
前記突起状微細構造物は、面ファスナーの雄片と雌片であることを特徴とする請求項1または2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein the protruding microstructures are a male piece and a female piece of a hook-and-loop fastener. フレキシブルな基材の両面に面ファスナーの雄片と雌片が配設された帯状面ファスナーを格子状に重ね、
前記格子状に重ねた格子の空間部分を覆うようにさらに帯状面ファスナーを少なくとも1層以上重ねて構成された芯材と、
前記芯材を覆うガスバリア性の外被材とからなり、
前記芯材を前記外被材で覆った内部空間が減圧密封されてなる真空断熱材。
A strip-shaped surface fastener in which male and female pieces of hook-and-loop fasteners are arranged on both sides of a flexible base material is layered in a lattice pattern,
A core material formed by stacking at least one layer of a belt-like surface fastener so as to cover the space portion of the lattice stacked in the lattice shape;
It consists of a gas barrier covering material covering the core material,
A vacuum heat insulating material in which an internal space in which the core material is covered with the jacket material is sealed under reduced pressure.
前記帯状面ファスナーは結束バンドであることを特徴とする請求項4に記載の真空断熱材。   The vacuum heat insulating material according to claim 4, wherein the band-shaped surface fastener is a binding band. フレキシブルな基材の両面に真空の空間を確保するための突起状微細構造物を配設した芯材シートであって、かつ、複数の穴状空間が形成されている芯材シートを、複数枚積層し、互いに隣接する層の芯材シート同士の穴状空間がずらすように配置積層し、当該芯材シート同士の前記突起状微細構造物を脱着可能に係合して芯材を構築する工程と、
前記芯材をガスバリア性の外被材で覆う工程と、
前記芯材をガスバリア性の外被材で覆った内部空間を減圧密封する工程からなる真空断熱材の製造方法。
A core sheet in which projecting microstructures for securing a vacuum space are provided on both surfaces of a flexible base material, and a plurality of core sheets in which a plurality of hole-shaped spaces are formed Laminating and laminating and laminating so that the hole-shaped spaces between the core material sheets of the layers adjacent to each other are shifted , and constructing the core material by detachably engaging the protruding fine structures of the core material sheets with each other When,
Covering the core material with a gas barrier outer covering material;
A method for producing a vacuum heat insulating material, comprising: a step of sealing an inner space in which the core material is covered with a gas barrier outer covering material under reduced pressure.
フレキシブルな基材の両面に面ファスナーの雄片と雌片が配設された帯状面ファスナーを格子状に重ね、該格子状に重ねた格子の空間部分を覆うようにさらに帯状面ファスナーを少なくとも1層以上重ねて芯材を構築する工程と、
前記芯材をガスバリア性の外被材で覆う工程と、
前記芯材をガスバリア性の外被材で覆った内部空間を減圧密封する工程からなる真空断熱材の製造方法。
A belt-shaped surface fastener in which male and female surface fasteners are arranged on both surfaces of a flexible base material is overlapped in a lattice shape, and at least one belt-shaped surface fastener is further provided so as to cover a space portion of the lattice overlapped in the lattice shape. Building a core material by stacking more than one layer;
Covering the core material with a gas barrier outer covering material;
A method for producing a vacuum heat insulating material, comprising: a step of sealing an inner space in which the core material is covered with a gas barrier outer covering material under reduced pressure.
JP2014172127A 2014-08-27 2014-08-27 Vacuum heat insulating material and manufacturing method thereof Active JP6367047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172127A JP6367047B2 (en) 2014-08-27 2014-08-27 Vacuum heat insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172127A JP6367047B2 (en) 2014-08-27 2014-08-27 Vacuum heat insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016044800A JP2016044800A (en) 2016-04-04
JP6367047B2 true JP6367047B2 (en) 2018-08-01

Family

ID=55635545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172127A Active JP6367047B2 (en) 2014-08-27 2014-08-27 Vacuum heat insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6367047B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236194A (en) * 1996-02-29 1997-09-09 Shunsuke Hosokawa Heat insulating material and heat insulation panel
US8234835B2 (en) * 2007-03-16 2012-08-07 Quest Product Development Corporation Integrated multilayer insulation
KR101544453B1 (en) * 2009-08-07 2015-08-13 엘지전자 주식회사 Core for a vacuum insulation panel and vacuum insulation pannel using the same
WO2013065162A1 (en) * 2011-11-03 2013-05-10 三菱電機株式会社 Vacuum heat insulating material, method for manufacturing same, heat retaining tank using same, and heat pump water heater
CN105946321A (en) * 2013-01-11 2016-09-21 株式会社钟化 Heat insulating sheet and heat insulating material

Also Published As

Publication number Publication date
JP2016044800A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP3559035B2 (en) Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
US10253918B2 (en) Insulated storage and transportation containers
JP2013512404A (en) Groove type vacuum heat insulating material and method for manufacturing the same
JP2017223327A (en) Heat insulation panel for liquefied gas tank, and heat insulation structure for liquefied gas tank
JP5907204B2 (en) Manufacturing method of vacuum insulation
JP5465160B2 (en) Insulated hot water storage system
JP2009133336A (en) Vacuum heat insulating material
JP6367047B2 (en) Vacuum heat insulating material and manufacturing method thereof
JP2007321925A (en) Vacuum heat insulating material and its manufacturing method
JP2004197954A (en) Vacuum heat insulating material
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP2005331000A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material
JP4556746B2 (en) Manufacturing method of vacuum insulation
JP5517150B2 (en) Vacuum insulation panel packaging material and vacuum insulation panel
JP5713201B2 (en) Heat storage body, heat storage body manufacturing method, and heat storage device having heat storage body
WO2002073082A1 (en) Tubular thermoinsulating device and processes for the manufacture thereof
JP2007057081A (en) Vacuum heat insulating board
JP4944567B2 (en) Vacuum insulation article and method for manufacturing the same
JP2009041648A (en) Vacuum heat insulating material and construction member applying the same
JP6118103B2 (en) Low temperature tank thermal insulation construction method and low temperature tank thermal insulation structure
JP5424929B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP2012137112A (en) Heat insulating material, method of manufacturing the same, and building
JP6667079B2 (en) Vacuum insulation
JP2009138918A (en) Thermal insulation member
JP2006236904A (en) Laminated plane heating element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250