JP6357619B2 - Sensing sensor and sensing device - Google Patents

Sensing sensor and sensing device Download PDF

Info

Publication number
JP6357619B2
JP6357619B2 JP2014074440A JP2014074440A JP6357619B2 JP 6357619 B2 JP6357619 B2 JP 6357619B2 JP 2014074440 A JP2014074440 A JP 2014074440A JP 2014074440 A JP2014074440 A JP 2014074440A JP 6357619 B2 JP6357619 B2 JP 6357619B2
Authority
JP
Japan
Prior art keywords
flow path
wiring board
sensing
liquid
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014074440A
Other languages
Japanese (ja)
Other versions
JP2015197330A (en
Inventor
茎田 啓行
啓行 茎田
和歌子 忍
和歌子 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2014074440A priority Critical patent/JP6357619B2/en
Publication of JP2015197330A publication Critical patent/JP2015197330A/en
Application granted granted Critical
Publication of JP6357619B2 publication Critical patent/JP6357619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、水晶振動子等の圧電振動子の発振周波数に基づいて、試料液に含有される感知対象物を感知するための感知センサー及び当該感知センサーを含む感知装置に関する。   The present invention relates to a sensing sensor for sensing a sensing object contained in a sample liquid based on an oscillation frequency of a piezoelectric vibrator such as a crystal vibrator and a sensing device including the sensing sensor.

臨床分野において、例えば血糖値の自己モニタリングやインフルエンザウイルス検査等に代表されるPOCT(Point of core TEST)と呼ばれる簡便な検査方法が普及しており、このような検査において、QCM(Quartz Crystal Microbalance)を利用した感知センサーを用いることが検討されている。QCMについて簡単に説明すると、感知装置に設けられた水晶振動子の表面に感知対象物が含まれる試料液を供給する。そして水晶振動子の表面に試料液中の感知対象物が吸着され、質量負荷効果により感知対象物の吸着量に応じて水晶振動子の発振周波数が変化する。当該発振周波数の変化に基づいて、試料液中の感知対象物の検出または定量が行われる。   In the clinical field, for example, a simple test method called POCT (Point of core TEST) typified by self-monitoring of blood glucose level and influenza virus test is widespread, and in such test, QCM (Quartz Crystal Microbalance) It has been studied to use a sensor that uses a sensor. Briefly describing the QCM, a sample liquid containing a sensing object is supplied to the surface of a crystal resonator provided in the sensing device. Then, the sensing object in the sample liquid is adsorbed on the surface of the crystal unit, and the oscillation frequency of the crystal unit changes according to the amount of adsorption of the sensing object due to the mass load effect. Based on the change in the oscillation frequency, detection or quantification of the sensing object in the sample liquid is performed.

特許文献1には、その一面側に感知対象物を吸着する吸着膜を備えた水晶振動子に対して試料液を供給し、当該水晶振動子の発振周波数の変化量に基づいて感知対象物を感知するバッチ式の感知センサーが開示されている。当該感知センサーの一例について図12に示すと、配線基板9に形成された貫通孔90を塞ぐように水晶振動子91が設けられており、下部に凹部92が形成されたシート98を水晶振動子91の上面に配置し、外側からカバー93を配線基板9の一端側に嵌合し、カバー93の圧力によってシート98を配線基板9に押圧することにより試料液の流路92が形成されている。なおシート98の凹部及び試料液の流路は同一であるため同符号92を附している。そしてカバー93に形成された供給口931から供給された試料液は、入口側毛細管部材94から前記流路92へと流入し、出口側毛細管部材95を介して排液領域96へと毛細管現象により流出するように構成されている。97は前記貫通孔90を塞ぐように配線基板9の他面側に設けられたフィルムである。   In Patent Document 1, a sample liquid is supplied to a crystal resonator having an adsorption film that adsorbs a sensing object on one side thereof, and the sensing object is determined based on the amount of change in the oscillation frequency of the crystal oscillator. A batch-type sensing sensor for sensing is disclosed. FIG. 12 shows an example of the sensing sensor. A crystal resonator 91 is provided so as to close a through-hole 90 formed in the wiring substrate 9, and a sheet 98 having a recess 92 formed in the lower portion is used as a crystal resonator. The flow path 92 for the sample solution is formed by disposing the cover 93 on one end side of the wiring board 9 from the outside, pressing the sheet 98 against the wiring board 9 by the pressure of the cover 93. . Since the concave portion of the sheet 98 and the flow path of the sample liquid are the same, the same symbol 92 is given. Then, the sample liquid supplied from the supply port 931 formed in the cover 93 flows into the flow path 92 from the inlet side capillary member 94, and flows into the drainage region 96 through the outlet side capillary member 95 by capillary action. It is configured to flow out. Reference numeral 97 denotes a film provided on the other surface side of the wiring board 9 so as to close the through hole 90.

当該構造を有したバッチ式センサーは、シート98を介在させることにより、各部品の寸法のばらつきに起因する部品間の隙間などの発生を防ぐという点で効果がある。しかし当該構造は同時に、カバー93がシート98を押圧しているため、流路92の天井部が加圧されることから流路92の高さが不均一に低下してしまうことがある。   The batch type sensor having such a structure is effective in preventing the occurrence of a gap between components due to the dimensional variation of each component by interposing the sheet 98. However, at the same time, since the cover 93 presses the sheet 98, the ceiling portion of the flow path 92 is pressurized, so that the height of the flow path 92 may be reduced unevenly.

当該バッチ式センサーにおいては、感知対象物と水晶振動子91表面との接触率を向上させるために流路92の高さを狭小化することへの要請がある。しかし嵌合するカバー93からの圧力を高めることにより流路92の高さを低くすると、流路92が完全に潰れてしまう部分が発生したり、あるいは水晶振動子91が欠損したりする懸念がある。またシート98の凹部92を狭小に形成した上で嵌合するカバー93からの圧力を低下させる手法も考えられるが、試料液がセンサー外に漏れ出すおそれがある。   In the batch type sensor, there is a demand for narrowing the height of the flow path 92 in order to improve the contact rate between the sensing object and the surface of the crystal unit 91. However, if the height of the channel 92 is lowered by increasing the pressure from the cover 93 to be fitted, there is a concern that the channel 92 may be completely crushed or the crystal unit 91 may be lost. is there. Further, although a method of reducing the pressure from the cover 93 that is fitted after the concave portion 92 of the sheet 98 is formed to be narrow is conceivable, the sample liquid may leak out of the sensor.

特許文献2には、開口部及び開口部を取り巻く溝が形成された下部ケース上に圧電振動子を配置し、上部ケースに試料液注入口及び前記溝に対応する突起を形成し、下部ケースの溝と上部ケースの突起とを嵌合させて圧電センサーを構成する手法が開示されている。しかし当該文献には圧電振動子上における試料液の流路の高さに関する言及はなく、解決する課題が本発明とは異なる。   In Patent Document 2, a piezoelectric vibrator is disposed on a lower case in which an opening and a groove surrounding the opening are formed, a sample liquid inlet and a protrusion corresponding to the groove are formed in the upper case, A method for configuring a piezoelectric sensor by fitting a groove and a protrusion of an upper case is disclosed. However, this document does not mention the height of the flow path of the sample liquid on the piezoelectric vibrator, and the problem to be solved is different from the present invention.

特開2012−145566号公報JP 2012-145 566 A 特開平9−145583号公報JP-A-9-145583

本発明はこのような事情の下になされたものであり、その目的は、感知対象物に対する測定感度を向上させた感知センサー及び感知装置を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to provide a sensing sensor and a sensing device with improved measurement sensitivity for a sensing object.

本発明の感知センサーは、
発振周波数を測定するための測定器に接続される接続端子を備えると共に一面側に凹部が形成された配線基板と、
圧電片に励振電極を設けて構成され、前記凹部を塞ぎかつ振動領域が前記凹部と対向するように前記配線基板に固定されると共に、励振電極が前記接続端子に電気的に接続され、一面側に試料液中の感知対象物を吸着する吸着膜が形成された圧電振動子と、
前記圧電振動子を含む配線基板の一面側の領域を覆うように設けられ、試料液の注入口を備えた流路形成部材と、
前記配線基板の一面側を上面側とすると、前記流路形成部材よりも下方側に位置する部材と係合することにより、前記流路形成部材を前記配線基板に押圧した状態により固定する押圧部材と、
前記押圧部材による押圧により前記配線基板と前記流路形成部材との間に形成され、前記注入口に供給された試料液を、圧電振動子の一面側において一端側から他端側に向けて流通させる流路と、
前記流路形成部材と前記押圧部材との間、または前記配線基板の他面側に設けられ、前記押圧部材からの過大な圧力分を吸収する緩衝部材と、を備え
前記流路形成部材は、前記緩衝部材が存在しない状態においても、前記押圧部材により押圧されて固定された状態にあることを特徴とする。
The sensing sensor of the present invention is
A wiring board having a connection terminal connected to a measuring instrument for measuring the oscillation frequency and having a recess formed on one side;
The piezoelectric piece is provided with an excitation electrode, and is fixed to the wiring board so as to close the recess and to have a vibration region facing the recess, and the excitation electrode is electrically connected to the connection terminal. A piezoelectric vibrator formed with an adsorption film that adsorbs a sensing object in the sample liquid,
A flow path forming member provided so as to cover a region on one surface side of the wiring board including the piezoelectric vibrator, and having a sample liquid inlet;
When the one surface side of the wiring board is the upper surface side, a pressing member that fixes the flow path forming member in a pressed state against the wiring board by engaging with a member positioned below the flow path forming member. When,
The sample liquid formed between the wiring board and the flow path forming member by pressing by the pressing member and distributed to the injection port flows from one end side to the other end side on one surface side of the piezoelectric vibrator. A flow path to be
A buffer member that is provided between the flow path forming member and the pressing member or on the other surface side of the wiring board and absorbs an excessive amount of pressure from the pressing member ;
The flow path forming member is pressed and fixed by the pressing member even when the buffer member is not present .

また本発明の感知装置は、
前記感知センサーと前記測定器を含んだ感知装置であることを特徴とする。
The sensing device of the present invention also has
The sensing device includes the sensing sensor and the measuring device.

本発明の感知センサーによれば、試料液が注入口から圧電振動子の一面側の流路を介して排液流路へ向かい、この際に試料液中に含まれる感知対象物が圧電振動子に設けられた吸着膜に吸着される。当該圧電振動子の一面側の流路は、押圧部材により、流路が形成された流路形成部材を圧電振動子が固定された配線基板に対して押圧することにより構成される。ここで、配線基板の流路形成部材と接する側とは他面側に、流路形成部材よりも硬度の低い緩衝部材を配することにより、押圧部材からの圧力のうち過大な圧力分が当該緩衝部材により吸収されることから、当該流路が過大な圧力分により潰れることを防止することができる。よって当該流路の高さを狭小に設定することが可能となることから、前記感知対象物と圧電振動子に設けられた吸着膜との間の接触率を向上させることができ、結果として感知センサー全体としての感度を高感度化できる。   According to the sensing sensor of the present invention, the sample liquid moves from the inlet to the drainage flow path via the flow path on one surface side of the piezoelectric vibrator, and at this time, the sensing object contained in the sample liquid is the piezoelectric vibrator. It is adsorbed by the adsorbing film provided on the surface. The flow path on the one surface side of the piezoelectric vibrator is configured by pressing the flow path forming member on which the flow path is formed against the wiring substrate on which the piezoelectric vibrator is fixed by a pressing member. Here, by arranging a buffer member having a hardness lower than that of the flow path forming member on the other surface side of the wiring board in contact with the flow path forming member, an excessive pressure component of the pressure from the pressing member is affected. Since it is absorbed by the buffer member, it is possible to prevent the flow path from being crushed by excessive pressure. Therefore, since the height of the flow path can be set narrow, the contact rate between the sensing object and the adsorption film provided on the piezoelectric vibrator can be improved, and as a result, sensing is performed. The sensitivity of the entire sensor can be increased.

本発明に係る感知装置の斜視図である。1 is a perspective view of a sensing device according to the present invention. 感知装置を構成する感知センサーの分解斜視図である。It is a disassembled perspective view of the sensing sensor which comprises a sensing apparatus. 感知センサーの各部の上面側を示した分解斜視図である。It is the disassembled perspective view which showed the upper surface side of each part of a detection sensor. 感知センサーの一部の下面側を示した分解斜視図である。It is the disassembled perspective view which showed the lower surface side of a part of detection sensor. 感知センサーの分解縦断面図である。It is a decomposition | disassembly longitudinal cross-sectional view of a detection sensor. 感知センサーの縦断面図である。It is a longitudinal cross-sectional view of a detection sensor. 感知装置の構成を示すブロック図である。It is a block diagram which shows the structure of a sensing apparatus. 感知センサーにて液体が流通する様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that a liquid distribute | circulates in a detection sensor. 感知センサーの他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of a sensing sensor. 感知センサーの他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of a sensing sensor. 本発明の感知センサーによる測定結果を示すグラフである。It is a graph which shows the measurement result by the sensing sensor of this invention. 感知センサーの従来例を示す縦断側面図である。It is a vertical side view which shows the prior art example of a sensing sensor.

以下、本発明の感知装置1について説明する。この感知装置1は、例えば人間の鼻腔のぬぐい液から得られた試料液中のインフルエンザウイルスの有無を検出するように構成されている。図1の外観構成図に示すように、感知装置1は発振回路ユニット12と、この発振回路ユニット12に例えば同軸ケーブル14を介して接続された演算装置13とを備えており、これら発振回路ユニット12と演算装置13とにより測定器11が構成されている。前記演算装置13の筐体15前面には表示部16が設けられており、この表示部16は、例えば周波数あるいは周波数の変化分等の測定結果を表示する役割を果たしている。発振回路ユニット12には感知センサー2が着脱自在に接続されるようになっている。   Hereinafter, the sensing device 1 of the present invention will be described. The sensing device 1 is configured to detect the presence or absence of an influenza virus in a sample solution obtained from, for example, a human nasal wipe. As shown in the external configuration diagram of FIG. 1, the sensing device 1 includes an oscillation circuit unit 12 and an arithmetic device 13 connected to the oscillation circuit unit 12 via, for example, a coaxial cable 14, and these oscillation circuit units. 12 and the arithmetic unit 13 constitute a measuring instrument 11. A display unit 16 is provided on the front surface of the casing 15 of the arithmetic device 13, and the display unit 16 serves to display a measurement result such as a frequency or a change in frequency. The sensing sensor 2 is detachably connected to the oscillation circuit unit 12.

続いて感知センサー2について、図2〜図7を参照して詳説する。図2は感知センサー2における押圧部材である蓋体(上側カバー体21)を外した状態を示す斜視図、図3は感知センサー2の各部材の表側(上面側)を示した分解斜視図、図4は感知センサー2の一部の部材の裏側(下面側)を示した斜視図、図5は感知センサー2を長さ方向(図中X軸方向)に沿って切断した分解縦断面図、図6は感知センサー2を組み立てた状態の縦断面図、図7は感知装置1の構成を示すブロック図である。   Next, the detection sensor 2 will be described in detail with reference to FIGS. 2 is a perspective view showing a state in which a lid (upper cover body 21) that is a pressing member in the sensing sensor 2 is removed, and FIG. 3 is an exploded perspective view showing the front side (upper side) of each member of the sensing sensor 2. 4 is a perspective view showing the back side (lower surface side) of some members of the sensing sensor 2. FIG. 5 is an exploded longitudinal sectional view of the sensing sensor 2 cut along the length direction (X-axis direction in the drawing). FIG. 6 is a longitudinal sectional view of the sensing sensor 2 assembled, and FIG. 7 is a block diagram showing the configuration of the sensing device 1.

図中3は配線基板であり、この配線基板3は長さ方向(X軸方向)に延伸された形状を有し、長さ方向の他端側は、上記の発振回路ユニット12の差し込み口17に差し込まれる差し込み部31を形成している。また配線基板3には貫通孔32が形成されており、この貫通孔32は格納部材である後述する下側ケース体22の底面221により塞がれている。この貫通孔32及び下側ケース体22の底面221によって配線基板3の一面側(表面側)に開口した凹部が形成される。
配線基板3の表面には、貫通孔32の外縁近傍から差し込み部31側に伸びるように、3本の配線34、35、36が設けられており、これら配線34〜36の両端部は、夫々端子部341、351、361、接続端子342、352、362を形成している。また配線基板3には貫通孔33が形成されている。
In the figure, reference numeral 3 denotes a wiring board. This wiring board 3 has a shape extending in the length direction (X-axis direction), and the other end side in the length direction is the insertion port 17 of the oscillation circuit unit 12. The insertion part 31 inserted in is formed. Further, a through hole 32 is formed in the wiring board 3, and the through hole 32 is closed by a bottom surface 221 of a lower case body 22, which will be described later, which is a storage member. The through hole 32 and the bottom surface 221 of the lower case body 22 form a recess that opens on one surface side (front surface side) of the wiring board 3.
Three wirings 34, 35, and 36 are provided on the surface of the wiring board 3 so as to extend from the vicinity of the outer edge of the through hole 32 toward the insertion portion 31, and both ends of the wirings 34 to 36 are respectively connected to the wiring board 3. Terminal portions 341, 351, 361 and connection terminals 342, 352, 362 are formed. A through hole 33 is formed in the wiring board 3.

この配線基板3には前記貫通孔32を一面側から塞ぐように圧電振動子をなす水晶振動子4が設けられている。水晶振動子4の水晶片41は例えば円形に構成され、水晶振動子4の表面側及び裏面側には夫々励振電極42、43が形成されている。表面側の励振電極42は図3に示すように例えば略コ字状に形成され、裏面側の励振電極43は互いに平行に設けられた2つの励振電極431、432を備えている。表面側の励振電極42と励振電極431、432とは、水晶片41を介して互いに対向するように形成され、表面側の励振電極42には共通の引き出し電極44が設けられており、当該引き出し電極44の先端側は図4に示すように水晶片41の裏面に引き回されている。また図4に示すように裏面側の励振電極431、432には夫々引き出し電極441、442が接続されている。   The wiring substrate 3 is provided with a crystal resonator 4 that forms a piezoelectric resonator so as to close the through hole 32 from one side. The crystal piece 41 of the crystal unit 4 is formed in a circular shape, for example, and excitation electrodes 42 and 43 are formed on the front side and the back side of the crystal unit 4, respectively. As shown in FIG. 3, the front surface side excitation electrode 42 is formed in, for example, a substantially U shape, and the back surface side excitation electrode 43 includes two excitation electrodes 431 and 432 provided in parallel to each other. The surface-side excitation electrode 42 and the excitation electrodes 431 and 432 are formed so as to face each other with the crystal piece 41 interposed therebetween, and the surface-side excitation electrode 42 is provided with a common extraction electrode 44. The tip end side of the electrode 44 is routed around the back surface of the crystal piece 41 as shown in FIG. Further, as shown in FIG. 4, extraction electrodes 441 and 442 are connected to the excitation electrodes 431 and 432 on the back surface side, respectively.

さらに表面側の励振電極42において、便宜上励振電極431、432に対向している各領域を励振電極421、422とすると、図7に示すように、励振電極421の表面には、感知対象物であるインフルエンザウイルスと選択的に結合する抗体により構成された吸着膜451が設けられている。一方励振電極422の表面にはインフルエンザウイルスと励振電極422との結合を阻害する阻害膜452が設けられている。こうして水晶片41と励振電極421、431とにより第1の水晶振動子4Aが構成され、水晶片41と励振電極422、432とにより第2の水晶振動子4Bが構成される。これら水晶振動子4A、4Bは、引き出し電極44が配線基板3の配線351、引き出し電極441、442が配線基板3の配線361、341の夫々に重なるように設けられる。このように設けると、水晶振動子4の各電極及び配線基板3の各配線の厚さは極めて小さいため、水晶振動子4の周縁部は配線基板3に接し、水晶振動子4は配線基板3に略水平な状態で設けられる。   Further, in the excitation electrode 42 on the surface side, if each region facing the excitation electrodes 431 and 432 is referred to as the excitation electrodes 421 and 422 for convenience, the surface of the excitation electrode 421 is covered with a sensing object as shown in FIG. An adsorption film 451 composed of an antibody that selectively binds to a certain influenza virus is provided. On the other hand, on the surface of the excitation electrode 422, an inhibition film 452 that inhibits the binding between the influenza virus and the excitation electrode 422 is provided. Thus, the crystal piece 41 and the excitation electrodes 421 and 431 constitute the first crystal oscillator 4A, and the crystal piece 41 and the excitation electrodes 422 and 432 constitute the second crystal oscillator 4B. These crystal resonators 4A and 4B are provided such that the extraction electrode 44 overlaps the wiring 351 of the wiring board 3 and the extraction electrodes 441 and 442 overlap the wirings 361 and 341 of the wiring board 3, respectively. With this arrangement, the thickness of each electrode of the crystal unit 4 and each wiring of the wiring board 3 is extremely small. Therefore, the peripheral portion of the crystal unit 4 is in contact with the wiring board 3, and the crystal unit 4 is connected to the wiring board 3. Are provided in a substantially horizontal state.

図3に戻って、前記配線基板3の一面側には、水晶振動子4を挟み込むように流路形成部材5が設けられている。この流路形成部材5は板状部材であり、配線基板3の差し込み部31を構成する他端側部を露出させ、水晶振動子4が設けられる一端部側を覆うように形成されている。この流路形成部材5は例えば自己吸着性が高い合成樹脂例えばPDMS(ポリジメチルシロキサン)により構成されている。流路形成部材5は例えばプラズマ洗浄されて、その表面が活性化されると共に表面の有機物が除去された状態で、図6に示すように配線基板3に吸着される。   Returning to FIG. 3, a flow path forming member 5 is provided on one surface side of the wiring board 3 so as to sandwich the crystal resonator 4. The flow path forming member 5 is a plate-like member, and is formed so as to expose the other end side portion constituting the insertion portion 31 of the wiring substrate 3 and cover the one end portion side where the crystal resonator 4 is provided. The flow path forming member 5 is made of, for example, a synthetic resin having a high self-adsorption property such as PDMS (polydimethylsiloxane). The flow path forming member 5 is adsorbed to the wiring board 3 as shown in FIG. 6 in a state in which, for example, plasma cleaning is performed to activate the surface and remove organic substances on the surface.

流路形成部材5の裏面側には、図4に示すように、水晶振動子4及び配線34〜36が収まるようにこれらの外形に沿って凹部51が設けられている。この凹部51には、水晶振動子4に夫々重なる位置に、流路形成部材5の厚さ方向に貫通する貫通孔52、53が形成されている。またこれら貫通孔52、53を囲む枠部54が下側に突出して設けられている。この枠部54は、励振電極42を囲むように設けられ、励振電極42の長さ方向における一端側及び他端側近傍には夫々貫通孔52、53が配置される。前記枠部54に囲まれる領域は流路57を形成し、この流路57は水平な天井面を備え、流路57の下面は水晶振動子4により構成される。   On the back surface side of the flow path forming member 5, as shown in FIG. 4, a recess 51 is provided along these external shapes so that the crystal resonator 4 and the wires 34 to 36 are accommodated. In the concave portion 51, through holes 52 and 53 that penetrate in the thickness direction of the flow path forming member 5 are formed at positions overlapping the crystal resonator 4. A frame portion 54 surrounding these through holes 52 and 53 is provided so as to protrude downward. The frame portion 54 is provided so as to surround the excitation electrode 42, and through holes 52 and 53 are arranged in the vicinity of one end side and the other end side in the length direction of the excitation electrode 42, respectively. A region surrounded by the frame portion 54 forms a flow path 57, the flow path 57 has a horizontal ceiling surface, and the lower surface of the flow path 57 is constituted by the crystal unit 4.

流路57は、図6において示すように上側カバー体21を下側ケース体22に対して嵌合したときに、高さH(流路高さ寸法)が例えば300μmとなるように構成される。また前記励振電極421(431)、422(432)は、図3に示すように貫通孔52と貫通孔53とを結ぶ線に対して、互いに対称に設けられている。流路形成部材5には配線基板3の貫通孔33に対応する位置に貫通孔58が形成されている。なお、流路形成部材5はPDMSの他に例えばアクリル樹脂等の合成樹脂や水晶等の、硬度が20〜60以下でありかつ後述する緩衝部材6と比して硬度が高い材質により構成することができる。   As shown in FIG. 6, the flow path 57 is configured such that the height H (flow path height dimension) is, for example, 300 μm when the upper cover body 21 is fitted to the lower case body 22. . The excitation electrodes 421 (431) and 422 (432) are provided symmetrically with respect to a line connecting the through hole 52 and the through hole 53 as shown in FIG. A through hole 58 is formed in the flow path forming member 5 at a position corresponding to the through hole 33 of the wiring board 3. In addition to the PDMS, the flow path forming member 5 is made of a material having a hardness of 20 to 60 or less and a hardness higher than that of the buffer member 6 described later, such as a synthetic resin such as acrylic resin or crystal. Can do.

図3に戻って、前記貫通孔52、53には夫々多孔質の毛細管部材により構成された入口側毛細管部材55及び出口側毛細管部材56が着脱自在に設けられている。前記入口側毛細管部材55は例えば円柱状、出口側毛細管部材56は例えば円柱を略L字状に屈曲させた形状に夫々形成され、例えばポリビニルアルコール(PVA)の化学繊維束により構成されている。これら入口側毛細管部材55や出口側毛細管部材56は多孔質体であるセルロースや親水化した多孔質樹脂により構成してもよい。入口側毛細管部材55は流路形成部材5の貫通孔52を塞ぎ、その上端側が後述する上側カバー体21の液受け部23に露出し、その下端側が流路形成部材5の流路57内に進入するように設けられている。   Returning to FIG. 3, the through holes 52 and 53 are detachably provided with an inlet side capillary member 55 and an outlet side capillary member 56 each made of a porous capillary member. The inlet side capillary member 55 is formed in, for example, a cylindrical shape, and the outlet side capillary member 56 is formed in, for example, a shape obtained by bending a column into a substantially L shape, and is formed of, for example, a chemical fiber bundle of polyvinyl alcohol (PVA). The inlet side capillary member 55 and the outlet side capillary member 56 may be made of a porous material such as cellulose or a hydrophilic porous resin. The inlet side capillary member 55 closes the through hole 52 of the flow path forming member 5, the upper end side thereof is exposed to the liquid receiving portion 23 of the upper cover body 21 described later, and the lower end side thereof is in the flow path 57 of the flow path forming member 5. It is provided to enter.

出口側毛細管部材56は水平部561とこの水平部561から下方側に伸びる垂直部562とを備えた略L字状に形成されている。前記垂直部562は流路形成部材5の貫通孔53を塞ぎ、その下端側が流路形成部材5の流路57内に進入すると共に、水平部561は後述する廃液通路59に接続されている。さらに図5及び図6に示すように出口側毛細管部材56の下端面563は、例えば水平面において上側に傾斜するように形成されている。入口側毛細管部材55の繊維間の孔(多孔質の毛細管部材の孔)は、試料液の注入口に相当する。   The outlet side capillary member 56 is formed in a substantially L shape having a horizontal portion 561 and a vertical portion 562 extending downward from the horizontal portion 561. The vertical portion 562 closes the through hole 53 of the flow path forming member 5, and the lower end thereof enters the flow path 57 of the flow path forming member 5, and the horizontal portion 561 is connected to a waste liquid passage 59 described later. Further, as shown in FIGS. 5 and 6, the lower end surface 563 of the outlet side capillary member 56 is formed so as to be inclined upward in a horizontal plane, for example. The pores between the fibers of the inlet side capillary member 55 (holes of the porous capillary member) correspond to the sample solution inlet.

前記廃液流路59は例えば親水性のガラスにより管状に構成され、流路形成部材5の上方部に感知センサー2の長さ方向(図中X方向)に沿って伸びるように設けられている。前記出口側毛細管部材56の水平部561の下端側は、廃液流路59の内部に突入するように設けられる。   The waste liquid channel 59 is formed in a tubular shape with, for example, hydrophilic glass, and is provided above the channel forming member 5 so as to extend along the length direction (X direction in the drawing) of the sensing sensor 2. The lower end side of the horizontal portion 561 of the outlet side capillary member 56 is provided so as to enter the inside of the waste liquid channel 59.

図3、図5及び図6に示すように、廃液流路59の下流側には、試料液を吸収して貯留するための廃液吸収部7が設けられている。この廃液吸収部7は毛細管部材をなす毛細管シート71と、当該毛細管シート71と接触するように設けられ、毛細管シート71を流通する試料液を吸収するための吸収部材72と、を備えている。前記毛細管部材は毛細管現象を生じさせる材質よりなるものであり、例えば不織布や紙、セルロースや綿、多孔質の化学繊維束、親水化した多孔質樹脂等により構成される。また毛細管シート71は、毛細管部材をシート状に構成したものであり、例えば平面で見たときに一端側が他端側よりも狭まった形状に構成され、頂点711が廃液流路59の下流端から廃液流路59の内部に入り込むように設けられる。従って廃液流路59の下流端は開口している。   As shown in FIGS. 3, 5, and 6, a waste liquid absorber 7 for absorbing and storing the sample liquid is provided on the downstream side of the waste liquid channel 59. The waste liquid absorption unit 7 includes a capillary sheet 71 that forms a capillary member, and an absorption member 72 that is provided so as to be in contact with the capillary sheet 71 and absorbs the sample liquid flowing through the capillary sheet 71. The capillary member is made of a material that causes a capillary phenomenon, and is made of, for example, a nonwoven fabric, paper, cellulose, cotton, a porous chemical fiber bundle, a hydrophilic porous resin, or the like. Further, the capillary sheet 71 is configured by forming a capillary member into a sheet shape. For example, when viewed in a plan view, the capillary sheet 71 is configured such that one end side is narrower than the other end side, and the apex 711 extends from the downstream end of the waste liquid channel 59. It is provided so as to enter the waste liquid flow path 59. Therefore, the downstream end of the waste liquid channel 59 is open.

この毛細管シート71の下面は、吸収部材72の上面と接触するように設けられている。この吸収部材72は、毛細管シート71により吸収可能な液量よりも多い液量を吸収できるものであり、例えばPVAや親水性材料よりなるスポンジ等の多孔質体や、綿状体により構成されている。   The lower surface of the capillary sheet 71 is provided in contact with the upper surface of the absorbing member 72. The absorbing member 72 is capable of absorbing a larger amount of liquid than can be absorbed by the capillary sheet 71, and is composed of, for example, a porous body such as sponge made of PVA or a hydrophilic material, or a cotton-like body. Yes.

この廃液吸収部7は図5及び図6に示すように、液体の漏れを防ぐためにケース体73に収納されており、このケース体73の廃液流路59側の側壁には、図3に示すように例えば廃液流路59の設置領域を確保するための切り欠き部74が形成されている。また廃液流路59は支持部材75により、高さ及び左右方向の位置を位置決めされた状態で支持されている。   As shown in FIGS. 5 and 6, the waste liquid absorbing portion 7 is housed in a case body 73 to prevent liquid leakage, and the side wall of the case body 73 on the side of the waste liquid flow path 59 is shown in FIG. Thus, for example, a notch 74 for securing an installation area of the waste liquid flow path 59 is formed. The waste liquid channel 59 is supported by the support member 75 in a state where the height and the position in the left-right direction are positioned.

前述した配線基板3の他面側(水晶振動子4側と反対側)には、緩衝部材6が設けられている。緩衝部材6は前述した流路形成部材5と比して硬度が低い(柔らかい)材質にて形成される。当該緩衝部材6の材質としてはシリコンゴム等の、硬度が5〜20であり流路形成部材5と比して硬度が低い材質が選択される。当該緩衝部材6は、下側ケース体22の内側かつ長さ方向の他端側に設けられた凹部24に嵌合される寸法に設計されており、各寸法の例としては、図3に示す長さR1が16mm、幅R2が11mmに、全体としての厚みR3が上述の流路形成部材5により形成される流路57の流路高さ寸法Hよりも小さい厚みである1mmに、また図5に示す下側ケース体22よりも突出する部分の厚みR4が200μmに、夫々形成される。   A buffer member 6 is provided on the other surface side of the wiring board 3 described above (the side opposite to the crystal resonator 4 side). The buffer member 6 is formed of a material having a lower hardness (softer) than the flow path forming member 5 described above. As the material of the buffer member 6, a material such as silicon rubber having a hardness of 5 to 20 and a hardness lower than that of the flow path forming member 5 is selected. The buffer member 6 is designed to have a dimension that fits into a recess 24 provided on the inner side of the lower case body 22 and on the other end side in the length direction. Examples of each dimension are shown in FIG. The length R1 is 16 mm, the width R2 is 11 mm, and the overall thickness R3 is 1 mm, which is a thickness smaller than the channel height dimension H of the channel 57 formed by the channel forming member 5 described above. The thickness R4 of the portion protruding from the lower case body 22 shown in FIG.

前記流路形成部材5の一面側には上側カバー体21が設けられている。この上側カバー体21は、例えばプラスチック等の樹脂により構成されており、流路形成部材5や廃液流路59、廃液吸収部7等を覆うように形成されている。一方配線基板の他面側には下側ケース体22が設けられており、上側カバー体21を下側ケース体22に嵌合して押圧することにより、水晶振動子4が前記貫通孔32を塞ぐように配線基板3に固定すると共に、貫通孔32は緩衝部材6により塞がれ、さらに緩衝部材6は下側ケース体22に対して押圧され、凹部24に嵌合される。また図示しない突起が、図3にて示した配線基板3の貫通孔33及び流路形成部材5の貫通孔58に進入し、これにより流路形成部材5の横方向への位置ずれが抑えられるように構成されている。さらに上側カバー体21内部の下部には爪26が例えば長さ方向の側面下部に夫々2箇所ずつ、合計4箇所設けられ、図2及び図3にて図示している下側ケース体22下部の凹部25と嵌合するように構成されている。図6は上側カバー体21を下側ケース体22に対して嵌合し、感知センサー2を形成した状態の縦断面図である。   An upper cover body 21 is provided on one surface side of the flow path forming member 5. The upper cover body 21 is made of a resin such as plastic, for example, and is formed so as to cover the flow path forming member 5, the waste liquid flow path 59, the waste liquid absorbing portion 7, and the like. On the other hand, a lower case body 22 is provided on the other surface side of the wiring board. By fitting and pressing the upper cover body 21 to the lower case body 22, the crystal unit 4 allows the through-hole 32 to be formed. While being fixed to the wiring board 3 so as to be closed, the through hole 32 is closed by the buffer member 6, and the buffer member 6 is pressed against the lower case body 22 and fitted into the recess 24. Further, a projection (not shown) enters the through hole 33 of the wiring board 3 and the through hole 58 of the flow path forming member 5 shown in FIG. 3, thereby suppressing the displacement of the flow path forming member 5 in the lateral direction. It is configured as follows. Further, claws 26 are provided at the lower part inside the upper cover body 21, for example, two places each on the lower part of the side surface in the length direction, for a total of four places, and the lower case body 22 shown in FIG. 2 and FIG. It is configured to fit into the recess 25. FIG. 6 is a longitudinal sectional view showing a state in which the upper cover body 21 is fitted to the lower case body 22 and the detection sensor 2 is formed.

上側カバー体21の上面側には、液受け部23として構成される開口部が形成されており、この開口部内に前記貫通孔52が開口し、液受け部23から供給された液体は入口側毛細管部材55の繊維間の孔(多孔質の毛細管部材の孔)を介して、液体の流路57に供給される。また上側カバー体21には、図示しない通気口が形成されており、この感知センサー2内を液体が流通するときに、各流路の気体は廃液流路59の下端側の開口部からこの通気口を介して感知センサー2の外部へと押し出される。
このように構成された感知センサー2は、配線基板3の差し込み部31を発振回路ユニット12の差し込み口17に差し込んだときに、水晶振動子4の各電極が発振回路811、812に電気的に接続されるようになっている。
An opening configured as a liquid receiving portion 23 is formed on the upper surface side of the upper cover body 21, and the through hole 52 is opened in the opening, and the liquid supplied from the liquid receiving portion 23 is on the inlet side. The liquid is supplied to the liquid flow path 57 through the pores between the fibers of the capillary member 55 (pores of the porous capillary member). The upper cover body 21 is formed with a vent hole (not shown). When a liquid flows through the sensing sensor 2, the gas in each flow path is vented from the opening on the lower end side of the waste liquid flow path 59. It is pushed out of the sensor 2 through the mouth.
In the sensor 2 configured as described above, each electrode of the crystal unit 4 is electrically connected to the oscillation circuits 811 and 812 when the insertion portion 31 of the wiring board 3 is inserted into the insertion port 17 of the oscillation circuit unit 12. Connected.

続いて、感知装置1を構成する演算装置13に設けられる各部について図7を用いて説明する。前記発振回路811、812の後段にはスイッチ部82が設けられており、当該スイッチ部82によって2つの発振回路811、812からの周波数信号を時分割して後段に取り込み、各振動領域の発振周波数を並行して求めることができる。第1の発振回路811からの出力をチャンネル1、第2の発振回路812からの出力をチャンネル2とすると、例えば1秒間をn分割(nは偶数)し、各チャンネルの発振周波数を1/n秒の処理で順次求めることにより、1秒間に少なくとも1回以上周波数を取得しているため、実質同時に各チャンネルの周波数を取得することができる。   Subsequently, each unit provided in the arithmetic device 13 constituting the sensing device 1 will be described with reference to FIG. A switch unit 82 is provided in the subsequent stage of the oscillation circuits 811 and 812, and the frequency signal from the two oscillation circuits 811 and 812 is time-divided into the subsequent stage by the switch unit 82, and the oscillation frequency of each vibration region Can be obtained in parallel. If the output from the first oscillation circuit 811 is channel 1 and the output from the second oscillation circuit 812 is channel 2, for example, 1 second is divided into n (n is an even number), and the oscillation frequency of each channel is 1 / n. Since the frequency is acquired at least once per second by sequentially obtaining the processing in seconds, the frequency of each channel can be acquired substantially simultaneously.

スイッチ部82の後段には測定回路部83が設けられている。測定回路部83は入力信号である周波数信号をディジタル処理し、各チャンネルの発振周波数を測定する。以下、チャンネル1、2の出力を夫々F1、F2と表す。また演算装置13はデータバス80を備えており、データバス80にはCPU84,データ処理プログラム85を格納している記憶手段、メモリ86及び既述の測定回路部83が接続されている。さらにデータバス80には既述の表示部16やキーボード等の入力手段87が接続されている。   A measurement circuit unit 83 is provided following the switch unit 82. The measurement circuit unit 83 digitally processes a frequency signal that is an input signal, and measures the oscillation frequency of each channel. In the following, the outputs of channels 1 and 2 are denoted as F1 and F2, respectively. The arithmetic unit 13 includes a data bus 80, to which the CPU 84, storage means for storing a data processing program 85, a memory 86, and the above-described measurement circuit unit 83 are connected. Furthermore, the display unit 16 and the input means 87 such as a keyboard are connected to the data bus 80.

データ処理プログラム85は、測定回路部83から出力される信号に基づいて発振周波数F1の時系列データ及び発振周波数F2の時系列データを取得し、メモリ86に格納する。またこのデータ取得動作と同時に、同一の時間帯におけるチャンネル1から取得した発振周波数F1、チャンネル2から取得した発振周波数F2の各時系列データの差分「F1−F2」の差分を演算し、当該差分データの時系列データを取得してメモリ86に格納すると共に、当該「F1−F2」のグラフを表示部16に表示する。   The data processing program 85 acquires the time series data of the oscillation frequency F1 and the time series data of the oscillation frequency F2 based on the signal output from the measurement circuit unit 83 and stores it in the memory 86. Simultaneously with this data acquisition operation, the difference “F1-F2” of the time series data of the oscillation frequency F1 acquired from the channel 1 and the oscillation frequency F2 acquired from the channel 2 in the same time zone is calculated. The time series data of the data is acquired and stored in the memory 86, and the graph of “F1-F2” is displayed on the display unit 16.

続いて、感知センサー2を構成する工程について説明する。図2及び図3に図示したように各部品を下側ケース体22内部に配置した上で、上側カバー体21を下側ケース体22に対して被せ、上側カバー体21内部の爪26が下側ケース体22側面の凹部25に嵌合するまで上側カバー体21を下側ケース体22に対して押圧する。この過程において下側ケース体22内部の流路形成部材5は配線基板3を押圧し、当該配線基板3からの圧力により緩衝部材6は高さ方向に縮んでいく。このとき緩衝部材6は下側ケース体22内部において凹部24に嵌合されているため、緩衝部材6の下側ケース体22内部からの飛び出しは抑止できる。   Next, a process for configuring the detection sensor 2 will be described. As shown in FIG. 2 and FIG. 3, after each component is arranged inside the lower case body 22, the upper cover body 21 is covered with the lower case body 22, and the claw 26 inside the upper cover body 21 is lowered. The upper cover body 21 is pressed against the lower case body 22 until it fits into the recess 25 on the side surface of the side case body 22. In this process, the flow path forming member 5 inside the lower case body 22 presses the wiring board 3, and the buffer member 6 contracts in the height direction by the pressure from the wiring board 3. At this time, since the buffer member 6 is fitted in the recess 24 inside the lower case body 22, the buffer member 6 can be prevented from jumping out from the lower case body 22.

そして緩衝部材6の厚さR3は、上側カバー体21の爪26が下側ケース体22の凹部25に嵌合したときに、緩衝部材6の下側ケース体22から突出する厚みR4が0にならないように予め設計されている。このため、上側カバー体21と下側ケース体22とを嵌合した後にも、緩衝部材6は嵌合による圧力のうち過大な圧力分を吸収することができる。   The thickness R3 of the buffer member 6 is set such that the thickness R4 protruding from the lower case body 22 of the buffer member 6 becomes 0 when the claw 26 of the upper cover body 21 is fitted in the recess 25 of the lower case body 22. It is designed in advance not to be. For this reason, even after the upper cover body 21 and the lower case body 22 are fitted together, the buffer member 6 can absorb an excessive pressure component in the pressure caused by the fitting.

続いて感知センサー2を用い、試料液中のインフルエンザウイルスの有無を判定する工程について図8を参照して説明する。但しこれら図8は、感知センサー2内を通流する液体(試料液、緩衝液)のイメージを示すものであり、実際の様子よりも誇張して描画している。先ず感知センサー2を発振ユニット12に接続し、図示しないインジェクタを用いて、図8(a)に示すように液受け部23に例えば生理食塩水からなりインフルエンザウイルスを含まない緩衝液を滴下する。ここで感知センサー2に液体を供給したときの、感知センサー2内の液体の流れについて説明する。液体は毛細管現象により入口側毛細管部材55に吸収され、当該毛細管部材55内を流通し、流路57に流れ込んで水晶振動子4の一端部側の表面に供給される。   Next, a process of determining the presence or absence of influenza virus in the sample solution using the detection sensor 2 will be described with reference to FIG. However, these FIG. 8 shows the image of the liquid (sample solution, buffer solution) flowing through the detection sensor 2, and is drawn exaggerated from the actual state. First, the detection sensor 2 is connected to the oscillation unit 12, and using an injector (not shown), as shown in FIG. Here, the flow of the liquid in the detection sensor 2 when the liquid is supplied to the detection sensor 2 will be described. The liquid is absorbed by the inlet side capillary member 55 by capillary action, flows through the capillary member 55, flows into the flow path 57, and is supplied to the surface on the one end side of the crystal unit 4.

水晶振動子4を構成する水晶片41の表面は親水性であるため、流路57内を濡れ広がり、流路57に広がった液体に続いて入口側毛細管部材55の液体は、表面張力により水晶片41の表面へと引き出され、液受け部23から流路57へ連続して液体が流れていく。そして水晶振動子4表面の液体が出口側毛細管部材56に到達すると、液体は毛細管現象により出口側毛細管部材56に吸収され、当該毛細管部材56内を流れて廃液流路59へ滲み出る。ここで毛細管現象に加えてサイホンの原理が働き、引き続き自動的に液受け部23の液体が水晶振動子4表面を通過して廃液流路59へと排出される。   Since the surface of the crystal piece 41 constituting the crystal resonator 4 is hydrophilic, the inside of the flow channel 57 is wet and spreads, and the liquid in the inlet side capillary member 55 following the liquid spread in the flow channel 57 is crystallized due to surface tension. The liquid is drawn out to the surface of the piece 41 and continuously flows from the liquid receiving portion 23 to the flow path 57. When the liquid on the surface of the crystal unit 4 reaches the outlet-side capillary member 56, the liquid is absorbed by the outlet-side capillary member 56 by capillary action, flows through the capillary member 56, and oozes out into the waste liquid channel 59. Here, in addition to the capillary phenomenon, the siphon principle works, and the liquid in the liquid receiving portion 23 automatically passes through the surface of the crystal unit 4 and is discharged to the waste liquid channel 59.

廃液流路59内の液体は当該廃液流路59内を下流側に通流していき、毛細管シート71に到達する。廃液流路59内の液体が毛細管シート71に到達すると、廃液流路59を通流する液体の移動速度よりも大きい速度にて毛細管シート71側に液体が移動する。毛細管シート71に液体が接触すると、毛細管シート71側に液体が速やかに吸収され、毛細管シート71内を毛細管現象により広がるように通流していき、図8(b)に示すように、廃液流路59内にて液体が途切れる状態が形成される。   The liquid in the waste liquid flow path 59 flows downstream in the waste liquid flow path 59 and reaches the capillary sheet 71. When the liquid in the waste liquid channel 59 reaches the capillary sheet 71, the liquid moves to the capillary sheet 71 side at a speed higher than the moving speed of the liquid flowing through the waste liquid channel 59. When the liquid comes into contact with the capillary sheet 71, the liquid is quickly absorbed on the capillary sheet 71 side, and flows through the capillary sheet 71 so as to spread by the capillary phenomenon. As shown in FIG. A state in which the liquid is interrupted in 59 is formed.

こうして廃液流路59内にて液体が分断されると、毛細管シート71側の液体は、毛細管シート71に接触する吸収部材72に吸収されて貯留される。一方液受け部23に残存する液体は、毛細管現象とサイホンの原理とにより、廃液流路59に向けて流れようとするため、この液体の流れにより廃液流路59内に残存した液体は下流側に移動していき、図8(c)に示すように、再び毛細管シート71と接触する。このようにして廃液流路59内の液体の分断と、廃液流路59内の液体の通流とが繰り返され、液受け部23内の液体が全て通流したところで、図8(d)に示すように、廃液流路59内では液体が分断された状態で停止する。   When the liquid is divided in the waste liquid flow path 59 in this way, the liquid on the capillary sheet 71 side is absorbed and stored in the absorbing member 72 that contacts the capillary sheet 71. On the other hand, the liquid remaining in the liquid receiving portion 23 tends to flow toward the waste liquid flow path 59 based on the capillary phenomenon and the principle of siphon. And contact with the capillary sheet 71 again as shown in FIG. In this way, the division of the liquid in the waste liquid flow path 59 and the flow of the liquid in the waste liquid flow path 59 are repeated, and when all of the liquid in the liquid receiving portion 23 has flowed, FIG. As shown, the liquid is stopped in the waste liquid channel 59 in a state where the liquid is divided.

説を緩衝液の供給に戻すと、液受け部23に滴下された緩衝液は、既述のように感知センサー2内を通流していく。そして流路57を流れる緩衝液が、励振電極421、422表面に供給されると、これら励振電極421、422は流路57の入口側から出口側へ向かって見て対称に形成されているため、等しく水圧の影響を受ける。これによって第1の水晶振動子4A、第2の水晶振動子4Bの発振周波数F1、F2が共に等しく低下する。   When the theory is returned to the supply of the buffer solution, the buffer solution dropped on the liquid receiving portion 23 flows through the sensing sensor 2 as described above. When the buffer solution flowing through the flow path 57 is supplied to the surfaces of the excitation electrodes 421 and 422, the excitation electrodes 421 and 422 are formed symmetrically when viewed from the inlet side to the outlet side of the flow path 57. Equally affected by water pressure. As a result, the oscillation frequencies F1 and F2 of the first crystal unit 4A and the second crystal unit 4B are equally reduced.

続いて緩衝液と同量の試料液を液受け部23へ供給する。これにより入口側毛細管部材55に吸収されている緩衝液に加わる圧力が高くなり、図8と同様に当該緩衝液は再び廃液流路59内を下流側に向かって流れ、試料液が入口側毛細管部材55に吸収される。吸収された試料液は、緩衝液と同様に入口側毛細管部材55から流路57に流入し、流路57内が緩衝液から試料液に置換される。   Subsequently, the same amount of sample solution as the buffer solution is supplied to the liquid receiving unit 23. As a result, the pressure applied to the buffer solution absorbed by the inlet side capillary member 55 is increased, and the buffer solution again flows toward the downstream side in the waste liquid channel 59 as in FIG. 8, and the sample solution flows into the inlet side capillary tube. Absorbed by the member 55. The absorbed sample solution flows into the flow channel 57 from the inlet side capillary member 55 in the same manner as the buffer solution, and the inside of the flow channel 57 is replaced with the sample solution from the buffer solution.

このときにも、励振電極421、422が流路57の入口側から出口側に見て対称に形成されているため、これらの電極421、422は流路57内の液の切り替わりによる圧力変化を均等に受け、当該圧力変化による第1の水晶振動子4A、第2の水晶振動子4Bの発振周波数が互いに揃って変化する。試料液中に測定対象物であるインフルエンザウイルスが含まれる場合には、励振電極421上の吸着膜451に当該インフルエンザウイルスが吸着され、一方励振電極422上の阻害膜452にはインフルエンザウイルスは吸着されない。このため吸着膜451へのインフルエンザウイルスの吸着量に応じて周波数F1が下降し、F1−F2が変化する。このようにF1−F2の変化に基づいてインフルエンザウイルスの有無を判定することができる。また、発振周波数の差分F1−F2の変化量と試料液中の感知対象物の濃度との関係式を予め取得しておき、当該関係式と測定により得られた発振周波数の差分の変化量とから、試料液中の感知対象物の濃度を求めてもよい。   Also at this time, since the excitation electrodes 421 and 422 are formed symmetrically when viewed from the inlet side to the outlet side of the flow path 57, these electrodes 421 and 422 are subject to pressure changes due to switching of the liquid in the flow path 57. Evenly received, the oscillation frequencies of the first crystal unit 4A and the second crystal unit 4B due to the pressure change are aligned with each other and change. When influenza virus, which is a measurement object, is contained in the sample solution, the influenza virus is adsorbed on the adsorption film 451 on the excitation electrode 421, while the influenza virus is not adsorbed on the inhibition film 452 on the excitation electrode 422. . For this reason, the frequency F1 falls and F1-F2 changes according to the amount of influenza virus adsorbed to the adsorption film 451. Thus, the presence or absence of influenza virus can be determined based on the change in F1-F2. Further, a relational expression between the change amount of the oscillation frequency difference F1-F2 and the concentration of the sensing object in the sample liquid is acquired in advance, and the change amount of the difference between the oscillation frequency obtained by the relational expression and the measurement is obtained. From the above, the concentration of the sensing object in the sample solution may be obtained.

上述の実施形態の感知センサー2においては、配線基板3の他面側に緩衝部材6を設けている。この緩衝部材6は前述の通り、流路形成部材5よりも柔らかい(硬度が低い)材料によって形成されている。このため、上側カバー体21と下側ケース体22とを嵌合させて、その圧力により流路57を形成する際に、当該嵌合による圧力のうち過大な圧力分が当該緩衝部材6により吸収されることから、流路57が過大な圧力分により潰れたり、水晶振動子4が欠損したりすることを防止できる。よって流路57の高さH(流路高さ寸法)を均一な状態に保ったまま流路高さ寸法Hを予め狭小に、例えば300μm以下に設定することが可能となる。このように流路高さ寸法Hを狭小に設定すると、感知対象物であるインフルエンザウイルスと水晶振動子4上に設けられた吸着膜451との接触率を向上させることができる。その結果として、感知センサー2全体として、感知対象物に対する感度を高めることができる。   In the sensing sensor 2 of the above-described embodiment, the buffer member 6 is provided on the other surface side of the wiring board 3. As described above, the buffer member 6 is formed of a softer material (having a lower hardness) than the flow path forming member 5. For this reason, when the upper cover body 21 and the lower case body 22 are fitted and the flow path 57 is formed by the pressure, an excessive pressure component is absorbed by the buffer member 6. Therefore, it is possible to prevent the flow path 57 from being crushed by an excessive pressure component or the crystal resonator 4 from being lost. Therefore, it is possible to set the flow channel height dimension H to be narrow in advance, for example, 300 μm or less, while maintaining the height H (flow channel height dimension) of the flow channel 57 in a uniform state. Thus, when the flow path height dimension H is set to be narrow, the contact rate between the influenza virus, which is the sensing object, and the adsorption film 451 provided on the crystal unit 4 can be improved. As a result, the sensitivity to the sensing object can be increased as the entire sensing sensor 2.

さらにこの感知センサー2においては、試料液が毛細管現象により注入口から水晶振動子4の一面側の流路57を介して励振電極42の一端側から他端側へと流れ、試料液中に含まれる感知対象物が水晶振動子4に設けられた吸着膜451に吸着される。従って試料液を流通させるためにポンプ等の機器を設ける必要がないため、装置の大型化や複雑化を防ぎ、簡便に測定を行うことができる。   Furthermore, in this detection sensor 2, the sample liquid flows from the inlet to the other end side of the excitation electrode 42 via the flow channel 57 on the one surface side of the crystal unit 4 by capillary action, and is contained in the sample liquid. The sensing object to be detected is adsorbed by the adsorption film 451 provided on the crystal unit 4. Therefore, since it is not necessary to provide a device such as a pump for circulating the sample solution, the apparatus can be prevented from being enlarged and complicated, and the measurement can be performed easily.

また試料液は流路57の下流側に設けられた廃液流路59、毛細管部材を介して吸収部材72に貯留される。毛細管部材は、廃液流路59内の試料液と接触するように設けられ、廃液流路59内の試料液は毛細管部材に到達すると、当該毛細管部材により試料液の移動速度よりも大きい速度にて引っ張られるようにして移動する。従って毛細管部材と廃液流路59内の試料液との間に隙間が発生する状態が形成される。これにより廃液吸収部7の毛細管部材と、試料液が貯留する流路57とが切り離された状態となり、流路57内の試料液が緩衝液によって希釈される現象の発生が抑制される。従って、常に測定感度が高い状態にて、試料液中の感知対象物の検出または定量を行うことができる。   The sample liquid is stored in the absorption member 72 via a waste liquid channel 59 and a capillary member provided on the downstream side of the channel 57. The capillary member is provided so as to come into contact with the sample liquid in the waste liquid flow path 59, and when the sample liquid in the waste liquid flow path 59 reaches the capillary member, the capillary member causes the speed to be higher than the moving speed of the sample liquid. Move as if pulled. Accordingly, a state in which a gap is generated between the capillary member and the sample liquid in the waste liquid channel 59 is formed. As a result, the capillary member of the waste liquid absorption unit 7 and the flow path 57 in which the sample liquid is stored are separated from each other, and the occurrence of the phenomenon that the sample liquid in the flow path 57 is diluted with the buffer solution is suppressed. Therefore, it is possible to detect or quantify the sensing object in the sample liquid in a state where the measurement sensitivity is always high.

さらに既述のように、最終的に廃液流路59にて試料液が分断され、廃液吸収部7と流路57とが切り離されるので、流路57においては水晶振動子4上の試料液が確実に静止した状態となる。このため試料液と吸着膜451との抗原抗体反応が飽和するまで計測を継続することができ、より精度の高い測定を行うことができる。   Further, as described above, the sample liquid is finally divided in the waste liquid flow path 59 and the waste liquid absorption part 7 and the flow path 57 are separated from each other. It will be surely stationary. Therefore, measurement can be continued until the antigen-antibody reaction between the sample solution and the adsorption film 451 is saturated, and more accurate measurement can be performed.

本実施形態の感知センサー2は、図9(a)に示すように、廃液流路59の下流端を毛細管シート74により塞ぐように、前記毛細管シート74を設ける構成であってもよい。この構成であっても、毛細管シート74と廃液流路59内の試料液との間に隙間を形成することができる。さらに吸収部材72としてスポンジ等の多孔質体や綿状体を設けているので、吸収部材72を設けない場合に比して、材料や大きさを変更することによって液体の貯留量を変更しやすく、感知センサー2の設計が容易となる。   As shown in FIG. 9A, the detection sensor 2 according to the present embodiment may have a configuration in which the capillary sheet 74 is provided so that the downstream end of the waste liquid channel 59 is closed with the capillary sheet 74. Even with this configuration, a gap can be formed between the capillary sheet 74 and the sample liquid in the waste liquid channel 59. Furthermore, since a porous body such as sponge or a cotton-like body is provided as the absorbent member 72, the amount of liquid stored can be easily changed by changing the material and size compared to the case where the absorbent member 72 is not provided. Thus, the design of the sensor 2 is facilitated.

また、毛細管部材は、毛細管部材と廃液流路59内の試料液との間に隙間が形成されるものであれば、必ずしもシート状に形成する必要はない。さらにまた図2〜図6に示す感知センサー2において、毛細管シート71の形状は、平面的に見て一端側が他端側よりも狭まった形状に構成され、前記一端側が廃液流路59内に突入されることが好ましい。毛細管シート71は、必ずしも一端側が尖った形状である必要はない。また廃液流路59内に突入される毛細管部材の容量も適宜選択される。   The capillary member is not necessarily formed into a sheet shape as long as a gap is formed between the capillary member and the sample liquid in the waste liquid channel 59. Furthermore, in the sensing sensor 2 shown in FIGS. 2 to 6, the capillary sheet 71 has a shape in which one end side is narrower than the other end side in plan view, and the one end side enters the waste liquid channel 59. It is preferred that The capillary sheet 71 does not necessarily have a sharp shape at one end side. Further, the capacity of the capillary member that enters the waste liquid channel 59 is also appropriately selected.

さらに毛細管部材と吸収部材72は、毛細管部材が吸収できる液量よりも吸収部材72が吸収できる液量が多ければよい。さらにまた、図9(b)に示すように、吸収部材721の下方側に廃液領域76を形成し、吸収部材721から自重により落下した液体を当該廃液領域76に貯留する構成としてもよい。図9(b)中、50は廃液流路、564は出口側毛細管部材、77はケース体である。
このように廃液流路59(50)は毛細管現象により液体を流通させる構成であればよく、ガラス管に限らず、流路形成部材により形成された流路であってもよい。
Further, the capillary member and the absorbing member 72 only need to have a larger amount of liquid that can be absorbed by the absorbing member 72 than the amount of liquid that can be absorbed by the capillary member. Furthermore, as shown in FIG. 9B, a waste liquid region 76 may be formed on the lower side of the absorbing member 721, and the liquid dropped from the absorbing member 721 by its own weight may be stored in the waste liquid region 76. In FIG. 9B, 50 is a waste liquid flow path, 564 is an outlet side capillary member, and 77 is a case body.
As described above, the waste liquid flow path 59 (50) may be configured to circulate liquid by capillary action, and is not limited to a glass tube but may be a flow path formed by a flow path forming member.

さらに本発明の感知センサー2を用いた感知対象物の検出においては、試料液を感知センサー2に供給した後に、吸着膜451に吸着された感知対象物と結合する増感材を含んだ供給液(増感液)を供給することができ、さらにそのように感知対象物に結合された増感材に重畳して結合する増感材を含んだ増感液を供給して、増感を行うことができる。このような増感液を用いる場合にも、当該増感液を流路57に供給したときに、先に供給した液との混合が防止されるので、増感液の希釈を防ぐことができる。従って増感材の結合が速やかに発生するので、測定の感度を高くできると共に測定時間を短縮することが可能となる。   Further, in the detection of a sensing object using the sensing sensor 2 of the present invention, a supply liquid containing a sensitizing material that binds to the sensing object adsorbed on the adsorption film 451 after the sample liquid is supplied to the sensing sensor 2. (Sensitization liquid) can be supplied, and further sensitization is performed by supplying a sensitizing liquid containing a sensitizing material that overlaps and binds to the sensitizing material bonded to the sensing object. be able to. Even when such a sensitizing solution is used, when the sensitizing solution is supplied to the flow path 57, mixing with the previously supplied solution is prevented, so that dilution of the sensitizing solution can be prevented. . Therefore, since the sensitizer is quickly bonded, the measurement sensitivity can be increased and the measurement time can be shortened.

さらにまた、水晶振動子4A、4Bを分割した水晶片にて構成し、各水晶片を互いにごく近くに配置してもよい。さらにまた必ずしも第1の水晶振動子4A及び第2の水晶振動子4Bを設ける必要はなく、吸着膜を備えた水晶振動子を一つ設ける構成であってもよい。この場合には、吸着膜に感知対象物が吸着されると発振周波数が変化するため、例えば予め閾値を設定しておき、発振周波数が閾値を超えたか否かによって感知対象物の検知の有無を判定する。   Furthermore, the crystal resonators 4A and 4B may be constituted by divided crystal pieces, and the crystal pieces may be arranged very close to each other. Furthermore, it is not always necessary to provide the first crystal unit 4A and the second crystal unit 4B, and one crystal unit provided with an adsorption film may be provided. In this case, since the oscillation frequency changes when the sensing object is adsorbed to the adsorption film, for example, a threshold value is set in advance, and whether or not the sensing object is detected is determined depending on whether the oscillation frequency exceeds the threshold value. judge.

さらにまた、緩衝部材6を配線基板3の他面側に配する代わりに、緩衝部材6を流路形成部材5と上側カバー体21との間に配してもよく、この場合も上側カバー体21と下側ケース体22との嵌合による圧力のうち過大な圧力分を緩衝部材6によって吸収することが可能である。よって上述の実施形態と同様の効果を得ることができる。   Furthermore, instead of arranging the buffer member 6 on the other surface side of the wiring board 3, the buffer member 6 may be arranged between the flow path forming member 5 and the upper cover body 21, and in this case also, the upper cover body is arranged. It is possible for the buffer member 6 to absorb an excessive pressure component in the pressure caused by the fitting between the lower case body 22 and the lower case body 22. Therefore, the same effect as the above-described embodiment can be obtained.

また、本発明における緩衝部材6を図12の従来の感知センサーに適用した感知センサー20を図10に示し、簡単に説明する。なお、前述した感知センサー2と同様の部位には同符号を附し説明を省略する。当該感知センサー20は、感知センサー2から廃液吸収部7を省いた構成となっている。この感知センサー20においては、液受け部23から供給された液体は毛細管部材550から毛細管現象によって感知センサー2と同様に流路57内へと流入し、毛細管部材560を介し廃液流路590内へと排出される。   A sensing sensor 20 in which the buffer member 6 according to the present invention is applied to the conventional sensing sensor of FIG. 12 is shown in FIG. In addition, the same code | symbol is attached | subjected to the site | part similar to the sensor 2 mentioned above, and description is abbreviate | omitted. The detection sensor 20 has a configuration in which the waste liquid absorber 7 is omitted from the detection sensor 2. In the detection sensor 20, the liquid supplied from the liquid receiver 23 flows into the flow path 57 from the capillary member 550 by the capillary phenomenon in the same manner as the detection sensor 2, and into the waste liquid flow path 590 through the capillary member 560. And discharged.

当該感知センサー20においても、上側カバー体21を下側ケース体22に嵌合し、流路形成部材5を配線基板3に押圧することによって流路57が形成されている。その際に緩衝部材6を配線基板3の他面側に配することにより、上側カバー体21と下側ケース体22との嵌合による圧力のうち過大な圧力分を緩衝部材6全体に吸収させることができ、結果として流路57を均一に形成できることから、流路57の流路高さ寸法Hを狭小に設計することが可能となる。   Also in the detection sensor 20, the flow path 57 is formed by fitting the upper cover body 21 to the lower case body 22 and pressing the flow path forming member 5 against the wiring board 3. At this time, the buffer member 6 is disposed on the other surface side of the wiring board 3, so that the entire buffer member 6 absorbs an excessive pressure component in the pressure caused by the fitting of the upper cover body 21 and the lower case body 22. As a result, since the flow channel 57 can be formed uniformly, the flow channel height dimension H of the flow channel 57 can be designed to be narrow.

以上において、感知センサー2は、既述したように緩衝部材6を介在させることにより、流路57を狭小に設定することが可能となることから、感知対象物と吸着膜451との間の接触率を向上させ、結果として感知センサー2としての感度を高感度化させることができる。さらに流路57が上側カバー体21からの押圧により潰れることを抑止することができることから、特に流路高さ寸法Hが300μm以下の感知センサーを形成する際に、顕著な効果を得ることができる。   In the above, since the sensing sensor 2 can set the flow path 57 narrow by interposing the buffer member 6 as described above, the contact between the sensing object and the adsorption film 451 is possible. As a result, the sensitivity of the sensing sensor 2 can be increased. Furthermore, since the flow path 57 can be prevented from being crushed by the pressure from the upper cover body 21, a remarkable effect can be obtained particularly when forming a sensor having a flow path height dimension H of 300 μm or less. .

(評価試験)
上記の実施形態に従って、感知センサー2を用いてF1とF2との差分が変化する様子を調べた。この評価試験では試料液としてC反応性蛋白(CRP)を夫々異なる濃度に調製した溶液を注入し、感知センサー2の吸着膜451としてはCRP抗体を用いた。流路57の流路高さ寸法について300μmに形成したセンサーと50μmに形成したセンサーとを用意し、夫々のセンサーについて試験を行った。
(Evaluation test)
According to the above-described embodiment, how the difference between F1 and F2 is changed using the sensing sensor 2 was examined. In this evaluation test, solutions prepared by different concentrations of C-reactive protein (CRP) were injected as sample solutions, and a CRP antibody was used as the adsorption film 451 of the sensor 2. With respect to the flow channel height dimension of the flow channel 57, a sensor formed at 300 μm and a sensor formed at 50 μm were prepared, and each sensor was tested.

評価試験の結果を図12にグラフにて示す。縦軸はF1とF2との差分、横軸は試料液中のCRPの濃度であり、夫々対数である。また実線のグラフは流路高さ寸法50μmのセンサーにおける反応量、点線のグラフは流路高さ寸法300μmのセンサーにおける反応量を示したものである。当該グラフより、流路高さ寸法300μmのセンサーと比して、流路高さ寸法50μmのセンサーは感度が顕著に高いことが認められる。この結果は流路高さ寸法を小さくすることによって吸着膜と感知対象物との接触率が上昇したことによるものと推測される。   The result of the evaluation test is shown in a graph in FIG. The vertical axis represents the difference between F1 and F2, and the horizontal axis represents the concentration of CRP in the sample solution, which is logarithmic. The solid line graph shows the reaction amount in a sensor having a flow path height dimension of 50 μm, and the dotted line graph shows the reaction amount in a sensor with a flow path height dimension of 300 μm. From the graph, it is recognized that the sensitivity of the sensor having the channel height dimension of 50 μm is significantly higher than that of the sensor having the channel height dimension of 300 μm. This result is presumed to be due to an increase in the contact rate between the adsorption film and the sensing object by reducing the channel height dimension.

1 感知装置
2 感知センサー
3 配線基板
4 水晶振動子
5 流路形成部材
6 緩衝部材
7 廃液吸収部
DESCRIPTION OF SYMBOLS 1 Sensing apparatus 2 Sensing sensor 3 Wiring board 4 Crystal oscillator 5 Flow path forming member 6 Buffer member 7 Waste liquid absorption part

Claims (4)

発振周波数を測定するための測定器に接続される接続端子を備えると共に一面側に凹部が形成された配線基板と、
圧電片に励振電極を設けて構成され、前記凹部を塞ぎかつ振動領域が前記凹部と対向するように前記配線基板に固定されると共に、励振電極が前記接続端子に電気的に接続され、一面側に試料液中の感知対象物を吸着する吸着膜が形成された圧電振動子と、
前記圧電振動子を含む配線基板の一面側の領域を覆うように設けられ、試料液の注入口を備えた流路形成部材と、
前記配線基板の一面側を上面側とすると、前記流路形成部材よりも下方側に位置する部材と係合することにより、前記流路形成部材を前記配線基板に押圧した状態により固定する押圧部材と、
前記押圧部材による押圧により前記配線基板と前記流路形成部材との間に形成され、前記注入口に供給された試料液を、圧電振動子の一面側において一端側から他端側に向けて流通させる流路と、
前記流路形成部材と前記押圧部材との間、または前記配線基板の他面側に設けられ、前記押圧部材からの過大な圧力分を吸収する緩衝部材と、を備え
前記流路形成部材は、前記緩衝部材が存在しない状態においても、前記押圧部材により押圧されて固定された状態にあることを特徴とする感知センサー。
A wiring board having a connection terminal connected to a measuring instrument for measuring the oscillation frequency and having a recess formed on one side;
The piezoelectric piece is provided with an excitation electrode, and is fixed to the wiring board so as to close the recess and to have a vibration region facing the recess, and the excitation electrode is electrically connected to the connection terminal. A piezoelectric vibrator formed with an adsorption film that adsorbs a sensing object in the sample liquid,
A flow path forming member provided so as to cover a region on one surface side of the wiring board including the piezoelectric vibrator, and having a sample liquid inlet;
When the one surface side of the wiring board is the upper surface side, a pressing member that fixes the flow path forming member in a pressed state against the wiring board by engaging with a member positioned below the flow path forming member. When,
The sample liquid formed between the wiring board and the flow path forming member by pressing by the pressing member and distributed to the injection port flows from one end side to the other end side on one surface side of the piezoelectric vibrator. A flow path to be
A buffer member that is provided between the flow path forming member and the pressing member or on the other surface side of the wiring board and absorbs an excessive amount of pressure from the pressing member ;
The sensing sensor, wherein the flow path forming member is pressed and fixed by the pressing member even when the buffer member is not present .
前記緩衝部材の前記配線基板側とは他面側に、深さが前記緩衝部材の厚みよりも小さい凹部を有し、当該凹部に前記緩衝部材が嵌合される格納部材が設けられ、
前記押圧部材と前記格納部材とを嵌合させることにより前記流路を形成することを特徴とする請求項1記載の感知センサー。
On the other surface side of the buffer member from the wiring board side, there is a recess having a depth smaller than the thickness of the buffer member, and a storage member into which the buffer member is fitted is provided in the recess.
The sensor according to claim 1, wherein the flow path is formed by fitting the pressing member and the storage member.
前記流路の高さが300μm以下であることを特徴とする請求項1または2記載の感知センサー。   The height of the said flow path is 300 micrometers or less, The sensing sensor of Claim 1 or 2 characterized by the above-mentioned. 請求項1ないし3のいずれか一項に記載の感知センサーと前記測定器とを含むことを特徴とする感知装置。   A sensing device comprising the sensing sensor according to claim 1 and the measuring device.
JP2014074440A 2014-03-31 2014-03-31 Sensing sensor and sensing device Active JP6357619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014074440A JP6357619B2 (en) 2014-03-31 2014-03-31 Sensing sensor and sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014074440A JP6357619B2 (en) 2014-03-31 2014-03-31 Sensing sensor and sensing device

Publications (2)

Publication Number Publication Date
JP2015197330A JP2015197330A (en) 2015-11-09
JP6357619B2 true JP6357619B2 (en) 2018-07-18

Family

ID=54547123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014074440A Active JP6357619B2 (en) 2014-03-31 2014-03-31 Sensing sensor and sensing device

Country Status (1)

Country Link
JP (1) JP6357619B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362493B2 (en) 2014-09-19 2018-07-25 日本電波工業株式会社 Sensing sensor
JP6668072B2 (en) * 2015-12-25 2020-03-18 日本電波工業株式会社 Sensing sensor and sensing device
JP6966266B2 (en) * 2017-09-05 2021-11-10 日本電波工業株式会社 Manufacturing method of sensing sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748246B2 (en) * 1995-11-14 1998-05-06 デベロップメント センター フォー バイオテクノロジー Cartridge-shaped piezoelectric sensor chip
WO2002061396A1 (en) * 2001-01-30 2002-08-08 Initium, Inc. Oscillator and mass detector
JP2011137639A (en) * 2009-12-25 2011-07-14 Ulvac Japan Ltd Flow-through cell and measuring instrument using the same
JP2011145195A (en) * 2010-01-15 2011-07-28 Ulvac Japan Ltd Detection chip, and flow-through cell with the same
JP5102334B2 (en) * 2010-06-25 2012-12-19 日本電波工業株式会社 Sensing device
JP6227219B2 (en) * 2010-12-24 2017-11-08 日本電波工業株式会社 Sensing sensor and sensing device
JP6228801B2 (en) * 2013-09-30 2017-11-08 日本電波工業株式会社 Sensing sensor and sensing device

Also Published As

Publication number Publication date
JP2015197330A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP6228801B2 (en) Sensing sensor and sensing device
JP6357619B2 (en) Sensing sensor and sensing device
JP6227219B2 (en) Sensing sensor and sensing device
JP6088857B2 (en) Sensing sensor
US9791412B2 (en) Sensing device
US10620199B2 (en) Sensing sensor and sensing method
JP5102334B2 (en) Sensing device
JP2007085973A (en) Qcm analyzer
US20170184577A1 (en) Sensing sensor and sensing device
JP5240794B2 (en) Sensing device
JP6362493B2 (en) Sensing sensor
JP6471084B2 (en) Sensing sensor
JP6966283B2 (en) Sensing sensor and sensing device
JP6106446B2 (en) Sensing sensor and sensing device
JP6966266B2 (en) Manufacturing method of sensing sensor
WO2016158487A1 (en) Sensing sensor and sensing device
JP5708027B2 (en) Sensing device
JP2018087720A (en) Sensitive sensor and sensitive device
JP2020091193A (en) Sensor
JP2013130563A (en) Sensing sensor
JP2019168284A (en) Sensing sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6357619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250