JP6354092B2 - AC power supply device and isolated operation detection method - Google Patents

AC power supply device and isolated operation detection method Download PDF

Info

Publication number
JP6354092B2
JP6354092B2 JP2014163429A JP2014163429A JP6354092B2 JP 6354092 B2 JP6354092 B2 JP 6354092B2 JP 2014163429 A JP2014163429 A JP 2014163429A JP 2014163429 A JP2014163429 A JP 2014163429A JP 6354092 B2 JP6354092 B2 JP 6354092B2
Authority
JP
Japan
Prior art keywords
frequency
power supply
isolated operation
power
latest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014163429A
Other languages
Japanese (ja)
Other versions
JP2016039746A (en
Inventor
智宣 西田
智宣 西田
一晃 本田
一晃 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Ltd
Original Assignee
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Ltd filed Critical Takasago Ltd
Priority to JP2014163429A priority Critical patent/JP6354092B2/en
Publication of JP2016039746A publication Critical patent/JP2016039746A/en
Application granted granted Critical
Publication of JP6354092B2 publication Critical patent/JP6354092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

本発明は交流電源装置及び単独運転検出方法に関し、特に商用系統電源との連系運転が可能な交流電源装置及びその単独運転検出方法に関する。   The present invention relates to an AC power supply device and an isolated operation detection method, and more particularly to an AC power supply device capable of interconnecting operation with a commercial power supply and an isolated operation detection method thereof.

近年、太陽電池パネル等を利用して発電した電力を交流電源として出力する交流電源装置の普及が進んでいる。このような交流電源装置は、発電所等から供給される商用系統電源と連系して家庭等で利用される電力の一部を賄う。この交流電源装置は、商用系統電源を点検等のため停止する場合、或いは、商用系統電源が停電等で一時的に切り離された場合には、連系している発電設備等の出力を停止することが求められる。このような場合に線路負荷への電力供給を停止しない場合、商用系統電源側で本来は電力の供給が停止した状態であるにも関わらず、商用系統電源に交流電源装置から電力が供給され系統の安全性が確保出来ないためである。そこで、特許文献1に、商用系統電源が切り離されて交流電源装置が単独動作する状態となる単独運転を検出する方法が開示されている。   In recent years, an AC power supply device that outputs electric power generated using a solar battery panel or the like as an AC power supply has been popularized. Such an AC power supply device covers a part of electric power used in a home or the like in connection with a commercial power supply supplied from a power plant or the like. This AC power supply device stops the output of the connected power generation equipment, etc. when the commercial system power supply is stopped for inspection or when the commercial system power supply is temporarily disconnected due to a power failure or the like Is required. In such a case, if the power supply to the line load is not stopped, the power is supplied from the AC power supply to the commercial system power supply even though the power supply is originally stopped on the commercial system power supply side. This is because the safety cannot be secured. Therefore, Patent Document 1 discloses a method of detecting an isolated operation in which the commercial power supply is disconnected and the AC power supply device operates independently.

特許文献1は、単独運転検出方法を開示するものである。特許文献1では、系統電源の電源信号が一定の条件を満たしたことに応じて、電源信号の周波数変化を助長する方向に無効電力を注入し、その時の電源信号の周波数変化に基づき単独運転を検出するものである。   Patent Document 1 discloses an isolated operation detection method. In Patent Document 1, in response to the fact that the power signal of the system power supply satisfies a certain condition, reactive power is injected in a direction that promotes the frequency change of the power supply signal, and the single operation is performed based on the frequency change of the power supply signal at that time. It is to detect.

特許第4835587号明細書Japanese Patent No. 4,835,587

しかしながら、特許文献1に開示された方法では、系統の一時的な擾乱による周波数変動を単独運転として誤検出してしまう問題がある。   However, the method disclosed in Patent Document 1 has a problem in that frequency fluctuation due to temporary disturbance of the system is erroneously detected as an isolated operation.

本発明にかかる交流電源装置の一態様は、直流電源信号から交流電源信号を生成し、前記交流電源信号を商用系統電源が伝達される系統配線に出力するインバータと、前記インバータを制御する制御部と、を有し、前記制御部は、前記商用系統電源が切り離された状態となる単独運転であることを検出する単独運転検出部を有し、前記単独運転検出部は、前記単独運転となっている可能性を判断する単独運転可能性判定処理を行い、前記単独運転可能性判定処理において、前記単独運転の可能性があると判断された後は、前記単独運転を判定する単独運転判定処理を行い、前記単独運転判定処理では、前記系統配線に伝達される電源信号の最新の周波数を示す最新周波数を第1のバッファに蓄積すると共に、過去の前記電源信号の周波数からの前記最新周波数の変化極性を示す極性値を第2のバッファに蓄積し、予め設定された判定期間内に蓄積された前記最新周波数と前記極性値とに基づき、前記電源信号の周波数が単調増加又は単調減少かつ前記電源信号の周波数の変化量が予め設定した周波数変化閾値範囲外となったことに応じて、前記単独運転であることを検出する。   One aspect of the AC power supply device according to the present invention is an inverter that generates an AC power signal from a DC power signal and outputs the AC power signal to a system wiring to which a commercial system power is transmitted, and a control unit that controls the inverter And the control unit has an isolated operation detection unit that detects that the commercial system power supply is disconnected and is in an isolated operation, and the isolated operation detection unit becomes the isolated operation. An isolated operation determination process is performed to determine the isolated operation after it is determined that there is a possibility of the isolated operation in the isolated operation possibility determination process. In the isolated operation determination process, the latest frequency indicating the latest frequency of the power signal transmitted to the system wiring is stored in the first buffer, and the frequency of the power signal in the past is stored. A polarity value indicating the change polarity of the latest frequency is accumulated in the second buffer, and the frequency of the power supply signal is monotonously increased based on the latest frequency and the polarity value accumulated in a preset determination period. The single operation is detected in response to a monotonous decrease and the amount of change in the frequency of the power signal is outside a preset frequency change threshold range.

本発明にかかる単独運転検出方法の一態様は、直流電源信号から交流電源信号を生成し、前記交流電源信号を商用系統電源が伝達される系統配線に出力するインバータと、前記インバータを制御すると共に商用系統電源が切り離された状態となる単独運転であることを検出する制御部と、を有する交流電源装置における単独運転検出方法であって、前記単独運転となっている可能性を判断する単独運転可能性判定処理を行い、前記単独運転可能性判定処理において、前記単独運転の可能性があると判断された後は、前記単独運転を判定する単独運転判定処理を行い、前記単独運転判定処理では、前記系統配線に伝達される電源信号の最新の周波数を示す最新周波数の情報を蓄積すると共に、過去の前記電源信号の周波数からの前記最新周波数の変化極性を示す極性値の情報を蓄積し、予め設定された判定期間内に蓄積された前記最新周波数と前記極性値とに基づき、前記電源信号の周波数が単調増加又は単調減少かつ前記電源信号の周波数の変化量が予め設定した周波数変化閾値範囲外となったことに応じて、前記単独運転であることを検出する。   One aspect of the islanding detection method according to the present invention is an inverter that generates an AC power signal from a DC power signal and outputs the AC power signal to a system wiring to which a commercial system power is transmitted, and controls the inverter. A control unit that detects that the commercial system power supply is disconnected, and an independent operation detection method for an AC power supply apparatus that determines the possibility of the isolated operation. After determining that there is a possibility of the isolated operation in the isolated operation possibility determining process, the isolated operation determining process for determining the isolated operation is performed. The latest frequency information indicating the latest frequency of the power signal transmitted to the system wiring is accumulated and the latest frequency from the frequency of the power signal in the past is stored. Information on the polarity value indicating the change polarity is accumulated, and based on the latest frequency and the polarity value accumulated within a preset determination period, the frequency of the power signal is monotonously increased or monotonically decreased and the power signal The single operation is detected in response to the frequency change amount being outside the preset frequency change threshold range.

本発明にかかる交流電源装置及びその単独運転検出方法は、単独運転である可能性があると判定された後に、一定期間の間の電源信号の周波数の履歴を蓄積し、当該履歴に基づき、電源信号の周波数が単調増加又は単調減少し、かつ、その間の周波数の変化量が予め設定した周波数変化閾値範囲外となったことに応じて、交流電源装置が単独運転であること検出する。これにより、交流電源装置及びその単独運転検出方法は、電源信号の周波数の変化量が単独運転として一般的に規定されている変化量に達する前に、その周波数変化の傾向に基づき単独運転を検出することができる。   The AC power supply apparatus and its isolated operation detection method according to the present invention accumulates the frequency history of the power signal for a certain period after it is determined that there is a possibility of isolated operation, and based on the history, the power supply When the frequency of the signal monotonously increases or monotonously decreases and the amount of change in the frequency is outside the preset frequency change threshold range, it is detected that the AC power supply device is operating alone. As a result, the AC power supply device and the islanding operation detection method detect the islanding operation based on the tendency of the frequency change before the amount of change in the frequency of the power signal reaches the amount of change generally defined as islanding operation. can do.

本発明によれば、誤検出を防ぎながら単独運転の検出にかかる時間を短くすることが出来る。   According to the present invention, it is possible to shorten the time required for detecting an isolated operation while preventing erroneous detection.

実施の形態1にかかる交流電源装置のブロック図である。1 is a block diagram of an AC power supply device according to a first exemplary embodiment; 実施の形態1にかかる交流電源装置における単独運転検出方法で用いる最新周波数、過去周波数及び周波数偏差の計算方法を説明する図である。It is a figure explaining the calculation method of the newest frequency used in the isolated operation detection method in the alternating current power supply device concerning Embodiment 1, a past frequency, and a frequency deviation. 実施の形態1にかかる交流電源装置における単独運転検出方法における電源信号の周波数の更新タイミングを説明する図である。It is a figure explaining the update timing of the frequency of the power signal in the isolated operation detection method in the alternating current power supply device concerning Embodiment 1. FIG. 実施の形態1にかかる交流電源装置における単独運転検出方法を説明するフローチャートである。3 is a flowchart for explaining an isolated operation detection method in the AC power supply apparatus according to the first exemplary embodiment;

実施の形態1
以下では、図面を参照して本発明の実施の形態について説明する。実施の形態1にかかる交流電源装置1は、発電所等で発電された電力を需要者に供給する商用系統電源SPSと連系して動作する連系動作状態と、商用系統電源SPSとは独立して動作する単独動作状態と、を有する。また、実施の形態1にかかる交流電源装置1は、連系動作状態で動作中に商用電源が切り離されて単独運転状態となってしまった状態を検出する単独運転検出を行う。以下では、特に、実施の形態1にかかる交流電源装置1の単独運転検出方法について説明を行う。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. The AC power supply device 1 according to the first exemplary embodiment is independent of the interconnection operation state in which the electric power generated at a power plant or the like operates in conjunction with the commercial grid power supply SPS that supplies the consumer with the commercial grid power supply SPS. And a single operation state that operates in the same manner. In addition, the AC power supply device 1 according to the first embodiment performs an isolated operation detection for detecting a state in which the commercial power supply is disconnected during operation in the interconnected operation state and has become an isolated operation state. Below, especially the independent operation detection method of the alternating current power supply device 1 concerning Embodiment 1 is demonstrated.

実施の形態1にかかる交流電源装置1のブロック図を図1に示す。図1に示す例では、交流電源装置1の利用形態が分かるように、商用系統電源SPS及び電力供給対象の負荷を示した。負荷は、例えば家庭で利用される電化製品等である。   FIG. 1 shows a block diagram of an AC power supply device 1 according to the first exemplary embodiment. In the example shown in FIG. 1, the commercial power supply SPS and the load to be supplied with power are shown so that the usage form of the AC power supply device 1 can be understood. The load is, for example, an electric appliance used at home.

図1に示すように、実施の形態1にかかる交流電源装置1は、PCS(Power Conditioner System)10を有し、このPCS10にはPV(Photo Voltaics)及び、蓄電池BATが接続される。なお、交流電源装置1は、PVの代わりに風力発電機等の他の発電源が接続されていても良い。   As shown in FIG. 1, the AC power supply 1 according to the first embodiment includes a PCS (Power Conditioner System) 10, and a PV (Photo Voltaics) and a storage battery BAT are connected to the PCS 10. Note that the AC power supply device 1 may be connected to another power generation source such as a wind power generator instead of PV.

PCS10は、制御部(例えば、エネルギー管理部11)、DC/DCコンバータ12、DC/ACインバータ13、DC/DCコンバータ14、スイッチSW1を有する。エネルギー管理部11は、例えば、CPU(Central Processing Unit)等の演算装置を備え、DC/DCコンバータ12、DC/DCコンバータ14及びDC/ACインバータ13の制御を行う。また、エネルギー管理部11は、単独運転検出部11aを有する。この単独運転検出部11aの詳細な説明は後述する。   The PCS 10 includes a control unit (for example, energy management unit 11), a DC / DC converter 12, a DC / AC inverter 13, a DC / DC converter 14, and a switch SW1. The energy management unit 11 includes an arithmetic device such as a CPU (Central Processing Unit), for example, and controls the DC / DC converter 12, the DC / DC converter 14, and the DC / AC inverter 13. Moreover, the energy management part 11 has the independent operation detection part 11a. A detailed description of the isolated operation detection unit 11a will be described later.

DC/DCコンバータ12は、太陽電池パネルPVで発電された電力の直流電圧の電圧レベルを変換してDC/ACインバータ13に出力する。DC/DCコンバータ14は、バッテリーBATに蓄積された電力の直流電圧の電圧レベルを変換してDC/ACインバータ13に出力する。DC/ACインバータ13は、DC/DCコンバータ12により与えられた直流電力を交流電力に変換して商用系統電源SPSからの電力が供給される系統配線に出力する。つまり、DC/ACインバータ13は、直流電源信号から交流電源信号を生成し、生成した交流電電信号を商用系統電源SPSからの電力が供給される系統配線に出力する。スイッチSW1は、DC/ACインバータ13と系統配線との間に設けられ、エネルギー管理部11が出力するスイッチ制御信号に基づき開閉状態が制御される。   The DC / DC converter 12 converts the voltage level of the DC voltage of the electric power generated by the solar battery panel PV and outputs it to the DC / AC inverter 13. The DC / DC converter 14 converts the voltage level of the direct current voltage of the power stored in the battery BAT and outputs it to the DC / AC inverter 13. The DC / AC inverter 13 converts the DC power provided by the DC / DC converter 12 into AC power and outputs the AC power to the system wiring to which power from the commercial system power supply SPS is supplied. That is, the DC / AC inverter 13 generates an AC power signal from the DC power signal, and outputs the generated AC power signal to the system wiring to which the power from the commercial system power supply SPS is supplied. The switch SW1 is provided between the DC / AC inverter 13 and the system wiring, and an open / close state is controlled based on a switch control signal output from the energy management unit 11.

電源信号モニタ部31は、系統配線に伝達する電源信号の電圧及び電流をモニタし、モニタした電圧及び電流の値をモニタ信号S1としてエネルギー管理部11に出力する。なお、系統接続点には、商用系統電源SPSから供給される電力の信号と、PCS10からの出力が混合した電源信号が伝達する。   The power signal monitoring unit 31 monitors the voltage and current of the power signal transmitted to the system wiring, and outputs the monitored voltage and current values to the energy management unit 11 as the monitor signal S1. In addition, the power signal which mixed the signal of the electric power supplied from the commercial system power supply SPS and the output from PCS10 is transmitted to a system connection point.

続いて、エネルギー管理部11の単独運転検出部11aの動作について説明する。単独運転検出部11aでは、系統配線に伝達する電源信号の周波数の変化に基づき交流電源装置1が単独運転状態に移行したことを検出する。この電源信号の周波数変化を検出するために、単独運転検出部11aでは、周波数の移動平均値から算出される最新周波数、過去周波数及び周波数偏差を利用する。そこで、単独運転検出部11aの具体的な動作を説明する前に、単独運転検出処理で用いられる最新周波数、過去周波数及び周波数偏差の算出方法について説明する。そこで、図2に実施の形態1にかかる交流電源装置における単独運転検出方法で用いる最新周波数、過去周波数及び周波数偏差の計算方法を説明する図を示す。   Then, operation | movement of the independent operation | movement detection part 11a of the energy management part 11 is demonstrated. The isolated operation detection unit 11a detects that the AC power supply device 1 has shifted to the isolated operation state based on a change in the frequency of the power signal transmitted to the system wiring. In order to detect the frequency change of the power signal, the isolated operation detection unit 11a uses the latest frequency, the past frequency, and the frequency deviation calculated from the moving average value of the frequencies. Therefore, before describing the specific operation of the isolated operation detection unit 11a, a method of calculating the latest frequency, the past frequency, and the frequency deviation used in the isolated operation detection process will be described. FIG. 2 is a diagram for explaining a calculation method of the latest frequency, the past frequency, and the frequency deviation used in the isolated operation detection method in the AC power supply according to the first embodiment.

図2に示すように、電源信号の周波数とは独立して設定される一定の周期(例えば、5msecの周期)で電源信号の周波数を保持する。図2では、保持された電源信号の周波数情報をC−3〜Cm(mは、周波数情報の番号を示す整数)で示した。   As shown in FIG. 2, the frequency of the power supply signal is held at a constant cycle (for example, a cycle of 5 msec) set independently of the frequency of the power supply signal. In FIG. 2, the frequency information of the held power signal is indicated by C-3 to Cm (m is an integer indicating the frequency information number).

単独運転検出部11aは、最新周波数として、周波数検出部より半周期毎に得られる周波数の2回移動平均値を用いる。   The isolated operation detection unit 11a uses the twice moving average value of the frequency obtained every half cycle from the frequency detection unit as the latest frequency.

単独運転検出部11aは、過去周波数として、最新周波数から一定期間前(例えば200msec前)の80msec分の移動平均値を用いる。また、単独運転検出部11aは、周波数偏差として最新周波数から過去周波数を引いた値を用いる。なお、エネルギー管理部11においては、前記周波数偏差を用いる。   The isolated operation detection unit 11a uses, as the past frequency, a moving average value for 80 msec before a certain period (for example, 200 msec before) from the latest frequency. Further, the isolated operation detection unit 11a uses a value obtained by subtracting the past frequency from the latest frequency as the frequency deviation. The energy management unit 11 uses the frequency deviation.

また、上述した周波数情報Cmは、電源信号の半周期毎に更新される系統周波数情報に基づき蓄積されるものである。そこで、図3に実施の形態1にかかる交流電源装置における単独運転検出方法における電源信号の周波数の更新タイミングを説明する図を示す。   The frequency information Cm described above is accumulated based on the system frequency information updated every half cycle of the power supply signal. FIG. 3 is a diagram for explaining the update timing of the frequency of the power signal in the isolated operation detection method in the AC power supply according to the first embodiment.

図3に示すように、系統周波数の情報は、電源信号の半周期毎に更新される。この電源信号の周期は、電源信号モニタ部31で検出された電圧又は電流の情報に基づき決定される周期である。交流電源装置1では、電源信号モニタ部31が出力するモニタ信号S1に含まれる電圧情報に基づき、電源信号のゼロクロス点を検出し、当該ゼロクロス点の間隔に基づき電源信号の半周期の検出及び電源信号の周波数を取得する。電源信号の周期及び周波数は、例えば、フーリエ変換処理等を用いて算出することもできる。   As shown in FIG. 3, the system frequency information is updated every half cycle of the power signal. The cycle of the power signal is a cycle determined based on voltage or current information detected by the power signal monitor 31. In the AC power supply device 1, the zero cross point of the power signal is detected based on the voltage information included in the monitor signal S 1 output from the power signal monitor unit 31, the half cycle of the power signal is detected based on the interval of the zero cross point, and the power source Get the frequency of the signal. The period and frequency of the power signal can also be calculated using, for example, Fourier transform processing.

一方、移動平均等の算出に用いられる周波数情報Cmは、電源信号の周期とは独立した一定の周期で更新される。図3では、約50Hzの電源信号をモニタし、5msec毎に周波数情報の更新を行う例を示した。そのため、図3では、電源信号の一周期中に周波数情報Cmが2回更新されている。また、図3では、エネルギー管理部11では、例えば、80msec分の周波数情報Cmから過去周波数情報を算出する例を示した。   On the other hand, the frequency information Cm used for calculating the moving average or the like is updated at a constant cycle independent of the cycle of the power supply signal. FIG. 3 shows an example in which a power signal of about 50 Hz is monitored and frequency information is updated every 5 msec. Therefore, in FIG. 3, the frequency information Cm is updated twice during one cycle of the power signal. Moreover, in FIG. 3, the energy management part 11 showed the example which calculates the past frequency information from the frequency information Cm for 80 msec, for example.

続いて、単独運転検出部11aの具体的な単独運転検出処理について説明する。図4に、実施の形態1にかかる交流電源装置1の単独運転検出処理について説明する。なお、単独運転検出部11aには、処理に必要なフラグとして検出期間フラグFDTMが設けられ、処理に必要な値を保持するバッファとして第1のバッファBUF_A、第2のバッファBUF_Bが設けられる。また、図4では、処理に必要なバッファの番号を示す値としてiを示した。このiは、交流電源装置1の起動時に初期値として0が与えられるものである。   Next, a specific isolated operation detection process of the isolated operation detection unit 11a will be described. FIG. 4 illustrates an isolated operation detection process of the AC power supply apparatus 1 according to the first embodiment. The isolated operation detection unit 11a is provided with a detection period flag FDTM as a flag necessary for processing, and a first buffer BUF_A and a second buffer BUF_B as buffers for holding values necessary for processing. In FIG. 4, i is shown as a value indicating the number of a buffer necessary for processing. This i is given 0 as an initial value when the AC power supply device 1 is started.

図4に示すように、単独運転検出部11aは、電源信号の半周期毎にステップS11〜S28の単独運転検出処理を行う(ステップS10)。単独運転検出処理では、まず、期間検出フラグFDTMが有効(例えば、1)であるか否かを確認する(ステップS11)。ステップS11において、期間検出フラグFDTMが無効(例えば、0)であった場合は、ステップS12〜S13の単独運転可能性判定処理を行う。一方、ステップS11において、期間検出フラグFDTMが有効であった場合は、ステップS15〜S28の単独運転判定処理を行う。なお、ステップS19〜ステップS21は、単独運転可能性判定処理においても行われる処理である。   As illustrated in FIG. 4, the isolated operation detection unit 11 a performs the isolated operation detection process of steps S <b> 11 to S <b> 28 for each half cycle of the power signal (step S <b> 10). In the isolated operation detection process, first, it is confirmed whether or not the period detection flag FDTM is valid (for example, 1) (step S11). In step S11, when the period detection flag FDTM is invalid (for example, 0), the independent operation possibility determination process in steps S12 to S13 is performed. On the other hand, if the period detection flag FDTM is valid in step S11, the single operation determination process in steps S15 to S28 is performed. In addition, step S19-step S21 are the processes performed also in an independent driving possibility determination process.

単独運転可能性判定処理では、まず、周波数偏差を算出する(ステップS12)。そして、周波数偏差が検出開始閾値範囲外であるか否かを判断する(ステップS13)。検出開始閾値範囲は、例えば、周波数偏差の絶対値が0.1Hzを超えない範囲を検出開始閾値範囲として設定することができる。   In the isolated operation possibility determination process, first, a frequency deviation is calculated (step S12). Then, it is determined whether or not the frequency deviation is outside the detection start threshold range (step S13). As the detection start threshold range, for example, a range where the absolute value of the frequency deviation does not exceed 0.1 Hz can be set as the detection start threshold range.

そして、ステップS13において、周波数偏差の絶対値が検出開始閾値範囲内であった場合には、単独運転検出部11aは、交流電源装置1が単独運転状態にないと判断し(ステップS19)、iをゼロに初期化する(ステップS20)と共に、検出期間フラグFDTMを無効な状態とする(ステップS21)。   In step S13, when the absolute value of the frequency deviation is within the detection start threshold range, the isolated operation detection unit 11a determines that the AC power supply device 1 is not in the isolated operation state (step S19), and i Is initialized to zero (step S20), and the detection period flag FDTM is invalidated (step S21).

一方、ステップS13において、周波数偏差の絶対値が検出開始閾値範囲外であった場合(ステップS13のYESの枝)には、単独運転検出部11aは、iをゼロに初期化して(ステップS14)、単独運転判定処理を開始する。   On the other hand, if the absolute value of the frequency deviation is outside the detection start threshold range in step S13 (YES branch in step S13), the isolated operation detection unit 11a initializes i to zero (step S14). The independent operation determination process is started.

単独運転判定処理では、まず、検出期間フラグFDTMを有効な状態(例えば、1)とする(ステップS15)。続いて、単独運転検出部11aは、第1のバッファBUF_A[0]にその時点で算出されている最新周波数を保持する(ステップS16)。また、単独運転検出部11aは、周波数変化の極性を示す周波数変化極性を第2のバッファBUF_B[0]に保持する(ステップS17)。このステップS17では、周波数偏差が正の値であれば1を第2のバッファBUF_B[0]に保持し、周波数偏差が負の値であれば0を第2のバッファBUF_B[0]に保持する。そして、単独運転検出部11aは、カウント値iを1つ増加させる(ステップS18)。   In the isolated operation determination process, first, the detection period flag FDTM is set to a valid state (for example, 1) (step S15). Subsequently, the isolated operation detection unit 11a holds the latest frequency calculated at that time in the first buffer BUF_A [0] (step S16). Further, the isolated operation detection unit 11a holds the frequency change polarity indicating the frequency change polarity in the second buffer BUF_B [0] (step S17). In step S17, 1 is held in the second buffer BUF_B [0] if the frequency deviation is a positive value, and 0 is held in the second buffer BUF_B [0] if the frequency deviation is a negative value. . Then, the isolated operation detection unit 11a increases the count value i by one (step S18).

上記ステップS15により、期間検出フラグFDTMが有効状態となった後は、単独運転検出部11aは、ステップS11の判断により、単独運転検出処理が起動される毎にステップS22以降の処理を行う。   After the period detection flag FDTM becomes valid in step S15, the isolated operation detection unit 11a performs the processing after step S22 every time the isolated operation detection process is activated based on the determination in step S11.

ステップS22では、検出処理を起動した時点で算出された最新周波数を第1のバッファBUF_A[i]に保持する。また、ステップS23において、周波数変化量を算出し、周波数変化極性を第2のバッファBUF_B[i]に保持する(ステップS23)。なお、ここでの周波数変化量とは、現時点での最新周波数から前回の単独運転検出処理における最新周波数を引いた値である。そして、ステップS23では、周波数変化量が正の値であれば1を第2のバッファBUF_B[i]に保持し、周波数変化量が負の値であれば0を第2のバッファBUF_B[i]に保持する。   In step S22, the latest frequency calculated at the time when the detection process is started is held in the first buffer BUF_A [i]. In step S23, the frequency change amount is calculated, and the frequency change polarity is held in the second buffer BUF_B [i] (step S23). Here, the frequency change amount is a value obtained by subtracting the latest frequency in the last isolated operation detection process from the latest frequency at the present time. In step S23, if the frequency change amount is a positive value, 1 is held in the second buffer BUF_B [i], and if the frequency change amount is a negative value, 0 is stored in the second buffer BUF_B [i]. Hold on.

続いて、単独運転検出部11aは、カウント値iが予め設定した判定期間値N以上となっているか否かを判定する(ステップS24)。この判定期間値Nは任意の値を設定可能であるが、本実施の形態では7(例えば、蓄積するバッファの数が8個)とする。なお、判定期間値Nは、予想される一時的な系統擾乱による周波数の変動期間に合わせることが好ましい。   Subsequently, the isolated operation detection unit 11a determines whether or not the count value i is equal to or greater than a preset determination period value N (step S24). Although this determination period value N can be set to an arbitrary value, in the present embodiment, it is set to 7 (for example, the number of buffers to be accumulated is 8). Note that the determination period value N is preferably matched to a frequency fluctuation period due to an expected temporary system disturbance.

ステップS24で、カウント値iが判定期間値Nよりも小さい場合(ステップS24のNOの枝)、単独運転検出部11aは、カウント値iを1つ増加させて単独運転検出処理を一旦終了する(ステップS28)。つまり、単独運転検出部11aは、カウント値iが判定期間値Nに達するまで、第1のバッファBUF_Aに新たに計算される最新周波数を蓄積すると共に、第2のバッファBUF_Bに新たに計算される周波数変化極性の値を蓄積する。   If the count value i is smaller than the determination period value N in step S24 (NO branch of step S24), the isolated operation detection unit 11a increments the count value i by 1 and ends the isolated operation detection process once ( Step S28). That is, the isolated operation detection unit 11a stores the latest frequency newly calculated in the first buffer BUF_A and newly calculated in the second buffer BUF_B until the count value i reaches the determination period value N. Accumulate frequency change polarity values.

一方、ステップS24において、カウント値iが判定期間値Nに達したと判断された場合(ステップS24のYESの枝)、単独運転検出部11aは、第2のバッファBUF_B[i]の値を参照して判定期間中の周波数変化が単調増加、又は、単調減少であったか否かを判定する(ステップS25)。例えば、判定期間中の周波数変化が単調増加であった場合、第2のバッファBUF_B[0]から第2のバッファBUF_B[N]を積算した値がN+1となる。また、判定期間中の周波数変化が単調減少であった場合、第2のバッファBUF_B[0]から第2のバッファBUF_B[N]を積算した値が0となる。   On the other hand, when it is determined in step S24 that the count value i has reached the determination period value N (YES in step S24), the isolated operation detection unit 11a refers to the value of the second buffer BUF_B [i]. Then, it is determined whether the frequency change during the determination period is monotonously increasing or monotonically decreasing (step S25). For example, when the frequency change during the determination period is monotonically increasing, the value obtained by integrating the second buffer BUF_B [0] to the second buffer BUF_B [N] is N + 1. When the frequency change during the determination period is monotonously decreasing, the value obtained by integrating the second buffer BUF_B [0] from the second buffer BUF_B [0] is 0.

ステップS25の判定処理で判定期間中の周波数変化が単調増加又は単調減少でなかった場合(ステップS25のNOの枝)、単独運転検出部11aは、交流電源装置1が単独運転状態にないと判断し(ステップS19)、iをゼロに初期化する(ステップS20)と共に、検出期間フラグFDTMを無効な状態とする(ステップS21)。   When the frequency change during the determination period is not monotonously increasing or decreasing in the determination process of step S25 (NO branch of step S25), the single operation detection unit 11a determines that the AC power supply device 1 is not in the single operation state. (Step S19), i is initialized to zero (step S20), and the detection period flag FDTM is invalidated (step S21).

ステップS25の判定処理で判定期間中の周波数変化が単調増加又は単調減少であった場合(ステップS25のYESの枝)、第1のバッファBUF_Aを参照して判定期間中の周波数の増加量又は減少量が周波数変化閾値範囲外か否かを判断する(ステップS26)。ここで、周波数変化閾値範囲は、予想される一時的な系統擾乱による周波数の緩やかな変動(例えば、±2Hz/秒)により単独運転を誤検出しないように0.2Hz程度に設定することが好ましい。また、周波数の増加量又は減少量は、最初に値が保持される第1のバッファBUF_A[0]に格納されている最新周波数から最後に値が保持される第2のバッファBUF_A[N]に格納されている最新周波数を引いた値の絶対値として算出されるものである。   When the frequency change during the determination period in the determination process in step S25 is monotonically increasing or decreasing (YES in step S25), the frequency increase or decrease during the determination period with reference to the first buffer BUF_A It is determined whether the amount is outside the frequency change threshold range (step S26). Here, the frequency change threshold range is preferably set to about 0.2 Hz so as not to erroneously detect an isolated operation due to a gradual change in frequency (for example, ± 2 Hz / second) due to an expected temporary system disturbance. . Further, the amount of increase or decrease of the frequency is changed from the latest frequency stored in the first buffer BUF_A [0] in which the value is first held to the second buffer BUF_A [N] in which the value is finally held. It is calculated as the absolute value of the value obtained by subtracting the latest stored frequency.

そして、ステップS26において、周波数の増加量又は減少量が、周波数変化閾値範囲以上であった場合、単独運転検出部11aは、単独運転検出状態(ステップS27)となる。一方、ステップS26において、周波数の増加量又は減少量が、周波数変化閾値範囲よりも小さい場合、単独運転検出部11aは、交流電源装置1が単独運転状態にないと判断し(ステップS19)、iをゼロに初期化する(ステップS20)と共に、検出期間フラグFDTMを無効な状態とする(ステップS21)。   And in step S26, when the amount of increase or decrease in frequency is equal to or greater than the frequency change threshold range, the isolated operation detection unit 11a enters the isolated operation detection state (step S27). On the other hand, if the increase or decrease in the frequency is smaller than the frequency change threshold range in step S26, the isolated operation detection unit 11a determines that the AC power supply device 1 is not in the isolated operation state (step S19), i Is initialized to zero (step S20), and the detection period flag FDTM is invalidated (step S21).

以上の動作により、単独運転が検出された場合、エネルギー管理部11は、スイッチ制御信号の論理レベルを切り換えて、スイッチSW1を開状態(オフ状態)とする。これにより、交流電源装置1は、単独運転が検出されたことに応じて出力を停止することができる。   When the isolated operation is detected by the above operation, the energy management unit 11 switches the logic level of the switch control signal to open the switch SW1 (off state). Thereby, the AC power supply device 1 can stop the output in response to the detection of the single operation.

上記説明より、実施の形態1にかかる交流電源装置1では、電源信号の周波数変化が一定以上に大きくなった後の周波数の履歴情報に基づき単独運転判定処理を開始し、当該一定期間の間に行われる単独運転判定処理中の電源信号の変化が一定の条件以上の変化を示したことに応じて単独運転を検出することができる。特に、実施の形態1にかかる交流電源装置1では、周波数偏差に基づき単独運転の兆候を早期に判定し、かつ、単独運転の可能性があると判定された後の短い期間の電源信号の微細な周波数変化に基づき単独運転を検出することができる。   From the above description, in the AC power supply device 1 according to the first exemplary embodiment, the isolated operation determination process is started based on the frequency history information after the frequency change of the power supply signal becomes larger than a certain level, The isolated operation can be detected in response to the change in the power signal during the isolated operation determination process being performed showing a change exceeding a certain condition. In particular, in the AC power supply device 1 according to the first exemplary embodiment, the sign of the isolated operation is determined at an early stage based on the frequency deviation, and the fineness of the power signal in a short period after it is determined that there is a possibility of the isolated operation. An isolated operation can be detected based on a simple frequency change.

このような多重の判定処理により、実施の形態1にかかる交流電源装置1では、単独運転の誤検出を防ぐことができる。また、実施の形態1にかかる交流電源装置1では、短い期間における電源信号の周波数変化に基づき単独運転を判定できるため、単独運転状態であると判定されるまでの時間を短くすることができる。   By such multiple determination processing, the AC power supply device 1 according to the first exemplary embodiment can prevent erroneous detection of isolated operation. Further, in the AC power supply device 1 according to the first exemplary embodiment, since the isolated operation can be determined based on the frequency change of the power supply signal in a short period, it is possible to shorten the time until the operation is determined to be in the isolated operation state.

PCSは、単独運転状態に移行後、瞬時(例えば、0.2秒以内)に系統から切り離す必要があり、系統擾乱による一時的な周波数変動時(例えば、0.8Hz増加3サイクル継続)は単独運転状態とはみなさず、連系運転を継続する必要がある。実施の形態1にかかる交流電源装置1では、電源信号の周波数を50Hz、判定機関値Nを7とした場合、約0.08秒で単独運転が検出可能である。また、同じ条件で電源信号の周波数を60Hzとした場合、約0.07秒で単独運転を検出可能である。   The PCS needs to be disconnected from the system instantaneously (for example, within 0.2 seconds) after shifting to the single operation state, and when the frequency fluctuates temporarily due to system disturbance (for example, 3 cycles of 0.8 Hz increase) It is necessary to continue the interconnected operation without considering it as an operation state. In the AC power supply device 1 according to the first exemplary embodiment, when the frequency of the power signal is 50 Hz and the determination engine value N is 7, the isolated operation can be detected in about 0.08 seconds. Further, when the frequency of the power supply signal is 60 Hz under the same conditions, the isolated operation can be detected in about 0.07 seconds.

また、実施の形態1にかかる交流電源装置1における単独運転検出方法は、ステップ注入付き周波数フィードバック方式の単独運転検出方法と組み合わせることも可能である。このように、ステップ注入付き周波数フィードバック方式の単独運転検出方法と組み合わせた場合、より高精度、かつ、高速に単独運転を検出することができる。   Further, the isolated operation detection method in the AC power supply device 1 according to the first embodiment can be combined with the isolated operation detection method of the frequency feedback method with step injection. As described above, when combined with the frequency feedback type isolated operation detection method with step injection, the isolated operation can be detected with higher accuracy and at higher speed.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 交流電源装置
10 PV用PCS
11 エネルギー管理部
11a 単独運転検出部
12、14 DC/DCコンバータ
13 DC/ACインバータ
20 BAT用PCS
SW1 スイッチ
S1 モニタ信号
PV 太陽電池パネル
BAT バッテリー
SPS 商用系統電源
CB 遮断機
1 AC power supply 10 PCS for PV
11 Energy Management Unit 11a Independent Operation Detection Unit 12, 14 DC / DC Converter 13 DC / AC Inverter 20 BAT PCS
SW1 switch S1 monitor signal PV solar panel BAT battery SPS commercial power supply CB breaker

Claims (9)

直流電源信号から交流電源信号を生成し、前記交流電源信号を商用系統電源からの電力が供給される系統配線に出力するインバータと、
前記インバータを制御する制御部と、を有し、
前記制御部は、
前記商用系統電源が切り離された状態となる単独運転であることを検出する単独運転検出部を有し、
前記単独運転検出部は、
前記単独運転となっている可能性を判断する単独運転可能性判定処理を行い、
前記単独運転可能性判定処理において、前記単独運転の可能性があると判断された後は、前記単独運転を判定する単独運転判定処理を行い、
前記単独運転判定処理では、
前記系統配線に伝達される電源信号の最新の周波数を示す最新周波数を第1のバッファに蓄積すると共に、過去の前記電源信号の周波数からの前記最新周波数の変化極性を示す極性値を第2のバッファに蓄積し、
予め設定された判定期間内に蓄積された前記最新周波数と前記極性値とに基づき、前記電源信号の周波数が単調増加又は単調減少かつ前記電源信号の周波数の変化量が周波数変化閾値範囲以上となったことに応じて、前記単独運転であることを検出する交流電源装置。
An inverter that generates an AC power signal from a DC power signal and outputs the AC power signal to a system wiring to which power from a commercial power supply is supplied;
A control unit for controlling the inverter,
The controller is
Having an isolated operation detection unit for detecting that the commercial system power supply is in an isolated operation in a disconnected state;
The isolated operation detection unit
Performing an isolated operation possibility determination process for determining the possibility of the isolated operation,
In the single operation possibility determination process, after it is determined that there is a possibility of the single operation, the single operation determination process for determining the single operation is performed,
In the isolated operation determination process,
The latest frequency indicating the latest frequency of the power signal transmitted to the system wiring is stored in the first buffer, and the polarity value indicating the change polarity of the latest frequency from the frequency of the power signal in the past is set to the second value. Accumulate in the buffer,
Based on the latest frequency and the polarity value accumulated within a predetermined determination period, the frequency of the power signal monotonously increases or decreases monotonically and the amount of change in the frequency of the power signal exceeds the frequency change threshold range. In response to this, an AC power supply device that detects the single operation.
前記制御部は、前記単独運転を検出したことに応じて前記インバータの出力を前記商用系統電源から切り離す請求項1に記載の交流電源装置。   The AC power supply device according to claim 1, wherein the control unit disconnects the output of the inverter from the commercial power supply in response to detecting the isolated operation. 前記単独運転検出部は、前記電源信号の半周期毎に前記単独運転可能性判定処理又は前記単独運転判定処理を行う請求項1又は2に記載の交流電源装置。   The AC power supply apparatus according to claim 1 or 2, wherein the isolated operation detection unit performs the isolated operation possibility determination process or the isolated operation determination process every half cycle of the power signal. 前記単独運転検出部は、前記最新周波数を、前記電源信号の周波数とは独立して設定される一定の周期で計算する請求項1乃至3のいずれか1項に記載の交流電源装置。   4. The AC power supply device according to claim 1, wherein the isolated operation detection unit calculates the latest frequency at a constant cycle set independently of the frequency of the power signal. 5. 前記第2のバッファには、前記最新周波数よりも一定期間前の前記電源信号の周波数を示す過去周波数と前記最新周波数との差を示す周波数偏差が前記極性値として最初に蓄積され、前後する期間で算出された前記最新周波数の差を示す周波数変化極性値が前記周波数偏差の後に前記極性値として蓄積される請求項1乃至4のいずれか1項に記載の交流電源装置。   In the second buffer, a frequency deviation indicating a difference between a past frequency indicating the frequency of the power supply signal a certain period before the latest frequency and the latest frequency is first accumulated as the polarity value, and a period before and after. 5. The AC power supply apparatus according to claim 1, wherein a frequency change polarity value indicating the difference between the latest frequencies calculated in step S <b> 1 is accumulated as the polarity value after the frequency deviation. 前記単独運転可能性判定処理では、前記最新周波数よりも一定期間前の前記電源信号の周波数を示す過去周波数と前記最新周波数との差を示す周波数偏差が検出開始閾値範囲以上となったことに応じて前記単独運転の可能性があると判断する請求項1乃至5のいずれか1項に記載の交流電源装置。   In the isolated operation possibility determination process, in response to a frequency deviation indicating a difference between the past frequency indicating the frequency of the power supply signal and a latest period before the latest frequency being equal to or greater than a detection start threshold range. The AC power supply device according to any one of claims 1 to 5, wherein it is determined that there is a possibility of the independent operation. 前記検出開始閾値範囲は、−0.1Hzから0.1Hzの範囲に設定される請求項6に記載の交流電源装置。   The AC power supply apparatus according to claim 6, wherein the detection start threshold range is set to a range of −0.1 Hz to 0.1 Hz. 前記周波数変化閾値範囲は、−0.2Hzから0.2Hzの範囲に設定される請求項1乃至7のいずれか1項に記載の交流電源装置。   The AC power supply apparatus according to any one of claims 1 to 7, wherein the frequency change threshold range is set in a range of -0.2 Hz to 0.2 Hz. 直流電源信号から交流電源信号を生成し、前記交流電源信号を商用系統電源が伝達される系統配線に出力するインバータと、前記インバータを制御すると共に商用系統電源が切り離された状態となる単独運転であることを検出する制御部と、を有する交流電源装置における単独運転検出方法であって、
前記単独運転となっている可能性を判断する単独運転可能性判定処理を行い、
前記単独運転可能性判定処理において、前記単独運転の可能性があると判断された後は、前記単独運転を判定する単独運転判定処理を行い、
前記単独運転判定処理では、
前記系統配線に伝達される電源信号の最新の周波数を示す最新周波数の情報を蓄積すると共に、過去の前記電源信号の周波数からの前記最新周波数の変化極性を示す極性値の情報を蓄積し、
予め設定された判定期間内に蓄積された前記最新周波数と前記極性値とに基づき、前記電源信号の周波数が単調増加又は単調減少かつ前記電源信号の周波数の変化量が周波数変化閾値範囲外となったことに応じて、前記単独運転であることを検出する交流電源装置における単独運転検出方法。
In an independent operation in which an AC power signal is generated from a DC power signal and the AC power signal is output to a system wiring to which a commercial system power is transmitted, and the inverter is controlled and the commercial system power is disconnected. A control unit for detecting that there is a single operation detection method in an AC power supply device,
Performing an isolated operation possibility determination process for determining the possibility of the isolated operation,
In the single operation possibility determination process, after it is determined that there is a possibility of the single operation, the single operation determination process for determining the single operation is performed,
In the isolated operation determination process,
Accumulating the latest frequency information indicating the latest frequency of the power signal transmitted to the system wiring, and storing information on the polarity value indicating the change polarity of the latest frequency from the frequency of the power signal in the past,
Based on the latest frequency and the polarity value accumulated within a preset determination period, the frequency of the power supply signal monotonously increases or decreases monotonically and the amount of change in the frequency of the power supply signal falls outside the frequency change threshold range. A single operation detection method in an AC power supply device that detects that the single operation is performed according to the above.
JP2014163429A 2014-08-11 2014-08-11 AC power supply device and isolated operation detection method Active JP6354092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014163429A JP6354092B2 (en) 2014-08-11 2014-08-11 AC power supply device and isolated operation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163429A JP6354092B2 (en) 2014-08-11 2014-08-11 AC power supply device and isolated operation detection method

Publications (2)

Publication Number Publication Date
JP2016039746A JP2016039746A (en) 2016-03-22
JP6354092B2 true JP6354092B2 (en) 2018-07-11

Family

ID=55530435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163429A Active JP6354092B2 (en) 2014-08-11 2014-08-11 AC power supply device and isolated operation detection method

Country Status (1)

Country Link
JP (1) JP6354092B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835587B2 (en) * 2007-11-30 2011-12-14 オムロン株式会社 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5891365B2 (en) * 2011-04-27 2016-03-23 パナソニックIpマネジメント株式会社 Power conversion device and power supply system
US9287714B2 (en) * 2011-11-30 2016-03-15 Michael Ropp Method and system for island detection and anti-islanding protection in distributed power generation systems
JP6175765B2 (en) * 2012-12-19 2017-08-09 富士通株式会社 Power supply system, power consumption measuring device, power consumption measuring method and program

Also Published As

Publication number Publication date
JP2016039746A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5816120B2 (en) Isolated operation detection method and isolated operation detection device
JP6047425B2 (en) Isolated operation detection device and isolated operation detection method
CN105431996A (en) Uninterruptible power supply control
JP6494252B2 (en) Power conditioner, power system, and control method for power conditioner
JP4645735B2 (en) Isolated operation detection method, isolated operation detection device, and program
JP6354092B2 (en) AC power supply device and isolated operation detection method
JP2011045153A (en) Uninterruptible power supply unit
US9525366B2 (en) Asynchronous motor and method for operating an asynchronous motor
JP6623746B2 (en) Distributed power islanding detection system
KR101663445B1 (en) The uninterruptible power supply system using energy storage system, and operating method of the uninterruptible power supply system
KR101723047B1 (en) Circuit and method for detecting power failure, and battery charging apparatus of electric vehicle having the same
KR20150005822A (en) Apparatus and method of controlling instant power failure of h-bridge multi-level inverter
JP6281704B2 (en) Isolated operation detection system for distributed power supply
JP6082667B2 (en) Power conditioner
JP6642183B2 (en) Voltage sag compensator
JP6958999B2 (en) Independent operation detector and power conditioner
JP2016025779A (en) Motor drive device
JP2019201503A (en) Electric power conversion system
JP2015142426A (en) Power generating system
JP6398057B2 (en) AC power supply apparatus and instantaneous voltage fluctuation detection method thereof
JP6398054B2 (en) Isolated operation detection device and method, and distributed power supply
KR101632786B1 (en) Inverter for Driving Induction Motor
KR100903183B1 (en) Device for compensating a voltage-dip using delay of signal
JP5980100B2 (en) Emergency power generation system
JP4618222B2 (en) Grid-connected inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180523

R150 Certificate of patent or registration of utility model

Ref document number: 6354092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250