JP6366053B2 - Standard sample manufacturing method - Google Patents

Standard sample manufacturing method Download PDF

Info

Publication number
JP6366053B2
JP6366053B2 JP2014073908A JP2014073908A JP6366053B2 JP 6366053 B2 JP6366053 B2 JP 6366053B2 JP 2014073908 A JP2014073908 A JP 2014073908A JP 2014073908 A JP2014073908 A JP 2014073908A JP 6366053 B2 JP6366053 B2 JP 6366053B2
Authority
JP
Japan
Prior art keywords
standard sample
cell
nucleic acid
cells
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073908A
Other languages
Japanese (ja)
Other versions
JP2015195735A (en
Inventor
和美 橘田
和美 橘田
令王奈 高畠
令王奈 高畠
潤一 真野
潤一 真野
剛華 郎
剛華 郎
裕樹 中江
裕樹 中江
布藤 聡
聡 布藤
淳治 吉井
淳治 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Toyo Seikan Group Holdings Ltd
Fasmac Co Ltd
Original Assignee
National Agriculture and Food Research Organization
Toyo Seikan Group Holdings Ltd
Fasmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Toyo Seikan Group Holdings Ltd, Fasmac Co Ltd filed Critical National Agriculture and Food Research Organization
Priority to JP2014073908A priority Critical patent/JP6366053B2/en
Priority to PCT/JP2015/001853 priority patent/WO2015151511A1/en
Publication of JP2015195735A publication Critical patent/JP2015195735A/en
Application granted granted Critical
Publication of JP6366053B2 publication Critical patent/JP6366053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料の製造方法に関する。   The present invention relates to a method for producing a standard sample having the same target sequence as a DNA fragment having a target sequence having a specific copy number.

ポリメラーゼ連鎖反応(PCR)は、臨床診断や法医学検査、食品分析など幅広い分野において核酸分析技術として利用されている。近年、PCR検査を含めた様々な分析について、分析結果の信頼性を保証することが求められており、ISO17025をはじめとする国際規格が作成されている。国際的な商業活動においては、こうした国際規格を満たした分析により商品の品質管理が行われていることが取引の可否につながる場合もあり、分析の信頼性保証に関連する技術は産業的にも重要性が高まっている。   The polymerase chain reaction (PCR) is used as a nucleic acid analysis technique in a wide range of fields such as clinical diagnosis, forensic examination, and food analysis. In recent years, it has been required to guarantee the reliability of analysis results for various analyzes including PCR tests, and international standards such as ISO17025 have been created. In international commercial activities, quality control of products through analysis that meets these international standards may lead to the possibility of transactions, and technology related to assurance of analysis reliability is also industrially applicable. The importance is increasing.

ISO17025では、分析の質の管理のために、分析法の妥当性確認が要求されている。分析法の妥当性確認とは、使用する分析法の性能を客観的に評価し、使用する目的に応じて基準を満たしていることを確認することである。性能評価を行う項目としては、特異性や検出限界などが挙げられる。PCR法は、その技術的特性から1分子からの核酸増幅が可能とされているが、PCRを用いた個別の分析法は、反応液の組成やPCR装置の性能に応じて1分子からの検出が可能とは必ずしもいうことができないため、分析法毎にPCR分析の検出限界の評価が必要となっている。PCR分析の検出限界の評価には、従来、標的配列を含むプラスミド核酸やゲノム核酸を一定濃度に希釈した核酸試料が用いられてきた。具体的には、プラスミド核酸やゲノム核酸が理論的に1〜数分子含まれる程度まで希釈した核酸溶液試料をPCRで分析し、検出の有無もしくは検出率を調べることで検出限界濃度が評価されている。しかし、1〜数分子のレベルまで希釈された試料を用いる場合、最終的にPCRの反応液中に添加される標的核酸の分子数はサンプリングの偶然性により一定ではなく、反応液ごとに大きなばらつきを持つことになる。このため、PCR分析における検出限界濃度を正確に評価することはこれまで非常に困難となっていた。   In ISO 17025, the validity of the analysis method is required to manage the quality of the analysis. Validation of an analytical method means to objectively evaluate the performance of the analytical method used and confirm that the standard is satisfied according to the purpose of use. Items for performance evaluation include specificity and detection limit. The PCR method enables nucleic acid amplification from one molecule because of its technical characteristics, but individual analysis methods using PCR detect from one molecule depending on the composition of the reaction solution and the performance of the PCR device. However, it cannot always be said that it is possible, so it is necessary to evaluate the detection limit of PCR analysis for each analysis method. Conventionally, nucleic acid samples obtained by diluting a plasmid nucleic acid or a genomic nucleic acid containing a target sequence to a certain concentration have been used for evaluation of the detection limit of PCR analysis. Specifically, the detection limit concentration is evaluated by analyzing a nucleic acid solution sample diluted to a level that theoretically contains 1 to several molecules of plasmid nucleic acid or genomic nucleic acid by PCR and examining the presence or absence of detection or the detection rate. Yes. However, when a sample diluted to the level of 1 to several molecules is used, the number of target nucleic acid molecules finally added to the PCR reaction solution is not constant due to the chance of sampling and varies greatly from reaction solution to reaction solution. Will have. For this reason, it has been extremely difficult to accurately evaluate the detection limit concentration in PCR analysis.

リアルタイムPCRは、PCRの過程で核酸増幅に対応した蛍光を適時検出する技術で、反応液中の初発鋳型核酸分子数の定量測定が可能なことから、ウィルスや微生物、遺伝子組換え農産物の定量検査などに用いられてきている。リアルタイムPCRによる定量的な分析においては、測定結果と標的核酸の分子数を関連付ける検量線が作成される。従来、この検量線作成にはPCRの標的塩基配列を含むプラスミド核酸もしくはゲノム核酸を段階的に希釈した溶液試料群が標準試料として用いられてきた。しかし、1〜数分子程度と低分子数の試料を用いる場合には、最終的にPCRの反応液中に添加される標的核酸の分子数は大きなばらつきを持つことになる。このため、低分子数側まで正確に分子数を規定することが可能な検量線を安定的に作成することは困難であった。   Real-time PCR is a technology that detects fluorescence corresponding to nucleic acid amplification in a PCR process in a timely manner and enables quantitative measurement of the number of initial template nucleic acid molecules in a reaction solution. Have been used. In quantitative analysis by real-time PCR, a calibration curve that associates the measurement result with the number of molecules of the target nucleic acid is created. Conventionally, a solution sample group in which a plasmid nucleic acid or a genomic nucleic acid containing a PCR target base sequence is diluted stepwise has been used as a standard sample for preparing a calibration curve. However, when a sample having a low molecular number of about 1 to several molecules is used, the number of molecules of the target nucleic acid finally added to the PCR reaction solution varies greatly. For this reason, it has been difficult to stably create a calibration curve that can accurately define the number of molecules down to the low molecular number side.

またPCR法が使われる、遺伝子の塩基配列等を標的として検出する遺伝子関連検査の工程には、測定前のプロセス(プレアナリシス)、測定プロセス、測定後プロセスの3つのプロセスがある。また、遺伝子関連の測定プロセスでは、PCR法を含め、多様な遺伝子解析技術が用いられるが、その測定精度は検体採取から検査材料の前処理までの測定プロセス(プレアナリシス)における作業要因に最も大きく影響することが知られている。このため、測定前のプロセス(プレアナリシス)では、いくつかの課題のうち、物理的性状、化学的性状、増殖阻害因子となる干渉物質の存在等、特に検体の性状が多様であるにも関わらず、客観的に評価する方法がないことが、測定の前の核酸抽出工程に影響し、測定精度低下となっていることが知られている(非特許文献1)。そこで、できるだけ、実検体に近い状態の核酸溶液試料が、定性限界、定量限界を決めるための、分子数を規定した核酸溶液試料として望まれている。   In addition, there are three processes in the gene-related test for detecting the base sequence of a gene and the like using the PCR method, a process before measurement (pre-analysis), a measurement process, and a process after measurement. In gene-related measurement processes, various gene analysis techniques, including PCR, are used, but the measurement accuracy is the largest factor in the measurement process (pre-analysis) from sample collection to pretreatment of test materials. It is known to affect. For this reason, in the pre-measurement process (pre-analysis), among several issues, the physical properties, chemical properties, presence of interfering substances that are growth inhibitors, etc., especially the properties of the specimens are diverse. In addition, it is known that the absence of an objective evaluation method affects the nucleic acid extraction step prior to measurement, resulting in a decrease in measurement accuracy (Non-Patent Document 1). Therefore, a nucleic acid solution sample in a state as close to an actual sample as possible is desired as a nucleic acid solution sample with a specified number of molecules for determining the qualitative limit and the quantitative limit.

以上の通り、PCRの標的となる核酸の分子数を厳密に規定した核酸溶液試料は、PCRを用いた分析法における検出限界の評価やリアルタイムPCRの検量線作成を正確に実施するために必要とされている。   As described above, a nucleic acid solution sample in which the number of molecules of nucleic acid that is the target of PCR is strictly defined is necessary to accurately evaluate the detection limit in the analysis method using PCR and to create a calibration curve for real-time PCR. Has been.

そこで、これまでに、1分子という低濃度から、分子数を厳密に規定した核酸溶液試料の作製方法、装置については、いくつかの例が知られている。例えば、限界希釈法により、1分子の標準物質を作成できることが知られている。限界希釈法では、ほとんどのサンプルには核酸が含まれず、わずかに確率的に1分子の核酸が含まれる溶液ができるような条件で希釈し後から1分子の核酸を含む溶液を選択する方法である。また、ゲーティングナノポアデバイスを用いる方法も発明者を含むグループによって開発されている。   Thus, several examples of methods and apparatuses for preparing nucleic acid solution samples in which the number of molecules is strictly defined from a low concentration of one molecule have been known so far. For example, it is known that a standard substance of one molecule can be prepared by a limiting dilution method. In the limiting dilution method, most of the samples do not contain nucleic acids, and after diluting in a condition that a solution containing a single molecule of nucleic acid is produced with a slight probability, a solution containing a single molecule of nucleic acid is selected. is there. A method using a gating nanopore device has also been developed by a group including the inventors.

遺伝子関連検査 検体品質管理マニュアル(承認文書) 特定非営利活動法人JCCLS日本臨床検査標準協議会Genetic-related test Specimen quality control manual (approval document) JCCLS Japan Clinical Laboratory Standards Association

しかしながら、いずれも合成核酸を希釈、あるいは分子数測定により分注する手法を用いており、通常検査に用いる核酸のように、もともと細胞(特に核内)に保持されており、細胞の分裂や代謝の継続過程における、生物学的な修飾を受けた、所望の分子数の分子(もし細胞内の1分子であれば、1分子)を取り囲む細胞の内容物を含んだ核酸サンプルを作製することは不可能であった。   However, all of them use a method of diluting synthetic nucleic acids or dispensing them by measuring the number of molecules, and they are originally retained in cells (especially in the nucleus) like the nucleic acids used in normal testing, so that cell division and metabolism Creating a nucleic acid sample containing the contents of a cell that surrounds a molecule of the desired number of molecules (one molecule if it is an intracellular molecule) that has undergone biological modification in the course of It was impossible.

このような背景から、細胞内に保持されている状態に近い状態であり、かつ分子数を厳密に規定した標準試料を製造する方法が切望されていた。   From such a background, there has been a strong demand for a method for producing a standard sample that is in a state close to that held in a cell and in which the number of molecules is strictly defined.

反応液中の初発鋳型核酸分子数の定量測定が可能なリアルタイムPCRによる定量的な分析においては、測定結果と標的核酸の分子数を関連付ける検量線が作成される。従来、この検量線作成にはPCRの標的塩基配列を含む核酸を段階的に希釈した溶液試料群が標準試料として用いられてきたが、1〜数分子程度と低分子数の試料を用いる場合には、最終的にPCRの反応液中に添加される標的核酸の分子数は大きなばらつきを持つため、低分子数側まで正確に分子数を規定することが可能な検量線を安定的に作成することは困難であった。また、測定精度に大きく影響する測定プロセス(プレアナリシス)を含めた精度管理を実施するために必要な標準試料の要件としては、物理的性状、化学的性状、増殖阻害因子となる干渉物質の存在等が、実検体に近い、細胞の中に保持され、化学的修飾や、細胞と核酸分子の数の比を反映した様々な因子を含む状態の核酸溶液試料が、定性限界、定量限界を決めるための、分子数を規定した核酸溶液試料として望まれていたが、これまで提案されてきた方法では、合成核酸を用いていたために、作製することは事実上不可能であった。   In quantitative analysis by real-time PCR capable of quantitative measurement of the number of initial template nucleic acid molecules in a reaction solution, a calibration curve that associates the measurement result with the number of molecules of the target nucleic acid is created. Conventionally, a solution sample group in which a nucleic acid containing a PCR target base sequence has been diluted stepwise has been used as a standard sample for preparing a calibration curve. However, when a sample having a low molecular number of about 1 to several molecules is used. Since the number of target nucleic acid molecules finally added to the PCR reaction solution varies greatly, a calibration curve that can accurately define the number of molecules down to the low molecular number side is created stably. It was difficult. In addition, the requirements of standard samples required for quality control including measurement processes (pre-analysis) that greatly affect measurement accuracy include physical properties, chemical properties, and the presence of interfering substances that are growth inhibitors. The nucleic acid solution sample in a state that is retained in the cell, close to the real sample, and contains various factors reflecting the chemical modification and the ratio of the number of cells to nucleic acid molecules determines the qualitative limit and quantification limit For this reason, it has been desired as a nucleic acid solution sample having a defined number of molecules. However, in the methods proposed so far, it has been practically impossible to prepare a nucleic acid solution because a synthetic nucleic acid is used.

本発明は、上記の課題に鑑みてなされたもので、特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料を製造することのできる標準試料製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a standard sample manufacturing method capable of manufacturing a standard sample having the same target sequence as a DNA fragment having a target sequence having a specific copy number. And

本発明の標準試料製造方法は、特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料の製造方法であって、特定のコピー数の対象配列を有するDNA断片を細胞に導入する導入ステップと、細胞を培養する培養ステップと、培養した細胞を単離する単離ステップと、を備えている。   The standard sample production method of the present invention is a method for producing a standard sample having the same target sequence as a DNA fragment having a specific copy number of a target sequence, and introducing a DNA fragment having a specific copy number of the target sequence into a cell. An introduction step, a culture step for culturing the cells, and an isolation step for isolating the cultured cells.

また、本発明の標準試料製造方法では、導入ステップで、細胞として出芽酵母を用いて、人工合成遺伝子を用いた相同組えによりDNA断片を出芽酵母の染色体に導入し、培養ステップで、出芽酵母をG0/G1期に同調して同調培養を行い、単離ステップで、出芽酵母をG1期で固定して単離を行い、単離した出芽酵母の1細胞には1コピーの対象配列が含まれてもよい。 Further, in the standard sample preparation method of the present invention, the introduction step, using budding yeast as a cell by homologous Recombination example using artificial synthetic gene by introducing DNA fragment into the chromosome of S. cerevisiae, in the culture step, budding The yeast is synchronized with the G0 / G1 phase and cultured in synchronization. In the isolation step, the budding yeast is fixed and isolated in the G1 phase. One cell of the isolated budding yeast has one copy of the target sequence. May be included.

また、本発明の標準試料製造方法では、相同組えのターゲットとしてYER053Cの遺伝子を用いてもよい。 Further, in the standard sample preparation method of the present invention may be used YER053C gene as homologous Recombination example target.

また、本発明の標準試料製造方法では、単離ステップでは、先端角度が20度から30度の角度範囲内に設定されたキャピラリーを用いて、1ウェルに1細胞ずつ分取してもよい。   In the standard sample manufacturing method of the present invention, in the isolation step, one cell may be sorted per well using a capillary whose tip angle is set within an angle range of 20 degrees to 30 degrees.

また、本発明の標準試料製造方法では、標準試料は、核酸であり、核酸には、DNAまたはRNAが含まれてもよい。   In the standard sample manufacturing method of the present invention, the standard sample is a nucleic acid, and the nucleic acid may include DNA or RNA.

本発明によれば、特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料を製造することができる。   According to the present invention, a standard sample having the same target sequence as a DNA fragment having a target sequence having a specific copy number can be produced.

本発明の一実施例における標準試料製造方法の説明図である。It is explanatory drawing of the standard sample manufacturing method in one Example of this invention. 本発明の一実施例における導入遺伝子のコピー数確認の説明図である。It is explanatory drawing of copy number confirmation of the transgene in one Example of this invention. 本発明の一実施例におけるG0/G1期の同調確認の説明図である。It is explanatory drawing of the synchronization confirmation of G0 / G1 period in one Example of this invention. 本発明の一実施例におけるマニピュレータによる1細胞の採取法の説明図である。It is explanatory drawing of the collection method of 1 cell by the manipulator in one Example of this invention. 本発明の一実施例において作製された標準試料の確認の説明図である。It is explanatory drawing of confirmation of the standard sample produced in one Example of this invention.

以下、本発明の実施の形態の標準試料製造方法について、図面を用いて説明する。本実施の形態の標準試料製造方法は、例えば、DNAやRNA等の核酸を検出する遺伝子検査に用いられ、食品検査や医療分野の診断等に利用される。なお、本発明の実施の形態の標準試料製造方法は、以下の構成及び方法によって実現できるが、ここに示す構成および方法だけに限るものではない。   Hereinafter, a standard sample manufacturing method according to an embodiment of the present invention will be described with reference to the drawings. The standard sample manufacturing method of the present embodiment is used for genetic testing to detect nucleic acids such as DNA and RNA, and is used for food testing, medical diagnosis, and the like. In addition, although the standard sample manufacturing method of embodiment of this invention is realizable with the following structures and methods, it is not restricted only to the structure and method shown here.

本実施の形態によれば、細胞への対象遺伝子の導入と細胞の分取を組み合わせることによって、細胞における修飾や細胞の内容物を反映した標準試料を製造することができる。この場合、所定のコピー数の遺伝子配列をもつDNA断片を細胞に導入することにより、標準試料が作製される。使用する細胞は、培養、遺伝導入が可能で、細胞周期を制御できる細胞であれば如何なるものでも良い。ただし、通常2倍体の場合には、対象分子は、最小で2倍体となるため、1分子の対象を得るためには、細胞周期上、同調できるステージの中に1倍体の時期がある細胞を用いる必要がある。細胞の選択は、実検体の生物種に近いものや、取り扱いが簡易な酵母のような細胞など、標準試料の利用目的に合わせて選択することが可能である。細胞を培養する培養液についても、対象となる細胞が増殖するのに適した培地を選択することができる。   According to the present embodiment, by combining introduction of a target gene into a cell and sorting of the cell, a standard sample reflecting the modification in the cell and the contents of the cell can be produced. In this case, a standard sample is prepared by introducing a DNA fragment having a gene sequence having a predetermined copy number into a cell. The cells to be used may be any cells as long as they can be cultured and introduced by gene and can control the cell cycle. However, in the case of a diploid, the target molecule is usually a diploid at a minimum. Therefore, in order to obtain a target of one molecule, the time of the haploid is in the stage that can be synchronized in the cell cycle. Some cells need to be used. The cells can be selected according to the purpose of use of the standard sample, such as those close to the biological species of the real specimen or cells such as yeast that are easy to handle. As for the culture medium for culturing cells, a medium suitable for the growth of the target cells can be selected.

本実施の形態において、標準試料を構成するための検出対象は、標準試料の用途に合わせて選択することが可能である。対象として扱う遺伝子配列は、単一である必要はなく、複数の遺伝子配列をタンデムに連結した核酸断片を用いることができる。また、細胞のゲノムへの導入を考慮して、相同組換えのターゲットとなる配列も、タンデムに連結することが必要であり、これらの要素からなる人合成遺伝子を用いることができる。さらに、これらは、自然界に存在する遺伝子配列をPCR法を用いて増幅したものや、制限酵素などを用いて切り出し、精製したものを用いてもよい。 In the present embodiment, the detection target for constituting the standard sample can be selected according to the use of the standard sample. The gene sequence to be treated as a target need not be single, and a nucleic acid fragment in which a plurality of gene sequences are linked in tandem can be used. In consideration of introduction into the genome of the cell, even sequence of homologous recombination of the target, it is necessary to linked in tandem, can be used artificial synthetic gene consisting of these elements. Furthermore, these may be those obtained by amplifying gene sequences existing in nature using the PCR method, or by cutting and purifying them using restriction enzymes.

対象遺伝子および相同組換えのターゲット遺伝子配列を持つ核酸を用いた相同組換えによる組換え細胞の作製には、相同組換えのターゲットを、ゲノム内でのコピー数ならびに、生育に影響を与えるかどうかを考慮して選択することが望ましい。当該核酸の細胞内への導入、すなわち形質転換は、市販の試薬を用いて実施することができる。また、場合にはよっては、エレクトロポーレーション法など、電気的な手法を用いることも可能である。   Whether or not the target of homologous recombination affects the copy number and growth in the genome for the production of recombinant cells by homologous recombination using the target gene and nucleic acid having the target gene sequence for homologous recombination It is desirable to select in consideration of Introduction of the nucleic acid into cells, that is, transformation can be performed using a commercially available reagent. In some cases, an electrical method such as an electroporation method may be used.

細胞周期をそろえる同調は、細胞に適したものを選択することができる。例えば、低血清培養法や、二重チミジン同調法、チューブリン重合阻害剤による同調などが考えられる。また、細胞によってはその細胞に特異的な手法を用いることが可能である。例えば、出芽酵母の場合、α−ファクターと呼ばれる性ホルモン(フェロモン)によって、同調させることが可能である。   Synchronization that aligns the cell cycle can be selected to suit the cell. For example, a low serum culture method, a double thymidine synchronization method, and synchronization with a tubulin polymerization inhibitor can be considered. Depending on the cell, a method specific to the cell can be used. For example, in the case of budding yeast, it is possible to synchronize with a sex hormone (pheromone) called α-factor.

1細胞の分取は、シングルセルソーター(例えば、PERFLOW(登録商標)Sort:古河電工)や、マイクロマニピュレータによって行うことが可能である。酵母であれば、実体顕微鏡を用い、キャピラリーの先端(ID=10−20μm)に吸引し、予めスライドガラス上に滴下した同調培養用の培養液の中に吐出、マイクロピペットで1細胞の酵母とともに当該液滴をマイクロプレートのウェルに移動することで実施することが可能である。   Single cell sorting can be performed with a single cell sorter (for example, PERFLOW (registered trademark) Sort: Furukawa Electric) or a micromanipulator. In the case of yeast, using a stereomicroscope, it is sucked into the tip of a capillary (ID = 10-20 μm), discharged into a culture medium for synchronous culture previously dropped on a slide glass, and together with one-cell yeast with a micropipette. It can be carried out by moving the droplet to the well of the microplate.

このようにして作した試料は、生きた細胞であり、その中に所望の分子数の検出対象が含まれており、1分子から所望の数の分子数までの細胞を、遺伝子関連検査の実検体と近い形で分取し、提供することが可能となる。 In this way, the work made samples are living a cell, includes the detection target of a desired number of molecules in it, the cells from one molecule to the number of molecules of the desired number, the gene-related testing It is possible to sort and provide in a form close to that of a real sample.

本実施の形態によれば、従来のように合成核酸の分子数を分取し、測定するのではなく、細胞に1コピーを導入し、1コピーであることを確認したうえで、細胞周期を止め、細胞を所望の数分取し、細胞の個数を規定することによって分子数を同時に規定する手法を用いて標準試料を作する。そのため、これまでは不可能であった、ごく微量のかつ実検体の状態に近い核酸を含む標準物質の安定供給が可能になる。このような、1分子標準物質が実用化されれば、市販されているPCR装置の、検体を用いた検出能力の評価が可能となる。また、PCR検査においては、実検体を用いた場合に近い環境下での検知下限や定量下限の絶対的評価が可能となる。 According to this embodiment, instead of sorting and measuring the number of molecules of a synthetic nucleic acid as in the past, one copy is introduced into a cell, and after confirming that it is one copy, the cell cycle is determined. It stopped, the cells were collected by desired several minutes to create made a standard sample by using the technique of simultaneously defining the number of molecules by defining the number of cells. Therefore, it is possible to stably supply a standard substance containing a very small amount of nucleic acid close to the state of a real sample, which has been impossible until now. If such a single molecule standard substance is put into practical use, it becomes possible to evaluate the detection ability of a commercially available PCR apparatus using a specimen. Moreover, in the PCR test, an absolute evaluation of the lower limit of detection and the lower limit of quantification in an environment close to the case where an actual sample is used can be performed.

以下実施例により、詳しく本発明を説明するが、これらの実施例は説明のためのものであり、本発明の技術的範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, these examples are for illustrative purposes, and the technical scope of the present invention is not limited thereto.

本実施例では、細胞の例として、出芽酵母を用いて、標準試料の作製を実施した。出芽酵母w303-1a (MATa, ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3, 112 can1-100)を1コピーの標的DNA配列のキャリア細胞として組換え体の作製に使用した(図1参照)。培地は、YDP培地:1%(w/w)バクトイーストエキストラクト,2%(w/w)バクトペプトン,2%(w/w)グルコースを用いた。   In this example, a standard sample was prepared using budding yeast as an example of cells. Saccharomyces cerevisiae w303-1a (MATa, ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3, 112 can1-100) was used as a carrier cell for one copy of the target DNA sequence to produce a recombinant. (See FIG. 1). As the medium, YDP medium: 1% (w / w) bacto yeast extract, 2% (w / w) bactopeptone, 2% (w / w) glucose was used.

検出対象のモデルとして、人工遺伝子を構築した。標的配列はOver lapping PCRにより、ゼオシン耐性遺伝子、GFP遺伝子およびYER053Cの相同領域がタンデムに並ぶように作出し、相同組換え用人工遺伝子を合成した(図1参照)。   An artificial gene was constructed as a model for detection. The target sequence was created by Over lapping PCR so that the homologous regions of the zeocin resistance gene, GFP gene and YER053C were arranged in tandem, and an artificial gene for homologous recombination was synthesized (see FIG. 1).

人工合成遺伝子を用いた相同組換えによる酵母組換え体の作製には、相同組換えのターゲットとして、Mitochondrial phosphate transporter like protein(YER053C)の遺伝子を用いた。YER053Cは出芽酵母の中でシングルコピーであり、かつ遺伝子破壊を行っても酵母の生育に影響を与えないことが既に明らかにされている(Takabatake, R., et al. J. Biochem., 129(5): 827-33, 2001)。YER053Cの遺伝子座を相同組換えによる酵母染色体へ導入するターゲットとして、1コピー標的DNA配列を酵母染色体に導入した(図2参照)。   For the production of a yeast recombinant by homologous recombination using an artificially synthesized gene, the gene of Mitochondrial phosphate transporter like protein (YER053C) was used as a target for homologous recombination. It has already been clarified that YER053C is a single copy in budding yeast, and that gene disruption does not affect the growth of the yeast (Takabatake, R., et al. J. Biochem., 129). (5): 827-33, 2001). As a target for introducing the YER053C locus into the yeast chromosome by homologous recombination, a one-copy target DNA sequence was introduced into the yeast chromosome (see FIG. 2).

細胞分裂の際に、DNAが複製されるため、それを防ぐ目的で、酵母細胞の同調化を行った。一晩培養した酵母細胞をOD600=0.1に稀釈し、28℃で培養した。OD600=0.3になった時点で、5μg/mlになるようにα−ファクター(Sigma-Aldrich, St. Louis, Mo, USA)を添加し、さらに3時間培養続け、酵母はG0/G1期に同調された。細胞周期同調酵母の培養液に終濃度20%になるようにグリセロールを添加し、−80℃で保存した。   In order to prevent DNA from replicating during cell division, yeast cells were synchronized. Yeast cells cultured overnight were diluted to OD600 = 0.1 and cultured at 28 ° C. When OD600 = 0.3, α-factor (Sigma-Aldrich, St. Louis, Mo, USA) was added to 5 μg / ml, and the culture was further continued for 3 hours. The yeast was in G0 / G1 phase. Tuned to. Glycerol was added to the culture solution of cell cycle synchronized yeast to a final concentration of 20% and stored at −80 ° C.

同調細胞の細胞周期の確認は、下記の通り実施した。SYTOX Green Nucleic Acid Stain(Invitrogen-Molecular Probes, Eugene, OR)で酵母を染色し、フローサイトメトリーで分析を行った。集菌した約5×106個の酵母をMilliQ水で一回洗浄し、400μlのMilliQ水に懸濁した後、950μlのエタノールを加えた。−20℃で一晩固定した酵母を800μlの50mMクエン酸 ナトリウム(pH7.2)で洗浄し、500μlの0.5mg/ml RNase A(Nippon Gene, Tokyo, Japan)/50mMクエン酸ナトリウム(pH7.2)に懸濁し、37℃で2時間インキュベートした。その後、50μlの20mg/mlプロテイナーゼKを添加し、50℃で2時間インキュベートした。処理した酵母を10秒間超音波分散し、6μlの5mM SYTOX Green Nucleic Acid Stainを加えて、遮光下30分間染色した。セルアナライザーEC800(Sony Biotechnology Inc. Tokyo, Japan)を用い、励起波長488nmで細胞周期の分析を行い、G0/G1期に同調していることを確認した(図3参照)。   Confirmation of the cell cycle of synchronized cells was performed as follows. Yeast was stained with SYTOX Green Nucleic Acid Stain (Invitrogen-Molecular Probes, Eugene, OR) and analyzed by flow cytometry. Approximately 5 × 10 6 yeast cells collected were washed once with MilliQ water, suspended in 400 μl of MilliQ water, and then 950 μl of ethanol was added. The yeast fixed overnight at −20 ° C. was washed with 800 μl of 50 mM sodium citrate (pH 7.2), and 500 μl of 0.5 mg / ml RNase A (Nippon Gene, Tokyo, Japan) / 50 mM sodium citrate (pH 7. Suspended in 2) and incubated at 37 ° C. for 2 hours. Thereafter, 50 μl of 20 mg / ml proteinase K was added and incubated at 50 ° C. for 2 hours. The treated yeast was ultrasonically dispersed for 10 seconds, 6 μl of 5 mM SYTOX Green Nucleic Acid Stain was added, and the mixture was stained for 30 minutes in the dark. Using cell analyzer EC800 (Sony Biotechnology Inc. Tokyo, Japan), the cell cycle was analyzed at an excitation wavelength of 488 nm, and it was confirmed that the cell was synchronized with the G0 / G1 phase (see FIG. 3).

酵母細胞を1細胞分取するには、以下の方法を用いた。すなわち、G0/G1期に同調された酵母を1/15 M PBS(pH7.0)に懸濁し、10秒間超音波分散した。1/15 M PBSで二度洗浄した後、4000gで5分間遠心し、5mLの5μg/ml α−ファクター/1/15 M PBSに懸濁した。細胞懸濁液をシャーレ(50×9mm BD Falcon Petri dishes、BD Bioscience, Franklin Lakes, NJ, USA))に注ぎ、実体顕微鏡(M205 FA, Leica)での観察下、マニピュレータ操作により、キャピラリーの先端(ID=15μm)に吸引し、予めスライドガラス上に滴下した18μlの5μg/ml α−ファクター/H20に吐出し、マイクロピペットで1細胞の酵母とともに当該液滴をマイクロプレートのウェルに移動した。この場合、キャピラリーの先端角度は、20度から30度の角度範囲内に設定されていることが望ましい(図4参照)。このマイクロプレートが、標準試料となる。 In order to sort one yeast cell, the following method was used. That is, yeast synchronized with the G0 / G1 phase was suspended in 1/15 M PBS (pH 7.0) and ultrasonically dispersed for 10 seconds. After washing twice with 1/15 M PBS, it was centrifuged at 4000 g for 5 minutes, and suspended in 5 mL of 5 μg / ml α-factor / 1/15 M PBS. The cell suspension was poured into a petri dish (50 × 9 mm BD Falcon Petri dishes, BD Bioscience, Franklin Lakes, NJ, USA), and was observed with a stereomicroscope (M205 FA, Leica). ID = 15 μm) and discharged onto 18 μl of 5 μg / ml α-factor / H 2 0 previously dropped on a slide glass, and the droplet was transferred to a well of a microplate together with 1-cell yeast with a micropipette. . In this case, it is desirable that the capillary tip angle is set within an angle range of 20 degrees to 30 degrees (see FIG. 4). This microplate becomes a standard sample.

標準試料の確認は、一細胞からリアルタイムPCRによって標的配列を増幅して実施した。1ウェル当たりに620ng Zymolase T100(105 kU/g, Nakalai Tesque, Kyoto, Japan)を添加し、35℃で90分間インキュベートし、細胞壁を分解した。Universal Master Mix(ABI)を用い、16.7×10-6μmolプライマーと6.5×10-6μmol FAM/TAMRA TaqManプローブを加え、ABI PRISM 7900HTリアルタイムPCRシステムで、PCRを行った。PCRの条件は、50℃ 2分、95℃ 30秒を1サイクル、95℃ 30秒、59℃ 60秒を50サイクルである。5ng/μl ColE1(Nippon Gene Co., Tokyo, Japan)溶液で稀釈した標準プラスミドpTRPWRKYを鋳型としてPCRを行い、検量線の作成に用いた。これにより、検量線を作成でき、標準試料としての要件が確認された(図5参照)。 The standard sample was confirmed by amplifying the target sequence from one cell by real-time PCR. 620 ng Zymolase T100 (105 kU / g, Nakalai Tesque, Kyoto, Japan) was added per well and incubated at 35 ° C. for 90 minutes to decompose the cell wall. Using Universal Master Mix (ABI), 16.7 × 10 −6 μmol primer and 6.5 × 10 −6 μmol FAM / TAMRA TaqMan probe were added, and PCR was performed with an ABI PRISM 7900HT real-time PCR system. PCR conditions are 50 ° C. for 2 minutes, 95 ° C. for 30 seconds for one cycle, 95 ° C. for 30 seconds, and 59 ° C. for 60 seconds for 50 cycles. PCR was performed using a standard plasmid pTRPWRKY diluted with a 5 ng / μl ColE1 (Nippon Gene Co., Tokyo, Japan) solution as a template and used to prepare a calibration curve. Thereby, a calibration curve could be created and the requirements as a standard sample were confirmed (see FIG. 5).

以上詳述したように、この構成を使うことによって、1分子から所望の数の分子数までの分子数を、遺伝子関連検査の実検体と近い形で分取し、提供することが可能な標準試料が実現可能であることが示された。     As described in detail above, by using this configuration, a standard capable of sorting and providing the number of molecules from one molecule to a desired number of molecules in a form close to that of an actual sample of a gene-related test. The sample was shown to be feasible.

以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。   The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.

以上のように、本発明にかかる標準試料製造方法は、特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料を製造できるという効果を有し、食品検査や医療診断のための遺伝子検査等に用いられ、有用である。   As described above, the method for producing a standard sample according to the present invention has an effect that a standard sample having the same target sequence as a DNA fragment having a target sequence having a specific copy number can be manufactured, for food inspection and medical diagnosis. It is useful for genetic testing of

1 ターゲット配列を導入した細胞(酵母)
2 酵母染色体
3 ターゲット配列を導入した領域
4 培養容器(シャーレ)
5 培地
6 マニピュレータ(キャピラリー)
7 回収容器(マイクロチューブ)
8 溶液
1 Cells into which the target sequence has been introduced (yeast)
2 Yeast chromosome 3 Region into which the target sequence has been introduced 4 Culture vessel (petri dish)
5 Medium 6 Manipulator (capillary)
7 Collection container (micro tube)
8 Solution

Claims (5)

特定のコピー数の対象配列を有するDNA断片と同じ対象配列を有する標準試料の製造方法であって、
前記特定のコピー数の対象配列を有するDNA断片を、細胞周期を制御できる細胞の染色体に導入する導入ステップと、
前記細胞をG0/G1期に同調して培養する培養ステップと、
前記培養した細胞をG1期で固定して単離する単離ステップと、
を備えることを特徴とする標準試料製造方法。
A method for producing a standard sample having the same target sequence as a DNA fragment having a specific copy number of the target sequence,
Introducing a DNA fragment having the specific sequence of the copy number into a chromosome of a cell capable of controlling the cell cycle ;
A culture step of culturing the cells in synchronism with the G0 / G1 phase ;
An isolation step of fixing and isolating the cultured cells in the G1 phase ;
A standard sample manufacturing method comprising:
前記導入ステップでは、前記細胞として出芽酵母を用いて、人工合成遺伝子を用いた相同組えにより前記DNA断片を前記出芽酵母の染色体に導入し、
前記培養ステップでは、前記出芽酵母をG0/G1期に同調して同調培養を行い、
前記単離ステップでは、前記出芽酵母をG1期で固定して単離を行い、単離した前記出芽酵母の1細胞には1コピーの対象配列が含まれている、請求項1に記載の標準試料製造方法。
Wherein the introduction step, using budding yeast as the cells, by introducing the DNA fragment into the chromosome of the S. cerevisiae by homologous Recombination example using artificial synthetic gene,
In the culturing step, the budding yeast is synchronized with the G0 / G1 phase to perform synchronized culture,
The standard according to claim 1, wherein in the isolation step, the budding yeast is fixed in the G1 phase for isolation, and one cell of the isolated budding yeast contains one copy of the target sequence. Sample manufacturing method.
前記相同組えのターゲットとしてYER053Cの遺伝子を用いる、請求項2に記載の標準試料製造方法。 Using gene of YER053C as the homologous Recombination example of a target, the standard sample preparation method according to claim 2. 前記単離ステップでは、先端角度が20度から30度の角度範囲内に設定されたキャピラリーを用いて、1ウェルに1細胞ずつ分取する、請求項1ないし請求項3のいずれかに記載の標準試料製造方法。   The isolation step according to any one of claims 1 to 3, wherein in the isolation step, one cell is sorted per well using a capillary whose tip angle is set within an angle range of 20 degrees to 30 degrees. Standard sample manufacturing method. 前記標準試料は、核酸であり、前記核酸には、DNAまたはRNAが含まれる、請求項1ないし請求項4のいずれかに記載の標準試料製造方法。   The standard sample manufacturing method according to any one of claims 1 to 4, wherein the standard sample is a nucleic acid, and the nucleic acid includes DNA or RNA.
JP2014073908A 2014-03-31 2014-03-31 Standard sample manufacturing method Active JP6366053B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014073908A JP6366053B2 (en) 2014-03-31 2014-03-31 Standard sample manufacturing method
PCT/JP2015/001853 WO2015151511A1 (en) 2014-03-31 2015-03-31 Method for producing standard sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073908A JP6366053B2 (en) 2014-03-31 2014-03-31 Standard sample manufacturing method

Publications (2)

Publication Number Publication Date
JP2015195735A JP2015195735A (en) 2015-11-09
JP6366053B2 true JP6366053B2 (en) 2018-08-01

Family

ID=54239856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073908A Active JP6366053B2 (en) 2014-03-31 2014-03-31 Standard sample manufacturing method

Country Status (2)

Country Link
JP (1) JP6366053B2 (en)
WO (1) WO2015151511A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124438B2 (en) * 2017-06-14 2022-08-24 株式会社リコー METHOD FOR GENERATING CELL-HOLDING SUBSTRATE AND METHOD FOR EVALUATING APPARATUS
EP3415608B1 (en) 2017-06-14 2022-05-11 Ricoh Company, Ltd. Method for producing cell containing base
JP7098096B2 (en) * 2017-11-07 2022-07-11 株式会社リコー Detection accuracy identification method, detection accuracy identification device, and detection accuracy identification program
WO2019093528A1 (en) 2017-11-13 2019-05-16 Ricoh Company, Ltd. Device with specific number of cell(s) and nucleic acids in the wells and testing/calibration method using the device
JP6446151B1 (en) * 2017-11-13 2018-12-26 株式会社リコー Inspection device and device
US20210309958A1 (en) * 2017-11-13 2021-10-07 Satoshi Izumi Device with specific number of cell(s) and nucleic acids in the wells and testing/calibration method using the device
CN111655833A (en) * 2017-11-13 2020-09-11 株式会社理光 Detection judging device
EP3486330A1 (en) 2017-11-21 2019-05-22 Ricoh Company, Ltd. Device for measuring ranges of copy numbers
JP2019216704A (en) * 2017-11-21 2019-12-26 株式会社リコー device
JP6447765B1 (en) * 2017-11-21 2019-01-09 株式会社リコー Inspection device and device
JP7058411B2 (en) * 2017-11-21 2022-04-22 株式会社リコー Manufacturing method of inspection device
US20210010072A1 (en) * 2017-11-24 2021-01-14 Koei Suzuki Device, preparator's skill evaluating method, non-transitory recording medium storing computer program for evaluating skill of preparator, and preparator's skill evaluating device, and testing device performance evaluating method, non-transitory recording medium storing computer program for evaluating performance of testing device, and testing device performance evaluating device
WO2019103128A1 (en) 2017-11-24 2019-05-31 Ricoh Company, Ltd. Device, preparator's skill evaluating method, program, and device, and testing device performance evaluating method, program, and device
JP6454434B1 (en) * 2017-11-24 2019-01-16 株式会社リコー Inspection device for performance evaluation of inspection device, performance evaluation program for inspection device, performance evaluation method for inspection device, and performance evaluation device for inspection device
JP7251117B2 (en) * 2017-11-24 2023-04-04 株式会社リコー Device, preparer skill evaluation method, preparer skill evaluation program, and preparer skill evaluation device
JP2019092507A (en) * 2017-11-24 2019-06-20 株式会社リコー Device, norovirus inspection method, inspection program, and inspection device
EP3543351B1 (en) 2018-03-19 2022-08-10 Ricoh Company, Ltd. Nucleic acid sample-contained container, method for producing nucleic acid sample-contained container, and nucleic acid sample
WO2020129874A1 (en) * 2018-12-18 2020-06-25 Ricoh Company, Ltd. Device, nucleic acid testing method and nucleic acid testing device, and gene testing method
JP7317311B2 (en) * 2018-12-18 2023-07-31 株式会社リコー Library preparation device
JP7477095B2 (en) * 2018-12-18 2024-05-01 株式会社リコー DEVICE, NUCLEIC ACID TESTING METHOD, NUCLEIC ACID TESTING APPARATUS, AND GENE TESTING METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189520A4 (en) * 2007-05-08 2010-10-06 Yanagita Tomotaka Cell isolation method
WO2009145925A1 (en) * 2008-05-30 2009-12-03 Massachusetts Institute Of Technology Compositions and methods for spatial separation and screening of cells
JP2012125201A (en) * 2010-12-16 2012-07-05 Olympus Corp Method for producing standard cell sample
JP6093934B2 (en) * 2012-08-10 2017-03-15 国立研究開発法人農業・食品産業技術総合研究機構 Method for preparing sample containing one molecule of DNA having desired base sequence

Also Published As

Publication number Publication date
JP2015195735A (en) 2015-11-09
WO2015151511A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6366053B2 (en) Standard sample manufacturing method
Sheldon et al. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation
Van Deventer et al. Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation
Kraut-Cohen et al. Translation-and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae
CN105861641A (en) Primer, kit and method for detecting CHO cell DNA residues
WO2017056251A1 (en) Analysis method and device for analysis
US20200384464A1 (en) Detection determining device
CN111521460A (en) FFPE reference product, preparation method and application thereof
CN109486963A (en) A kind of mankind KIR Genotyping detection primer group and application
KR20170027296A (en) Method of Isolating Nucleic Acid
Wagner et al. Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control
CN110408612B (en) Protective agent for low-concentration DNA standard substance, preservation method and application
CN109295193A (en) Detect the remaining primer of CHO nucleic acid, probe, kit and detection method
CN106755467B (en) Method for detecting DNA content and integrity of FFPE sample
KR101704828B1 (en) Method for diagnosing inflammatory diseases through analysis of protein or gene of extracellular vesicle in a body fluid
US20210261953A1 (en) Method to perform high-throughput single cell genomic and phenotypic analyses
CN112779324B (en) Method for single cell detection and analysis and uses thereof
CN106191216A (en) A kind of method of copy number of foreign gene in quantitative PCR detection transgenic cell
JPWO2008156048A1 (en) Yeast cell set, target candidate molecule identification method, action mechanism analysis method and screening method
JP7059712B2 (en) Plate generation method, plate generation device, and orifice diameter variable program
JP2020096590A (en) Device, testing method of nucleic acid, testing device of nucleic acid, and genetic testing method
EP4092132A1 (en) Sample for evaluating performance of genetic testing apparatus, method for preparing said sample, and device for evaluating performance, method for evaluating performance, program for evaluating performance, and apparatus for evaluating performance of genetic testing apparatus
CN104561242B (en) Mycobacterium tuberculosis kit and its application method based on room temperature amplification and fluorescence detection
Nakanishi et al. Comparison of HER2 mRNA amplification with immunohistochemistry in human breast cancer using laser assisted microdissection technique
CN111321239B (en) LAMP primer group for detecting moniliforme and detection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180627

R150 Certificate of patent or registration of utility model

Ref document number: 6366053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250