JP6354911B2 - Steel pipe pile joint structure - Google Patents

Steel pipe pile joint structure Download PDF

Info

Publication number
JP6354911B2
JP6354911B2 JP2017552376A JP2017552376A JP6354911B2 JP 6354911 B2 JP6354911 B2 JP 6354911B2 JP 2017552376 A JP2017552376 A JP 2017552376A JP 2017552376 A JP2017552376 A JP 2017552376A JP 6354911 B2 JP6354911 B2 JP 6354911B2
Authority
JP
Japan
Prior art keywords
fitting
steel pipe
pipe pile
internal
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017552376A
Other languages
Japanese (ja)
Other versions
JPWO2017090503A1 (en
Inventor
弘信 松宮
弘信 松宮
雅司 北濱
雅司 北濱
吉郎 石濱
吉郎 石濱
義法 小林
義法 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2017090503A1 publication Critical patent/JPWO2017090503A1/en
Application granted granted Critical
Publication of JP6354911B2 publication Critical patent/JP6354911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles

Description

本発明は、鋼管杭の継手構造に関する。
本願は、2015年11月27日に日本に出願された特願2015−231400号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a joint structure for steel pipe piles.
This application claims priority based on Japanese Patent Application No. 2015-231400 for which it applied to Japan on November 27, 2015, and uses the content here.

従来、狭隘地での容易な施工や工期短縮を実現させるために無溶接の機械式継手が要求されることがあった。例えば、複数の鋼管杭を機械式継手で軸芯方向に連結させることを目的として、特許文献1、2に開示される鋼管杭の継手構造が提案されている。 Conventionally, a non-welded mechanical joint has been required in order to realize easy construction in a confined area and shortening the work period. For example, joint structures disclosed in Patent Documents 1 and 2 have been proposed for the purpose of connecting a plurality of steel pipe piles in the axial direction with mechanical joints.

特許文献1に開示された鋼管杭の継手構造では、軸芯方向に隣接する第1杭と第2杭とに、互いに嵌合自在な一対の外嵌端部と内嵌端部とが各別に形成される。この継手構造では、外嵌端部と内嵌端部とを嵌合させた状態で、軸芯周りの相対回転によって互いに係合し合う係合部と被係合部とが形成される。特許文献1に開示された鋼管杭の継手構造では、係合した係合部と被係合部とが第1杭又は第2杭の径方向に離間するのを阻止するための離間阻止手段が、係合部及び被係合部に設けられる。 In the joint structure of steel pipe piles disclosed in Patent Document 1, a pair of externally fitted end portions and internally fitted end portions that can be fitted to each other are separately provided on the first pile and the second pile adjacent to each other in the axial direction. It is formed. In this joint structure, an engaging portion and an engaged portion that are engaged with each other by relative rotation around the shaft core are formed in a state where the outer fitting end portion and the inner fitting end portion are fitted. In the joint structure of the steel pipe pile disclosed in Patent Document 1, the separation preventing means for preventing the engaged engagement portion and the engaged portion from separating in the radial direction of the first pile or the second pile. , Provided at the engaging portion and the engaged portion.

特許文献2に開示された鋼管杭の継手構造では、軸芯方向に隣接する第1杭と第2杭とに、互いに嵌合自在な一対の外嵌端部と内嵌端部とが各別に形成される。この継手構造では、外嵌端部と内嵌端部とを嵌合させた状態で、軸芯周りの相対回転によって互いに係合し合う係合凸部と被係合凸部とが軸芯方向で複数形成される。特許文献2に開示された鋼管杭の継手構造では、外嵌端部が先端部側に設けた係合凸部の形成箇所ほど、基端部側に設けた係合凸部の形成箇所よりも大径に形成される。また、内嵌端部が先端部側に設けた被係合凸部の形成箇所ほど、基端部側に設けた被係合凸部の形成箇所よりも小径に形成される。 In the joint structure of steel pipe piles disclosed in Patent Document 2, a pair of external fitting end portions and internal fitting end portions that can be fitted to each other are separately provided in the first pile and the second pile adjacent in the axial direction. It is formed. In this joint structure, with the outer fitting end portion and the inner fitting end portion fitted together, the engaging convex portion and the engaged convex portion that are engaged with each other by relative rotation around the axial center are in the axial direction. A plurality are formed. In the joint structure of the steel pipe pile disclosed in Patent Document 2, the formation portion of the engagement convex portion provided on the distal end side of the outer fitting end portion is more than the formation portion of the engagement convex portion provided on the base end side. Formed in large diameter. In addition, the portion where the inner protrusion end portion is provided on the distal end side is formed to have a smaller diameter than the portion where the engagement convex portion is provided on the base end side.

日本国特開平11−43937号公報Japanese Unexamined Patent Publication No. 11-43937 日本国特開平11−43936号公報Japanese Unexamined Patent Publication No. 11-43936

ここで、鋼管杭の継手構造は、複数の鋼管杭を軸芯方向に連結させた状態で、圧縮と引張と曲げの力が継手部に作用する。特許文献1に開示された鋼管杭の継手構造は、外嵌端部及び内嵌端部の基端側から先端側まで、圧縮と引張と曲げの力の負担率が異なるにもかかわらず、被係合部の板厚が軸芯方向で全て同一である。このため、特許文献1に開示された鋼管杭の継手構造では、特に、外嵌端部及び内嵌端部の先端側の板厚に無駄な部分が多くなるため、必要以上に板厚が増加してコスト上昇を招くという問題点があった。 Here, the joint structure of a steel pipe pile is a state in which a plurality of steel pipe piles are coupled in the axial direction, and compression, tension, and bending forces act on the joint portion. The joint structure of a steel pipe pile disclosed in Patent Document 1 is not limited to the outer fitting end part and the inner fitting end part from the base end side to the tip end side, although the load ratios of compression, tension, and bending force are different. The plate thicknesses of the engaging portions are all the same in the axial direction. For this reason, in the joint structure of the steel pipe pile disclosed in Patent Document 1, in particular, because there are many useless parts in the thickness of the outer fitting end portion and the distal end side of the inner fitting end portion, the plate thickness increases more than necessary. As a result, there was a problem that the cost increased.

これに対して、特許文献2に開示された鋼管杭の継手構造では、外嵌端部及び内嵌端部の基端側から先端側に向けて、被係合凸部の板厚を次第に小さくすることで、圧縮と引張と曲げの力の負担率が考慮されている。しかし、特許文献2に開示された鋼管杭の継手構造では、外嵌端部と内嵌端部とで被係合凸部の板厚が同一であるため、継手全体の鋼材重量が必要以上に増加してコスト上昇を招くという問題点があった。 On the other hand, in the joint structure of the steel pipe pile disclosed in Patent Document 2, the plate thickness of the engaged convex portion is gradually reduced from the proximal end side to the distal end side of the outer fitting end portion and the inner fitting end portion. By doing so, the load ratio of the force of compression, tension and bending is taken into consideration. However, in the steel pipe pile joint structure disclosed in Patent Document 2, since the plate thickness of the engaged protrusions is the same between the outer fitting end part and the inner fitting end part, the steel material weight of the entire joint is more than necessary. There was a problem that the cost increased due to the increase.

そして、特許文献2に開示された鋼管杭の継手構造は、外嵌端部及び内嵌端部の基端側から先端側に向けて、被係合凸部の板厚を次第に小さくすることで、軸芯方向で、テーパ状に形成されている。しかし特許文献2に開示された鋼管杭の継手構造では、圧縮面の突出高さと引張面の突出高さとの比率が、0.50未満となる。このため、圧縮と引張と曲げの耐力を同等に確保するための継手全体の鋼材重量を最小とすることができず、材料コストの上昇を招くという問題点があった。 And the joint structure of the steel pipe pile disclosed by patent document 2 is by making the plate | board thickness of a to-be-engaged convex part gradually small toward the front end side from the base end side of an external fitting end part and an internal fitting end part. The taper is formed in the axial direction. However, in the joint structure of steel pipe piles disclosed in Patent Document 2, the ratio between the protruding height of the compression surface and the protruding height of the tensile surface is less than 0.50. For this reason, the steel material weight of the whole joint for ensuring equal strength of compression, tension, and bending cannot be minimized, resulting in an increase in material cost.

本発明は、上記の事情に鑑みてなされたものであり、重量軽減により施工性が向上した鋼管杭の継手構造の提供を目的とする。 This invention is made | formed in view of said situation, and it aims at provision of the joint structure of the steel pipe pile which the workability improved by weight reduction.

(1)本発明の一態様に係る鋼管杭の継手構造は、外嵌端部を有する第1鋼管杭と内嵌端部を有する第2鋼管杭とが、前記外嵌端部と前記内嵌端部とにおいて同一の軸芯線を共有した状態で連結された鋼管杭の継手構造であって、前記軸芯線に沿って断面視した場合に:前記外嵌端部の内側の、前記軸芯線に沿った複数位置に、前記第2鋼管杭に向かって段階的に拡径するように外嵌段部が設けられ、各々の前記外嵌段部が、相対的に前記第2鋼管杭に近い外嵌山部と、当該外嵌山部に隣接する外嵌谷部とを有し;前記内嵌端部の外側の、前記軸芯線に沿った複数位置に、前記第1鋼管杭に向かって段階的に縮径するように内嵌段部が設けられ、各々の前記内嵌段部が、相対的に前記第1鋼管杭に近い内嵌山部と、当該内嵌山部に隣接する内嵌谷部とを有し、各々の前記内嵌山部が、前記外嵌端部内に前記内嵌端部を挿入して前記軸芯線回りに相対回転させた状態で、各々の前記外嵌山部に対して係止され;各々の前記外嵌山部において、相対的に前記第2鋼管杭に近い前記外嵌山部の突出高さにより、当該外嵌山部の隣にある前記外嵌山部の突出高さを除算した比率が、0.5以上、0.9以下であり、各々の前記内嵌山部において、相対的に前記第1鋼管杭に近い前記内嵌山部の突出高さにより、当該内嵌山部の隣にある前記内嵌山部の突出高さを除算した比率が、0.5以上、0.9以下であり、前記第1鋼管杭に最も近い前記内嵌谷部の板厚よりも、前記第2鋼管杭に最も近い前記外嵌谷部の板厚の方が小さく、かつ、前記第1鋼管杭に最も近い前記内嵌谷部の板厚によって、前記第2鋼管杭に最も近い前記外嵌谷部の板厚を除算した比率が、0.84以上である;ことを特徴とする。 (1) In the joint structure of a steel pipe pile according to one aspect of the present invention, the first steel pipe pile having an outer fitting end part and the second steel pipe pile having an inner fitting end part are formed by the outer fitting end part and the inner fitting. It is a joint structure of steel pipe piles connected in the state of sharing the same axial core line with the end part, and when viewed in cross section along the axial core line: on the axial core line inside the external fitting end part An outer fitting step portion is provided at a plurality of positions along the outer steel plate so that the diameter gradually increases toward the second steel pipe pile, and each of the outer fitting step portions is relatively close to the second steel pipe pile. A fitting mountain portion and an outer fitting valley portion adjacent to the outer fitting mountain portion; a step toward the first steel pipe pile at a plurality of positions along the axial core line outside the inner fitting end portion. The inner fitting step portion is provided so as to reduce the diameter of the inner fitting step, and each of the inner fitting step portions is relatively close to the first steel pipe pile, and the inner fitting step portion is adjacent to the inner fitting step portion. Each of the inner fitting mountain portions in a state in which each of the inner fitting mountain portions is inserted into the outer fitting end portion and relatively rotated around the axis line. In each of the outer fitting mountain portions, the outer fitting mountain adjacent to the outer fitting mountain portion due to the protruding height of the outer fitting mountain portion relatively close to the second steel pipe pile. The ratio obtained by dividing the protrusion height of the portion is 0.5 or more and 0.9 or less, and in each of the internal fitting mountain portions, the protruding height of the internal fitting mountain portion that is relatively close to the first steel pipe pile Then, the ratio obtained by dividing the protruding height of the internal fitting mountain portion adjacent to the internal fitting mountain portion is 0.5 or more and 0.9 or less, and the internal fitting closest to the first steel pipe pile. The plate thickness of the external fitting valley portion closest to the second steel pipe pile is smaller than the plate thickness of the valley portion, and depending on the plate thickness of the internal fitting valley portion closest to the first steel pipe pile. The ratio obtained by dividing the thickness of the valley fitting nearest the outside of the second steel pipe pile, is 0.84 or more; and wherein the.

上記構成からなる鋼管杭の継手構造によれば、鋼管杭の継手重量の軽減が可能となり、施工性が向上する。 According to the joint structure of a steel pipe pile having the above configuration, the weight of the joint of the steel pipe pile can be reduced, and workability is improved.

(2)上記(1)に記載の鋼管杭の継手構造において、前記第1鋼管杭に最も近い前記内嵌谷部の板厚によって、前記第2鋼管杭に最も近い前記外嵌谷部の板厚を除算した比率が、0.84以上、0.94以下であってもよい。 (2) In the joint structure of steel pipe piles according to (1) above, the plate of the outer fitting valley portion closest to the second steel pipe pile is determined by the plate thickness of the inner fitting valley portion closest to the first steel pipe pile. The ratio obtained by dividing the thickness may be 0.84 or more and 0.94 or less.

この場合、鋼管杭の継手における重量をさらに軽減させることが可能となる。 In this case, the weight of the steel pipe pile joint can be further reduced.

(3)上記(1)又は(2)に記載の鋼管杭の継手構造では、各々の前記外嵌山部において、相対的に前記第2鋼管杭に近い前記外嵌山部の突出高さにより、当該外嵌山部の隣にある前記外嵌山部の突出高さを除算した比率が、0.6以上、0.8以下であり、各々の前記内嵌山部において、相対的に前記第1鋼管杭に近い前記内嵌山部の突出高さにより、当該内嵌山部の隣にある前記内嵌山部の突出高さを除算した比率が、0.6以上、0.8以下であってもよい。 (3) In the steel pipe pile joint structure according to (1) or (2) above, in each of the external fitting mountain portions, the protrusion height of the external fitting mountain portion that is relatively close to the second steel pipe pile. The ratio obtained by dividing the protruding height of the outer fitting mountain portion adjacent to the outer fitting mountain portion is 0.6 or more and 0.8 or less, and in each of the inner fitting mountain portions, the relative The ratio obtained by dividing the projecting height of the inner fitting mountain portion adjacent to the inner fitting mountain portion by the projecting height of the inner fitting mountain portion close to the first steel pipe pile is 0.6 or more and 0.8 or less. It may be.

この場合、鋼管杭の継手としての強度を維持しながらも、鋼管杭の継手における重量の軽減が可能となる。 In this case, the weight of the steel pipe pile joint can be reduced while maintaining the strength of the steel pipe pile joint.

本発明の上記態様に係る鋼管杭の継手構造によれば、継手重量の軽減により施工性が向上する。 According to the joint structure of a steel pipe pile according to the above aspect of the present invention, workability is improved by reducing the joint weight.

本発明の第1実施形態に係る鋼管杭の継手構造を示す斜視図である。It is a perspective view which shows the joint structure of the steel pipe pile which concerns on 1st Embodiment of this invention. 同鋼管杭の継手構造の外嵌端部を示す図であって、軸芯線を含む断面で見た場合の断面図である。It is a figure which shows the external fitting end part of the joint structure of the steel pipe pile, Comprising: It is sectional drawing at the time of seeing in the cross section containing an axial core wire. 同鋼管杭の継手構造の外嵌端部を示す図であって、図2のA部の部分断面図である。It is a figure which shows the external fitting end part of the joint structure of the same steel pipe pile, Comprising: It is a fragmentary sectional view of the A section of FIG. 同鋼管杭の継手構造の内嵌端部を示す側面図である。It is a side view which shows the internal fitting end part of the joint structure of the steel pipe pile. 同鋼管杭の継手構造の内嵌端部を示す図であって、図4のB部の部分断面図である。It is a figure which shows the internal fitting end part of the joint structure of the steel pipe pile, Comprising: It is a fragmentary sectional view of the B section of FIG. 同鋼管杭の継手構造で、外嵌端部に挿入される内嵌端部を示す斜視図である。It is a perspective view which shows the internal fitting end part inserted in an external fitting end part by the joint structure of the same steel pipe pile. 同鋼管杭の継手構造で、外嵌端部に対して内嵌端部を回転させた状態を示す斜視図であり、外嵌端部の一部が断面視されている。In the joint structure of the steel pipe pile, it is a perspective view which shows the state which rotated the inner fitting end part with respect to the outer fitting end part, and a part of outer fitting end part is seen by the cross section. 図7のC部の部分断面図であって、同鋼管杭の継手構造の引張面に作用する引張力を示す図である。It is a fragmentary sectional view of the C section of Drawing 7, and is a figure showing the tensile force which acts on the tension surface of the joint structure of the steel pipe pile. 図7のC部の部分断面図であって、同鋼管杭の継手構造の圧縮面に作用する圧縮力を示す図である。It is a fragmentary sectional view of the C section of Drawing 7, and is a figure showing compressive force which acts on the compression surface of the joint structure of the steel pipe pile. 同鋼管杭の継手構造で、各々の外嵌段部及び内嵌段部の板厚を示す部分断面図である。It is a fragmentary sectional view which shows the plate | board thickness of each external fitting step part and an internal fitting step part by the joint structure of the same steel pipe pile. 従来の鋼管杭の継手構造を示す図であって、外嵌段部及び内嵌段部の板厚を示す部分断面図である。It is a figure which shows the joint structure of the conventional steel pipe pile, Comprising: It is a fragmentary sectional view which shows the plate | board thickness of an external fitting step part and an internal fitting step part. 同鋼管杭の継手構造で、外嵌余長部および内嵌余長部の変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of an external fitting surplus length part and an internal fitting surplus length part by the joint structure of the steel pipe pile. 鋼管杭の継手構造を示す部分断面図であって、(a)が、上記実施形態に係る継手構造の外嵌段部及び内嵌段部の板厚を示し、(b)が、従来の継手構造の外嵌段部及び内嵌段部の板厚を示し、(c)が、(a)と(b)とにおける板厚の比較を示す。It is the fragmentary sectional view which shows the joint structure of a steel pipe pile, Comprising: (a) shows the plate | board thickness of the external fitting step part and internal fitting step part of the joint structure which concerns on the said embodiment, (b) is the conventional joint. The plate thickness of the external fitting step part and internal fitting step part of a structure is shown, (c) shows the comparison of the plate thickness in (a) and (b). 上記実施形態に係る鋼管杭の継手構造の、鋼管杭の外径及び外嵌端部の板厚の径厚比と、最大曲げモーメント及び鋼管杭の全塑性曲げモーメントの比率との関係を示すグラフである。The graph which shows the relationship between the diameter-thickness ratio of the outer diameter of a steel pipe pile, and the thickness of an external fitting end part, and the ratio of the maximum bending moment and the total plastic bending moment of a steel pipe pile of the joint structure of the steel pipe pile concerning the said embodiment It is. 上記実施形態に係る鋼管杭の継手構造における内嵌端部の径厚比と耐力比との関係を示すグラフであり、内嵌端部の径厚比と耐力比との関係を示すグラフである。It is a graph which shows the relationship between the diameter thickness ratio and proof stress ratio of the internal fitting end part in the joint structure of the steel pipe pile which concerns on the said embodiment, and is a graph which shows the relationship between the diametrical thickness ratio and proof stress ratio of an internal fitting end part. . 上記実施形態に係る鋼管杭の継手構造における内嵌端部の径厚比と耐力比との関係を示すグラフであり、外嵌端部の径厚比と耐力比との関係を示すグラフである。It is a graph which shows the relationship between the diameter thickness ratio and proof stress ratio of the inner fitting end part in the joint structure of the steel pipe pile which concerns on the said embodiment, and is a graph which shows the relationship between the diametrical thickness ratio and proof stress ratio of an external fitting end part. . 同鋼管杭の継手構造における、圧縮面の突出高さ及び引張面の突出高さの比率と、鋼管杭と同等の引張耐力及び圧縮耐力が得られる継手厚比との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the protrusion height of a compression surface in the joint structure of the steel pipe pile, and the protrusion height of a tension surface, and the joint thickness ratio from which the tensile strength and compression strength equivalent to a steel pipe pile are obtained. 同鋼管杭の継手構造におけるクリアランスを考慮した突出高さの関係を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating the relationship of the protrusion height which considered the clearance in the joint structure of the steel pipe pile. 同鋼管杭の継手構造で引張面の突出高さを変化させた曲げ試験結果を示すグラフである。It is a graph which shows the bending test result which changed the protrusion height of the tension surface in the joint structure of the steel pipe pile. 本発明の第2実施形態に係る鋼管杭の継手構造について、径厚比と板厚比との関係を示すグラフである。It is a graph which shows the relationship between a diameter thickness ratio and plate | board thickness ratio about the joint structure of the steel pipe pile which concerns on 2nd Embodiment of this invention.

以下、図面を参照しながら本発明の実施形態を説明するが、本発明はこれらの実施形態のみに限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

<第1実施形態>
本実施形態に係る鋼管杭の継手構造7は、地滑り杭、支持杭又は摩擦杭等に利用されるものであり、図1に示すように、断面略円形状等の第1鋼管杭1と第2鋼管杭2とを軸芯方向Yに連結する。
<First Embodiment>
The steel pipe pile joint structure 7 according to the present embodiment is used for a landslide pile, a support pile, a friction pile or the like, and as shown in FIG. Two steel pipe piles 2 are connected in the axial direction Y.

鋼管杭の継手構造7は、互いに嵌合自在な外嵌端部3と内嵌端部5とを備える。第1鋼管杭1の端部に外嵌端部3が溶接等で取り付けられるとともに、第2鋼管杭2の端部に内嵌端部5が溶接等で取り付けられる。外嵌端部3と内嵌端部5とにおいて同一の軸芯線Lを共有した状態で、外嵌端部3と内嵌端部5とが当該軸芯線Lに平行な軸芯方向Yで互いに対向して一対のものとなる。 The steel pipe pile joint structure 7 includes an outer fitting end portion 3 and an inner fitting end portion 5 that can be fitted to each other. The outer fitting end 3 is attached to the end of the first steel pipe pile 1 by welding or the like, and the inner fitting end 5 is attached to the end of the second steel pipe pile 2 by welding or the like. In a state where the outer fitting end 3 and the inner fitting end 5 share the same axis L, the outer fitting end 3 and the inner fitting end 5 are mutually in an axial direction Y parallel to the axis L. It becomes a pair of opposites.

鋼管杭の継手構造7は、主として、外嵌溝部32が外嵌端部3の内部に形成されるとともに、内嵌溝部52が内嵌端部5の外部に形成される。鋼管杭の継手構造7は、周方向Wにおいて、複数の外嵌山部31及び複数の内嵌山部51が、略同一円周上に形成されたギア式継手に適用される。ここで、第1鋼管杭1及び第2鋼管杭2の各々は、例えば、鋼管杭の外径Dpを318.5mm〜1625.6mm程度、鋼管杭の板厚tを6.0mm〜30.0mm程度としたものを対象とする。 In the steel pipe pile joint structure 7, the outer fitting groove portion 32 is mainly formed inside the outer fitting end portion 3, and the inner fitting groove portion 52 is formed outside the inner fitting end portion 5. The steel pipe pile joint structure 7 is applied to a gear-type joint in which a plurality of outer fitting mountain parts 31 and a plurality of inner fitting mountain parts 51 are formed on substantially the same circumference in the circumferential direction W. Here, each of the first steel pipe pile 1 and the second steel pipe pile 2 has, for example, an outer diameter Dp of the steel pipe pile of about 318.5 mm to 1625.6 mm, and a plate thickness t of the steel pipe pile of 6.0 mm to 30.0 mm. Targeting the degree.

外嵌端部3は、軸芯直交方向Xで内側に向けて突出させて形成された複数の外嵌山部31と、周方向Wで外嵌山部31に隣り合って形成された複数の外嵌溝部32と、軸芯方向Yで外嵌山部31より基端側Bに形成された外嵌谷部33とを有する。外嵌端部3は、外嵌山部31と外嵌谷部33とが、軸芯方向Yで交互に隣り合って形成される。 The outer fitting end portion 3 is formed with a plurality of outer fitting mountain portions 31 formed so as to protrude inward in the axis orthogonal direction X and a plurality of outer fitting mountain portions 31 formed adjacent to the outer fitting mountain portion 31 in the circumferential direction W. It has the external fitting groove part 32 and the external fitting trough part 33 formed in the base end side B from the external fitting mountain part 31 in the axial direction Y. The external fitting end portion 3 is formed by the external fitting mountain portions 31 and the external fitting valley portions 33 being alternately adjacent to each other in the axial direction Y.

外嵌端部3は、外嵌山部31と外嵌溝部32とが周方向Wで交互に形成されて、複数の外嵌山部31が、軸芯方向Y及び周方向Wで略一列に配置されるとともに、複数の外嵌溝部32が、軸芯方向Y及び周方向Wで略一列に配置される。外嵌端部3は、第1鋼管杭1の端部に溶接等で取り付けられる部位として、外嵌余長部38を有するものとなる。 In the outer fitting end portion 3, the outer fitting mountain portions 31 and the outer fitting groove portions 32 are alternately formed in the circumferential direction W, and the plurality of outer fitting mountain portions 31 are substantially aligned in the axial direction Y and the circumferential direction W. While being arranged, the plurality of external fitting groove portions 32 are arranged in a substantially line in the axial direction Y and the circumferential direction W. The external fitting end part 3 has an external fitting extra length part 38 as a part attached to the end part of the first steel pipe pile 1 by welding or the like.

内嵌端部5は、軸芯直交方向Xで外側に向けて突出させて形成された複数の内嵌山部51と、周方向Wで内嵌山部51に隣り合って形成された複数の内嵌溝部52と、軸芯方向Yで内嵌山部51より基端側Bに形成された内嵌谷部53とを有する。内嵌端部5は、内嵌山部51と内嵌谷部53とが、軸芯方向Yで交互に隣り合って形成される。 The inner fitting end 5 has a plurality of inner fitting mountain parts 51 formed to protrude outward in the axial center orthogonal direction X and a plurality of inner fitting mountain parts 51 formed adjacent to the inner fitting mountain part 51 in the circumferential direction W. It has the internal fitting groove part 52 and the internal fitting trough part 53 formed in the base end side B from the internal fitting mountain part 51 in the axial direction Y. The internal fitting end portion 5 is formed such that internal fitting mountain portions 51 and internal fitting valley portions 53 are alternately adjacent to each other in the axial direction Y.

内嵌端部5は、内嵌山部51と内嵌溝部52とが周方向Wで交互に形成されて、複数の内嵌山部51が、軸芯方向Y及び周方向Wで略一列に配置されるとともに、複数の内嵌溝部52が、軸芯方向Y及び周方向Wで略一列に配置される。内嵌端部5は、第2鋼管杭2の端部に溶接等で取り付けられる部位として、内嵌余長部58を有するものとなる。 In the inner fitting end portion 5, the inner fitting mountain portions 51 and the inner fitting groove portions 52 are alternately formed in the circumferential direction W, and the plurality of inner fitting mountain portions 51 are substantially aligned in the axial direction Y and the circumferential direction W. In addition to the arrangement, the plurality of internally fitted groove portions 52 are arranged in a substantially line in the axial direction Y and the circumferential direction W. The internal fitting end portion 5 has an internal fitting extra length portion 58 as a portion attached to the end portion of the second steel pipe pile 2 by welding or the like.

外嵌山部31は、図2に示すように、周方向Wに隣り合う外嵌構部32、及び、軸芯方向Yに隣り合う外嵌谷部33よりも、第1鋼管杭1の軸芯方向Yの中心軸に向けて、略矩形状等に突出させて形成される。このとき、外嵌山部31は、図3に示すように、軸芯方向Yの先端側A又は基端側Bに隣り合う外嵌谷部33から、軸芯直交方向Xで所定の突出高さHc、Htとなるように形成される。 As shown in FIG. 2, the outer fitting mountain portion 31 has an axis of the first steel pipe pile 1 that is more than the outer fitting structural portion 32 adjacent in the circumferential direction W and the outer fitting valley portion 33 adjacent in the axial direction Y. It is formed to project in a substantially rectangular shape or the like toward the central axis in the core direction Y. At this time, as shown in FIG. 3, the outer fitting mountain portion 31 has a predetermined protruding height in the axial center orthogonal direction X from the outer fitting valley portion 33 adjacent to the distal end side A or the proximal end side B in the axial direction Y. And Hc and Ht.

外嵌谷部33は、軸芯方向Yの先端側Aから基端側Bまで、複数の外嵌段部4が設けられるものであり、各々の外嵌段部4において、軸芯直交方向Xで所定の板厚を有するように形成される。外嵌谷部33は、軸芯方向Yで最も基端側Bの外嵌段部4が、軸芯直交方向Xで所定の板厚Dを有する外嵌余長部38に、軸芯方向Yで隣り合って形成される。 The external fitting valley portion 33 is provided with a plurality of external fitting step portions 4 from the distal end side A to the proximal end side B in the axial direction Y. In each of the external fitting step portions 4, the axial center orthogonal direction X is provided. And having a predetermined plate thickness. The outer fitting valley portion 33 has an outer fitting step portion 4 on the most proximal side B in the axial direction Y to an outer fitting extra length portion 38 having a predetermined plate thickness D in the axial direction orthogonal to the axial direction Y. Are formed next to each other.

外嵌谷部33は、特に、軸芯方向Yで最も先端側Aの外嵌段部4が、第1外嵌段部41となる。外嵌谷部33は、例えば、軸芯方向Yで4段に亘って外嵌段部4が設けられるときに、軸芯方向Yで先端側Aから基端側Bまで、順番に第1外嵌段部41、第2外嵌段部42、第3外嵌段部43及び第4外嵌段部44を有するものとなる。 In the outer fitting valley portion 33, the outer fitting step portion 4 closest to the distal end side A in the axial direction Y is the first outer fitting step portion 41. For example, when the external fitting stepped portion 4 is provided over four steps in the axial direction Y, the external fitting valley portion 33 is first outer in order from the distal end side A to the proximal end side B in the axial direction Y. A fitting step 41, a second outer fitting step 42, a third outer fitting step 43, and a fourth outer fitting step 44 are provided.

即ち、外嵌端部3には、軸芯線Lを含む断面で見た場合に、外嵌端部3の内側の、軸芯線Lに沿った複数位置に、第2鋼管杭2に向かって段階的に拡径するように外嵌段部4が設けられる。各々の外嵌段部4が、相対的に第2鋼管杭2に近い外嵌山部31と、当該外嵌山部31に隣接する外嵌谷部33とを有する。
なお、図3、図5、図8から図13、図16の断面図については、図を見やすくするために、ハッチングを省略している。
That is, the outer fitting end 3 has a step toward the second steel pipe pile 2 at a plurality of positions along the axis core L inside the outer fitting end 3 when viewed in a cross section including the axis L. The external fitting step part 4 is provided so that it may expand in diameter. Each outer fitting step part 4 has an outer fitting mountain part 31 relatively close to the second steel pipe pile 2 and an outer fitting valley part 33 adjacent to the outer fitting mountain part 31.
Note that hatching is omitted in the cross-sectional views of FIGS. 3, 5, 8 to 13, and 16 for easy understanding of the drawings.

内嵌山部51は、図4に示すように、周方向Wに隣り合う内嵌溝部52、及び、軸芯方向Yに隣り合う内嵌谷部53よりも、第2鋼管杭2の軸芯方向Yの中心軸と反対側に向けて、略矩形状等に突出させて形成される。このとき、内嵌山部51は、図5に示すように、軸芯方向Yの先端側A又は基端側Bに隣り合う内嵌谷部53から、軸芯直交方向Xで所定の突出高さHc、Htとなるように形成される。 As shown in FIG. 4, the inner fitting mountain portion 51 has an axial core of the second steel pipe pile 2 than the inner fitting groove portion 52 adjacent in the circumferential direction W and the inner fitting valley portion 53 adjacent in the axial direction Y. It is formed to project in a substantially rectangular shape or the like toward the opposite side of the central axis in the direction Y. At this time, as shown in FIG. 5, the internal fitting mountain portion 51 has a predetermined protruding height in the axial center orthogonal direction X from the internal fitting valley portion 53 adjacent to the distal end side A or the proximal end side B in the axial direction Y. And Hc and Ht.

内嵌谷部53は、軸芯方向Yの先端側Aから基端側Bまで、複数の内嵌段部6が設けられるものであり、各々の内嵌段部6において、軸芯直交方向Xで所定の板厚を有するように形成される。内嵌谷部53は、軸芯方向Yで最も基端側Bの内嵌段部6が、軸芯直交方向Xで所定の板厚Dを有する内嵌余長部58に、軸芯方向Yで隣り合って形成される。なお、内嵌余長部58の板厚Dは、外嵌余長部38の板厚Dと必ずしも一致しなくてよい。 The internal fitting valley portion 53 is provided with a plurality of internal fitting step portions 6 from the distal end side A to the proximal end side B in the axial direction Y. In each internal fitting step portion 6, the axial center orthogonal direction X is provided. And having a predetermined plate thickness. The inner fitting valley portion 53 has an inner fitting step portion 6 on the most proximal side B in the axial direction Y to an inner fitting extra length portion 58 having a predetermined plate thickness D in the axial direction orthogonal to the axial direction Y. Are formed next to each other. The plate thickness D of the internal fitting surplus length portion 58 does not necessarily need to match the plate thickness D of the external fitting surplus length portion 38.

内嵌谷部53は、特に、軸芯方向Yで最も先端側Aの内嵌段部6が、第1内嵌段部61となる。内嵌谷部53は、例えば、軸芯方向Yで4段に亘って内嵌段部6が設けられるときに、軸芯方向Yで先端側Aから基端側Bまで、順番に第1内嵌段部61、第2内嵌段部62、第3内嵌段部63及び第4内般段部64を有するものとなる。 In the internal fitting valley portion 53, the internal fitting step portion 6 closest to the tip end side A in the axial direction Y is the first internal fitting step portion 61. For example, when the internal fitting stepped portion 6 is provided in four steps in the axial direction Y, the internal fitting valley portion 53 is first in order from the distal end side A to the proximal end side B in the axial direction Y. A fitting step 61, a second fitting step 62, a third fitting step 63, and a fourth generic step 64 are provided.

即ち、内嵌端部5には、軸芯線Lに沿って断面視した場合に、内嵌端部5の外側の、軸芯線Lに沿った複数位置に、第1鋼管杭1に向かって段階的に縮径するように内嵌段部6が設けられる。各々の内嵌段部6が、相対的に第1鋼管杭1に近い内嵌山部51と、当該内嵌山部51に隣接する内嵌谷部53とを有する。 That is, the inner fitting end portion 5 has a step toward the first steel pipe pile 1 at a plurality of positions along the axial core line L outside the inner fitting end portion 5 when viewed in cross section along the axial core line L. The internal fitting step 6 is provided so as to reduce the diameter. Each internal fitting step part 6 has an internal fitting mountain part 51 relatively close to the first steel pipe pile 1 and an internal fitting valley part 53 adjacent to the internal fitting mountain part 51.

鋼管杭の継手構造7は、図6、図7に示すように、外嵌端部3と内嵌端部5とを互いに嵌合させることで、第1鋼管杭1と第2鋼管杭2とが軸芯方向Yに連結されるものとなる。 As shown in FIG. 6 and FIG. 7, the joint structure 7 of the steel pipe pile includes the first steel pipe pile 1 and the second steel pipe pile 2 by fitting the outer fitting end portion 3 and the inner fitting end portion 5 to each other. Are connected in the axial direction Y.

鋼管杭の継手構造7は、最初に、図6に示すように、第2鋼管杭2に取り付けられた内嵌端部5を、第1鋼管杭1に取り付けられた外嵌端部3に挿入する。このとき、鋼管杭の継手構造7は、外嵌山部31及び内嵌山部51の突出高さが、内嵌溝部52及び外嵌溝部32の軸芯直交方向Xの深さ以下となることで、外嵌山部31及び内嵌山部51が内嵌溝部52及び外嵌構部32を通過するものとなる。 As shown in FIG. 6, the steel pipe pile joint structure 7 is first inserted into the outer fitting end 3 attached to the first steel pipe pile 1 with the inner fitting end 5 attached to the second steel pipe pile 2. To do. At this time, as for the joint structure 7 of a steel pipe pile, the protrusion height of the external fitting mountain part 31 and the internal fitting mountain part 51 shall be below the depth of the axial center orthogonal direction X of the internal fitting groove part 52 and the external fitting groove part 32. Thus, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 pass through the inner fitting groove portion 52 and the outer fitting structure portion 32.

鋼管杭の継手構造7は、次に、図7に示すように、外嵌端部3に内嵌端部5を挿入した状態で、第1鋼管杭1と第2鋼管杭2とを軸芯線L周りの周方向Wに相対回転させる。このとき、鋼管杭の継手構造7は、外嵌山部31及び内嵌山部51の突出高さが、内嵌谷部53及び外嵌谷部33の軸芯直交方向Xの深さ以下となることで、外嵌山部31及び内嵌山部51が内嵌谷部53及び外嵌谷部33に嵌め込まれるものとなる。 Next, as shown in FIG. 7, the joint structure 7 of the steel pipe pile is formed by connecting the first steel pipe pile 1 and the second steel pipe pile 2 with the inner fitting end portion 5 into the outer fitting end portion 3. Rotate relative to the circumferential direction W around L. At this time, as for the joint structure 7 of a steel pipe pile, the protrusion height of the external fitting peak part 31 and the internal fitting peak part 51 is below the depth of the axial center orthogonal direction X of the internal fitting valley part 53 and the external fitting valley part 33. Thus, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are fitted into the inner fitting valley portion 53 and the outer fitting valley portion 33.

鋼管杭の継手構造7は、外嵌山部31の軸芯方向Yの長さを、内嵌谷部53の軸芯方向Yの長さ以下とするとともに、内嵌山部51の軸芯方向Yの長さを、外嵌谷部33の軸芯方向Yの長さ以下とする。このとき、鋼管杭の継手構造7は、外嵌端部3に挿入された内嵌端部5を周方向Wに相対回転させた状態で、外嵌山部31と内嵌山部51とが軸芯方向Yで互いに係止されるものとなる。なお、外嵌端部3又は内嵌端部5について、周方向Wにおける外嵌山部31又は内嵌山部51の数は、4、16、32などが好ましい。 In the steel pipe pile joint structure 7, the length in the axial direction Y of the external fitting mountain portion 31 is set to be equal to or less than the length in the axial direction Y of the internal fitting valley portion 53, and the axial direction of the internal fitting mountain portion 51. The length of Y is equal to or less than the length of the external fitting valley portion 33 in the axial direction Y. At this time, in the joint structure 7 of the steel pipe pile, the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are in a state where the inner fitting end portion 5 inserted into the outer fitting end portion 3 is relatively rotated in the circumferential direction W. They are locked together in the axial direction Y. In addition, about the external fitting end part 3 or the internal fitting end part 5, the number of the external fitting mountain parts 31 or the internal fitting mountain parts 51 in the circumferential direction W is preferably 4, 16, 32, or the like.

鋼管杭の継手構造7は、図8に示すように、外嵌山部31と内嵌山部51とが互いに係止された状態で、第1鋼管杭1と第2鋼管杭2とを軸芯方向Yで互いに離間させる方向に引張力Ptが作用する。このとき、外嵌山部31は、軸芯方向Yの基端側Bとなる引張面31aで、内嵌山部51から引張力Ptが伝達される。また、これと同時に、内嵌山部51は、軸芯方向Yの基端側Bとなる引張面51aで、外嵌山部31の引張面31aから引張力Ptが伝達される。 As shown in FIG. 8, the joint structure 7 of the steel pipe pile is formed by pivoting the first steel pipe pile 1 and the second steel pipe pile 2 in a state where the outer fitting mountain portion 31 and the inner fitting mountain portion 51 are locked to each other. A tensile force Pt acts in the direction of separating from each other in the core direction Y. At this time, the outer fitting mountain portion 31 is a tensile surface 31 a that is the base end side B in the axial direction Y, and the tensile force Pt is transmitted from the inner fitting mountain portion 51. At the same time, the inner fitting mountain portion 51 is a tensile surface 51 a that is the base end side B in the axial direction Y, and the tensile force Pt is transmitted from the tensile surface 31 a of the outer fitting mountain portion 31.

鋼管杭の継手構造7は、外嵌山部31の引張面31a及び内嵌山部51の引張面51aが、軸芯直交方向Xで所定の突出高さHtとなる。また、外嵌山部31の引張面31aと内嵌山部51の引張面51aとで、同程度の大きさの引張力Ptが伝達される。このとき、各々の外嵌段部4及び内嵌段部6では、軸芯方向Yの先端側Aから基端側Bに向けて、各々の外嵌山部31及び内嵌山部51に伝達される引張力Ptの負担率が次第に大きくなる。この結果、最も基端側Bとなる第4外嵌段部44及び第4内嵌段部64での引張力ptの負担率が最大となる。 In the joint structure 7 of the steel pipe pile, the tensile surface 31a of the outer fitting mountain portion 31 and the tensile surface 51a of the inner fitting mountain portion 51 have a predetermined protruding height Ht in the axial direction orthogonal to the axis X. Further, the tensile force Pt having the same magnitude is transmitted between the tension surface 31 a of the outer fitting mountain portion 31 and the tension surface 51 a of the inner fitting mountain portion 51. At this time, in each of the outer fitting stepped portion 4 and the inner fitting stepped portion 6, it is transmitted from the distal end side A in the axial direction Y toward the proximal end side B to each of the outer fitting mountain portion 31 and the inner fitting mountain portion 51. The load factor of the applied tensile force Pt gradually increases. As a result, the load factor of the tensile force pt at the fourth outer fitting step portion 44 and the fourth inner fitting step portion 64 that are the most proximal side B is maximized.

また、鋼管杭の継手構造7は、図9に示すように、外嵌山部31と内嵌山部51とが互いに係止された状態で、第1鋼管杭1と第2鋼管杭2とを軸芯方向Yで互いに接近させる方向に圧縮力Pcが作用する。このとき、外嵌山部31は、軸芯方向Yの先端側Aとなる圧縮面31bで、内嵌山部51から圧縮力Pcが伝達される。また、これと同時に、内嵌山部51は、軸芯方向Yの先端側Aとなる圧縮面51bで、外嵌山部31の圧縮面31bから圧縮力Pcが伝達される。 Moreover, as shown in FIG. 9, the joint structure 7 of a steel pipe pile has the 1st steel pipe pile 1 and the 2nd steel pipe pile 2 in the state to which the external fitting mountain part 31 and the internal fitting mountain part 51 were mutually latched. The compressive force Pc acts in a direction that causes the two to approach each other in the axial direction Y. At this time, the outer fitting mountain portion 31 is a compression surface 31 b that is the tip end side A in the axial direction Y, and the compression force Pc is transmitted from the inner fitting mountain portion 51. At the same time, the internal fitting mountain portion 51 is a compression surface 51 b that is the tip side A in the axial direction Y, and the compression force Pc is transmitted from the compression surface 31 b of the external fitting mountain portion 31.

鋼管杭の継手構造7は、外嵌山部31の圧縮面31b及び内嵌山部51の圧縮面51bが、軸芯直交方向Xで所定の突出高さHcとなる。また、外嵌山部31の圧縮面31bと内嵌山部51の圧縮面51bとで、同程度の大きさの圧縮力Pcが伝達される。このとき、各々の外嵌段部4及び内嵌段部6では、軸芯方向Yの先端側Aから基端側Bに向けて、各々の外嵌山部31及び内嵌山部51に伝達される圧縮力Pcの負担率が次第に大きくなる。この結果、最も基端側Bとなる第4外嵌段部44及び第4内嵌段部64での圧縮力Pcの負担率が最大となる。 In the steel pipe pile joint structure 7, the compression surface 31 b of the outer fitting mountain portion 31 and the compression surface 51 b of the inner fitting mountain portion 51 have a predetermined protruding height Hc in the axial center orthogonal direction X. Further, the compression force Pc having the same magnitude is transmitted between the compression surface 31 b of the outer fitting mountain portion 31 and the compression surface 51 b of the inner fitting mountain portion 51. At this time, in each of the outer fitting stepped portion 4 and the inner fitting stepped portion 6, it is transmitted from the distal end side A in the axial direction Y toward the proximal end side B to each of the outer fitting mountain portion 31 and the inner fitting mountain portion 51. The burden rate of the compression force Pc to be applied gradually increases. As a result, the load factor of the compressive force Pc at the fourth outer fitting step portion 44 and the fourth inner fitting step portion 64 that are the most proximal side B is maximized.

本実施形態に係る鋼管杭の継手構造7は、図10に示すように、外嵌谷部33及び内嵌谷部53が、各々の外嵌段部4及び内嵌段部6で、軸芯直交方向Xで所定の板厚を有するように形成される。 As shown in FIG. 10, the joint structure 7 of the steel pipe pile according to the present embodiment includes an outer fitting valley portion 33 and an inner fitting valley portion 53, each having an outer fitting step portion 4 and an inner fitting step portion 6. It is formed to have a predetermined plate thickness in the orthogonal direction X.

外嵌谷部33は、第1外嵌段部41での外嵌谷部33が板厚tb1、第2外嵌段部42での外嵌谷部33が板厚tb2、第3外嵌段部43での外嵌谷部33が板厚tb3、第4外嵌段部44での外嵌谷部33が板厚tb4を有する。外嵌谷部33は、特に、軸芯方向Yに隣り合う外嵌段部4で、軸芯方向Yで基端側Bの外嵌段部4での外嵌谷部33の板厚が、軸芯方向Yで先端側Aの外嵌段部4での外嵌谷部33の板厚より大きいものとなる。 In the external fitting valley portion 33, the external fitting valley portion 33 in the first external fitting step portion 41 has a plate thickness tb1, the external fitting valley portion 33 in the second external fitting step portion 42 has a plate thickness tb2, and a third external fitting step. The outer fitting valley portion 33 in the portion 43 has a plate thickness tb3, and the outer fitting valley portion 33 in the fourth outer fitting step portion 44 has a plate thickness tb4. The outer fitting valley portion 33 is, in particular, the outer fitting step portion 4 adjacent in the axial direction Y, and the thickness of the outer fitting valley portion 33 in the outer fitting step portion 4 on the base end side B in the axial direction Y is In the axial direction Y, the thickness is larger than the thickness of the outer fitting valley portion 33 at the outer fitting step portion 4 on the distal end side A.

このとき、外嵌谷部33は、軸芯方向Yの先端側Aから基端側Bまで4段に亘って外嵌段部4が設けられるときに、第2外嵌段部42での板厚tb2が、第1外嵌段部41での板厚tb1より大きくなる。また、外嵌谷部33は、第3外嵌段部43での板厚tb3が、第2外嵌段部42での板厚tb2より大きくなるとともに、第4外嵌段部44での板厚tb4が、第3外嵌段部43での板厚tb3より大きいものとなる。 At this time, when the outer fitting stepped portion 4 is provided over four steps from the distal end side A to the proximal end side B in the axial direction Y, the outer fitting valley portion 33 is a plate at the second outer fitting stepped portion 42. The thickness tb2 is larger than the plate thickness tb1 at the first external fitting step portion 41. Further, the outer fitting valley portion 33 has a plate thickness tb3 at the third outer fitting step portion 43 larger than a plate thickness tb2 at the second outer fitting step portion 42, and a plate at the fourth outer fitting step portion 44. The thickness tb4 is larger than the plate thickness tb3 at the third external fitting step portion 43.

内嵌谷部53は、第1内嵌段部61での内嵌谷部53が板厚tp1、第2内嵌段部62での内嵌谷部53が板厚tp2、第3内嵌段部63での内嵌谷部53が板厚tp3、第4内嵌段部64での内嵌谷部53が板厚tp4を有する。内嵌谷部53は、特に、軸芯方向Yに隣り合う内嵌段部6で、軸芯方向Yで基端側Bの内嵌段部6での内嵌谷部53の板厚が、軸芯方向Yで先端側Aの内嵌段部6での内嵌谷部53の板厚より大きいものとなる。 As for the internal fitting valley part 53, the internal fitting valley part 53 in the 1st internal fitting step part 61 is plate | board thickness tp1, the internal fitting trough part 53 in the 2nd internal fitting step part 62 is plate | board thickness tp2, 3rd internal fitting step The internal fitting valley part 53 in the part 63 has a plate thickness tp3, and the internal fitting valley part 53 in the fourth internal fitting step part 64 has a plate thickness tp4. The internal fitting valley portion 53 is, in particular, the internal fitting step portion 6 adjacent to the axial direction Y, and the thickness of the internal fitting valley portion 53 at the internal fitting step portion 6 on the base end side B in the axial direction Y is In the axial direction Y, the thickness is larger than the plate thickness of the internal fitting valley portion 53 at the internal fitting step portion 6 on the distal end side A.

このとき、内嵌谷部53は、軸芯方向Yの先端側Aから基端側Bまで4段に亘って内嵌段部6が設けられるときに、第2内嵌段部62での板厚tp2が、第1内嵌段部61での板厚tp1より大きくなる。また、内嵌谷部53は、第3内嵌段部63での板厚tp3が、第2内嵌段部62での板厚tp2より大きくなるとともに、第4内嵌段部64での板厚tp4が、第3内嵌段部63での板厚tp3より大きいものとなる。 At this time, the inner fitting valley portion 53 is a plate in the second inner fitting step portion 62 when the inner fitting step portion 6 is provided in four steps from the distal end side A to the proximal end side B in the axial direction Y. The thickness tp2 is larger than the plate thickness tp1 at the first internal fitting step 61. In addition, the inner trough portion 53 has a plate thickness tp3 at the third inner fitting step portion 63 larger than a plate thickness tp2 at the second inner fitting step portion 62, and a plate at the fourth inner fitting step portion 64. The thickness tp4 is greater than the plate thickness tp3 at the third internal fitting step portion 63.

鋼管杭の継手構造7は、外嵌端部3と内嵌端部5とを相対回転させた状態で、軸芯方向Yで互いに対応させた位置に、各々の外嵌段部4及び内嵌段部6が配置される。外嵌谷部33及び内嵌谷部53は、互いに対応する位置に配置された外嵌段部4及び内嵌段部6で、外嵌山部31と内嵌山部51とが、軸芯方向Yで互いに係止される。 The steel pipe pile joint structure 7 includes the outer fitting step 4 and the inner fitting at positions corresponding to each other in the axial direction Y in a state where the outer fitting end 3 and the inner fitting end 5 are relatively rotated. A stepped portion 6 is arranged. The outer fitting valley portion 33 and the inner fitting valley portion 53 are the outer fitting step portion 4 and the inner fitting step portion 6 that are arranged at positions corresponding to each other, and the outer fitting mountain portion 31 and the inner fitting mountain portion 51 have an axial core. Locked together in direction Y.

このとき、外嵌谷部33及び内嵌谷部53は、第1外嵌段部41の外嵌山部31と第4内嵌段部64の内嵌山部51とが係止されて、第2外嵌段部42の外嵌山部31と第3内嵌段部63の内嵌山部51とが係止される。また、外嵌谷部33及び内嵌谷部53は、第3外嵌段部43の外嵌山部31と第2内嵌段部62の内嵌山部51とが係止されて、第4外嵌段部44の外嵌山部31と第1内嵌段部61の内嵌山部51とが係止される。 At this time, the outer fitting valley portion 33 and the inner fitting valley portion 53 are engaged with the outer fitting mountain portion 31 of the first outer fitting step portion 41 and the inner fitting mountain portion 51 of the fourth inner fitting step portion 64. The outer fitting mountain portion 31 of the second outer fitting step portion 42 and the inner fitting mountain portion 51 of the third inner fitting step portion 63 are locked. Further, the outer fitting valley portion 33 and the inner fitting valley portion 53 are engaged with the outer fitting mountain portion 31 of the third outer fitting step portion 43 and the inner fitting mountain portion 51 of the second inner fitting step portion 62, and The outer fitting mountain portion 31 of the four outer fitting step portion 44 and the inner fitting mountain portion 51 of the first inner fitting step portion 61 are locked.

鋼管杭の継手構造7では、特に、第1外嵌段部41での外嵌谷部33の板厚tb1が、第1内嵌段部61での内嵌谷部53の板厚tp1より小さい。また、第2外嵌段部42での外嵌谷部33の板厚tb2が、第2内嵌段部62での内嵌谷部53の板厚tp2より小さい。また、第3外嵌段部43での外嵌谷部33の板厚tb3が、第3内嵌段部63での内嵌谷部53の板厚tp3より小さい。また、第4外嵌段部44での外嵌谷部33の板厚tb4が、第4内嵌段部64での内嵌谷部53の板厚tp4より小さい。 In the steel pipe pile joint structure 7, in particular, the plate thickness tb1 of the external fitting valley portion 33 in the first external fitting step portion 41 is smaller than the plate thickness tp1 of the internal fitting valley portion 53 in the first internal fitting step portion 61. . Further, the plate thickness tb2 of the external fitting valley portion 33 in the second external fitting step portion 42 is smaller than the plate thickness tp2 of the internal fitting valley portion 53 in the second internal fitting step portion 62. Further, the plate thickness tb3 of the external fitting valley portion 33 in the third external fitting step portion 43 is smaller than the plate thickness tp3 of the internal fitting valley portion 53 in the third internal fitting step portion 63. Further, the plate thickness tb4 of the external fitting valley portion 33 in the fourth external fitting step portion 44 is smaller than the plate thickness tp4 of the internal fitting valley portion 53 in the fourth internal fitting step portion 64.

また、鋼管杭の継手構造7は、軸芯方向Yに隣り合う外嵌段部4での外嵌谷部33の板厚の差Δb、及び、軸芯方向Yに隣り合う内嵌段部6での内嵌谷部53の板厚の差Δpとして、Δb1=(tb2−tb1)とΔp3=(tp4−tp3)とを略同一とするとともに、Δb2=(tb3−tb2)とΔp2=(tp3−tp2)とを略同一として、Δb3=(tb4−tb3)とΔp1=(tp2−tp1)とを略同一とすることで、互いに嵌合することができるという特徴を有する。このため、鋼管杭の継手構造7は、板厚tp1、及び、板厚tb1と板厚tp1との比率となる板厚比(tb1/tp1)を決定することで、tb1、tb2、tb3、tb4、tp1、tp2、tp3、tp4の全てが導出可能となる特徴を有する。 Further, the joint structure 7 of the steel pipe pile includes the difference Δb in the plate thickness of the external fitting valley portion 33 in the external fitting step portion 4 adjacent in the axial direction Y, and the internal fitting step portion 6 adjacent in the axial direction Y. Δb1 = (tb2−tb1) and Δp3 = (tp4−tp3) are substantially the same, and Δb2 = (tb3−tb2) and Δp2 = (tp3). −tp2) is substantially the same, and Δb3 = (tb4−tb3) and Δp1 = (tp2−tp1) are substantially the same, so that they can be fitted to each other. For this reason, the joint structure 7 of a steel pipe pile determines tb1, tb2, tb3, tb4 by determining the plate thickness tp1 and the plate thickness ratio (tb1 / tp1) that is the ratio between the plate thickness tb1 and the plate thickness tp1. , Tp1, tp2, tp3, and tp4 are all derivable.

例えば、特許文献2に示される従来の鋼管杭の継手構造9は、図11に示すように、板厚tb1が板厚tp1と同一であり、板厚tb2が板厚tp2と同一であり、板厚tb3が板厚tp3と同一であり、板厚tb4が板厚tp4と同一である。したがって、従来の鋼管杭の継手構造9は、第1内嵌段部61と第1外嵌段部41とで比較した場合に、半径方向に内側に存在する第1内嵌段部61の方がその断面積が小さい。また、第2内嵌段部62、第3内嵌段部63及び第4内嵌段部64でも同様に、内嵌段部6の方が外嵌段部4より断面積が小さくなる。このことから、内嵌端部5の方が外嵌端部3より断面積が小さくなる。このため、従来の鋼管杭の継手構造9は、断面積の小さい内嵌端部5の破壊を基準として、内嵌端部5及び外嵌端部3の耐力が決定されるものとなり、外嵌端部3が過剰設計となる欠点を有する。 For example, in the conventional steel pipe pile joint structure 9 shown in Patent Document 2, as shown in FIG. 11, the plate thickness tb1 is the same as the plate thickness tp1, the plate thickness tb2 is the same as the plate thickness tp2, The thickness tb3 is the same as the plate thickness tp3, and the plate thickness tb4 is the same as the plate thickness tp4. Therefore, when the conventional steel pipe pile joint structure 9 is compared between the first internal fitting step portion 61 and the first external fitting step portion 41, the first internal fitting step portion 61 that is present radially inward is used. However, its cross-sectional area is small. Similarly, the second fitting step 62, the third fitting step 63, and the fourth fitting step 64 have a smaller sectional area in the inner fitting step 6 than in the outer fitting step 4. For this reason, the inner fitting end portion 5 has a smaller cross-sectional area than the outer fitting end portion 3. For this reason, the joint structure 9 of the conventional steel pipe pile determines the proof stress of the inner fitting end portion 5 and the outer fitting end portion 3 on the basis of the destruction of the inner fitting end portion 5 having a small cross-sectional area. The end 3 has the disadvantage of being overdesigned.

また、引張力作用時においては、外嵌端部3は、第1鋼管杭1の軸芯方向Yの中心軸と反対側に向けて、軸芯直交方向Xで外側に拡がるように変形をするのが一般的である。この一方で、内嵌端部5は、第2鋼管杭2の軸芯方向Yの中心軸に向けて、軸芯直交方向Xで内側に縮むように変形をするのが一般的である。このため、引張力作用時における周方向の応力の拡がりを考慮した場合には、内嵌端部5は内側に縮むように変形して周方向に応力が拡がりにくい。この一方で、外嵌端部3は外側に拡がるように変形して周方向に応力が拡がりやすく、外嵌端部3での応力集中が緩和される。したがって、従来の鋼管杭の継手構造9は、上記の断面積の観点に加えて、周方向の応力の拡がり及び応力集中緩和の観点からも、外嵌端部3が過剰設計となる欠点を有する。 In addition, when the tensile force is applied, the external fitting end 3 is deformed so as to expand outward in the axial center orthogonal direction X toward the side opposite to the central axis in the axial direction Y of the first steel pipe pile 1. It is common. On the other hand, the inner fitting end portion 5 is generally deformed so as to shrink inward in the axial center orthogonal direction X toward the central axis in the axial direction Y of the second steel pipe pile 2. For this reason, when the expansion of the stress in the circumferential direction at the time of the action of the tensile force is taken into consideration, the inner fitting end portion 5 is deformed so as to be contracted inward and the stress is not easily spread in the circumferential direction. On the other hand, the outer fitting end portion 3 is deformed so as to spread outward and the stress is easily spread in the circumferential direction, and the stress concentration at the outer fitting end portion 3 is alleviated. Therefore, the conventional steel pipe pile joint structure 9 has the disadvantage that the outer fitting end portion 3 is overdesigned from the viewpoint of the expansion of stress in the circumferential direction and the relaxation of stress concentration in addition to the above-mentioned viewpoint of the cross-sectional area. .

これに対して、本実施形態に係る鋼管杭の継手構造7は、図10に示すように、第1外嵌段部41での外嵌谷部33の板厚tb1を、第1内嵌段部61での内嵌谷部53の板厚tp1より小さく設定し、かつ、板厚tb1と板厚tp1との比率となる板厚比(tb1/tp1)を、0.84以上とする。
即ち、本実施形態に係る鋼管杭の継手構造7においては、第1鋼管杭1に最も近い内嵌谷部53の板厚よりも、第2鋼管杭2に最も近い外嵌谷部33の板厚の方が小さく、かつ、第1鋼管杭1に最も近い内嵌谷部53の板厚によって、第2鋼管杭2に最も近い外嵌谷部33の板厚を除算した比率が0.84以上である。
On the other hand, as shown in FIG. 10, the steel pipe pile joint structure 7 according to the present embodiment is configured so that the thickness tb1 of the outer fitting valley portion 33 in the first outer fitting step portion 41 is the first inner fitting step. The plate thickness ratio (tb1 / tp1), which is set to be smaller than the plate thickness tp1 of the internal fitting valley portion 53 at the portion 61 and is the ratio between the plate thickness tb1 and the plate thickness tp1, is set to 0.84 or more.
That is, in the joint structure 7 of the steel pipe pile according to the present embodiment, the plate of the external fitting valley portion 33 closest to the second steel pipe pile 2 rather than the plate thickness of the internal fitting valley portion 53 closest to the first steel pipe pile 1. The ratio obtained by dividing the plate thickness of the external fitting valley portion 33 closest to the second steel pipe pile 2 by the plate thickness of the internal fitting valley portion 53 closest to the first steel pipe pile 1 is 0.84. That's it.

また、鋼管杭の継手構造7では、Δb1=(tb2−tb1)とΔp3=(tp4−tp3)とを略同一として、Δb2=(tb3tb2)とΔp2=(tp3−tp2)とを略同一として、Δb3=(tb4−tb3)とΔp1=(tp2−tp1)とを略同一として、板厚tp1の大きさを決定する。さらに、第1鋼管杭1に最も近い内嵌谷部53の板厚よりも、第2鋼管杭2に最も近い外嵌谷部33の板厚の方が小さく、かつ、第1鋼管杭1に最も近い内嵌谷部53の板厚によって、第2鋼管杭2に最も近い外嵌谷部33の板厚を除算した比率を0.84以上とする。これにより、断面積の小さい内嵌端部5の破壊を基準に、外嵌端部3の断面積を設計することができる。これにより、鋼管杭の継手構造7は、断面積の小さい内嵌端部5に合わせて、外嵌端部3の断面積を小さく設計できる。これにより、外嵌端部3の過剰設計を回避して、従来の鋼管杭の継手構造9と比較して、外嵌端部3の板厚を低減させることが可能となる。 In the steel pipe pile joint structure 7, Δb1 = (tb2−tb1) and Δp3 = (tp4−tp3) are substantially the same, Δb2 = (tb3tp2) and Δp2 = (tp3−tp2) are substantially the same, Δb3 = (tb4−tb3) and Δp1 = (tp2−tp1) are made substantially the same, and the size of the plate thickness tp1 is determined. Furthermore, the thickness of the outer fitting valley portion 33 closest to the second steel pipe pile 2 is smaller than the thickness of the inner fitting valley portion 53 closest to the first steel pipe pile 1, and the first steel pipe pile 1 The ratio obtained by dividing the plate thickness of the outer fitting valley 33 closest to the second steel pipe pile 2 by the plate thickness of the closest inner fitting valley 53 is 0.84 or more. Thereby, the cross-sectional area of the outer fitting end part 3 can be designed on the basis of destruction of the inner fitting end part 5 having a small cross-sectional area. Thereby, the joint structure 7 of a steel pipe pile can design the cross-sectional area of the external fitting end part 3 small according to the internal fitting end part 5 with a small cross-sectional area. Thereby, it becomes possible to avoid the excessive design of the external fitting end part 3, and to reduce the plate | board thickness of the external fitting end part 3, compared with the joint structure 9 of the conventional steel pipe pile.

なお、図12に示すように、外嵌余長部38及び内嵌余長部58の形状が変形されてもよい。このような形状とすることで、鋼管杭の継手構造7の軽量化が図れる。
ここで、図13の(a)に示すように、本実施形態に係る鋼管杭の継手構造7では、第1鋼管杭1に最も近い内嵌谷部53の板厚よりも、第2鋼管杭2に最も近い外嵌谷部33の板厚の方が小さい。これに対して、図13の(b)に示されるような従来の鋼管杭の継手構造9では、第1鋼管杭1に最も近い内嵌谷部53の板厚と、第2鋼管杭2に最も近い外嵌谷部33の板厚とが同一である。図13の(c)は、図13の(a)と図13の(b)との比較を示す図である。図13の(c)では、図13の(b)の従来の鋼管杭の継手構造9が点線で示されている。これによると、本実施形態に係る鋼管杭の継手構造7の方が、特に外嵌端部3の全体の厚みが低減されていることがわかる。
In addition, as shown in FIG. 12, the shape of the external fitting surplus length part 38 and the internal fitting surplus length part 58 may be changed. By setting it as such a shape, the weight reduction of the joint structure 7 of a steel pipe pile can be achieved.
Here, as shown to (a) of FIG. 13, in the steel pipe pile joint structure 7 which concerns on this embodiment, it is 2nd steel pipe pile rather than the plate | board thickness of the internal fitting valley part 53 nearest to the 1st steel pipe pile 1. As shown in FIG. The thickness of the outer fitting valley portion 33 closest to 2 is smaller. On the other hand, in the conventional steel pipe pile joint structure 9 as shown in FIG. 13 (b), the thickness of the inner valley portion 53 closest to the first steel pipe pile 1 and the second steel pipe pile 2 are The plate thickness of the closest outer fitting valley portion 33 is the same. FIG. 13C is a view showing a comparison between FIG. 13A and FIG. 13B. In FIG. 13 (c), the conventional steel pipe pile joint structure 9 of FIG. 13 (b) is indicated by a dotted line. According to this, it turns out that the direction of the joint structure 7 of the steel pipe pile which concerns on this embodiment has reduced especially the whole thickness of the external fitting end part 3. FIG.

ここで、図14は、本実施形態に係る鋼管杭の継手構造において、接合する鋼管杭に対応する継手耐力の数値解析及び実験結果を示すものである。本実施形態に係る形状比を適用し設計安全率を与え設計している。なお、継手耐力を求めるため、数値解析では鋼管杭を完全弾性体材料として計算している。また、実験では継手が先行して破壊するように、本来の継手に対応する鋼管よりも強度の高い鋼管を使用している。
継手を適用する鋼管杭の範囲は、外径Dpを400.0mm〜1600.0mm、鋼管杭の板厚tpを6.0mm〜30.0mmとした。材料規格は、JIS A 5525に規定されるSKK40とJIS G 3106に規定されるSM570である。図14のグラフは、接合する鋼管杭の外径Dpと板厚tpとの径厚比(Dp/tp) を横軸として、FEM解析で算出された本実施形態に係る鋼管杭の継手構造7の最大曲げモーメントMmax(継手部分)と鋼管杭の全塑性曲げモーメントMp(鋼管部分)との比率(Mmax/Mp)を縦軸としている。図14からは、外嵌端部3の板厚tbを低減させた場合でも、継手の最大曲げモーメントMmaxが、接合する鋼管の全塑性曲げモーメントMpを上回ることがわかる。また、継手は鋼管より強いため、本継手は鋼管に先行して破壊することは無いことがわかる。表1に、図14の数値データを示す。
Here, FIG. 14 shows the numerical analysis and the experimental result of the joint yield strength corresponding to the steel pipe pile to be joined in the joint structure of the steel pipe pile according to the present embodiment. The shape ratio according to the present embodiment is applied to provide a design safety factor for designing. In addition, in order to obtain joint strength, the steel pipe pile is calculated as a completely elastic material in the numerical analysis. Further, in the experiment, a steel pipe having a higher strength than the steel pipe corresponding to the original joint is used so that the joint breaks in advance.
The ranges of the steel pipe pile to which the joint is applied were the outer diameter Dp of 400.0 mm to 1600.0 mm, and the steel pipe pile thickness tp of 6.0 mm to 30.0 mm. The material standard is SKK40 defined in JIS A 5525 and SM570 defined in JIS G 3106. The graph of FIG. 14 shows the joint structure 7 of the steel pipe pile according to this embodiment calculated by FEM analysis with the diameter-thickness ratio (Dp / tp) between the outer diameter Dp and the plate thickness tp of the steel pipe pile to be joined as the horizontal axis. The vertical axis is the ratio (Mmax / Mp) of the maximum bending moment Mmax (joint part) of the steel plate and the total plastic bending moment Mp (steel pipe part) of the steel pipe pile. FIG. 14 shows that the maximum bending moment Mmax of the joint exceeds the total plastic bending moment Mp of the steel pipe to be joined even when the plate thickness tb of the external fitting end 3 is reduced. Moreover, since a joint is stronger than a steel pipe, it turns out that this joint does not break prior to a steel pipe. Table 1 shows the numerical data of FIG.

Figure 0006354911
Figure 0006354911

図15A及び図15Bは、外嵌谷部33と内嵌谷部53とで板厚が異なることの根拠を示すものである。図15Aでは、鋼管杭の外径Dpと第1内嵌段部61での内嵌谷部53の板厚tp1との径厚比(Dp/tp1)を横軸とする。また、図15Aでは、FEM解析で算出された本実施形態に係る鋼管杭の継手構造7の最大曲げモーメントMmaxと内嵌谷部53の(継手の谷部全周を有効とした場合の)全塑性曲げモーメントMfとの耐力比(Mmax/Mf) を縦軸とする。図15Bでは、鋼管杭の外径Dpと第1外嵌段部41での外嵌谷部33の板厚tb1との径厚比(Dp/tb1)を横軸とする。図15Bでは、FEM解析で算出された本発明の最大曲げモーメントMmaxと外嵌谷部33の全塑性曲げモーメントMfとの耐力比(Mmax/Mf)を縦軸とする。
図15Aによると、内嵌端部5においては、径厚比が変化した場合に耐力比も変化するため、耐力比が径厚比の一次関数となることがわかる。これに対して、図15Bによると、外嵌谷部33においては、耐力比が径厚比によらず一定となることがわかる。なお、図15A及び図15Bでも、鋼管杭の外径Dpを400.0mm〜1600.0mm、鋼管杭の板厚tを6.0mm〜30.0mmとした範囲で、鋼管杭の通常の材料規格の下限値としてJIS A 5525に規定されるSKK400を示すとともに、材料規格の上限値としてJIS G 3106に規定されるSM570を示している。表2に、図15A及び図15Bの数値データを示す。
15A and 15B show the grounds that the outer fitting valley portion 33 and the inner fitting valley portion 53 have different plate thicknesses. In FIG. 15A, the horizontal axis represents the diameter-thickness ratio (Dp / tp1) between the outer diameter Dp of the steel pipe pile and the plate thickness tp1 of the inner valley portion 53 in the first inner fitting step portion 61. In FIG. 15A, the maximum bending moment Mmax of the joint structure 7 of the steel pipe pile according to the present embodiment calculated by the FEM analysis and the entire fitting valley portion 53 (when the entire circumference of the valley portion of the joint is made effective) are shown. The yield strength ratio (Mmax / Mf) with the plastic bending moment Mf is taken as the vertical axis. In FIG. 15B, the horizontal axis represents the diameter-thickness ratio (Dp / tb1) between the outer diameter Dp of the steel pipe pile and the plate thickness tb1 of the outer fitting valley portion 33 in the first outer fitting step portion 41. In FIG. 15B, the proof stress ratio (Mmax / Mf) between the maximum bending moment Mmax of the present invention calculated by FEM analysis and the total plastic bending moment Mf of the external fitting valley portion 33 is taken as the vertical axis.
According to FIG. 15A, in the internal fitting end part 5, when the diameter-thickness ratio is changed, the proof stress ratio is also changed, so that the proof stress ratio is a linear function of the diametric thickness ratio. On the other hand, according to FIG. 15B, it can be seen that the proof stress ratio is constant regardless of the diameter-thickness ratio in the externally fitted valley portion 33. 15A and 15B, the normal material standard of the steel pipe pile is within the range where the outer diameter Dp of the steel pipe pile is 400.0 mm to 1600.0 mm and the plate thickness t of the steel pipe pile is 6.0 mm to 30.0 mm. SKK400 defined in JIS A 5525 is shown as the lower limit value of SM, and SM570 defined in JIS G 3106 is shown as the upper limit value of the material standard. Table 2 shows the numerical data of FIGS. 15A and 15B.

Figure 0006354911
Figure 0006354911

ここで、鋼管杭の継手構造7は、外嵌端部3及び内嵌端部5が、断面略円形状に形成される。このため、外嵌谷部33の断面積は、各々の外嵌段部4において、外嵌谷部33の外径rb1より算出されるπ×rb1から、外嵌谷部33の内径rb2より算出されるπ×rb2を差し引くことで、(π×rb1−π×rb2)となる。そして、外嵌谷部33の内径rb2は、外嵌谷部33の外径rb1から板厚tbを差し引したものであるため、外嵌谷部33の断面積は、外嵌谷部33の板厚tbの2乗と比例関係にある。さらに、内嵌谷部53の断面積も、外嵌谷部33の断面積と同様に、各々の内嵌段部6において内嵌谷部53の板厚tpの2乗となる比例関係にある。Here, as for the joint structure 7 of a steel pipe pile, the outer fitting end part 3 and the inner fitting end part 5 are formed in a cross-sectional substantially circular shape. For this reason, the cross-sectional area of the external fitting valley portion 33 is calculated from π × rb12 2 calculated from the external diameter rb1 of the external fitting valley portion 33 in each external fitting step portion 4 from the internal diameter rb2 of the external fitting valley portion 33. By subtracting the calculated π × rb2 2 , (π × rb1 2 −π × rb2 2 ) is obtained. Since the inner diameter rb2 of the outer fitting valley portion 33 is obtained by subtracting the plate thickness tb from the outer diameter rb1 of the outer fitting valley portion 33, the cross-sectional area of the outer fitting valley portion 33 is equal to that of the outer fitting valley portion 33. It is proportional to the square of the plate thickness tb. Further, the cross-sectional area of the internal fitting valley portion 53 is also proportional to the square of the plate thickness tp of the internal fitting valley portion 53 in each internal fitting step portion 6, similarly to the cross-sectional area of the external fitting valley portion 33. .

鋼管杭の継手構造7は、図15Aに示すように、内嵌端部5においては、径厚比が10.00〜200.00となる範囲で、曲げモーメント比が0.70から0.50まで低減するため、内嵌谷部53の全周の70〜50%が有効断面と考えられる。これに対して、外嵌端部3においては、図15Bに示すように、曲げモーメント比が径厚比によらず一定となり、外嵌谷部33の全周の70%が有効断面と考えられる。
このことから、径厚比が200.00となる範囲で、内嵌谷部53の破壊を基準として設計すると、外嵌谷部33の断面積を71%(0.50/0.70≒0.71)まで低減できる。このため、外嵌谷部33の断面積は、外嵌谷部33の板厚tbの2乗と比例関係にあることから、外嵌谷部33の板厚tbが内嵌谷部53の板厚tpの0.84倍まで低減しても(0.84≒0.71)、内嵌谷部53と同等以上の断面積を確保できる。よって、外嵌谷部33と内嵌谷部53とで同等の耐力を確保することができる。径厚比50程度では、内嵌谷部53の破壊を基準として設計すると、外嵌谷部33の断面積を97%(0.68/0.70≒0.97)まで低減できる。このため、外嵌谷部33の断面積は、外嵌谷部33の板厚tbの2乗と比例関係にあることから、外嵌谷部33の板厚tbが内嵌谷部53の板厚tpの0.94倍まで低減しても(0.97≒0.94)、内嵌谷部53と同等以上の断面積を確保できる。
As shown in FIG. 15A, the joint structure 7 of the steel pipe pile has a bending moment ratio of 0.70 to 0.50 in the inner fitting end portion 5 in a range where the diameter-thickness ratio is 10.00 to 200.00. Therefore, 70 to 50% of the entire circumference of the internal valley portion 53 is considered to be an effective cross section. On the other hand, in the outer fitting end 3, the bending moment ratio is constant regardless of the diameter-thickness ratio as shown in FIG. 15B, and 70% of the entire circumference of the outer fitting valley 33 is considered to be an effective cross section. .
Therefore, when the diameter-thickness ratio is set to 200.00 and the design is based on the destruction of the inner fitting valley portion 53, the sectional area of the outer fitting valley portion 33 is 71% (0.50 / 0.70≈0). .71). For this reason, since the cross-sectional area of the external fitting valley portion 33 is proportional to the square of the plate thickness tb of the external fitting valley portion 33, the plate thickness tb of the external fitting valley portion 33 is the plate of the internal fitting valley portion 53. Even when the thickness is reduced to 0.84 times the thickness tp (0.84 2 ≈0.71), a cross-sectional area equal to or larger than that of the internal valley portion 53 can be secured. Therefore, the equivalent strength can be ensured by the outer fitting valley portion 33 and the inner fitting valley portion 53. When the diameter-thickness ratio is about 50, the cross-sectional area of the outer fitting valley portion 33 can be reduced to 97% (0.68 / 0.70≈0.97) when designed based on the destruction of the inner fitting valley portion 53. For this reason, since the cross-sectional area of the external fitting valley portion 33 is proportional to the square of the plate thickness tb of the external fitting valley portion 33, the plate thickness tb of the external fitting valley portion 33 is the plate of the internal fitting valley portion 53. Even if the thickness is reduced to 0.94 times the thickness tp (0.97 2 ≈0.94), a cross-sectional area equal to or larger than that of the internal valley portion 53 can be secured.

このように、本実施形態に係る鋼管杭の継手構造7では、各々の外嵌段部4及び内嵌段部6において、内嵌谷部53の板厚tpよりも外嵌谷部33の板厚tbを小さくする。本実施形態に係る鋼管杭の継手構造7では、第1鋼管杭1に最も近い内嵌谷部53の板厚よりも、第2鋼管杭2に最も近い外嵌谷部33の板厚の方が小さく、かつ、第1鋼管杭1に最も近い内嵌谷部53の板厚によって、第2鋼管杭2に最も近い外嵌谷部33の板厚を除算した比率を0.84以上とする。これにより、鋼管杭の継手構造7は、従来の鋼管杭の継手構造9と比較して、外嵌端部3の断面積を小さくして過剰設計を回避できる。これにより、少ない重量及び体積の鋼材等の使用量で、最大の圧縮と引張と曲げの耐力が得られる。その結果、継手全体の重量、体積を低減させて連結作業の効率を向上させるとともに、継手全体の材料コストの上昇を抑制することが可能となる。 Thus, in the joint structure 7 of the steel pipe pile according to the present embodiment, the plate of the outer fitting valley portion 33 is larger than the plate thickness tp of the inner fitting valley portion 53 in each of the outer fitting step portion 4 and the inner fitting step portion 6. The thickness tb is reduced. In the steel pipe pile joint structure 7 according to the present embodiment, the thickness of the outer fitting valley 33 closest to the second steel pipe pile 2 is greater than the thickness of the inner fitting valley 53 closest to the first steel pipe pile 1. The ratio obtained by dividing the plate thickness of the external fitting valley portion 33 closest to the second steel pipe pile 2 by the plate thickness of the internal fitting valley portion 53 closest to the first steel pipe pile 1 is 0.84 or more. . Thereby, compared with the joint structure 9 of the conventional steel pipe pile, the joint structure 7 of a steel pipe pile can make the cross-sectional area of the external fitting end part 3 small, and can avoid an excessive design. As a result, the maximum compression, tension, and bending strength can be obtained with a small amount of weight and volume of steel. As a result, the weight and volume of the entire joint can be reduced to improve the efficiency of the connection work, and an increase in the material cost of the entire joint can be suppressed.

また、本実施形態に係る鋼管杭の継手構造7は、図8、図9に示すように、軸芯方向Yに隣り合う外嵌段部4で、基端側Bの外嵌段部4での外嵌谷部33の板厚が、先端側Aの外嵌段部4での外嵌谷部33の板厚より大きいものとなる。これとともに、軸芯方向Yに隣り合う内嵌段部6で、基端側Bの内嵌段部6での内嵌谷部53の板厚が、先端側Aの内嵌段部6での内嵌谷部53の板厚より大きいものとなる。また、外嵌山部31の圧縮面31b及び内嵌山部51の圧縮面51bの突出高さHcが、外嵌山部31の引張面31a及び内嵌山部51の引張面51aの突出高さHtより大きいものとなる。
さらに、第1外嵌段部41及び第1内嵌段部61では、第2外嵌段部42第4外嵌段部44、及び、第2内嵌段部62〜第4内嵌段部64より、外嵌山部31の圧縮面31b及び内嵌山部51の圧縮面51bの突出高さHcが大きくなる。これにより、外嵌端部3及び内嵌端部5の各々において、引張耐力より圧縮耐力が大きくなる特徴を有する。
Moreover, the joint structure 7 of the steel pipe pile which concerns on this embodiment is the external fitting step part 4 of the base end side B in the external fitting step part 4 adjacent to the axial direction Y, as shown in FIG. 8, FIG. The plate thickness of the external fitting valley portion 33 is larger than the plate thickness of the external fitting valley portion 33 at the external fitting step portion 4 on the distal end side A. At the same time, in the inner fitting step 6 adjacent in the axial direction Y, the thickness of the inner fitting valley portion 53 in the inner fitting step 6 on the base end side B is the same as that in the inner fitting step 6 on the distal end side A. It is larger than the plate thickness of the inner fitting valley portion 53. Further, the protrusion height Hc of the compression surface 31 b of the outer fitting mountain portion 31 and the compression surface 51 b of the inner fitting mountain portion 51 is the protrusion height of the tensile surface 31 a of the outer fitting mountain portion 31 and the tensile surface 51 a of the inner fitting mountain portion 51. Is greater than Ht.
Further, in the first outer fitting step portion 41 and the first inner fitting step portion 61, the second outer fitting step portion 42, the fourth outer fitting step portion 44, and the second inner fitting step portion 62 to the fourth inner fitting step portion. 64, the protrusion height Hc of the compression surface 31b of the outer fitting mountain portion 31 and the compression surface 51b of the inner fitting mountain portion 51 is increased. Thereby, in each of the outer fitting end part 3 and the inner fitting end part 5, it has the characteristic that a compression proof stress becomes larger than a tensile proof stress.

これに対して、例えば、上記の特許文献2に示される従来の鋼管杭の継手構造9は、図11に示すように、HcとHtとの比率がHt<0.5×Hcであり、Htと比較してHcが非常に大きいものとなる。このため、従来の鋼管杭の継手構造9は、圧縮面31b、圧縮面51bの突出高さHcと、引張面31a、引張面51aの突出高さHtとの比率で計算すると、圧縮耐力が引張耐力の2倍超となる。したがって、従来の鋼管杭の継手構造9は、継手全体の引張耐力を鋼管杭と同等以上とした場合に、継手全体の圧縮耐力が鋼管杭の2倍超となる。一般的な鋼管杭では引張耐力と圧縮耐力とが同一となることから、従来の鋼管杭の継手構造9では圧縮耐力が過剰設計となる欠点を有する。 On the other hand, for example, in the conventional steel pipe pile joint structure 9 shown in Patent Document 2, the ratio of Hc to Ht is Ht <0.5 × Hc, as shown in FIG. Hc is very large compared to. For this reason, when the joint structure 9 of the conventional steel pipe pile is calculated by the ratio of the projection height Hc of the compression surface 31b and the compression surface 51b and the projection height Ht of the tension surface 31a and the tension surface 51a, the compressive strength is tensile. More than twice the yield strength. Therefore, in the conventional joint structure 9 of a steel pipe pile, when the tensile strength of the entire joint is equal to or higher than that of the steel pipe pile, the compression strength of the whole joint is more than twice that of the steel pipe pile. Since a general steel pipe pile has the same tensile strength and compression strength, the conventional steel pipe pile joint structure 9 has a drawback that the compression strength is excessively designed.

本実施形態に係る鋼管杭の継手構造7は、図8、図9に示すように、各々の外嵌段部4及び内嵌段部6において、外嵌山部31及び内嵌山部51の圧縮面31bと圧縮面51bの突出高さHcに対する、外嵌山部31及び内嵌山部51の引張面31aと引張面51aの突出高さHtの比率が、0.5以上、0.9以下となる。このとき、鋼管杭の継手構造7は、突出高さHtが突出高さHcより小さくなり、また、軸芯方向で先端側Aから基端側Bまで、各々の外嵌段部4及び内嵌段部6が軸芯方向Yで、略テーパ状に形成される。これにより、鋼管杭の継手構造7は、突出高さHtを突出高さHcより小さくして、継手全体の引張耐力を圧縮耐力と同等となるまで突出高さHtを低減できる。これにより、圧縮耐力が過剰設計となることを抑制できるため、従来の鋼管杭の継手構造9と比較して、継手全体の鋼材重量を低減させることが可能となる。 As shown in FIGS. 8 and 9, the steel pipe pile joint structure 7 according to the present embodiment includes an outer fitting mountain portion 31 and an inner fitting mountain portion 51 in each of the outer fitting step portion 4 and the inner fitting step portion 6. The ratio of the protrusion height Ht of the tension surface 31a and the tension surface 51a of the outer fitting mountain portion 31 and the inner fitting mountain portion 51 to the projection height Hc of the compression surface 31b and the compression surface 51b is 0.5 or more and 0.9. It becomes as follows. At this time, in the joint structure 7 of the steel pipe pile, the protruding height Ht is smaller than the protruding height Hc, and each outer fitting step 4 and inner fitting from the distal end side A to the proximal end side B in the axial direction. The step portion 6 is formed in a substantially tapered shape in the axial direction Y. Thereby, the joint structure 7 of a steel pipe pile can reduce the protrusion height Ht by making the protrusion height Ht smaller than the protrusion height Hc and making the tensile strength of the entire joint equal to the compression strength. Thereby, since it can suppress that a compressive proof stress becomes an excessive design, compared with the joint structure 9 of the conventional steel pipe pile, it becomes possible to reduce the steel material weight of the whole joint.

ここで、図16では、本実施形態に係る鋼管杭の継手構造7と従来の鋼管杭の継手構造9とで、継手厚比を比較した結果を示している。図16では、HcとHtとの比率(Ht/Hc)を横軸として、HcとHtとの比率を変化させたときに、従来の鋼管杭と同等の引張耐力及び圧縮耐力が得られる継手厚比を縦軸とする。 Here, in FIG. 16, the result of having compared the joint thickness ratio with the joint structure 7 of the steel pipe pile which concerns on this embodiment, and the joint structure 9 of the conventional steel pipe pile is shown. In FIG. 16, when the ratio of Hc to Ht (Ht / Hc) is taken as the horizontal axis and the ratio of Hc to Ht is changed, the joint thickness that can obtain the tensile strength and compression strength equivalent to those of conventional steel pipe piles. The ratio is taken as the vertical axis.

図16では、Ht=0.5×Hcとするとともに(表3の2,9、及び16の例に相当する)、従来の鋼管杭と同等の引張耐力及び圧縮耐力としたときの継手厚比を基準値とした場合に、縦軸となる継手厚比の値が1となる。継手厚は、h(図5のDに相当)、第4内嵌段部64での内嵌谷部53の板厚tp4、第1外嵌段部41での外嵌谷部33の板厚tb1、所定のクリアランスCLの合計値を採用している。 In FIG. 16, the joint thickness ratio when Ht = 0.5 × Hc (corresponding to the examples 2, 9, and 16 in Table 3) and the tensile strength and compression strength equivalent to those of conventional steel pipe piles. When the value is a reference value, the value of the joint thickness ratio on the vertical axis is 1. The joint thickness is h (corresponding to D in FIG. 5), the plate thickness tp4 of the internal fitting valley portion 53 in the fourth internal fitting step portion 64, and the plate thickness of the external fitting valley portion 33 in the first external fitting step portion 41. The total value of tb1 and a predetermined clearance CL is adopted.

なお、図16では、鋼管杭の通常の材料規格の下限値としてJIS A 5525に規定されるSKK400及びSKK490と、材料規格の上限値としてJIS G 3106に規定されるSM570とを示している。表3に、図16の数値データを示す。 In addition, in FIG. 16, SKK400 and SKK490 prescribed | regulated to JISA5525 as a lower limit of the normal material specification of a steel pipe pile, and SM570 prescribed | regulated to JISG3106 as an upper limit of a material specification are shown. Table 3 shows the numerical data of FIG.

Figure 0006354911
Figure 0006354911

鋼管杭の継手構造7は、図16に示すように、SKK400、SKK490又はSM570において、特に、0.5×Hc≦Ht≦0.9×Hcとした範囲で、従来の鋼管杭の継手構造9と比較して、継手厚比が小さくなる。これにより、継手全体の重量が小さくなることがわかる。さらに、鋼管杭の継手構造7は、0.55×Hc≦Ht≦0.8×Hcの範囲で設計すると、従来の鋼管杭の継手構造9と比較して、継手厚比を5.0%程度も低減できる。この結果、加工後の継手全体の重量を3.5〜4.0%程度低減できる。 As shown in FIG. 16, the steel pipe pile joint structure 7 is a conventional steel pipe pile joint structure 9 in SKK400, SKK490 or SM570, particularly in the range of 0.5 × Hc ≦ Ht ≦ 0.9 × Hc. The joint thickness ratio is smaller than Thereby, it turns out that the weight of the whole coupling becomes small. Further, when the steel pipe pile joint structure 7 is designed in the range of 0.55 × Hc ≦ Ht ≦ 0.8 × Hc, the joint thickness ratio is 5.0% compared to the conventional steel pipe pile joint structure 9. The degree can also be reduced. As a result, the weight of the entire joint after processing can be reduced by about 3.5 to 4.0%.

なお、鋼管杭の継手構造7は、SKK400又はSKK490においては、0.6×Hc≦Ht≦0.8×Hcの範囲で設計すると、継手厚比を10%程度も低減できる。これとともに、SM570においては、0.6×Hc≦Ht≦0.7×Hcの範囲で設計すると、継手厚比を10%程度も低減できる。
これにより、鋼管杭の継手構造7は、突出高さHcに対する突出高さHtの比率を、0.5以上、0.9以下として、突出高さHcを低減させて圧縮耐力の過剰設計を回避できる。これにより、従来の鋼管杭の継手構造9と比較して、少ない重量及び体積の鋼材等の使用量で、最大の圧縮と引張と曲げの耐力が得られる。その結果、継手全体の重量、体積を低減させて連結作業の効率を向上させるとともに、継手全体の材料コストの上昇を抑制することが可能となる。
In addition, if the joint structure 7 of the steel pipe pile is designed in the range of 0.6 × Hc ≦ Ht ≦ 0.8 × Hc in SKK400 or SKK490, the joint thickness ratio can be reduced by about 10%. At the same time, in SM570, when the design is made in the range of 0.6 × Hc ≦ Ht ≦ 0.7 × Hc, the joint thickness ratio can be reduced by about 10%.
Thereby, the joint structure 7 of the steel pipe pile reduces the protrusion height Hc by setting the ratio of the protrusion height Ht to the protrusion height Hc to 0.5 or more and 0.9 or less, and avoids excessive design of compression strength. it can. Thereby, compared with the conventional steel pipe pile joint structure 9, the maximum compressive strength, tensile strength, and bending strength can be obtained with a small amount of used weight and volume of steel. As a result, the weight and volume of the entire joint can be reduced to improve the efficiency of the connection work, and an increase in the material cost of the entire joint can be suppressed.

本実施形態に係る鋼管杭の継手構造7では、各々の外嵌山部31において、相対的に第2鋼管杭2に近い外嵌山部31の突出高さHcにより、当該外嵌山部31の隣にある他の外嵌山部31の突出高さHtを除算した比率が、0.5以上、0.9以下であり、かつ、各々の内嵌山部51において、相対的に第1鋼管杭1に近い内嵌山部51の突出高さHcにより、当該内嵌山部51の隣にある他の内嵌山部51の突出高さHtを除算した比率が、0.5以上、0.9以下である。 In the joint structure 7 of the steel pipe pile according to the present embodiment, in each of the external fitting mountain parts 31, the external fitting mountain part 31 is based on the protruding height Hc of the external fitting mountain part 31 that is relatively close to the second steel pipe pile 2. The ratio obtained by dividing the projecting height Ht of the other external fitting mountain portion 31 adjacent to each other is 0.5 or more and 0.9 or less, and each of the internal fitting mountain portions 51 is relatively first. The ratio obtained by dividing the projection height Ht of the other internal fitting mountain portion 51 adjacent to the internal fitting mountain portion 51 by the projection height Hc of the internal fitting mountain portion 51 close to the steel pipe pile 1 is 0.5 or more. 0.9 or less.

なお、図17に示すように、軸芯直交方向Xとなる半径方向には、通常、所定のクリアランスCLが存在する。このため、このクリアランスCLを考慮すると、有効突出高さHc’(=Hc−1.5×CL)、及び、Ht’(=Ht−1.5×CL)との関係でも、上記で示した関係(0.5×Hc’≦Ht’≦0.9×Hc’)が成立することが好ましい。 As shown in FIG. 17, a predetermined clearance CL usually exists in the radial direction that is the axial direction X. For this reason, in consideration of the clearance CL, the relationship between the effective protrusion height Hc ′ (= Hc−1.5 × CL) and Ht ′ (= Ht−1.5 × CL) is also shown above. The relationship (0.5 × Hc ′ ≦ Ht ′ ≦ 0.9 × Hc ′) is preferably established.

また、引張力や曲げ力が作用した際に外嵌山部31と内嵌山部51との離脱を防止するためには、突出高さHtの下限値を設定することが望ましい。ここで、鋼管杭の外径Dpを800.0mm、Htを2.4mm、3.3mm、4.2mmと変化させた3ケースの曲げ試験を実施したところ、図18に示すように、Ht=2.4mmでは、外嵌山部31と内嵌山音1551との離脱によって最大耐力が決定する。これに対して、Ht=3.3mm以上では、外嵌山部31又は内嵌山部51の支圧破壊によって最大耐力が決定する。このため、外嵌山部31と内嵌山部51との離脱ではなく、支圧破壊というできるだけ安定した破壊状況を目指す場合には、突出高さHtの下限値として、Ht≧Dp/250とすることが望ましい。 Further, in order to prevent the outer fitting mountain portion 31 and the inner fitting mountain portion 51 from being detached when a tensile force or a bending force is applied, it is desirable to set a lower limit value of the protrusion height Ht. Here, when the bending test of three cases where the outer diameter Dp of the steel pipe pile was changed to 800.0 mm and Ht was changed to 2.4 mm, 3.3 mm, and 4.2 mm was performed, as shown in FIG. At 2.4 mm, the maximum proof stress is determined by the separation between the outer fitting mountain portion 31 and the inner fitting mountain sound 1551. On the other hand, at Ht = 3.3 mm or more, the maximum proof stress is determined by the bearing failure of the outer fitting mountain portion 31 or the inner fitting mountain portion 51. For this reason, when aiming for a stable destruction situation as a support pressure failure rather than separation between the outer fitting mountain portion 31 and the inner fitting mountain portion 51, Ht ≧ Dp / 250 as a lower limit value of the protrusion height Ht. It is desirable to do.

上記実施形態に係る鋼管杭の継手構造7によれば、最も内嵌先端側に位置する内嵌谷部53の板厚に対して、最も外嵌先端側に位置する外嵌谷部33の板厚を小さくし、かつ、これらの板厚の比率を規定することで、所望の強度を確保しつつも、継手重量を減らすことができる。そのため、鋼管杭の継手重量の軽減が可能となり、施工性が向上する。 According to the steel pipe pile joint structure 7 according to the above-described embodiment, the plate of the outer fitting valley portion 33 located closest to the outer fitting tip side with respect to the plate thickness of the inner fitting valley portion 53 located closest to the inner fitting tip side. By reducing the thickness and defining the ratio of these plate thicknesses, it is possible to reduce the weight of the joint while ensuring a desired strength. Therefore, the joint weight of the steel pipe pile can be reduced, and workability is improved.

<第2実施形態>
本発明の第2実施形態について以下に説明するが、基本的に上記第1実施形態の変形例に相当するので、上記第1実施形態で用いた符号と同一の符合を用いて説明し、図示は省略する。
すなわち、本実施形態は、基本的には、上記第1実施形態と同様の構成であるが、第1鋼管杭1に最も近い内嵌谷部53の板厚によって、第2鋼管杭2に最も近い外嵌谷部33の板厚を除算した比率が、0.84以上、0.94以下である。
Second Embodiment
The second embodiment of the present invention will be described below, but basically corresponds to a modified example of the first embodiment. Therefore, the second embodiment of the present invention will be described using the same reference numerals as those used in the first embodiment. Is omitted.
That is, this embodiment is basically the same configuration as the first embodiment, but the second steel pipe pile 2 is the most in accordance with the thickness of the inner valley portion 53 closest to the first steel pipe pile 1. The ratio obtained by dividing the plate thickness of the close fitting valley portion 33 is 0.84 or more and 0.94 or less.

図19に、従来の鋼管杭の外径Dpと第1外嵌段部41での外嵌谷部33の板厚tb1との径厚比(Dp/tb1)を横軸として、第1内嵌段部61での内嵌谷部53の板厚tp1と第1外嵌段部41での外嵌谷部33の板厚tb1との板厚比(tb1/tp1)を縦軸としたグラフを示す。これによると、鋼管の材質がSM570材であるか、あるいは鋼管板厚が厚い場合には、外嵌谷部板厚の厚い範囲(D/tp1が50以下の範囲)となる。このため、内嵌谷部53と外嵌谷部33の板厚比は、0.94以上と従来構造との差異がほとんどなくなる。径厚比が50〜150の範囲において、好ましく重量の軽減ができることから、板厚比を0.84以上、0.94以下とすることがより好ましい。外嵌谷部33と内嵌谷部53との板厚比については、径厚比との間に、下記の式1に示す線形の関係が成り立つ。
(tb1/tp1)=0.99−0.001×(Dp/tb1)…(式1)
In FIG. 19, the first inner fitting is based on the diameter-thickness ratio (Dp / tb1) between the outer diameter Dp of the conventional steel pipe pile and the plate thickness tb1 of the outer fitting valley portion 33 in the first outer fitting step portion 41. A graph with the vertical axis representing the plate thickness ratio (tb1 / tp1) between the plate thickness tp1 of the internal fitting valley portion 53 at the step portion 61 and the plate thickness tb1 of the external fitting valley portion 33 at the first external fitting step portion 41. Show. According to this, when the material of the steel pipe is SM570 material or the steel pipe plate thickness is thick, the outer fitting valley plate thickness is in the thick range (D / tp1 is 50 or less). For this reason, the plate thickness ratio of the internal fitting valley part 53 and the external fitting valley part 33 is 0.94 or more, and there is almost no difference between the conventional structure. In the range where the diameter-thickness ratio is in the range of 50 to 150, the weight can be preferably reduced. Therefore, the thickness ratio is more preferably 0.84 or more and 0.94 or less. About the plate | board thickness ratio of the external fitting trough part 33 and the internal fitting trough part 53, the linear relationship shown to the following formula | equation 1 is formed between diameter thickness ratios.
(Tb1 / tp1) = 0.99−0.001 × (Dp / tb1) (Formula 1)

本実施形態に係る鋼管杭の継手構造7によれば、板厚の比率を上記の範囲とすることで、内嵌端部5よりも継手重量に対する影響が大きい外嵌端部3の板厚をより小さくすることができ、継手全体の重量をさらに減らすことができる。そのため、鋼管杭の継手における重量をさらに軽減させることが可能となる。 According to the joint structure 7 of the steel pipe pile according to the present embodiment, the thickness of the outer fitting end portion 3 having a larger influence on the joint weight than the inner fitting end portion 5 can be obtained by setting the ratio of the plate thickness within the above range. It can be made smaller, and the weight of the entire joint can be further reduced. Therefore, it is possible to further reduce the weight of the steel pipe pile joint.

<第3実施形態>
本発明の第3実施形態について以下に説明するが、基本的に上記第1実施形態の変形例に相当するので、上記第1実施形態で用いた符号と同一の符合を用いて説明し、図示は省略する。
すなわち、本実施形態は、基本的には、上記第1実施形態と同様の構成であるが、各々の外嵌山部31において、相対的に第2鋼管杭2に近い外嵌山部31の突出高さにより、当該外嵌山部31の隣にある他の外嵌山部31の突出高さを除算した比率が、0.6以上、0.8以下であり、各々の内嵌山部51において、相対的に第1鋼管杭1に近い内嵌山部51の突出高さにより、当該内嵌山部51の隣にある他の内嵌山部51の突出高さを除算した比率が、0.6以上、0.8以下である。
<Third Embodiment>
The third embodiment of the present invention will be described below, but basically corresponds to a modification of the first embodiment. Therefore, the same reference numerals as those used in the first embodiment are used for explanation and illustration. Is omitted.
That is, this embodiment is basically the same configuration as the first embodiment, but in each outer fitting mountain portion 31, the outer fitting mountain portion 31 which is relatively close to the second steel pipe pile 2 is used. The ratio obtained by dividing the protrusion height of the other external fitting mountain part 31 adjacent to the external fitting mountain part 31 by the projection height is 0.6 or more and 0.8 or less, and each internal fitting mountain part 51, the ratio obtained by dividing the protrusion height of the other internal fitting mountain portion 51 adjacent to the internal fitting mountain portion 51 by the protruding height of the internal fitting mountain portion 51 that is relatively close to the first steel pipe pile 1. 0.6 or more and 0.8 or less.

本実施形態に係る鋼管杭の継手構造によれば、先端側の山部の突出高さに対する基端側の山部の突出高さの比率を上記の範囲とすることで、軸芯線Lに平行な方向における強度も十分に確保することができる。そのため、鋼管杭の継手としての強度を維持しながらも、鋼管杭の継手における重量の軽減が可能となる。 According to the joint structure of the steel pipe pile according to the present embodiment, the ratio of the protruding height of the ridge portion on the proximal end side to the protruding height of the ridge portion on the distal end side is within the above range, thereby being parallel to the axis L. A sufficient strength in any direction can be ensured. Therefore, the weight of the steel pipe pile joint can be reduced while maintaining the strength of the steel pipe pile joint.

以上、本発明の各実施形態について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎない。よって、これらのみによって本発明の技術的範囲が限定的に解釈されてはならない。 As mentioned above, although each embodiment of this invention was described in detail, all the embodiment mentioned above showed only the example of implementation in implementing this invention. Therefore, the technical scope of the present invention should not be limitedly interpreted only by these.

例えば、上記各実施形態に係る鋼管杭の継手構造7は、第1鋼管杭1及び第2鋼管杭2の端部を切削することで、第1鋼管杭1又は第2鋼管杭2の端部そのものに外嵌端部3又は内嵌端部5が設けられてもよい。また、第1鋼管杭1に内嵌端部5が設けられるとともに、第2鋼管杭2に外嵌端部3が設けられてもよい。 For example, the joint structure 7 of the steel pipe pile which concerns on each said embodiment cuts the edge part of the 1st steel pipe pile 1 and the 2nd steel pipe pile 2, and is the edge part of the 1st steel pipe pile 1 or the 2nd steel pipe pile 2 The outer fitting end 3 or the inner fitting end 5 may be provided in itself. The first steel pipe pile 1 may be provided with the inner fitting end 5, and the second steel pipe pile 2 may be provided with the outer fitting end 3.

本発明に係る鋼管杭の継手構造は、所望の強度を確保しつつも、継手重量を減らすことができる。そのため、鋼管杭の継手重量の軽減が可能となり、施工性が向上した鋼管杭を提供することができる。よって、本発明は、産業上の利用可能性が高い。 The joint structure of a steel pipe pile according to the present invention can reduce the joint weight while ensuring a desired strength. Therefore, the joint weight of the steel pipe pile can be reduced, and a steel pipe pile with improved workability can be provided. Therefore, the present invention has high industrial applicability.

1 :第1鋼管杭
2 :第2鋼管杭
3 :外嵌端部
31 :外嵌山部
31a:引張面
31b:圧縮面
32 :外嵌溝部
33 :外嵌谷部
38 :外嵌余長部
4 :外嵌段部
41 :第1外嵌段部
42 :第2外嵌段部
43 :第3外嵌段部
44 :第4外嵌段部
5 :内嵌端部
51 :内嵌山部
51a:引張面
51b:圧縮面
52 :内嵌溝部
53 :内嵌谷部
58 :内嵌余長部
6 :内嵌段部
61 :第1内嵌段部
62 :第2内嵌段部
63 :第3内嵌段部
64 :第4内嵌段部
7 :鋼管杭の継手構造
A :先端側
B :基端側
L :軸芯線
W :周方向
X :軸芯直交方向
Y :軸芯方向
1: 1st steel pipe pile 2: 2nd steel pipe pile 3: Outer fitting end part 31: Outer fitting mountain part 31a: Tensile surface 31b: Compression surface 32: Outer fitting groove part 33: Outer fitting trough part 38: Outer fitting extra length part 4: external fitting step part 41: 1st external fitting step part 42: 2nd external fitting step part 43: 3rd external fitting step part 44: 4th external fitting step part 5: internal fitting end part 51: internal fitting mountain part 51a: Tensile surface 51b: Compression surface 52: Internal fitting groove portion 53: Internal fitting valley portion 58: Internal fitting extra length portion 6: Internal fitting step portion 61: First fitting step portion 62: Second fitting step portion 63: 3rd internal fitting step part 64: 4th internal fitting step part 7: Joint structure A of steel pipe pile: Tip side B: Proximal end side L: Shaft core line W: Circumferential direction X: Shaft core orthogonal direction Y: Shaft core direction

Claims (3)

外嵌端部を有する第1鋼管杭と内嵌端部を有する第2鋼管杭とが、前記外嵌端部と前記内嵌端部とにおいて同一の軸芯線を共有した状態で連結された鋼管杭の継手構造であって、
前記軸芯線に沿って断面視した場合に:
前記外嵌端部の内側の、前記軸芯線に沿った複数位置に、前記第2鋼管杭に向かって段階的に拡径するように外嵌段部が設けられ、
各々の前記外嵌段部が、相対的に前記第2鋼管杭に近い外嵌山部と、当該外嵌山部に隣接する外嵌谷部とを有し;
前記内嵌端部の外側の、前記軸芯線に沿った複数位置に、前記第1鋼管杭に向かって段階的に縮径するように内嵌段部が設けられ、
各々の前記内嵌段部が、相対的に前記第1鋼管杭に近い内嵌山部と、当該内嵌山部に隣接する内嵌谷部とを有し、
各々の前記内嵌山部が、前記外嵌端部内に前記内嵌端部を挿入して前記軸芯線回りに相対回転させた状態で、各々の前記外嵌山部に対して係止され;
各々の前記外嵌山部において、相対的に前記第2鋼管杭に近い前記外嵌山部の突出高さにより、当該外嵌山部の隣にある前記外嵌山部の突出高さを除算した比率が、0.5以上、0.9以下であり、
各々の前記内嵌山部において、相対的に前記第1鋼管杭に近い前記内嵌山部の突出高さにより、当該内嵌山部の隣にある前記内嵌山部の突出高さを除算した比率が、0.5以上、0.9以下であり、
前記第1鋼管杭に最も近い前記内嵌谷部の板厚よりも、前記第2鋼管杭に最も近い前記外嵌谷部の板厚の方が小さく、かつ、前記第1鋼管杭に最も近い前記内嵌谷部の板厚によって、前記第2鋼管杭に最も近い前記外嵌谷部の板厚を除算した比率が、0.84以上である;
ことを特徴とする鋼管杭の継手構造。
The steel pipe which the 1st steel pipe pile which has an external fitting end part, and the 2nd steel pipe pile which has an internal fitting end part were connected in the state which shared the same axial center line in the said external fitting end part and the said internal fitting end part A pile joint structure,
When viewed in cross-section along the axis:
An outer fitting step portion is provided at a plurality of positions along the axial center line inside the outer fitting end portion so as to gradually expand the diameter toward the second steel pipe pile,
Each said external fitting step part has an external fitting mountain part relatively close to the said 2nd steel pipe pile, and an external fitting valley part adjacent to the said external fitting mountain part;
An inner fitting step portion is provided at a plurality of positions along the axial center line outside the inner fitting end portion so as to gradually reduce the diameter toward the first steel pipe pile,
Each of the internal fitting step portions has an internal fitting mountain portion relatively close to the first steel pipe pile, and an internal fitting valley portion adjacent to the internal fitting mountain portion,
Each of the internal fitting ridges is locked to each of the external fitting ridges in a state in which the internal fitting end is inserted into the external fitting end and is rotated relative to the axis line;
In each of the external fitting mountain portions, the protruding height of the external fitting mountain portion adjacent to the external fitting mountain portion is divided by the protruding height of the external fitting mountain portion that is relatively close to the second steel pipe pile. The ratio is 0.5 or more and 0.9 or less,
In each of the internal fitting mountain portions, the protruding height of the internal fitting mountain portion adjacent to the internal fitting mountain portion is divided by the protruding height of the internal fitting mountain portion that is relatively close to the first steel pipe pile. The ratio is 0.5 or more and 0.9 or less,
The plate thickness of the outer fitting valley portion closest to the second steel pipe pile is smaller than the plate thickness of the inner fitting valley portion closest to the first steel pipe pile, and is closest to the first steel pipe pile. The ratio obtained by dividing the plate thickness of the outer fitting valley portion closest to the second steel pipe pile by the plate thickness of the inner fitting valley portion is 0.84 or more;
A steel pipe pile joint structure characterized by that.
前記第1鋼管杭に最も近い前記内嵌谷部の板厚によって、前記第2鋼管杭に最も近い前記外嵌谷部の板厚を除算した比率が、0.84以上、0.94以下である
ことを特徴とする請求項1に記載の鋼管杭の継手構造。
The ratio obtained by dividing the plate thickness of the outer fitting valley portion closest to the second steel pipe pile by the plate thickness of the inner fitting valley portion closest to the first steel pipe pile is 0.84 or more and 0.94 or less. The steel pipe pile joint structure according to claim 1, wherein the steel pipe pile joint structure is provided.
各々の前記外嵌山部において、相対的に前記第2鋼管杭に近い前記外嵌山部の突出高さにより、当該外嵌山部の隣にある前記外嵌山部の突出高さを除算した比率が、0.6以上、0.8以下であり、
各々の前記内嵌山部において、相対的に前記第1鋼管杭に近い前記内嵌山部の突出高さにより、当該内嵌山部の隣にある前記内嵌山部の突出高さを除算した比率が、0.6以上、0.8以下であり、
ことを特徴とする請求項1又は2に記載の鋼管杭の継手構造。
In each of the external fitting mountain portions, the protruding height of the external fitting mountain portion adjacent to the external fitting mountain portion is divided by the protruding height of the external fitting mountain portion that is relatively close to the second steel pipe pile. The ratio is 0.6 or more and 0.8 or less,
In each of the internal fitting mountain portions, the protruding height of the internal fitting mountain portion adjacent to the internal fitting mountain portion is divided by the protruding height of the internal fitting mountain portion that is relatively close to the first steel pipe pile. The ratio is 0.6 or more and 0.8 or less,
The joint structure for steel pipe piles according to claim 1 or 2.
JP2017552376A 2015-11-27 2016-11-17 Steel pipe pile joint structure Active JP6354911B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015231400 2015-11-27
JP2015231400 2015-11-27
PCT/JP2016/084082 WO2017090503A1 (en) 2015-11-27 2016-11-17 Joint structure for steel pipe pile

Publications (2)

Publication Number Publication Date
JPWO2017090503A1 JPWO2017090503A1 (en) 2018-07-05
JP6354911B2 true JP6354911B2 (en) 2018-07-11

Family

ID=58763103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017552376A Active JP6354911B2 (en) 2015-11-27 2016-11-17 Steel pipe pile joint structure

Country Status (8)

Country Link
JP (1) JP6354911B2 (en)
CN (1) CN108291376B (en)
AU (1) AU2016360218B2 (en)
HK (1) HK1252777A1 (en)
MY (1) MY192569A (en)
SG (1) SG11201803193TA (en)
TW (1) TWI602971B (en)
WO (1) WO2017090503A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444421A (en) * 1980-11-12 1984-04-24 Varco International, Inc. Driveable pile connections
IT1176371B (en) * 1984-06-29 1987-08-18 Innocenti Santeustacchio Spa JOINT FOR HEAD-TO-HEAD CONNECTION OF METAL TUBES, IN PARTICULAR FOR MARINE PALLING
CN2279972Y (en) * 1997-03-07 1998-04-29 蓝培熙 Joint for steel pipe or tube
JP3336430B2 (en) * 1998-12-15 2002-10-21 株式会社クボタ Vertical joints for steel pipe sheet piles
JP3707976B2 (en) * 1999-12-24 2005-10-19 株式会社クボタ Columnar
JP4075623B2 (en) * 2003-01-23 2008-04-16 Jfeスチール株式会社 Steel pipe joining structure and joining method
JP4645268B2 (en) * 2005-03-31 2011-03-09 Jfeスチール株式会社 Joint structure of steel pipe pile for landslide prevention and steel pipe pile for landslide prevention provided with the same
CN201273426Y (en) * 2008-08-12 2009-07-15 连云港中复连众复合材料集团有限公司 Large-diameter glass fiber reinforced epoxy plastics pipe connector
JP5284249B2 (en) * 2009-11-30 2013-09-11 新日鐵住金株式会社 Steel pipe sheet pile joint structure and steel pipe sheet pile foundation
WO2014080824A1 (en) * 2012-11-21 2014-05-30 新日鐵住金株式会社 Joint structure for steel-pipe pile, and steel-pipe pile
JP6344225B2 (en) * 2013-12-26 2018-06-20 新日鐵住金株式会社 Steel pipe pile joint structure
CN104452744A (en) * 2014-12-02 2015-03-25 中交公路规划设计院有限公司 Steel pipe composite pile with shear connection structure and shear connection structure thereof

Also Published As

Publication number Publication date
HK1252777A1 (en) 2019-05-31
MY192569A (en) 2022-08-29
AU2016360218B2 (en) 2019-05-02
CN108291376B (en) 2020-06-16
TWI602971B (en) 2017-10-21
CN108291376A (en) 2018-07-17
TW201720991A (en) 2017-06-16
SG11201803193TA (en) 2018-05-30
AU2016360218A1 (en) 2018-05-10
JPWO2017090503A1 (en) 2018-07-05
WO2017090503A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6202102B2 (en) Steel pipe pile joint structure
TWI615535B (en) Reinforcement member
JP6354911B2 (en) Steel pipe pile joint structure
JP2017133282A (en) Steel device and load bearing wall
JP7205824B2 (en) Concrete pile with double steel pipe, its design method, its usage method, and pile foundation provided
US10221570B2 (en) Anchorage device
JP6601299B2 (en) Joint structure of steel pipe pile and connected steel pipe pile
JP6790571B2 (en) Bearing wall
JP2014098288A (en) Sheath for PC steel
JP5538244B2 (en) Steel pipe connection structure
US11433450B2 (en) Joined body and method for manufacturing same
JP6575035B2 (en) Joint structure and joint hardware of wooden members
JP5144919B2 (en) Vibration control panel
CA2920289C (en) Composite structure
JP2016138399A (en) Damper structure
JP6349056B2 (en) Pile head joint structure
JP7348513B2 (en) Pile cap joint structure of hollow pile and pile cap
JP6761169B2 (en) Concrete pile
KR20110108792A (en) Apparatus of deformed bar having structure for improving adhesive strength
JP5936020B2 (en) Reinforcement structure of building
JP6485006B2 (en) Steel pipe column joint structure
JP6492886B2 (en) Pile joint device
JP6300268B2 (en) Coiled structure
JP2020101250A (en) Conversion joint
JP2018100500A (en) Ring joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180406

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R151 Written notification of patent or utility model registration

Ref document number: 6354911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350