JP6365938B2 - DESIGN DEVICE, DESIGN METHOD, AND PROGRAM - Google Patents

DESIGN DEVICE, DESIGN METHOD, AND PROGRAM Download PDF

Info

Publication number
JP6365938B2
JP6365938B2 JP2014193676A JP2014193676A JP6365938B2 JP 6365938 B2 JP6365938 B2 JP 6365938B2 JP 2014193676 A JP2014193676 A JP 2014193676A JP 2014193676 A JP2014193676 A JP 2014193676A JP 6365938 B2 JP6365938 B2 JP 6365938B2
Authority
JP
Japan
Prior art keywords
statistical
deterioration
assembled battery
cell
deterioration characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014193676A
Other languages
Japanese (ja)
Other versions
JP2016065748A (en
Inventor
築山 修治
修治 築山
高橋 真吾
真吾 高橋
潤一 宮本
潤一 宮本
翔 大谷
翔 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Chuo University
Original Assignee
NEC Corp
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Chuo University filed Critical NEC Corp
Priority to JP2014193676A priority Critical patent/JP6365938B2/en
Publication of JP2016065748A publication Critical patent/JP2016065748A/en
Application granted granted Critical
Publication of JP6365938B2 publication Critical patent/JP6365938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電装置を設計するための設計装置、設計方法およびプログラムに関する。   The present invention relates to a design device, a design method, and a program for designing a power storage device.

電力を蓄電池に蓄えておき、必要に応じて蓄電池から電力を取り出す蓄電装置が注目されている。例えば、近年の省電力化志向の高まりに伴い、消費電力の上昇を抑制したり、夜間に電力を充電し、その電力を昼間に放電することで、相対的に電気料金の高い昼間の電力の購入を抑制したりする用途で蓄電装置が使用されている。特に、商業施設や工場のような消費電力が大きい場所では、その大きい消費電力に対応するために、大きい容量を有する蓄電装置が広く普及し始めている。このような蓄電装置は、数十個から数万個の蓄電池セルを直並列に組み合わせた組電池を蓄電池として用いることで、大きい容量を実現している。例えば、2MWhの容量を有する蓄電装置は、10Whの容量を有する18650型の蓄電池セルを200,000個組み合わせることで実現される。   A power storage device that stores power in a storage battery and extracts the power from the storage battery as needed is drawing attention. For example, with the recent increase in power saving intentions, the increase in power consumption can be suppressed, or power can be charged at night and discharged during the day. Power storage devices are used for purposes such as suppressing purchases. In particular, in places where power consumption is large, such as commercial facilities and factories, power storage devices having a large capacity are becoming widespread in order to cope with the large power consumption. Such a power storage device realizes a large capacity by using an assembled battery in which tens to tens of thousands of storage battery cells are combined in series and parallel as a storage battery. For example, a power storage device having a capacity of 2 MWh is realized by combining 200,000 18650 type storage battery cells having a capacity of 10 Wh.

また、蓄電装置では、経年や使用回数などに応じた蓄電地の劣化を考慮して、製造した製品の製品寿命が設定される。このとき、設定された製品寿命が適切な値からずれていると、寿命前に製品の不具合が発生したり、蓄電池を必要以上に早く交換したりすることが増え、保守コストや交換コストが増加してしまう。   Further, in the power storage device, the product life of the manufactured product is set in consideration of deterioration of the power storage location according to aging, the number of times of use, and the like. At this time, if the set product life is deviated from the appropriate value, product failure will occur before the life, or the storage battery will be replaced more quickly than necessary, increasing maintenance and replacement costs. Resulting in.

これに対して特許文献1には、蓄電装置に使用される組電池を構成する蓄電池セルの残存容量を精度よく把握することで、残存寿命を把握する劣化判定装置が記載されている。   On the other hand, Patent Document 1 describes a deterioration determination device that grasps a remaining life by accurately grasping a remaining capacity of a storage battery cell constituting an assembled battery used in a power storage device.

特開2006−300561号公報JP 2006-300561 A

上述したような多数の蓄電池セルを有する組電池を備えた蓄電装置では、蓄電池セルの容量の製造ばらつきや経年ばらつきが顕在化しやすくなるため、特許文献1に記載されたような技術を用いて、組電池を構成する蓄電池セルの寿命を正確に把握しても、組電池自体の寿命を予測することは困難である。   In a power storage device including an assembled battery having a large number of storage battery cells as described above, manufacturing variations and aging variations in the capacity of storage battery cells are likely to become obvious, so using a technique such as that described in Patent Document 1, Even if the life of the storage battery cells constituting the assembled battery is accurately grasped, it is difficult to predict the life of the assembled battery itself.

例えば、蓄電池セルのばらつきの影響により、組電池の寿命は一般的に蓄電池セル単体の寿命に比べて短くなるため、蓄電池セル単体の寿命を組電池の寿命とみなすと、組電池の寿命を誤って実際よりも長く予測してしまうことになる。この場合、設定された製品寿命よりも前に製品の不具合が発生して、蓄電装置が製品寿命を達成できなくなることが多くなってしまう。   For example, the life of an assembled battery is generally shorter than the life of a single storage battery cell due to the effect of variations in the storage battery cells. Therefore, it will be predicted longer than actual. In this case, a malfunction of the product occurs before the set product life, and the power storage device often cannot achieve the product life.

本発明の目的は、複数の蓄電池セルで構成される組電池の寿命を精度良く評価することが可能な設計装置、設計方法およびプログラムを提供することである。   The objective of this invention is providing the design apparatus, the design method, and program which can evaluate the lifetime of the assembled battery comprised with a some storage battery cell accurately.

本発明による設計装置は、
組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出する統計的セル劣化特性導出部と、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出する演算手順導出部と、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出する統計的組電池劣化特性導出部と、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する寿命評価部と、を有する。
The design device according to the present invention comprises:
Statistical cell degradation characteristics for deriving statistical cell degradation characteristics, which are statistical data related to the plurality of cell degradation characteristics, based on a plurality of cell degradation characteristics that are respective degradation characteristics of the plurality of storage battery cells used in the assembled battery A derivation unit;
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells A calculation procedure deriving unit for deriving the procedure;
A statistical assembled battery deterioration characteristic deriving unit for deriving the statistical assembled battery deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure;
A life evaluation unit that evaluates the life of the assembled battery based on the statistical assembled battery deterioration characteristics.

本発明による設計方法は、
組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出し、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出し、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出し、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する。
The design method according to the present invention comprises:
Based on a plurality of cell deterioration characteristics that are respective deterioration characteristics of a plurality of storage battery cells used in the assembled battery, a statistical cell deterioration characteristic that is statistical data related to the plurality of cell deterioration characteristics is derived,
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells Deriving the procedure
Deriving the statistical battery pack deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure,
The life of the assembled battery is evaluated based on the statistical assembled battery deterioration characteristics.

本発明によるプログラムは、
組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出する機能と、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出する機能と、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出する機能と、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する機能と、をコンピュータに実現させる。
The program according to the present invention is:
A function of deriving statistical cell deterioration characteristics, which are statistical data related to the plurality of cell deterioration characteristics, based on a plurality of cell deterioration characteristics that are respective deterioration characteristics of the plurality of storage battery cells used in the assembled battery;
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells The ability to derive procedures;
A function of deriving the statistical assembled battery deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure;
Based on the statistical assembled battery deterioration characteristic, a function of evaluating the life of the assembled battery is realized by a computer.

本発明によれば、複数の蓄電池セルで構成される組電池の寿命を精度良く評価することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to evaluate the lifetime of the assembled battery comprised with a some storage battery cell accurately.

本発明の第1の実施形態に係る設計装置の構成を示す図である。It is a figure which shows the structure of the design apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る設計装置における処理の流れと情報の流れとを示す図である。It is a figure which shows the flow of a process and the flow of information in the design apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る統計的セル劣化特性導出部の機能をより具体的に説明するための図である。It is a figure for demonstrating more specifically the function of the statistical cell degradation characteristic derivation | leading-out part which concerns on the 1st Embodiment of this invention. 複数の蓄電池セルが直列に接続された組電池に対応する演算手順を説明する図である。It is a figure explaining the calculation procedure corresponding to the assembled battery in which the some storage battery cell was connected in series. 複数の蓄電池セルが並列に接続された組電池に対応する演算手順を説明する図である。It is a figure explaining the calculation procedure corresponding to the assembled battery in which the some storage battery cell was connected in parallel. 複数の蓄電池セルが直並列に接続された組電池に対応する演算手順を説明する図である。It is a figure explaining the calculation procedure corresponding to the assembled battery in which the some storage battery cell was connected in series-parallel. 統計的組電池劣化特性導出部が行う処理をより具体的に説明するためのフローチャートである。It is a flowchart for demonstrating more specifically the process which a statistical assembled battery deterioration characteristic derivation | leading-out part performs. 寿命分布導出部が行う処理をより具体的に説明するための図である。It is a figure for demonstrating more specifically the process which a lifetime distribution derivation | leading-out part performs. 本発明の第1の実施形態に係る設計装置の動作の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of operation | movement of the design apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るセル劣化特性の一例を示す図である。It is a figure which shows an example of the cell degradation characteristic which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る寿命分布の一例を示す図である。It is a figure which shows an example of the lifetime distribution which concerns on the 2nd Embodiment of this invention.

以下、本発明の実施形態について図面を参照しながら説明する。なお、各図面において、同じ機能を有するものには同じ符号を付し、その説明を省略する場合がある。また、以下で説明する本発明の実施形態に係る設計装置の構成要素は、ハードウエア単位の要素ではなく、機能単位の要素を示している。これらの機能単位の構成要素は、例えば、ハードウエアおよびソフトウエアの組み合わせによって実現される。ハードウエアとしては、CPU(Central Processing Unit)などのコンピュータ、コンピュータの動作を規定するプログラムがロードされるメモリ、そのプログラムを格納するハードディスクなどの記録メディア、および、ネットワーク接続用インタフェースのような種々のインタフェースが挙げられる。また、ソフトウエアとしては、上記のプログラムなどが挙げられる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to what has the same function, and the description may be abbreviate | omitted. In addition, the components of the design apparatus according to the embodiment of the present invention described below indicate functional units, not hardware units. These functional unit components are realized by, for example, a combination of hardware and software. The hardware includes a computer such as a CPU (Central Processing Unit), a memory loaded with a program for defining the operation of the computer, a recording medium such as a hard disk for storing the program, and various interfaces such as a network connection interface. Interface. Examples of software include the above programs.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る設計装置の構成を示す図である。また、図2は、本発明の第1の実施形態に係る設計装置における処理の流れと情報の流れとを示す図である。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a design apparatus according to the first embodiment of the present invention. FIG. 2 is a diagram showing a flow of processing and a flow of information in the design apparatus according to the first embodiment of the present invention.

図1および図2に示す設計装置100は、複数の蓄電池セルを組み合わせた組電池を蓄電池として有する蓄電装置を設計するための装置である。また、設計装置100は、記憶部101と、統計的セル劣化特性導出部102と、演算手順導出部103と、統計的組電池劣化特性導出部104と、寿命分布導出部105とを有する。   A design device 100 shown in FIGS. 1 and 2 is a device for designing a power storage device having, as a storage battery, an assembled battery in which a plurality of storage battery cells are combined. In addition, the design apparatus 100 includes a storage unit 101, a statistical cell deterioration characteristic deriving unit 102, a calculation procedure deriving unit 103, a statistical assembled battery deterioration characteristic deriving unit 104, and a life distribution deriving unit 105.

記憶部101は、蓄電装置の設計に必要な種々の情報を記憶する。具体的には、記憶部101は、セル劣化特性201、接続構造情報202および寿命閾値情報203を記憶する。   The storage unit 101 stores various information necessary for designing the power storage device. Specifically, the storage unit 101 stores cell deterioration characteristics 201, connection structure information 202, and lifetime threshold information 203.

セル劣化特性201は、蓄電装置が備える組電池で使用される蓄電池セルの劣化特性である。本実施形態では、記憶部101は、複数の蓄電池セルのそれぞれに対応する複数のセル劣化特性201を記憶しているものとする。なお、記憶部101は、組電池で使用される全ての蓄電池セルに対応するセル劣化特性201を記憶してもよいし、組電池で使用される全ての蓄電池セルからサンプリングされた複数の蓄電池セルに対応するセル劣化特性201を記憶してもよい。   The cell deterioration characteristic 201 is a deterioration characteristic of a storage battery cell used in the assembled battery included in the power storage device. In this embodiment, the memory | storage part 101 shall memorize | store the several cell deterioration characteristic 201 corresponding to each of several storage battery cells. In addition, the memory | storage part 101 may memorize | store the cell deterioration characteristic 201 corresponding to all the storage battery cells used with an assembled battery, or several storage battery cells sampled from all the storage battery cells used with an assembled battery May be stored.

セル劣化特性201は、具体的には、蓄電池セルの劣化に影響を与える因子に関する値である寿命因子尺度と、蓄電池セルの劣化の度合いに関する値である劣化尺度との対応関係を示す。寿命因子尺度は、例えば、蓄電池セルの使用経過時間、蓄電池セルの充放電サイクル回数、蓄電池セルが充電または放電した総電流量、または、これらの組み合わせなどである。劣化尺度は、例えば、蓄電池セルの容量に関する値である容量尺度などである。容量尺度としては、例えば、充電容量(CCAP:Charge CAPacity)、放電容量(DCAP:Discharge CAPacity)、容量維持率(SOH;State Of Health)、または、これらの組み合わせなどが挙げられる。   Specifically, the cell deterioration characteristic 201 indicates a correspondence relationship between a life factor scale that is a value related to a factor affecting the deterioration of the storage battery cell and a deterioration scale that is a value related to the degree of deterioration of the storage battery cell. The life factor scale includes, for example, the elapsed usage time of the storage battery cell, the number of charge / discharge cycles of the storage battery cell, the total amount of current charged or discharged by the storage battery cell, or a combination thereof. The degradation scale is, for example, a capacity scale that is a value related to the capacity of the storage battery cell. As a capacity | capacitance scale, charge capacity (CCAP: Charge CAPacity), discharge capacity (DCAP: Discharge CAPacity), capacity | capacitance maintenance factor (SOH; State Of Health), or these combination etc. are mentioned, for example.

以下では、説明の簡便化のために、寿命因子尺度を充放電サイクル回数とし、寿命尺度を充電容量であるとする。この場合、蓄電池セルを特定するセル番号をNo、充放電サイクル回数をCyc、充電容量をCCAPとすると、セル劣化特性201は、寿命因子尺度と劣化尺度との対応関係を、関数fを用いて、CCAP=f(Cyc;No)と表現することができる。セル劣化特性201は、この対応関係を、数式または表を用いて示す。   In the following, for simplicity of explanation, it is assumed that the life factor scale is the number of charge / discharge cycles, and the life scale is the charge capacity. In this case, assuming that the cell number that identifies the storage battery cell is No, the number of charge / discharge cycles is Cyc, and the charge capacity is CCAP, the cell deterioration characteristic 201 uses the function f to express the correspondence between the life factor scale and the deterioration scale. , CCAP = f (Cyc; No). The cell deterioration characteristic 201 indicates this correspondence using a mathematical expression or a table.

接続構造情報202は、蓄電装置の備える組電池を構成する蓄電池セル間の接続構造を示す。なお、蓄電池セルのそれぞれは、直列、並列または直並列に接続されている。   The connection structure information 202 indicates a connection structure between storage battery cells constituting an assembled battery included in the power storage device. In addition, each of the storage battery cell is connected in series, parallel, or series-parallel.

寿命閾値情報203は、蓄電装置が備える組電池の寿命を評価するための閾値である寿命閾値CCAPthを示す。   The life threshold information 203 indicates a life threshold CCAPth that is a threshold for evaluating the life of the assembled battery included in the power storage device.

統計的セル劣化特性導出部102は、記憶部101に記憶された複数のセル劣化特性201に基づいて、その複数のセル劣化特性201に関する統計データである統計的セル劣化特性204を導出して出力する。統計的セル劣化特性204は、具体的には、充放電サイクル回数ごとに充電容量の頻度分布を示すデータである。なお、統計的セル劣化特性204を導出するために使用するセル劣化特性201は、記憶部101に記憶された全てのセル劣化特性201でもよいし、記憶部101に記憶された全てのセル劣化特性201からサンプリングされた複数のセル劣化特性201でもよい。   The statistical cell deterioration characteristic deriving unit 102 derives and outputs a statistical cell deterioration characteristic 204 that is statistical data related to the plurality of cell deterioration characteristics 201 based on the plurality of cell deterioration characteristics 201 stored in the storage unit 101. To do. Specifically, the statistical cell deterioration characteristic 204 is data indicating the frequency distribution of the charge capacity for each number of charge / discharge cycles. Note that the cell deterioration characteristics 201 used to derive the statistical cell deterioration characteristics 204 may be all the cell deterioration characteristics 201 stored in the storage unit 101 or all the cell deterioration characteristics stored in the storage unit 101. A plurality of cell deterioration characteristics 201 sampled from 201 may be used.

以下、ある充放電サイクル回数Cyc0のときに、ある充電容量CCAP0となる確率Prを、Pr=fsingle(Cyc0,CCAP0)と表す。また、ある充放電サイクル回数Cyc0のときの充電容量の頻度分布をfsingle(Cyc0,:)と表し、その頻度分布に従う確率変数xをx〜fsingle(Cyc0,:)と表す。さらに充放電サイクル回数ごとの充電容量の頻度分布をまとめてfsingle(:,:)と表す。   Hereinafter, the probability Pr of having a certain charge capacity CCAP0 at a certain number of charge / discharge cycles Cyc0 is expressed as Pr = fsingle (Cyc0, CCAP0). Further, the frequency distribution of the charge capacity at a certain number of charge / discharge cycles Cyc0 is represented as fsingle (Cyc0, :), and the random variable x according to the frequency distribution is represented as x to fsingle (Cyc0, :). Further, the frequency distribution of the charge capacity for each number of charge / discharge cycles is collectively expressed as fsingle (:, :).

図3は、統計的セル劣化特性導出部102の機能をより具体的に説明するための図である。図3では、セル番号Noが1から5までの5つの蓄電池セル(セル1〜5)のセル劣化特性CCAP=f(Cyc;1)〜CCAP=f(Cyc;5)が示されている。   FIG. 3 is a diagram for more specifically explaining the function of the statistical cell deterioration characteristic deriving unit 102. FIG. 3 shows cell deterioration characteristics CCAP = f (Cyc; 1) to CCAP = f (Cyc; 5) of five storage battery cells (cells 1 to 5) having cell numbers No. 1 to 5.

統計的セル劣化特性導出部102は、セル1〜5のそれぞれのセル劣化特性に基づいて、寿命因子尺度である充放電サイクル回数Cycごとに、その充放電サイクル回数Cycに対応する劣化尺度である充電容量CCAPの頻度分布fsingle(Cyc,:)を求める。そして、統計的セル劣化特性導出部102は、充放電サイクル回数ごとに充電容量の頻度分布を示すデータfsingle(:,:)を統計的セル劣化特性204として導出する。なお、統計的セル劣化特性204は、これらの頻度分布を、数式、表、モーメントまたは各種計量などを用いて示すことができる。   The statistical cell deterioration characteristic deriving unit 102 is a deterioration scale corresponding to the charge / discharge cycle number Cyc for each charge / discharge cycle number Cyc, which is a life factor scale, based on the cell deterioration characteristics of the cells 1 to 5. The frequency distribution fsingle (Cyc, :) of the charge capacity CCAP is obtained. Then, the statistical cell deterioration characteristic deriving unit 102 derives data fsingle (:, :) indicating the frequency distribution of the charge capacity for each number of charge / discharge cycles as the statistical cell deterioration characteristic 204. Note that the statistical cell deterioration characteristic 204 can indicate these frequency distributions using mathematical expressions, tables, moments, various metrics, and the like.

また、図3では、充放電サイクル回数Cycが10サイクルおよび100サイクルのときの充電容量CCAPの頻度分布fsingle(10,:)およびfsingle(100,:)が示されている。充放電サイクル回数Cycが10サイクルの場合における充電容量CCAPの頻度分布fsingle(10,:)では、平均が蓄電システムの設計容量に近く、分散が小さくなる。これは、蓄電装置の使用開始時または使用開始してから間もない時には、蓄電池セルの製造ばらつきの影響はあるものの、その影響は小さいため、蓄電池セルの容量が設計容量とほぼ等しくなるためであると考えられる。一方、充放電サイクル回数Cycが100サイクルの場合における充電容量CCAPの頻度分布fsingle(100,:)では、充放電サイクル回数Cycが10サイクルの場合と比較して、平均は小さく、分散は大きくなっている。これは、充放電サイクル回数Cycや経過時間の増加などによる劣化の進度ばらつきにより、各蓄電池セルの容量のばらつきが増大するためであると考えられる。   FIG. 3 shows the frequency distributions fsingle (10, :) and fsingle (100, :) of the charge capacity CCAP when the number of charge / discharge cycles Cyc is 10 cycles and 100 cycles. In the frequency distribution fsingle (10, :) of the charge capacity CCAP when the number of charge / discharge cycles Cyc is 10 cycles, the average is close to the design capacity of the power storage system, and the variance becomes small. This is because the storage battery cell capacity is almost equal to the design capacity because the influence of the storage battery cell manufacturing variation is small, but the effect is small at the start of use or shortly after the start of use of the power storage device. It is believed that there is. On the other hand, in the frequency distribution fsingle (100, :) of the charge capacity CCAP when the number of charge / discharge cycles Cyc is 100 cycles, the average is smaller and the variance is larger than when the charge / discharge cycle number Cyc is 10 cycles. ing. This is considered to be because the variation in capacity of each storage battery cell increases due to variation in the degree of deterioration due to an increase in the number of charge / discharge cycles Cyc and the elapsed time.

図1および図2の説明に戻る。演算手順導出部103は、記憶部101に記憶された接続構造情報202に基づいて、統計的セル劣化特性204から統計的組電池劣化特性206を導出するための演算手順x_orderを導出し、演算手順x_orderを示す演算手順情報205を出力する。統計的組電池劣化特性206は、組電池の劣化特性を評価した評価データであり、具体的には、組電池の充電容量を推定した頻度分布(確率分布)を充放電サイクル回数ごとに示すデータである。   Returning to the description of FIG. 1 and FIG. The calculation procedure deriving unit 103 derives a calculation procedure x_order for deriving the statistical assembled battery deterioration characteristic 206 from the statistical cell deterioration characteristic 204 based on the connection structure information 202 stored in the storage unit 101. Calculation procedure information 205 indicating x_order is output. The statistical assembled battery deterioration characteristic 206 is evaluation data for evaluating the deterioration characteristic of the assembled battery, and specifically, data indicating a frequency distribution (probability distribution) for estimating the charging capacity of the assembled battery for each number of charge / discharge cycles. It is.

演算手順x_orderは、具体的には、充放電サイクル回数ごとに、その充放電サイクル回数に対応する充電容量の頻度分布を補正する手順であり、補正された頻度分布が組電池の充電容量に対する頻度分布となるように決定される。   Specifically, the calculation procedure x_order is a procedure for correcting the frequency distribution of the charge capacity corresponding to the number of charge / discharge cycles for each number of charge / discharge cycles, and the corrected frequency distribution is the frequency with respect to the charge capacity of the assembled battery. It is determined to be a distribution.

より具体的には、演算手順x_orderは、蓄電池セルの充電容量の頻度分布に従う確率変数に適用される演算子と、その演算子を適用する演算順序とを含む。なお、演算子は、複数の蓄電池セル間の個々の接続関係に応じて決定される。演算子および演算順序は、蓄電池セルの充電容量としてその充電容量の頻度分布が従う確率変数が与えられたと仮定したとき、その確率変数に対してこの演算子がこの演算順序で適用されることで得られる値が、組電池の充電容量となるように決定される。   More specifically, the calculation procedure x_order includes an operator applied to a random variable that follows the frequency distribution of the charge capacity of the storage battery cell, and an operation order in which the operator is applied. The operator is determined according to individual connection relationships between the plurality of storage battery cells. Assuming that a random variable that follows the frequency distribution of the charge capacity is given as the charge capacity of the storage battery cell, the operator and the calculation order are applied in this calculation order to the random variable. The obtained value is determined to be the charge capacity of the assembled battery.

図4は、複数の蓄電池セルが直列に接続された組電池に対応する演算手順を説明する図である。図4の例では、組電池は3つの蓄電池セル(セルA〜C)が直列に接続された構成を有する。また、セルA〜Cのそれぞれの充電容量として、ある充放電回数Cyc0に対応する充電容量の頻度分布に従う確率変数xa〜xcが以下のように与えられているとする。
xa〜fsingle(Cyc0,:),xb〜fsingle(Cyc0,:),xc〜fsingle(Cyc0,:).
FIG. 4 is a diagram illustrating a calculation procedure corresponding to an assembled battery in which a plurality of storage battery cells are connected in series. In the example of FIG. 4, the assembled battery has a configuration in which three storage battery cells (cells A to C) are connected in series. Further, it is assumed that random variables xa to xc according to the frequency distribution of the charge capacity corresponding to a certain number of charge / discharge cycles Cyc0 are given as the charge capacities of the cells A to C as follows.
xa to fsingle (Cyc0, :), xb to fsingle (Cyc0, :), xc to fsingle (Cyc0, :).

図4に示したように組電池を構成するセルA〜Cが直列に接続されている場合、組電池の充電容量x_allは、セルA〜Cのそれぞれの充電容量のうち最も小さい充電容量に律速されるため、最小値演算子min()を用いて、x_all=min(xa,xb,xc)と算出することができる。このため、演算手順導出部103は、蓄電池セルの接続関係が直列の場合、演算子として最小値演算子min()を導出する。   As shown in FIG. 4, when the cells A to C constituting the assembled battery are connected in series, the charge capacity x_all of the assembled battery is limited to the smallest charge capacity among the charge capacities of the cells A to C. Therefore, it is possible to calculate x_all = min (xa, xb, xc) using the minimum value operator min (). For this reason, the calculation procedure deriving unit 103 derives the minimum value operator min () as an operator when the connection relation of the storage battery cells is in series.

なお、最小値演算子min(xa,xb,xc)は、xa、xbおよびxcのうち最も小さい値を算出する演算子である。また、最小値演算子min()における多項演算子は、以下のように2項演算子の繰り返しとして表現することができる。
x_all=min(min(xa,xb),xc)=min(min(xb,xc),xa)=min(min(xc,xa),xb).
The minimum value operator min (xa, xb, xc) is an operator that calculates the smallest value among xa, xb, and xc. The polynomial operator in the minimum value operator min () can be expressed as a repetition of the binary operator as follows.
x_all = min (min (xa, xb), xc) = min (min (xb, xc), xa) = min (min (xc, xa), xb).

図5は、複数の蓄電池セルが並列に接続された組電池に対応する演算手順を説明する図である。図5の例では、組電池は3つの蓄電池セル(セルA〜C)が並列に接続された構成を有する。また、セルA〜Cのそれぞれの充電容量として、図4の例と同様に確率変数xa、xb、xcが与えられているとする。この場合、組電池の充電容量x_allは、並列に接続されたセルA〜Cのそれぞれの充電容量の総和となるため、和演算子add()を用いて、x_all=add(xa,xb,xc)と算出することができる。このため、演算手順導出部103は、蓄電池セルの接続関係が直列の場合、演算子として和演算子add()を導出する。   FIG. 5 is a diagram illustrating a calculation procedure corresponding to an assembled battery in which a plurality of storage battery cells are connected in parallel. In the example of FIG. 5, the assembled battery has a configuration in which three storage battery cells (cells A to C) are connected in parallel. Assume that random variables xa, xb, and xc are given as the charge capacities of the cells A to C as in the example of FIG. In this case, since the charge capacity x_all of the assembled battery is the sum of the charge capacities of the cells A to C connected in parallel, x_all = add (xa, xb, xc) using the sum operator add () ) And can be calculated. For this reason, the calculation procedure deriving unit 103 derives the sum operator add () as an operator when the connection relation of the storage battery cells is in series.

なお、和演算子add(xa,xb,xc)はxa、xbおよびxcの和を算出する演算子である。また、和演算子add()における多項演算は、最小値演算子min()における多項演算と同様に、2項演算の繰り返しとして表現することができる。   The sum operator add (xa, xb, xc) is an operator that calculates the sum of xa, xb, and xc. Further, a polynomial operation in the sum operator add () can be expressed as a repetition of a binary operation, similarly to the polynomial operation in the minimum value operator min ().

また、この例では、劣化度として正規化されていない充電容量が使用されていたが、充電容量の代わりに容量維持率SOHのような正規化された尺度が使用される場合、演算手順導出部103は、演算子として和演算子add()の代わりに、確率変数の平均値を算出する平均値演算子を導出する必要がある。   In this example, the charge capacity that is not normalized as the degree of deterioration is used. However, when a normalized measure such as the capacity maintenance rate SOH is used instead of the charge capacity, the calculation procedure deriving unit 103 needs to derive an average value operator for calculating the average value of the random variable instead of the sum operator add () as an operator.

図6は、複数の蓄電池セルが直並列に接続された組電池に対応する演算手順を説明する図である。図6の例では、1つの蓄電池セル(セルA)と、並列に接続された2つの蓄電池セル(セルB、C)と、並列に接続された3つの蓄電池セル(D,E,F)とが直列に接続された構成を有する。また、セルA〜Fのそれぞれの充電容量として、ある充放電回数Cyc0に対応する充電容量の頻度分布に従う確率変数xa〜xfが以下のように与えられているとする。
xa〜fsingle(Cyc0,:),xb〜fsingle(Cyc0,:),xc〜fsingle(Cyc0,:),xd〜fsingle(Cyc0,:),xe〜fsingle(Cyc0,:),xf〜fsingle(Cyc0,:).
FIG. 6 is a diagram illustrating a calculation procedure corresponding to an assembled battery in which a plurality of storage battery cells are connected in series and parallel. In the example of FIG. 6, one storage battery cell (cell A), two storage battery cells (cells B and C) connected in parallel, and three storage battery cells (D, E, and F) connected in parallel Are connected in series. Further, it is assumed that random variables xa to xf according to the frequency distribution of the charge capacity corresponding to a certain number of charge / discharge cycles Cyc0 are given as the charge capacities of the cells A to F as follows.
xa to fsingle (Cyc0, :), xb to fsingle (Cyc0, :), xc to fsingle (Cyc0, :), xd to fsingle (Cyc0, :), xe to fsingle (Cyc0, :), xf to fsingle (Cyc0) , :).

この場合、演算手順導出部103は、組電池の充電容量x_allを、並列に接続された蓄電池セルに対応する和演算子add()と、直列に接続された電池セルに対応する最小値演算子min()との組み合わせとして以下のように算出する。
x_all=min(xa,add(xb,xc),add(xd,xe,xf))
In this case, the calculation procedure deriving unit 103 calculates the charge capacity x_all of the assembled battery by the sum operator add () corresponding to the storage battery cells connected in parallel and the minimum value operator corresponding to the battery cells connected in series. The following is calculated as a combination with min ().
x_all = min (xa, add (xb, xc), add (xd, xe, xf))

なお、上記の多項演算は、最小値演算min()または和演算add()のみの場合と同様に、以下のような2項演算の繰り返しとして表現することもできる。
x_all=min(min(xa,add(xb,xc)),add(add(xd,xe),xf))=min( min(xa,add(xb,xc)),add(add(xd,xe),xf))
Note that the above polynomial operation can be expressed as a repetition of the following binary operation as in the case of only the minimum value operation min () or the sum operation add ().
x_all = min (min (xa, add (xb, xc)), add (add (xd, xe), xf)) = min (min (xa, add (xb, xc)), add (add (xd, xe ), Xf))

このように演算子を適用する演算順序は、一意に決まるものではなく、同等の結果を算出する複数の順序が存在することもある。また、演算手順x_orderは、演算子および演算順序を、図6の右図のような演算木で表現してもよいし、あるルールに従って生成された位相幾何学順序(Topological ordering)で表現してもよい。なお、図6の例に対応する位相幾何学順序は、以下のように表現される。
1) x_bc=add(xb,xc)
2) x_def=add(xd,xe,xf)
3) x_all=min(xa,x_bc,x_def)
As described above, the operation order in which the operators are applied is not uniquely determined, and there may be a plurality of orders in which equivalent results are calculated. In the calculation procedure x_order, the operator and the calculation order may be expressed by a calculation tree as shown in the right diagram of FIG. 6, or by a topological ordering generated according to a certain rule. Also good. Note that the topology order corresponding to the example of FIG. 6 is expressed as follows.
1) x_bc = add (xb, xc)
2) x_def = add (xd, xe, xf)
3) x_all = min (xa, x_bc, x_def)

図1および図2の説明に戻る。統計的組電池劣化特性導出部104は、統計的セル劣化特性導出部102から出力導出された統計的セル劣化特性204から、演算手順導出部103から出力された演算手順情報205が示す演算手順x_orderに従って統計的組電池劣化特性206を導出する。具体的には、統計的組電池劣化特性導出部104は、充放電サイクル回数ごとに、その充放電サイクル回数に対応する充電容量の頻度分布を演算手順x_orderに従って補正した分布を、組電池の充電容量の確率定分布として示すデータを統計的組電池劣化特性206として導出する。   Returning to the description of FIG. 1 and FIG. The statistical assembled battery deterioration characteristic deriving unit 104 calculates the calculation procedure x_order indicated by the calculation procedure information 205 output from the calculation procedure deriving unit 103 based on the statistical cell deterioration characteristic 204 output from the statistical cell deterioration characteristic deriving unit 102. The statistical battery deterioration characteristics 206 are derived according to Specifically, the statistical assembled battery deterioration characteristic deriving unit 104 recharges the assembled battery with a distribution obtained by correcting the frequency distribution of the charge capacity corresponding to the number of charge / discharge cycles according to the calculation procedure x_order for each number of charge / discharge cycles. Data shown as a probability distribution of capacity is derived as the statistical battery pack deterioration characteristic 206.

図7は、統計的組電池劣化特性導出部104が行う処理をより具体的に説明するためのフローチャートである。   FIG. 7 is a flowchart for more specifically explaining the process performed by the statistical assembled battery deterioration characteristic deriving unit 104.

図7に示すように、統計的組電池劣化特性導出部104は、ある充放電サイクル回数Cyc0について、その充放電サイクル回数Cyc0における充電容量の頻度分布fsingle(Cyc0,:)を、演算手順x_orderに従って補正して、その充放電サイクル回数Cyc0における組電池の充電容量の頻度分布fmodule(Cyc0,:)を導出する(ステップS701)。具体的には、統計的組電池劣化特性導出部104は、頻度分布fsingle(Cyc0,:)に従う確率変数に対して、演算手順x_orderが示す演算子を、演算手順x_orderが示す演算順序で適用した総確率変数が従う頻度分布を、充放電サイクル回数Cyc0における組電池の充電容量の頻度分布fmodule(Cyc0,:)として導出する。   As shown in FIG. 7, the statistical assembled battery deterioration characteristic deriving unit 104 calculates a charge capacity frequency distribution fsingle (Cyc0, :) at a certain charge / discharge cycle number Cyc0 for a certain charge / discharge cycle number Cyc0 according to a calculation procedure x_order. Correction is performed to derive the frequency distribution fmodule (Cyc0, :) of the charge capacity of the assembled battery at the number of charge / discharge cycles Cyc0 (step S701). Specifically, the statistical assembled battery deterioration characteristic deriving unit 104 applies the operator indicated by the calculation procedure x_order to the random variable according to the frequency distribution fsingle (Cyc0, :) in the calculation order indicated by the calculation procedure x_order. The frequency distribution followed by the total random variable is derived as the frequency distribution fmodule (Cyc0, :) of the charge capacity of the assembled battery at the number of charge / discharge cycles Cyc0.

そして、統計的組電池劣化特性導出部104は、ステップS701の処理を、統計的セル劣化特性204における全ての充放電サイクル回数について繰り返し行う(ステップS702)。統計的組電池劣化特性導出部104は、充放電サイクル回数Cycごとの組電池の充電容量の頻度分布fmodule(Cyc,:)の集合を、統計的組電池劣化特性206fmodule(:, :)として導出する。   The statistical assembled battery deterioration characteristic deriving unit 104 then repeats the process of step S701 for all the charge / discharge cycle times in the statistical cell deterioration characteristic 204 (step S702). The statistical assembled battery deterioration characteristic deriving unit 104 derives a set of frequency distributions fmodule (Cyc, :) of the charging capacity of the assembled battery for each charge / discharge cycle number Cyc as a statistical assembled battery deterioration characteristic 206 fmodule (:, :). To do.

図1および図2の説明に戻る。寿命分布導出部105は、寿命評価部とも呼ばれる。寿命分布導出部105は、統計的組電池劣化特性導出部104から出力された統計的組電池劣化特性206と、記憶部101に記憶された寿命閾値情報203とに基づいて、組電池の寿命を評価する。本実施形態では、寿命分布導出部105は、組電池の寿命を評価した評価結果として、劣化尺度が寿命閾値情報203にて示される寿命閾値CCAPthの場合における、充放電サイクル回数の頻度分布である組電池の寿命分布を導出して出力する。   Returning to the description of FIG. 1 and FIG. The life distribution deriving unit 105 is also called a life evaluation unit. The life distribution deriving unit 105 calculates the life of the assembled battery based on the statistical assembled battery deterioration characteristic 206 output from the statistical assembled battery deterioration characteristic deriving unit 104 and the life threshold information 203 stored in the storage unit 101. evaluate. In the present embodiment, the life distribution deriving unit 105 is a frequency distribution of the number of charge / discharge cycles when the deterioration scale is the life threshold value CCAPth indicated by the life threshold value information 203 as an evaluation result of evaluating the life of the assembled battery. Derives and outputs the life distribution of the assembled battery.

図8は、寿命分布導出部105が行う処理をより具体的に説明するための図である。図8(a)は、統計的組電池劣化特性導出部104から出力された統計的組電池劣化特性206を示す。また、図8(b)は、ある充放電サイクル回数Cyc0における組電池の充電容量の頻度分布fmodule(Cyc0, : )を示す。また、図8(c)は、組電池の充電容量CCAPが寿命閾値CCAPthの場合における充放電サイクル回数の頻度分布fmodule(:,CCAPth)を示す。なお、図8(a)における実線は、頻度が最も高い最頻値の充電容量CCAPを結んだ線であり、点線は、最頻値から概ね3σの値を結んだ線である。   FIG. 8 is a diagram for more specifically explaining the process performed by the life distribution deriving unit 105. FIG. 8A shows the statistical assembled battery deterioration characteristic 206 output from the statistical assembled battery deterioration characteristic deriving unit 104. FIG. 8B shows a frequency distribution fmodule (Cyc0, :) of the charge capacity of the assembled battery at a certain number of charge / discharge cycles Cyc0. FIG. 8C shows the frequency distribution fmodule (:, CCAPth) of the number of charge / discharge cycles when the charge capacity CCAP of the assembled battery is the life threshold value CCAPth. 8A. The solid line in FIG. 8A is a line connecting the charging capacity CCAP of the most frequent value, and the dotted line is a line connecting the value of about 3σ from the mode value.

充放電サイクル回数Cycと充電容量CCAPが決定されれば、頻度は一意的に決まることから、図8(b)で充放電サイクル回数Cyc0において充電容量が寿命閾値CCAPthとなる頻度と、図8(c)で充電容量が寿命閾値CCPthの場合において充放電サイクル回数が充放電サイクル回数Cyc0となる頻度とは同一となる(棒グラフにおける塗りつぶした部分)。   Since the frequency is uniquely determined if the charge / discharge cycle number Cyc and the charge capacity CCAP are determined, the frequency at which the charge capacity becomes the life threshold value CCAPth at the charge / discharge cycle number Cyc0 in FIG. In c), when the charge capacity is the life threshold value CCPth, the frequency at which the charge / discharge cycle number becomes the charge / discharge cycle number Cyc0 is the same (the filled portion in the bar graph).

寿命分布導出部105は、図8(a)で示されるような統計的組電池劣化特性206から、充放電サイクル回数ごとに、図8(b)で示されるような充電容量が寿命閾値CCAPthとなるときの頻度f(Cyc,CCAPth)を取り出す。これにより、寿命分布導出部105は、充電容量が寿命閾値CCAPthとなるときの充放電サイクル回数の頻度分布である組電池の寿命分布life(:)を導出することができる。この寿命分布life(:)は、図8(c)に示すように充電容量の頻度分布fmodule(:, : )における、充電容量CCAP=寿命閾値CCAPthのときの断面fmodule(:,CCAPth)と同一である。したがって、寿命分布life(:)は、life(:)=fmodule(:,CCAPth)となる。   The life distribution deriving unit 105 calculates the charge capacity as shown in FIG. 8B from the statistical assembled battery deterioration characteristic 206 as shown in FIG. 8A for each charge / discharge cycle number and the life threshold value CCAPth. The frequency f (Cyc, CCAPth) is taken out. Thereby, the lifetime distribution deriving unit 105 can derive the lifetime distribution life (:) of the assembled battery, which is a frequency distribution of the number of charge / discharge cycles when the charge capacity becomes the lifetime threshold value CCAPth. The life distribution life (:) is the same as the cross-section fmodule (:, CCAPth) when the charge capacity CCAP = lifetime threshold CCAPth in the charge capacity frequency distribution fmodule (:,:) as shown in FIG. It is. Therefore, the life distribution life (:) is life (:) = fmodule (:, CCAPth).

ここで寿命閾値CCAPthを製品の寿命容量とすれば、組電池が寿命に達する充放電サイクル回数の分布を把握することが可能になり、設計段階で製品の寿命の見積もりが可能となる。寿命分布life(:)は、必要があれば、正規化されてもよい。   Here, if the lifetime threshold value CCAPth is the lifetime capacity of the product, it is possible to grasp the distribution of the number of charge / discharge cycles in which the assembled battery reaches the lifetime, and the lifetime of the product can be estimated at the design stage. The life distribution life (:) may be normalized if necessary.

図9は、本実施形態の設計装置の動作を説明するためのフローチャートである。
先ず、統計的セル劣化特性導出部102は、記憶部101から複数のセル劣化特性201を取得し、取得した複数のセル劣化特性201に基づいて、統計的セル劣化特性204を導出して統計的組電池劣化特性導出部104に出力する(ステップS901)。
また、演算手順導出部103は、記憶部101から接続構造情報202を取得し、取得した接続構造情報202に基づいて演算手順x_orderを導出する。そして、演算手順導出部103は、導出した演算手順x_orderを示す演算手順情報205を統計的組電池劣化特性導出部104に出力する(ステップS902)。
統計的組電池劣化特性導出部104は、ステップS901およびS902のそれぞれで出力された統計的セル劣化特性204および演算手順情報205を受け付ける。統計的組電池劣化特性導出部104は、受け付けた統計的セル劣化特性204から演算手順情報205が示す演算手順x_orderに従って統計的組電池劣化特性206を導出して寿命分布導出部105に出力する(ステップS903)。
寿命分布導出部105は、統計的組電池劣化特性206を受け付け、記憶部101から寿命閾値情報203を取得する。寿命分布導出部105は、統計的組電池劣化特性206および寿命閾値情報203に基づいて、劣化尺度が寿命閾値情報203にて示される寿命閾値CCAPthの場合における、充放電サイクル回数の頻度分布である組電池の寿命分布life(:)を導出する。そして、寿命分布導出部105は、組電池の寿命分布life(:)を出力する(ステップS904)。
FIG. 9 is a flowchart for explaining the operation of the design apparatus of the present embodiment.
First, the statistical cell deterioration characteristic deriving unit 102 acquires a plurality of cell deterioration characteristics 201 from the storage unit 101, derives a statistical cell deterioration characteristic 204 based on the acquired plurality of cell deterioration characteristics 201, and performs statistical analysis. It outputs to the assembled battery deterioration characteristic deriving unit 104 (step S901).
In addition, the calculation procedure deriving unit 103 acquires the connection structure information 202 from the storage unit 101 and derives the calculation procedure x_order based on the acquired connection structure information 202. Then, the calculation procedure deriving unit 103 outputs calculation procedure information 205 indicating the derived calculation procedure x_order to the statistical assembled battery deterioration characteristic deriving unit 104 (step S902).
The statistical assembled battery deterioration characteristic deriving unit 104 receives the statistical cell deterioration characteristic 204 and the calculation procedure information 205 output in steps S901 and S902, respectively. The statistical assembled battery deterioration characteristic deriving unit 104 derives the statistical assembled battery deterioration characteristic 206 from the received statistical cell deterioration characteristic 204 according to the calculation procedure x_order indicated by the calculation procedure information 205 and outputs it to the life distribution deriving unit 105 ( Step S903).
The life distribution deriving unit 105 receives the statistical assembled battery deterioration characteristic 206 and acquires the life threshold information 203 from the storage unit 101. The life distribution deriving unit 105 is a frequency distribution of the number of charge / discharge cycles when the deterioration scale is the life threshold CCAPth indicated by the life threshold information 203 based on the statistical assembled battery deterioration characteristics 206 and the life threshold information 203. The life distribution life (:) of the assembled battery is derived. Then, the life distribution deriving unit 105 outputs the life distribution life (:) of the assembled battery (step S904).

以上説明したように本実施形態によれば、統計的セル劣化特性導出部102は、組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出する。演算手順導出部103は、複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、統計的セル劣化特性から組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出する。統計的組電池劣化特性導出部104は、統計的セル劣化特性から演算手順に従って統計的組電池劣化特性を導出する。寿命分布導出部105は、統計的組電池劣化特性に基づいて、組電池の寿命を評価する。
これにより、組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性と、蓄電池セル間の接続構造とに基づいて評価された組電池の劣化特性から、組電池の寿命が評価される。したがって、複数の蓄電池セルで構成される組電池の寿命を精度良く評価することが可能になる。
As described above, according to the present embodiment, the statistical cell deterioration characteristic deriving unit 102 has a plurality of cell deterioration characteristics based on a plurality of cell deterioration characteristics that are respective deterioration characteristics of the plurality of storage battery cells used in the assembled battery. Statistical cell degradation characteristics, which are statistical data related to cell degradation characteristics, are derived. The calculation procedure deriving unit 103 derives a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on the connection structure information indicating the connection structure between the plurality of storage battery cells. The calculation procedure for deriving is derived. The statistical assembled battery deterioration characteristic deriving unit 104 derives the statistical assembled battery deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure. The life distribution deriving unit 105 evaluates the life of the assembled battery based on the statistical assembled battery deterioration characteristics.
Thus, from the deterioration characteristics of the assembled battery evaluated based on the plurality of cell deterioration characteristics that are the respective deterioration characteristics of the plurality of storage battery cells used in the assembled battery and the connection structure between the storage battery cells, Life is evaluated. Therefore, it is possible to accurately evaluate the life of the assembled battery including a plurality of storage battery cells.

(第2の実施形態)
本実施形態では、第1の実施形態で説明した方法による組電池の寿命の評価の信頼性を検証する。
(Second Embodiment)
In this embodiment, the reliability of the evaluation of the battery life by the method described in the first embodiment is verified.

図10は、本発明の第2の実施形態に係るセル劣化特性の一例を示す図である。なお、図10では、組電池は、蓄電池セルとして18650型リチウムイオン電池セルを10個用いているものとしている。また、縦軸は、劣化尺度として容量維持率SOHを示し、横軸は、寿命因子尺度として充放電サイクル回数を示している。   FIG. 10 is a diagram illustrating an example of cell deterioration characteristics according to the second embodiment of the present invention. In FIG. 10, the assembled battery is assumed to use ten 18650 type lithium ion battery cells as storage battery cells. The vertical axis represents the capacity maintenance rate SOH as a deterioration scale, and the horizontal axis represents the number of charge / discharge cycles as a life factor scale.

図10において、セル劣化特性11は、劣化の進行が最も遅い蓄電池セルの劣化特性を示す。セル劣化特性12は、全ての蓄電池セルの劣化特性の平均(具体的には、全ての蓄電池セルの容量維持率SOHの平均値と充放電サイクル回数との対応関係)を示す。セル劣化特性13は、劣化の進行が最も早い蓄電池セルの劣化特性を示す。充放電サイクル回数が300サイクルの場合、劣化の進行が最も遅い蓄電池セルの容量維持率SOHは、最良値の0.7程度となり、劣化の進行が最も早い蓄電池セルの容量維持率SOHである最悪値の0.3程度となる。また、容量維持率SOHの平均値は、充放電サイクル回数が多くなるにしたがって単調に減少している。   In FIG. 10, the cell deterioration characteristic 11 shows the deterioration characteristic of the storage battery cell whose progress of deterioration is the slowest. The cell deterioration characteristic 12 indicates an average of deterioration characteristics of all the storage battery cells (specifically, a correspondence relationship between the average value of the capacity maintenance rates SOH of all the storage battery cells and the number of charge / discharge cycles). The cell deterioration characteristic 13 indicates the deterioration characteristic of the storage battery cell that progresses most rapidly. When the number of charge / discharge cycles is 300 cycles, the capacity maintenance rate SOH of the storage battery cell with the slowest progress of deterioration is about 0.7 of the best value, and the capacity maintenance rate SOH of the storage battery cell with the fastest progress of deterioration is the worst. The value is about 0.3. Further, the average value of the capacity retention rate SOH monotonously decreases as the number of charge / discharge cycles increases.

図11は、図10で示したようなセル劣化特性を有する蓄電池セルを200個直列に接続した組電池の寿命を説明するための図である。図11の例では、第1の実施形態で説明した方法を用いて導出した組電池の寿命分布21(実線)と、蓄電池セルの寿命分布22(破線)とが示されている。また、組電池の寿命分布21と重なるように示されている寿命分布23(点線)は、モンテカルロ法により求めた組電池の寿命分布である。寿命分布21と23とを比較すると、分布の形状はほぼ等しく、第1の実施形態で説明した方法が高信頼であることを表している。   FIG. 11 is a diagram for explaining the life of an assembled battery in which 200 storage battery cells having cell deterioration characteristics as shown in FIG. 10 are connected in series. In the example of FIG. 11, the life distribution 21 (solid line) of the assembled battery derived by using the method described in the first embodiment and the life distribution 22 (broken line) of the storage battery cells are shown. A life distribution 23 (dotted line) shown so as to overlap with the battery life distribution 21 of the battery pack is a battery life distribution obtained by the Monte Carlo method. Comparing the life distributions 21 and 23, the shapes of the distributions are almost equal, indicating that the method described in the first embodiment is highly reliable.

蓄電池セルの寿命分布22は、図10における容量維持率SOH=0.5の断面を取ったものである。蓄電池セルの寿命分布22は、充放電サイクル回数が150サイクルから600サイクル以上に渡る範囲を有する幅の広い分布となっている。一方、組電池の寿命分布21は、充放電サイクル回数の平均値が140サイクルにあり、大きくても200サイクルを超えない、幅のかなり狭い分布となっている。これは、200個の蓄電池セルが直列に接続された構成では、寿命分布を導出する際に、最小値演算子が199回繰り返して適用されるために、組電池の寿命分布が蓄電池セルの寿命分布の最小値に偏ってしまうためである。   The life distribution 22 of the storage battery cell is a cross section of the capacity retention rate SOH = 0.5 in FIG. The life distribution 22 of the storage battery cell is a wide distribution having a range in which the number of charge / discharge cycles ranges from 150 cycles to 600 cycles or more. On the other hand, the life distribution 21 of the assembled battery has a fairly narrow distribution in which the average value of the number of charge / discharge cycles is 140 cycles and does not exceed 200 cycles at most. This is because, in a configuration in which 200 battery cells are connected in series, the minimum value operator is repeatedly applied 199 times when deriving the life distribution, so the life distribution of the assembled battery is the life of the battery cell. This is because it tends to be biased to the minimum value of the distribution.

この結果は、例えば、蓄電池セルの寿命が50%以上の確率で400サイクルを超えるような蓄電池セルが使用されても、多数の蓄電池セルを直列に接続した組電池においては、組電池の寿命は200サイクルを下回ることを示している。これは、蓄電池セルの寿命に比べて、組電池の寿命が小さくなる傾向を示しており、実際の結果と一致する。   As a result, for example, even if a storage battery cell with a probability that the life of the storage battery cell exceeds 400 cycles with a probability of 50% or more is used, in the assembled battery in which a large number of storage battery cells are connected in series, the life of the assembled battery is It shows less than 200 cycles. This shows a tendency for the life of the assembled battery to be shorter than the life of the storage battery cell, which is consistent with the actual result.

したがって、第1の実施形態で説明した方法においては、これまで定量的に評価できなかった組電池の寿命を評価できるようになっており、設計前に製品寿命を定量的に予測することが可能となる。   Therefore, in the method described in the first embodiment, it is possible to evaluate the life of the assembled battery that could not be quantitatively evaluated so far, and it is possible to quantitatively predict the product life before designing. It becomes.

以上、実施形態を参照して本願発明を説明したが、本願発明は、上記実施形態に限定されたものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更を行うことができる。
例えば、上述した実施形態では、蓄電装置の設計に必要な種々の情報は記憶部101に記憶されているものとしたが、これらの情報の一部または全部は、ネットワークを介して他の装置から取得されてもよいし、設計装置を使用するユーザなどから入力されてもよい。
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
For example, in the above-described embodiment, various information necessary for the design of the power storage device is stored in the storage unit 101. However, part or all of the information is transmitted from another device via the network. It may be acquired or may be input from a user who uses the design apparatus.

100 設計装置
101 記憶部
102 統計的セル劣化特性導出部
103 演算手順導出部
104 統計的組電池劣化特性導出部
105 寿命分布導出部
DESCRIPTION OF SYMBOLS 100 Design apparatus 101 Memory | storage part 102 Statistical cell deterioration characteristic deriving part 103 Operation procedure deriving part 104 Statistical assembled battery deterioration characteristic deriving part 105 Life distribution deriving part

Claims (11)

組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出する統計的セル劣化特性導出部と、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出する演算手順導出部と、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出する統計的組電池劣化特性導出部と、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する寿命評価部と、を有する設計装置。
Statistical cell degradation characteristics for deriving statistical cell degradation characteristics, which are statistical data related to the plurality of cell degradation characteristics, based on a plurality of cell degradation characteristics that are respective degradation characteristics of the plurality of storage battery cells used in the assembled battery A derivation unit;
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells A calculation procedure deriving unit for deriving the procedure;
A statistical assembled battery deterioration characteristic deriving unit for deriving the statistical assembled battery deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure;
A design apparatus comprising: a life evaluation unit that evaluates a life of the assembled battery based on the statistical assembled battery deterioration characteristic.
前記セル劣化特性は、前記蓄電池セルの劣化に影響を与える因子に関する値である寿命因子尺度と、前記蓄電池セルの劣化の度合いに関する値である劣化尺度との対応関係を示し、
前記統計的セル劣化特性導出部は、前記複数のセル劣化特性において、前記寿命因子尺度ごとに前記劣化尺度の頻度分布を示すデータを前記統計的セル劣化特性として導出し、
前記統計的組電池劣化特性導出部は、前記寿命因子尺度ごとに、当該寿命因子尺度に対応する劣化尺度の頻度分布を前記演算手順に従って補正した分布を示すデータを、前記統計的組電池劣化特性として導出する、請求項1に記載の設計装置。
The cell deterioration characteristic indicates a correspondence relationship between a life factor scale that is a value related to a factor affecting the deterioration of the storage battery cell and a deterioration scale that is a value related to the degree of deterioration of the storage battery cell,
The statistical cell degradation characteristic deriving unit derives, as the statistical cell degradation characteristic, data indicating a frequency distribution of the degradation scale for each of the life factor scales in the plurality of cell degradation characteristics,
The statistical battery pack deterioration characteristic deriving unit obtains data indicating a distribution obtained by correcting the frequency distribution of the deterioration scale corresponding to the life factor scale according to the calculation procedure for each of the life factor scales. The design apparatus according to claim 1, derived as
前記寿命評価部は、前記劣化尺度が閾値の場合における前記寿命因子尺度の頻度分布を、前記組電池の寿命を評価した評価結果として出力する、請求項2に記載の設計装置。   The design apparatus according to claim 2, wherein the life evaluation unit outputs a frequency distribution of the life factor scale when the deterioration scale is a threshold value as an evaluation result of evaluating the life of the assembled battery. 前記演算手順導出部は、前記複数の蓄電池セル間の個々の接続関係に応じた演算子と、当該演算子を適用する演算順序とを、前記演算手順として導出し、
前記統計的組電池劣化特性導出部は、前記寿命因子尺度ごとの、当該寿命因子尺度に対応する前記劣化尺度の頻度分布に従う確率変数に対して前記演算子を前記演算順序で適用した総確率変数が従う分布を、前記統計的組電池劣化特性として導出する、請求項2または3に記載の設計装置。
The calculation procedure derivation unit derives, as the calculation procedure, an operator corresponding to each connection relationship between the plurality of storage battery cells and an operation order to apply the operator.
The statistical assembled battery deterioration characteristic deriving unit is a total random variable obtained by applying the operators in the calculation order to random variables according to the frequency distribution of the deterioration scale corresponding to the life factor scale for each life factor scale. The design apparatus according to claim 2, wherein a distribution according to is derived as the statistical battery pack deterioration characteristic.
前記演算手順導出部は、前記接続関係が並列を示す場合、前記演算子として、前記劣化尺度が正規化されていると、平均値演算子を導出し、前記劣化尺度が前記正規化されていないと、和演算子を導出する、請求項4に記載の設計装置。   The calculation procedure deriving unit derives an average value operator as the operator when the connection relation indicates parallel, and derives an average value operator as the operator, and the deterioration measure is not normalized. The design apparatus according to claim 4, wherein a sum operator is derived. 前記演算手順導出部は、前記蓄電池セルが直列に接続されている場合、前記演算子として、最小値演算子を導出する、請求項4または5に記載の設計装置。   The design device according to claim 4 or 5, wherein the calculation procedure deriving unit derives a minimum value operator as the operator when the storage battery cells are connected in series. 前記演算手順導出部は、前記演算子を二項演算子として導出する、請求項4ないし6のいずれか1項に記載の設計装置。   The design apparatus according to claim 4, wherein the calculation procedure deriving unit derives the operator as a binary operator. 前記演算手順導出部は、前記演算順序を位相幾何学順序で表す、請求項7に記載の設計装置。   The design apparatus according to claim 7, wherein the calculation procedure deriving unit represents the calculation order in a topological order. 前記演算手順導出部は、前記演算順序を演算木で表す、請求項4ないし6のいずれか1項に記載の設計装置。   The design apparatus according to claim 4, wherein the calculation procedure deriving unit represents the calculation order by an operation tree. 組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出し、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出し、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出し、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する、設計方法。
Based on a plurality of cell deterioration characteristics that are respective deterioration characteristics of a plurality of storage battery cells used in the assembled battery, a statistical cell deterioration characteristic that is statistical data related to the plurality of cell deterioration characteristics is derived,
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells Deriving the procedure
Deriving the statistical battery pack deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure,
The design method which evaluates the lifetime of the said assembled battery based on the said statistical assembled battery deterioration characteristic.
組電池で使用される複数の蓄電池セルのそれぞれの劣化特性である複数のセル劣化特性に基づいて、前記複数のセル劣化特性に関する統計データである統計的セル劣化特性を導出する機能と、
前記複数の蓄電池セル間の接続構造を示す接続構造情報に基づいて、前記統計的セル劣化特性から前記組電池の劣化特性を評価した評価データである統計的組電池劣化特性を導出するための演算手順を導出する機能と、
前記統計的セル劣化特性から前記演算手順に従って前記統計的組電池劣化特性を導出する機能と、
前記統計的組電池劣化特性に基づいて、前記組電池の寿命を評価する機能と、をコンピュータに実現させるためのプログラム。
A function of deriving statistical cell deterioration characteristics, which are statistical data related to the plurality of cell deterioration characteristics, based on a plurality of cell deterioration characteristics that are respective deterioration characteristics of the plurality of storage battery cells used in the assembled battery;
An operation for deriving a statistical assembled battery deterioration characteristic that is evaluation data for evaluating the deterioration characteristic of the assembled battery from the statistical cell deterioration characteristic based on connection structure information indicating a connection structure between the plurality of storage battery cells The ability to derive procedures;
A function of deriving the statistical assembled battery deterioration characteristic from the statistical cell deterioration characteristic according to the calculation procedure;
The program for making a computer implement | achieve the function which evaluates the lifetime of the said assembled battery based on the said statistical assembled battery deterioration characteristic.
JP2014193676A 2014-09-24 2014-09-24 DESIGN DEVICE, DESIGN METHOD, AND PROGRAM Active JP6365938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193676A JP6365938B2 (en) 2014-09-24 2014-09-24 DESIGN DEVICE, DESIGN METHOD, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193676A JP6365938B2 (en) 2014-09-24 2014-09-24 DESIGN DEVICE, DESIGN METHOD, AND PROGRAM

Publications (2)

Publication Number Publication Date
JP2016065748A JP2016065748A (en) 2016-04-28
JP6365938B2 true JP6365938B2 (en) 2018-08-01

Family

ID=55805285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193676A Active JP6365938B2 (en) 2014-09-24 2014-09-24 DESIGN DEVICE, DESIGN METHOD, AND PROGRAM

Country Status (1)

Country Link
JP (1) JP6365938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298114B2 (en) * 2018-06-25 2023-06-27 株式会社Gsユアサ State estimation method and state estimation device
JP7202958B2 (en) * 2019-04-05 2023-01-12 株式会社日立産機システム Storage battery condition evaluation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818808B2 (en) * 2006-05-19 2011-11-16 富士電機株式会社 Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program
JP2012150086A (en) * 2011-01-21 2012-08-09 Nec Corp Assembled battery system designing method and apparatus for the same
JPWO2013002202A1 (en) * 2011-06-29 2015-02-23 三洋電機株式会社 Battery deterioration judgment device
JP5667123B2 (en) * 2012-05-11 2015-02-12 株式会社東芝 Storage battery system and connection configuration changing method
JP2014011060A (en) * 2012-06-29 2014-01-20 Sanyo Electric Co Ltd Replacement method of battery module, power supply system, vehicle with the power supply system, power storage device, and replacement management program

Also Published As

Publication number Publication date
JP2016065748A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
AU2018331966B2 (en) Method and system for controlling a rechargeable battery
Wang et al. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
JP6488105B2 (en) Storage battery evaluation apparatus and method
KR101363195B1 (en) Battery degradation determination device, battery degradation determination method and battery degradation determination system
JP6151163B2 (en) Battery state calculation device and battery state calculation method
JP2017166874A (en) Storage battery evaluation device, storage battery, storage battery evaluation method, and program
CN104459560A (en) Method for predicting remaining service life of lithium battery based on wavelet denoising and relevant vector machine
US20200184393A1 (en) Method and apparatus for determining risk management decision-making critical values
CN109298940A (en) Calculation task allocating method, device, electronic equipment and computer storage medium
US20190004118A1 (en) Battery performance prediction
JP6213333B2 (en) Estimation program, estimation method, and estimation apparatus
JP7004650B2 (en) Information processing equipment, control methods, and programs
JP6365938B2 (en) DESIGN DEVICE, DESIGN METHOD, AND PROGRAM
US20180210037A1 (en) Method for determining diagnosis frequency, method for diagnosing deterioration of storage cell, system for determining diagnosis frequency, and device for diagnosing deterioration of storage cell
KR20170134193A (en) Method for estimating state of charge of battery and apparatus for impelmeing the method
Ahmadi Optimal maintenance scheduling for a complex manufacturing system subject to deterioration
WO2022230335A1 (en) Battery state estimation device and power system
JP6756603B2 (en) Power system state estimation device and state estimation method
EP3132274A2 (en) Performance tracking of an electrical energy storage system
KR20160107095A (en) Apparatus and method for automated real-time estimation of remaining useful life of battery
WO2018179852A1 (en) Storage battery control device and control method
CN106405423B (en) Battery cell monitoring method and battery monitor system
Nor et al. Study of voltage and power stability margins of electrical power system using ANN
JP6222822B2 (en) Deterioration function calculation device, deterioration rate estimation system, deterioration function calculation method, and program
Zhang et al. Network performance reliability evaluation based on network reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6365938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350