JP2015142426A - Power generating system - Google Patents

Power generating system Download PDF

Info

Publication number
JP2015142426A
JP2015142426A JP2014013515A JP2014013515A JP2015142426A JP 2015142426 A JP2015142426 A JP 2015142426A JP 2014013515 A JP2014013515 A JP 2014013515A JP 2014013515 A JP2014013515 A JP 2014013515A JP 2015142426 A JP2015142426 A JP 2015142426A
Authority
JP
Japan
Prior art keywords
power
power generation
generation output
load
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014013515A
Other languages
Japanese (ja)
Other versions
JP6289123B2 (en
Inventor
朝樹 大和
Tomoki Yamato
朝樹 大和
徳田 和人
Kazuto Tokuda
和人 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014013515A priority Critical patent/JP6289123B2/en
Publication of JP2015142426A publication Critical patent/JP2015142426A/en
Application granted granted Critical
Publication of JP6289123B2 publication Critical patent/JP6289123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generating system that properly controls the output of power generation of each of plural power generating devices B so that the output of power generation of the plural power generation devices B properly follow variation of power consumption of a specific power load 8, and is adaptable to rapid variation of power consumption caused by input of a load or interception of the load.SOLUTION: A first power generation device 20 and a second power generation device 30 are provided as the plural power generation devices B. The first power generation device 20 is configured to execute power generation voltage control for adjusting the output of power generation so that the output voltage is kept to a reference voltage. Power generation output control means 51 controls a power generation output P2 of the second power generation device 30 so that the actual power generation output P1 of the first power generation device 20 is equal to a predetermined set power generation output P1a, and executes set power generation output adjusting processing for adjusting the set power generation output P1a of the first power generation device 20 on the basis of input or parallel-off states of the plural specific power loads 8 to a power line 6.

Description

本発明は、基準電圧及び基準周波数の発電電力を電力線を介して複数の特定電力負荷に供給可能な複数の発電装置を備え、
前記複数の発電装置の発電出力を制御する発電出力制御を実行する発電出力制御手段を備えた発電システムに関する。
The present invention comprises a plurality of power generators capable of supplying generated power of a reference voltage and a reference frequency to a plurality of specific power loads via a power line,
The present invention relates to a power generation system including power generation output control means for executing power generation output control for controlling power generation outputs of the plurality of power generation devices.

電気機器などの電力負荷を設けた施設では、通常、商用電力系統から受電した基準電圧(例えば200V)及び基準周波数(例えば60Hz)の受電電力が当該電力負荷に供給される。また、かかる施設には、例えば商用電力系統に連系して発電を行って、基準電圧及び基準周波数の発電電力を電力負荷に供給可能な電圧・周波数・力率に安定化する発電装置が設けられる場合がある。   In a facility provided with a power load such as an electric device, normally, received power of a reference voltage (for example, 200 V) and a reference frequency (for example, 60 Hz) received from a commercial power system is supplied to the power load. In addition, such a facility is provided with a power generation device that generates power connected to a commercial power system, for example, and stabilizes the generated power of the reference voltage and the reference frequency to a voltage, frequency, and power factor that can be supplied to the power load. May be.

このような発電装置を設けた施設では、商用電力系統からの供給が停止する停電時においても、発電装置の発電電力を一部の特定電力負荷のみに供給して当該特定電力負荷への電力供給を継続するために、当該発電装置の発電出力を制御する停電時発電出力制御を実行するように構成された発電システムが設けられる場合がある(例えば特許文献1を参照。)。
発電システムでは、停電時においても特定電力負荷に対して安定した電力を供給するために、当該施設に設置される発電装置の発電能力が、施設内の特定電力負荷の消費電力等に応じて決定される。特に、特定電力負荷の消費電力の大きい事業所などでは、比較的大きな発電能力が必要となるために、複数の発電装置が設置される場合がある。
In a facility equipped with such a power generation device, even in the event of a power failure when the supply from the commercial power system stops, the power generated by the power generation device is supplied to only a specific power load and supplied to the specific power load. In order to continue the power generation, there is a case where a power generation system configured to execute power generation output control at the time of power failure for controlling the power generation output of the power generation device may be provided (see, for example, Patent Document 1).
In a power generation system, in order to supply stable power to a specific power load even in the event of a power failure, the power generation capacity of the power generator installed in the facility is determined according to the power consumption of the specific power load in the facility, etc. Is done. In particular, in business establishments where the power consumption of a specific power load is large, a relatively large power generation capability is required, and thus a plurality of power generation devices may be installed.

上記のような発電システムでは、通常、商用電力系統等の外部電源から電力供給が無い停電時でも自立起動可能な蓄電池等を搭載したものが採用されていた。   In the power generation system as described above, a system equipped with a storage battery or the like that can be activated independently even during a power failure without power supply from an external power source such as a commercial power system has been adopted.

特開2001−211570号公報JP 2001-212570 A

上記のように複数の発電装置を設置して同時に作動させる発電装置システムでは、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従させるために、各発電装置の発電出力を適切に制御することが求められる。
例えば、特定電力負荷の電力線への投入(以下「負荷投入」と呼ぶ場合がある)に伴う急激な消費電力の上昇が発生した場合には、それに応じて発電出力を急激に上昇させる必要がある。逆に、特定電力負荷の電力線からの解列(以下「負荷遮断」と呼ぶ場合がある)に伴う急激な消費電力の低下が発生した場合には、それに応じて発電出力を急激に低下せる必要がある。
そこで、一部の発電装置が出力電圧を基準電圧に維持するように発電出力を制御するように構成すれば、その一部の発電装置の実際の発電出力のみを、その急激な消費電力の変動に合わせて追従させることが可能と考えられる。
しかしながら、急激に消費電力が低下する直前において上記一部の発電装置の実際の発電出力が比較的低く維持されていた場合には、その急激な消費電力の低下に十分に対応し得るだけの発電出力の低下を実現することができないという問題がある。逆に、急激に消費電力が上昇する直前における上記一部の発電装置の実際の発電出力が比較的高く維持されていた場合には、その急激な消費電力の上昇に十分に対応し得るだけの発電出力の上昇を実現することができないという問題がある。
In the power generation system that installs a plurality of power generation devices as described above and operates simultaneously, in order to appropriately follow the power generation output of the plurality of power generation devices against fluctuations in power consumption of a specific power load, It is required to appropriately control the power generation output.
For example, when a sudden increase in power consumption occurs due to the input of a specific power load to the power line (hereinafter sometimes referred to as “load input”), it is necessary to increase the power generation output accordingly. . Conversely, if a sudden drop in power consumption occurs due to disconnection from the power line of a specific power load (hereinafter sometimes referred to as “load interruption”), it is necessary to rapidly reduce the power generation output accordingly. There is.
Therefore, if some power generation devices are configured to control the power generation output so that the output voltage is maintained at the reference voltage, only the actual power generation output of the part of the power generation devices can be changed rapidly. It is thought that it is possible to follow it according to the situation.
However, if the actual power generation output of some of the power generators has been kept relatively low immediately before the power consumption suddenly decreases, the power generation that can sufficiently cope with the sudden decrease in power consumption There is a problem that a reduction in output cannot be realized. Conversely, if the actual power generation output of some of the power generators just before the power consumption suddenly increases is maintained relatively high, it can sufficiently cope with the sudden increase in power consumption. There is a problem that an increase in power generation output cannot be realized.

本発明は、かかる点に着目してなされたものであり、その目的は、複数の発電装置の発電電力を特定電力負荷に供給して当該特定電力負荷への電力供給を継続させる発電システムにおいて、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従させるように各発電装置の発電出力を適切に制御すると共に、負荷投入や負荷遮断に伴う急激な消費電力の変動にも対応する技術を提供する点にある。   The present invention has been made paying attention to such a point, and its purpose is to supply power generated by a plurality of power generators to a specific power load and continue power supply to the specific power load. The power generation output of each power generation device is appropriately controlled so that the power generation output of a plurality of power generation devices appropriately follows the fluctuation of the power consumption of the specific power load, and the sudden power consumption due to load application or load interruption is reduced. It is to provide technology that can cope with fluctuations.

この目的を達成するための本発明に係る発電システムは、
基準電圧及び基準周波数の発電電力を電力線を介して複数の特定電力負荷に供給可能な複数の発電装置を備え、
前記複数の発電装置の発電出力を制御する発電出力制御を実行する発電出力制御手段を備えた発電システムであって、
その第1特徴構成は、
前記複数の発電装置として、第1発電装置と第2発電装置とを備え、
前記第1発電装置が、出力電圧を基準電圧に維持するように発電出力を調整する発電電圧制御を実行するように構成され、
前記発電出力制御手段が、前記発電出力制御において、前記第1発電装置の実際の発電出力が所定の設定発電出力となるように前記第2発電装置の発電出力を制御すると共に、前記複数の特定電力負荷の前記電力線に対する投入又は解列状態に基づいて前記第1発電装置の設定発電出力を調整する設定発電出力調整処理を実行する点にある。
To achieve this object, the power generation system according to the present invention is:
A plurality of power generators capable of supplying generated power of a reference voltage and a reference frequency to a plurality of specific power loads via a power line,
A power generation system comprising power generation output control means for executing power generation output control for controlling power generation output of the plurality of power generation devices,
The first characteristic configuration is
As the plurality of power generation devices, a first power generation device and a second power generation device,
The first power generator is configured to perform power generation voltage control for adjusting the power generation output so as to maintain the output voltage at a reference voltage;
In the power generation output control, the power generation output control means controls the power generation output of the second power generation device so that the actual power generation output of the first power generation device becomes a predetermined set power generation output, and the plurality of specified A set power generation output adjustment process for adjusting the set power generation output of the first power generation device based on the input or disconnected state of the power load with respect to the power line is performed.

上記第1特徴構成によれば、複数の発電装置を起動させた上で、上記発電出力制御手段により、上記発電出力制御を実行することで、第2発電装置を第1発電装置に連系させる形態で、上記第1発電装置の実際の発電出力が所定の設定発電出力が維持されると共に、第2発電装置の発電出力が、電力線に対して現在投入されている特定電力負荷である現投入電力負荷の消費電力から第1発電装置の設定発電出力を差し引いた分を補う形態で制御される。よって、複数の発電装置の発電出力が、現投入電力負荷の消費電力の変動に対して適切に追従することになる。
また、第1発電装置が出力電圧を、基準電圧(例えば200V)に維持するように発電出力を調整する発電電圧制御を実行するように構成されているので、上記発電出力制御手段による発電出力制御を実行するにあたり、負荷投入や負荷遮断に伴って当該現投入電力負荷の消費電力が急激に変動した場合には、第2発電装置の発電出力の変化に先立って、第1発電装置が基準電圧を維持するべく消費電力の変動に合わせて発電出力を変化させることになる。
一方、現投入電力負荷の消費電力が緩やかに変動した場合には、第1発電装置が基準電圧を維持するべく発電出力を変化させようとするのと同時に、第2発電装置が当該第1発電装置の実際の発電出力を所定の設定発電出力に維持しようとして、結果、第2発電装置がその消費電力の変動に合わせて発電出力を変化させることになる。即ち、このような発電出力制御を実行することにより、第1発電装置及び第2発電装置の発電出力が、消費電力の変動に対して適切に追従することになる。
According to the first characteristic configuration, the second power generation device is linked to the first power generation device by starting the plurality of power generation devices and executing the power generation output control by the power generation output control means. In the embodiment, the actual power generation output of the first power generation device is maintained at a predetermined set power generation output, and the power generation output of the second power generation device is a specific power load currently input to the power line. Control is performed in such a manner as to compensate for the subtraction of the set power generation output of the first power generator from the power consumption of the power load. Therefore, the power generation outputs of the plurality of power generation devices appropriately follow the fluctuations in the power consumption of the current input power load.
Further, since the first power generation device is configured to execute power generation voltage control for adjusting the power generation output so as to maintain the output voltage at a reference voltage (for example, 200 V), the power generation output control by the power generation output control means is performed. When the power consumption of the current input power load fluctuates abruptly as the load is turned on or off, the first power generator is set to the reference voltage prior to the change in the power generation output of the second power generator. Therefore, the power generation output is changed in accordance with the fluctuation of power consumption in order to maintain the power consumption.
On the other hand, when the power consumption of the currently input power load fluctuates gently, the first power generator tries to change the power generation output so as to maintain the reference voltage, and at the same time, the second power generator In an attempt to maintain the actual power generation output of the device at a predetermined set power generation output, as a result, the second power generation device changes the power generation output in accordance with fluctuations in the power consumption. That is, by executing such power generation output control, the power generation outputs of the first power generation device and the second power generation device appropriately follow the fluctuations in power consumption.

更に、上記発電出力制御手段により、上記設定発電出力調整処理を実行することで、第1発電装置の設定発電出力は、一定に維持されるのではなく、複数の特定電力負荷の電力線に対する投入又は解列状態に基づいて調整されることになる。
よって、電力線に対して現在投入されている特定電力負荷が少なく、次に投入される可能性がある特定電力負荷が多いと予測される期間には、第1発電装置の実際の発電出力の増加を適切に抑制するように第2発電装置の発電出力を適切な範囲に維持して、その将来の負荷投入に伴う第1発電装置による発電電力の上昇側の追従に備えることができる。逆に、電力線に対して現在投入されている特定電力負荷が多く、次に解列される可能性がある特定電力負荷が多いと予測される期間には、第1発電装置の実際の発電出力の減少を適切に抑制するように第2発電装置の発電出力を適切な範囲に維持して、その将来の負荷遮断に伴う第1発電装置による発電電力の低下側の追従に備えることができる。
即ち、第1発電装置の実際の発電出力において将来の負荷投入や負荷遮断に備えて上昇側又は低下側の調整幅を常に確保することができ、負荷投入や負荷遮断に伴う急激且つ大幅な消費電力の変動が発生した場合でも、第1発電装置の実際の発電出力を急激且つ大幅に変更することができ、結果、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従させることができる。
従って、本発明により、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従させるように各発電装置の発電出力を適切に制御すると共に、負荷投入や負荷遮断に伴う急激な消費電力の低下にも対応し得る発電システムを実現することができる。
Furthermore, by performing the set power generation output adjustment process by the power generation output control means, the set power generation output of the first power generator is not maintained constant, but is switched on or off to the power lines of a plurality of specific power loads. Adjustment is made based on the disconnected state.
Therefore, during the period in which the specific power load currently input to the power line is small and the specific power load that may be input next is predicted to be large, the actual power generation output of the first power generator increases. Thus, the power generation output of the second power generation device can be maintained in an appropriate range so as to appropriately suppress the occurrence of power failure, so that the first power generation device can follow the increase in generated power accompanying the future load input. On the other hand, during the period when it is predicted that there are many specific power loads that are currently input to the power line and there are many specific power loads that may be disconnected next, the actual power generation output of the first power generator The generation output of the second power generation device can be maintained in an appropriate range so as to appropriately suppress the decrease of the power generation, and it is possible to prepare for the follow-up on the lower side of the generated power by the first power generation device accompanying the future load interruption.
In other words, in the actual power generation output of the first power generator, the adjustment range on the rising side or the lowering side can always be secured in preparation for future load application or load interruption, and sudden and significant consumption associated with load application or load interruption is ensured. Even when power fluctuations occur, the actual power generation output of the first power generation device can be changed suddenly and significantly, and as a result, the power generation outputs of the plurality of power generation devices can be changed with respect to power consumption fluctuations of a specific power load. It can be made to follow appropriately.
Therefore, according to the present invention, the power generation output of each power generation device is appropriately controlled so that the power generation outputs of the plurality of power generation devices appropriately follow the fluctuations in the power consumption of the specific power load. It is possible to realize a power generation system that can cope with a sudden decrease in power consumption.

本発明に係る発電システムの第2特徴構成は、上記第1特徴構成に加えて、
前記電力線に対して現在投入されており次に解列される可能性がある特定電力負荷である現投入電力負荷の消費電力を解列予定消費電力として導出する解列予定消費電力導出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記第1発電装置の設定発電出力を前記解列予定消費電力以上に維持する形態で、当該設定発電出力を調整する点にある。
The second characteristic configuration of the power generation system according to the present invention is in addition to the first characteristic configuration,
Dissociation scheduled power consumption deriving means for deriving the power consumption of the currently input power load, which is a specific power load that is currently input to the power line and that may be disconnected next, as the planned disconnection power consumption ,
In the set power generation output adjustment process, the power generation output control means adjusts the set power generation output in such a manner that the set power generation output of the first power generator is maintained to be equal to or higher than the scheduled power consumption.

上記第2特徴構成によれば、上記発電出力制御手段による上記設定発電出力調整処理において、上記解列予定消費電力導出手段により導出した上記解列予定消費電力を利用して、第1発電装置の設定発電出力が、常に当該解列予定消費電力以上に維持されるので、第1発電装置による発電出力の低下側の調整幅が当該解列予定消費電力以上に確保されることになる。
よって、将来において現投入電力負荷が電力線から解列された場合でも、第1発電装置の発電出力をその解列された特定電力負荷の消費電力に相等する分だけ急激に低下させることができ、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従さることができる。
According to the second characteristic configuration, in the set power generation output adjustment processing by the power generation output control means, the scheduled power consumption derived by the planned disconnection power consumption deriving means is used to calculate the first power generation device. Since the set power generation output is always maintained to be equal to or higher than the scheduled power consumption, the adjustment range on the lower side of the power generation output by the first power generator is ensured to be equal to or higher than the planned power consumption.
Therefore, even when the current input power load is disconnected from the power line in the future, the power generation output of the first power generator can be rapidly reduced by an amount equivalent to the power consumption of the disconnected specific power load, It is possible to appropriately follow the power generation outputs of the plurality of power generation devices with respect to fluctuations in power consumption of the specific power load.

本発明に係る発電システムの第3特徴構成は、上記第2特徴構成に加えて、
前記現投入電力負荷のそれぞれにおける現在の消費電力を現消費電力として計測する消費電力計測手段を備え、
前記解列予定消費電力導出手段が、前記現投入電力負荷におけるそれぞれの現消費電力の最大値を前記解列予定消費電力として導出する点にある。
The third characteristic configuration of the power generation system according to the present invention is in addition to the second characteristic configuration,
Comprising power consumption measuring means for measuring the current power consumption in each of the current input power loads as the current power consumption,
The disengagement scheduled power consumption deriving means derives the maximum value of each current power consumption in the current input power load as the disjunction planned power consumption.

上記第3特徴構成によれば、上記解列予定消費電力導出手段により、上記消費電力計測手段で直接計測した電力線に対して現在投入されている現投入電力負荷におけるそれぞれの現消費電力の最大値を、次に解列される可能性がある現投入電力負荷の解列予定消費電力として導出することができる。
そして、上記発電出力制御手段により、このように現消費電力の最大値として導出した解列予定消費電力を利用して上記設定発電出力調整処理を実行することで、第1発電装置の設定発電出力が常に現投入電力負荷におけるそれぞれの現消費電力の最大値以上に維持されるので、少なくとも現投入電力負荷のうち最大の現消費電力を有する電力負荷が電力線から解列された場合でも、第1発電装置の発電出力をその解列された特定電力負荷の消費電力に相等する分だけ急激に低下させることができる。
According to the third characteristic configuration, the maximum value of the respective current power consumption in the current input power load currently input to the power line directly measured by the power consumption measurement means by the disjunction planned power consumption deriving means. Can be derived as the scheduled power consumption of the currently input power load that may be disconnected next.
The set power generation output of the first power generator is then executed by the power generation output control means by executing the set power generation output adjustment processing using the scheduled power consumption derived as the maximum value of the current power consumption in this way. Is always maintained to be equal to or greater than the maximum value of the respective current power consumption in the current input power load, so even if at least the power load having the maximum current power consumption among the current input power loads is disconnected from the power line, The power generation output of the power generation device can be rapidly reduced by an amount equivalent to the power consumption of the separated specific power load.

本発明に係る発電システムの第4特徴構成は、上記第2特徴構成に加えて、
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記解列予定消費電力導出手段が、前記それぞれの遮断器の許容電力を予め記憶すると共に、前記遮断器状態検出手段で現在投入状態であると検出された遮断器におけるそれぞれの許容電力の最大値を前記解列予定消費電力として導出する点にある。
The fourth characteristic configuration of the power generation system according to the present invention is in addition to the second characteristic configuration,
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
The scheduled power consumption derivation means stores in advance the allowable power of each of the circuit breakers, and the maximum value of each allowable power in the circuit breaker detected by the circuit breaker state detection means as being currently turned on Is derived as the scheduled power consumption.

上記第4特徴構成によれば、投入状態である遮断器に接続された現投入電力負荷の消費電力は、最大で当該遮断器の許容電力に相等するものである可能性があるため、上記遮断器状態検出手段により現在投入状態であると検出された遮断器におけるそれぞれの許容電力の最大値を、次に解列される可能性がある現投入電力負荷の解列予定消費電力として導出することができる。
そして、上記発電出力制御手段により、このように許容電力の最大値として導出した解列予定消費電力を利用して上記設定発電出力調整処理を実行することで、第1発電装置の設定発電出力が常に現投入電力負荷に接続された遮断器におけるそれぞれの許容電力の最大値以上に維持されるので、少なくとも投入状態である遮断器のうち最大の許容電力を有する遮断器が解列状態となって当該遮断器に接続された現投入電力負荷が電力線から解列された場合でも、第1発電装置の発電出力をその解列状態となった遮断器に接続された特定電力負荷の消費電力に相等する分だけ急激に低下させることができる。
According to the fourth characteristic configuration, the power consumption of the current input power load connected to the circuit breaker in the on state may be equivalent to the allowable power of the circuit breaker at the maximum. The maximum allowable power of each circuit breaker detected as being currently turned on by the breaker state detection means is derived as the scheduled power consumption of the current power load that may be disconnected next. Can do.
Then, the set power generation output of the first power generator is obtained by executing the set power generation output adjustment process using the scheduled power consumption derived as the maximum value of the allowable power in this way by the power generation output control means. Since the circuit breaker connected to the current input power load is always maintained above the maximum value of each allowable power, at least the circuit breaker having the maximum allowable power among the circuit breakers in the input state is disconnected. Even when the current input power load connected to the circuit breaker is disconnected from the power line, the power generation output of the first power generator is equivalent to the power consumption of the specific power load connected to the circuit breaker in the disconnected state. The amount can be decreased rapidly by the amount of

本発明に係る発電システムの第5特徴構成は、上記第1ないし第4特徴構成の何れかに加えて、
前記電力線に対して現在解列されており次に投入される可能性がある特定電力負荷である現解列電力負荷の消費電力を投入予定消費電力として導出する投入予定消費電力導出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記第1発電装置の定格発電出力に対する前記設定発電出力の差分を前記投入予定消費電力以上に維持する形態で、当該設定発電出力を調整する点にある。
In addition to any of the first to fourth feature configurations described above, the fifth feature configuration of the power generation system according to the present invention includes:
A planned power consumption derivation means for deriving the power consumption of the current power line load that is a specific power load that is currently disconnected from the power line and that may be input next, as the planned power consumption;
The power generation output control means adjusts the set power generation output in the form of maintaining the difference between the set power generation output with respect to the rated power generation output of the first power generation device in the set power generation output adjustment process to be equal to or higher than the scheduled power consumption. There is in point to do.

上記第5特徴構成によれば、上記発電出力制御手段による上記設定発電出力調整処理において、上記投入予定消費電力導出手段により導出した上記投入予定消費電力を利用して、第1発電装置の設定発電出力の定格発電出力に対する差分が、常に当該投入予定消費電力以上に維持されるので、第1発電装置による発電出力の増加側の調整幅が当該投入予定消費電力以上に確保されることになる。
よって、将来において現解列電力負荷が電力線に投入された場合でも、第1発電装置の発電出力をその投入された特定電力負荷の消費電力に相等する分だけ急激に増加させることができ、複数の発電装置の発電出力を特定電力負荷の消費電力の変動に対して適切に追従さることができる。
According to the fifth characteristic configuration, in the set power generation output adjustment process by the power generation output control means, the set power generation of the first power generator is performed using the planned power consumption derived by the planned power consumption derivation means. Since the difference between the output and the rated power generation output is always maintained to be greater than or equal to the scheduled power consumption, the adjustment range on the increase side of the power generation output by the first power generator is ensured to be greater than or equal to the planned power consumption.
Therefore, even when the currently connected power load is input to the power line in the future, the power generation output of the first power generator can be rapidly increased by an amount equivalent to the power consumption of the input specific power load. It is possible to appropriately follow the power generation output of the power generation apparatus with respect to fluctuations in power consumption of the specific power load.

本発明に係る発電システムの第6特徴構成は、上記第5特徴構成に加えて、
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記投入予定消費電力導出手段が、前記それぞれの遮断器の許容電力を予め記憶すると共に、前記遮断器状態検出手段で現在解列状態であると検出された遮断器におけるそれぞれの許容電力の最大値を前記投入予定消費電力として導出する点にある。
The sixth characteristic configuration of the power generation system according to the present invention is in addition to the fifth characteristic configuration,
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
The estimated power consumption deriving unit stores in advance the allowable power of each of the circuit breakers, and the maximum value of each allowable power in the circuit breaker detected by the circuit breaker state detection unit as being currently disconnected. Is derived as the estimated power consumption.

上記第6特徴構成によれば、解列状態である遮断器に接続された現解列電力負荷の消費電力は、最大で当該遮断器の許容電力に相等するものである可能性があるため、上記遮断器状態検出手段により現在解列状態であると検出された遮断器におけるそれぞれの許容電力の最大値を、次に投入される可能性がある現解列電力負荷の投入予定消費電力として導出することができる。
そして、上記発電出力制御手段により、このように許容電力の最大値として導出した投入予定消費電力を利用して上記設定発電出力調整処理を実行することで、第1発電装置の設定発電出力の定格発電出力に対する余裕分が常に現解列電力負荷に接続された遮断器におけるそれぞれの許容電力の最大値以上に維持されるので、少なくとも解列状態である遮断器のうち最大の許容電力を有する遮断器が投入列状態となって当該遮断器に接続された現解列電力負荷が電力線に投入された場合でも、第1発電装置の発電出力をその投入状態となった遮断器に接続された特定電力負荷の消費電力に相等する分だけ急激に増加させることができる。
According to the sixth feature configuration, the power consumption of the current disconnection power load connected to the circuit breaker in the disconnected state may be equivalent to the allowable power of the breaker at the maximum, The maximum allowable power of each circuit breaker detected as being currently disconnected by the circuit breaker state detection means is derived as the scheduled power consumption of the current circuit power load that may be applied next. can do.
Then, the power generation output control means executes the setting power generation output adjustment process using the scheduled power consumption derived as the maximum allowable power in this way, thereby setting the rated power output rating of the first power generator. Since the margin for the power generation output is always maintained to be equal to or greater than the maximum value of each allowable power in the circuit breaker connected to the current disconnection power load, at least the disconnection having the maximum allowable power among the circuit breakers in the disconnection state Even if the current line power load connected to the circuit breaker enters the power line, the generator output of the first power generator is specified to be connected to the circuit breaker that has been turned on. It can be increased rapidly by an amount equivalent to the power consumption of the power load.

本発明に係る発電システムの第7特徴構成は、上記第1特徴構成に加えて、
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記遮断器状態検出手段で現在投入状態であると検出された遮断器の数、又は、前記遮断器状態検出手段で現在解列状態であると検出された遮断器の数に基づいて、前記第1発電装置の設定発電出力を調整する点にある。
The seventh characteristic configuration of the power generation system according to the present invention is in addition to the first characteristic configuration,
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
In the set power generation output adjustment process, the power generation output control means is the number of circuit breakers detected as being currently turned on by the circuit breaker state detection means, or is currently disconnected by the circuit breaker state detection means. The set power generation output of the first power generator is adjusted based on the number of circuit breakers detected as being present.

上記第7特徴構成によれば、例えば、複数の電力負荷に接続されたそれぞれの遮断器の許容電力が略同じものである場合には、上記発電出力制御手段による設定発電出力調整処理において、上記遮断器状態検出手段で現在投入状態であると検出された遮断器の数が多いほど、又は、遮断器状態検出手段で現在解列状態であると検出された遮断器の数が少ないほど、第1発電装置の設定発電出力を大きくする形態で、当該投入状態又は解列状態の遮断器の数に基づいて第1発電装置の設定発電出力を調整することができる。
このように第1発電装置に設定発電出力を投入状態又は解列状態の遮断器の数に基づいて調整することで、それぞれの遮断器の状態が投入状態と解列状態との間で切り替わって負荷投入や負荷遮断が行われた場合でも、第1発電装置の発電出力の上昇側又は低下側の調整幅を常に確保することができ、遮断器の状態の切り替わりに伴う大幅な消費電力の変動に追従して、第1発電装置の実際の発電出力を急激且つ大幅に変更することができる。
According to the seventh characteristic configuration, for example, when the allowable power of each circuit breaker connected to a plurality of power loads is substantially the same, in the set power generation output adjustment processing by the power generation output control means, The greater the number of circuit breakers detected by the circuit breaker state detection means as being currently turned on, or the smaller the number of circuit breakers detected by the circuit breaker state detection means as being currently disconnected, the more The set power generation output of the first power generation device can be adjusted based on the number of circuit breakers in the turned-on state or the disconnected state in a form in which the set power generation output of the one power generation device is increased.
In this way, by adjusting the set power generation output of the first power generator based on the number of circuit breakers in the on state or in the disconnected state, the state of each circuit breaker is switched between the on state and the disconnected state. Even when a load is applied or a load is interrupted, the adjustment range on the rising or decreasing side of the power generation output of the first power generator can always be ensured, and a large fluctuation in power consumption due to switching of the circuit breaker state Following this, the actual power generation output of the first power generator can be changed suddenly and significantly.

本発明に係る発電システムの第8特徴構成は、上記第1ないし第7特徴構成の何れかに加えて、
商用電力系統からの受電が停止する停電を検出する停電検出手段と、
前記停電検出手段により停電が検出された時に、前記電力負荷のうち前記特定電力負荷を除く一般電力負荷を前記複数の発電装置から解列させて、前記複数の発電装置の発電電力を前記特定電力負荷のみに供給する状態とする停電時解列手段とを備え、
前記発電出力制御手段が、前記停電検出手段により停電が検出された停電時に、前記複数の発電装置を起動させる停電時起動処理を実行した上で、前記発電出力制御及び前記設定発電出力調整処理を実行する点にある。
The eighth characteristic configuration of the power generation system according to the present invention is in addition to any of the first to seventh characteristic configurations,
A power failure detection means for detecting a power failure that stops receiving power from the commercial power system;
When a power failure is detected by the power failure detection means, a general power load excluding the specific power load among the power loads is disconnected from the plurality of power generation devices, and the generated power of the plurality of power generation devices is converted to the specific power. It is provided with a means for disconnecting at the time of a power failure to be in a state of supplying only to the load
The power generation output control means performs the power generation output control and the set power generation output adjustment process after executing a power failure start process for starting the plurality of power generation devices in the event of a power failure when the power failure is detected by the power failure detection means. The point is to execute.

上記第8特徴構成によれば、これまで説明してきた本発明に係る発電システムを、停電時において複数の発電装置の発電電力を複数の電力負荷に供給する非常用発電システムとして適用することができる。   According to the above eighth characteristic configuration, the power generation system according to the present invention that has been described so far can be applied as an emergency power generation system that supplies power generated by a plurality of power generation devices to a plurality of power loads during a power failure. .

発電システムの構成図Configuration diagram of power generation system 各特定電力負荷の消費電力及び各遮断器の許容電力を説明する図The figure explaining the power consumption of each specific power load and the allowable power of each circuit breaker 自立発電装置の設定発電出力及びその調整範囲を説明する図The figure explaining the set power generation output of the self-supporting power generation device and its adjustment range 消費電力に対する各発電装置の発電出力の推移を示すグラフ図The graph which shows transition of the power generation output of each power generator with respect to power consumption

本発明に係る発電システムの実施形態について図面に基づいて説明する。
図1に示すように、発電システムは、商用電力系統1から受電した受電電力を消費する一般電力負荷Aを有する事業所などの施設に設けられて、当該商用電力系統1からの受電が停止する停電が発生したときに、電力負荷Aのうちの特定電力負荷8に発電装置Bで発電した発電電力を供給する非常用発電システムとして構成されている。
商用電力系統1から受電した受電電力は、電力線2に供給され、当該電力線2に接続された特定電力負荷8を除く一般電力負荷4に供給される。また、電力線2に供給された受電電力は後述する切替器5を介して電力線6に供給され、当該電力線6に接続された特定電力負荷8に供給される。
尚、本実施形態では、一般電力負荷4の数量を1とし、特定電力負荷8の数量を4として説明するが、これら電力負荷Aの数量は適宜変更可能である。
An embodiment of a power generation system according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the power generation system is provided in a facility such as a business office having a general power load A that consumes the received power received from the commercial power system 1, and the power reception from the commercial power system 1 stops. When a power failure occurs, the emergency power generation system is configured to supply the generated power generated by the power generator B to the specific power load 8 of the power load A.
The received power received from the commercial power system 1 is supplied to the power line 2 and supplied to the general power load 4 excluding the specific power load 8 connected to the power line 2. Also, the received power supplied to the power line 2 is supplied to the power line 6 via the switch 5 described later, and is supplied to the specific power load 8 connected to the power line 6.
In the present embodiment, the number of the general power loads 4 is 1 and the number of the specific power loads 8 is 4. However, the number of the power loads A can be changed as appropriate.

かかる発電システムには、下記に説明する複数の発電装置Bが設けられている。
上記複数の発電装置Bは、商用電力系統1の受電電力と同じ基準電圧(例えば200V)及び基準周波数(例えば60Hz)の発電電力を電力負荷Aに供給可能なものとして構成されている。更に、本実施形態の発電システムでは、これら複数の発電装置Bとして、自立起動可能な第1発電装置としての自立発電装置20と、外部から供給された電力を利用して起動可能な第2発電装置としての連系発電装置30とが設けられている。
尚、本実施形態の発電システムでは、特定電力負荷8の最大消費電力等に合わせて、自立発電装置20と連系発電装置30とのそれぞれの台数が決定されている。具体的に、本実施形態では、自立発電装置20及び連系発電装置30をそれぞれ複数台設置している。
Such a power generation system is provided with a plurality of power generation apparatuses B described below.
The plurality of power generators B are configured to be able to supply the power load A with generated power having the same reference voltage (for example, 200 V) and reference frequency (for example, 60 Hz) as the received power of the commercial power system 1. Further, in the power generation system of the present embodiment, as the plurality of power generation devices B, a self-sustained power generation device 20 as a first power generation device that can be activated independently, and a second power generation that can be activated using electric power supplied from outside. An interconnection power generation apparatus 30 as an apparatus is provided.
In the power generation system according to the present embodiment, the number of each of the self-sustaining power generation device 20 and the grid power generation device 30 is determined in accordance with the maximum power consumption of the specific power load 8 and the like. Specifically, in the present embodiment, a plurality of independent power generators 20 and interconnection power generators 30 are installed.

上記発電装置Bは、同期発電機21,31をエンジン22,32で駆動する形態で発電を行う一般的な発電装置として構成されており、同期発電機21,31の発電電力を基準電圧及び基準周波数に変換する電力変換部25,35と、エンジン22,32の回転数を所望の設定回転数に設定する形態でエンジン22,32の出力を制御する制御部26,36とが設けられている。
また、電力変換部25,35は、同期発電機21,31の出力端の交流電圧を直流電圧に変換するコンバータ25b,35bと、コンバータ25b,35bから出力される直流電圧を交流電圧に変換して出力するインバータ25a,35aとを備える。尚、コンバータ25b,35b、インバータ25a,35aは、何れも双方向に電圧変換可能な構成とする。
更に、自立発電装置20の制御部26は、電力変換部25から出力される出力電圧が基準電圧に維持されるように発電出力を調整する発電電圧制御を実行するものとして構成されている。
The power generator B is configured as a general power generator that generates power in such a manner that the synchronous generators 21 and 31 are driven by the engines 22 and 32, and the generated power of the synchronous generators 21 and 31 is used as a reference voltage and a reference. There are provided power conversion units 25 and 35 for converting the frequency, and control units 26 and 36 for controlling the outputs of the engines 22 and 32 in such a manner that the number of rotations of the engines 22 and 32 is set to a desired set number of rotations. .
The power converters 25 and 35 convert the AC voltage at the output end of the synchronous generators 21 and 31 into a DC voltage, and convert the DC voltage output from the converters 25b and 35b into an AC voltage. And output inverters 25a and 35a. The converters 25b and 35b and the inverters 25a and 35a are both configured to be capable of bidirectional voltage conversion.
Further, the control unit 26 of the self-sustained power generation apparatus 20 is configured to execute power generation voltage control for adjusting the power generation output so that the output voltage output from the power conversion unit 25 is maintained at the reference voltage.

エンジン22,32には、制御部26,36からの指令によりエンジン22,32を起動させるためのセルモータ23,33が付設されている。
そして、自立発電装置20は、外部からの電力供給が無い状態でも、内蔵するバッテリー28に予め蓄えた電力をセルモータ23に供給して当該セルモータ23を作動させる形態で自立起動可能に構成されている。尚、このバッテリー28には、図示は省略するが、電力出力側から取り込んだ電力を予め蓄電するように構成されている。
一方、連系発電装置30は、電力変換部35の直流線から直流電力を取り込む電源回路34が設けられており、当該電源回路34で取り込んだ電力をセルモータ33に供給して当該セルモータ33を作動させる形態で起動可能に構成されている。
The motors 22 and 32 are provided with cell motors 23 and 33 for starting the engines 22 and 32 in response to commands from the control units 26 and 36, respectively.
The self-sustained power generation apparatus 20 is configured to be capable of self-sustained activation in a form in which the cell motor 23 is operated by supplying the power stored in the battery 28 built in the cell motor 23 even when there is no external power supply. . Although not shown, the battery 28 is configured to store in advance the power taken from the power output side.
On the other hand, the interconnection power generation apparatus 30 is provided with a power supply circuit 34 that takes in DC power from the DC line of the power conversion unit 35, and supplies the power taken in by the power supply circuit 34 to the cell motor 33 to operate the cell motor 33. It is comprised so that starting is possible.

発電システムには、更に、商用電力系統1から電力線2が受電する受電電力を計測する受電電力計測器12の計測結果を参照することで、商用電力系統1からの受電が停止する停電を検出する停電検出手段53に加え、この停電検出手段53により停電が検出された停電時に、一般電力負荷4を複数の発電装置Bから解列させて、複数の発電装置Bの発電電力を特定電力負荷8のみに供給する状態とする停電時解列手段52が設けられている。
更に、この停電検出手段53により停電が検出された停電時に、複数の発電装置Bを起動させる停電時起動処理を実行した上で、複数の発電装置Bの発電出力を制御して、当該複数の発電装置Bの発電電力を特定電力負荷8に供給する発電出力制御手段51を備える。尚、これら停電検出手段53、停電時解列手段52、発電出力制御手段51は、コンピュータ等からなる制御装置50が所定のプログラムを実行することにより機能するものとして構成されている。
また、詳細については後述するが、制御装置50は、同じく所定のプログラムを実行することにより、解列予定消費電力導出手段54及び投入予定消費電力導出手段55として機能し、また、不揮発性メモリ等からなる記憶部56を備える。
The power generation system further detects a power outage that stops receiving power from the commercial power system 1 by referring to the measurement result of the received power measuring instrument 12 that measures the received power received by the power line 2 from the commercial power system 1. In addition to the power failure detection means 53, when a power failure is detected by the power failure detection means 53, the general power load 4 is disconnected from the plurality of power generation devices B, and the generated power of the plurality of power generation devices B is specified power load 8 Disconnection means 52 at the time of a power failure is provided so as to supply only to the vehicle.
Furthermore, after performing a power failure start process for starting a plurality of power generation devices B at the time of a power failure in which a power failure is detected by the power failure detection means 53, the power generation outputs of the plurality of power generation devices B are controlled, A power generation output control means 51 for supplying the generated power of the power generation apparatus B to the specific power load 8 is provided. Note that the power failure detection means 53, power failure disconnection means 52, and power generation output control means 51 are configured to function when a control device 50 including a computer or the like executes a predetermined program.
Although details will be described later, the control device 50 also functions as a scheduled disconnection power consumption deriving unit 54 and a scheduled input power consumption deriving unit 55 by executing a predetermined program. A storage unit 56 is provided.

この停電時解列手段52は、下記に説明する切替器5の状態を切り替えることで、一般電力負荷4を複数の発電装置Bから解列させる。
この切替器5は、商用電力系統1及び一般電力負荷4が接続された電力線2と、特定電力負荷8が接続された電力線6との間に設けられている。具体的に、この切替器5は、トランスファ接点式(電圧ON/OFFで切り替わる)のスイッチで構成されており、この切替器5に対して、商用電力系統1及び一般電力負荷4が接続された電力線2が常開接点5aに接続され、自立発電装置20の電力出力側が常開接点5a及び常閉接点5bに接続され、特定電力負荷8が接続された電力線6が共通接点5cに接続されている。一方、連系発電装置30の電力出力側は、特定電力負荷8が接続された電力線6に接続されている。
即ち、この切替器5をON状態(共通接点5cを常開接点5aに接続する状態)とすることで、商用電力系統1と電力線2と電力線6とが接続されると共に、複数の発電装置Bの電力出力側がこれら電力線2,6に接続されるので、商用電力系統1から受電した受電電力と複数の発電装置20,30が発電した発電電力とを、全ての電力負荷Aに供給することができるようになる。
一方、この切替器5をOFF状態(共通接点5cを常閉接点5bに接続する状態)とすることで、電力線6に対する複数の発電装置Bにおける電力出力側の接続が維持されたまま、電力線6に対して電力線2が解列されるので、複数の発電装置20,30が発電した発電電力を特定電力負荷8のみに供給することができるようになる。
よって、上記停電時解列手段52は、この停電検出手段53により停電が検出された停電時に、上記切替器5をON状態からOFF状態(図1に示す状態)に切り替えることで、一般電力負荷4を複数の発電装置Bから解列させて、複数の発電装置Bの発電電力を特定電力負荷8のみに供給する状態とすることができる。
This power disconnection means 52 disconnects the general power load 4 from the plurality of power generators B by switching the state of the switch 5 described below.
The switch 5 is provided between the power line 2 to which the commercial power system 1 and the general power load 4 are connected and the power line 6 to which the specific power load 8 is connected. Specifically, the switch 5 is configured by a transfer contact type switch (switched by voltage ON / OFF), and the commercial power system 1 and the general power load 4 are connected to the switch 5. The power line 2 is connected to the normally open contact 5a, the power output side of the self-sustaining power generator 20 is connected to the normally open contact 5a and the normally closed contact 5b, and the power line 6 to which the specific power load 8 is connected is connected to the common contact 5c. Yes. On the other hand, the power output side of the grid power generation apparatus 30 is connected to the power line 6 to which the specific power load 8 is connected.
That is, by setting the switch 5 to an ON state (a state where the common contact 5c is connected to the normally open contact 5a), the commercial power system 1, the power line 2, and the power line 6 are connected, and a plurality of power generators B Is connected to these power lines 2 and 6, the received power received from the commercial power system 1 and the generated power generated by the plurality of power generators 20 and 30 can be supplied to all the power loads A. become able to.
On the other hand, by setting the switch 5 to an OFF state (a state in which the common contact 5c is connected to the normally closed contact 5b), the power line 6 is maintained while the connection on the power output side of the plurality of power generators B to the power line 6 is maintained. Since the power line 2 is disconnected, the generated power generated by the plurality of power generation devices 20 and 30 can be supplied only to the specific power load 8.
Therefore, the power disconnection means 52 switches the switch 5 from the ON state to the OFF state (state shown in FIG. 1) at the time of a power failure when the power failure is detected by the power failure detection means 53, so that the general power load 4 can be disconnected from the plurality of power generation devices B, and the power generated by the plurality of power generation devices B can be supplied only to the specific power load 8.

複数の特定電力負荷8のそれぞれにおける電力線6との接続部には、当該特定電力負荷8を電力線6に投入する投入状態と当該特定電力負荷8を電力線6から解列する解列状態とを切替自在な遮断器9がそれぞれ設けられている。また、これらそれぞれの遮断器9には、当該遮断器9の状態が投入状態及び解列状態の何れの状態であるかを検出するリミットスイッチ等の遮断器状態検出センサ11(遮断器状態検出手段の一例)が設けられている。
更に、それぞれの遮断器9における電力線6側の接続部には、各特定電力負荷8の消費電力を計測する消費電力計測器10(消費電力計測手段の一例)が設けられている。
尚、この遮断器状態検出センサ11の検出結果、並びに消費電力計測器10の計測結果は、制御装置50に入力される。
At the connection portion of each of the plurality of specific power loads 8 with the power line 6, a switching state between switching on the specific power load 8 to the power line 6 and disconnecting the specific power load 8 from the power line 6 is switched. A flexible circuit breaker 9 is provided. Each of the circuit breakers 9 includes a circuit breaker state detection sensor 11 (breaker state detection means) such as a limit switch for detecting whether the state of the circuit breaker 9 is a closed state or a disconnected state. Example) is provided.
Furthermore, a power consumption measuring device 10 (an example of power consumption measuring means) that measures the power consumption of each specific power load 8 is provided at the connection portion of each circuit breaker 9 on the power line 6 side.
Note that the detection result of the breaker state detection sensor 11 and the measurement result of the power consumption meter 10 are input to the control device 50.

ここで、本実施形態では、現在投入状態となっている遮断器9に接続されている特定電力負荷8を現投入電力負荷と呼び、その現投入電力負荷の消費電力を現消費電力と呼ぶ。また、現在解列状態となっている遮断器9に接続されている特定電力負荷8を現解列電力負荷と呼ぶ。
更に、上記遮断器9については、通常、通電が許容される電力の最大値が定められており、その値を許容電力と呼ぶ。また、制御装置50の記憶部56には、それぞれの遮断器9の許容電力が予め記憶されている。
尚、本実施形態では、4つの特定電力負荷8のうち、2つの特定電力負荷8a、8cが現投入電力負荷であり、残りの2つの特定電力負荷8b、8dが現解列電力負荷であるとする。
また、図3に示すように、4つの特定電力負荷8におけるそれぞれの電力負荷をQa,Qb,Qc,Qdとした場合、2つの現投入電力負荷8a、8cのそれぞれの現消費電力Qa、Qcのうち、現投入電力負荷8cの現消費電力Qcが最大値となり、また、2つの現解列電力負荷8b、8dのそれぞれの消費電力Qb,Qdは何れも0であるとする。
また、4つの特定電力負荷8a、8b、8c、8dのそれぞれに対応する4つの遮断器9a、9b、9c、9dの許容電力をLa,Lb,Lc,Ldとした場合、現投入電力負荷8a、8cに対応して現在投入状態であると検出される2つの遮断器9a,9cのそれぞれの許容電力La、Lcにおいて、現投入電力負荷8cに対応する遮断器9cの許容電力Lcが最大値となり、また、現解列電力負荷8b、8dに対応して現在解列状態であると検出される2つの遮断器9b,9dのそれぞれの許容電力Lb、Ldにおいて、現解列電力負荷8bに対応する遮断器9bの許容電力Lbが最大値となるとする。
Here, in the present embodiment, the specific power load 8 connected to the circuit breaker 9 that is currently turned on is referred to as the current input power load, and the power consumption of the current input power load is referred to as the current power consumption. The specific power load 8 connected to the circuit breaker 9 that is currently disconnected is referred to as a current disconnected power load.
Further, for the circuit breaker 9, a maximum value of power that is normally allowed to be energized is determined, and this value is referred to as allowable power. In addition, the allowable power of each circuit breaker 9 is stored in advance in the storage unit 56 of the control device 50.
In the present embodiment, of the four specific power loads 8, two specific power loads 8a and 8c are current input power loads, and the remaining two specific power loads 8b and 8d are current solution power loads. And
As shown in FIG. 3, when the power loads in the four specific power loads 8 are Qa, Qb, Qc, and Qd, the current power consumptions Qa, Qc of the two current input power loads 8a, 8c, respectively. Among them, it is assumed that the current power consumption Qc of the current input power load 8c is the maximum value, and the power consumptions Qb and Qd of the two current solution power loads 8b and 8d are both zero.
Further, when the allowable powers of the four circuit breakers 9a, 9b, 9c, and 9d corresponding to the four specific power loads 8a, 8b, 8c, and 8d are La, Lb, Lc, and Ld, the current input power load 8a , 8c, the allowable power Lc of the circuit breaker 9c corresponding to the current input power load 8c is the maximum value among the allowable power La, Lc of each of the two circuit breakers 9a, 9c detected as being currently turned on. In addition, in the allowable power Lb and Ld of each of the two circuit breakers 9b and 9d that are detected to be in the current disconnection state corresponding to the current disconnection power loads 8b and 8d, Assume that the allowable power Lb of the corresponding circuit breaker 9b is the maximum value.

特定電力負荷8が接続されている電力線6の切替器5の共通接点5c側には、当該電力線6が受電する受電電力を計測する受電電力計測器13が設けられている。尚、上記停電時解列手段52により、停電時に、上記切替器5がOFF状態とされ、電力線6が接続された共通接点5cが自立発電装置20の電力出力側が接続された常閉接点5bに接続されれば、上記受電電力計測器13は、自立発電装置20から電力線6に供給される電力、即ち自立発電装置20全体の実際の発電出力P1を計測し、当該発電出力に応じた信号を出力することになる。
電力線2の受電電力を計測する受電電力計測器12、並びに、停電時における自立発電装置20の発電出力を計測する受電電力計測器13は、インバータのフルスケールである0〜160kWの範囲内の受電電力に応じて4mA〜20mAの範囲内のアナログ信号S1,S2を出力するように構成されている。
具体的に、受電電力計測器12が出力するアナログ信号S1、及び、受電電力計測器13が出力するアナログ信号S2は、下記の式(1)及び(2)で求められる大きさとなるように設定されている。
On the common contact 5c side of the switch 5 of the power line 6 to which the specific power load 8 is connected, a received power measuring instrument 13 for measuring the received power received by the power line 6 is provided. Note that, at the time of a power failure, the switch 5 is turned off and the common contact 5c to which the power line 6 is connected becomes the normally closed contact 5b to which the power output side of the independent power generator 20 is connected. If connected, the received power measuring instrument 13 measures the power supplied from the self-sustained power generation apparatus 20 to the power line 6, that is, the actual power generation output P1 of the entire self-sustained power generation apparatus 20, and outputs a signal corresponding to the power generation output. Will be output.
The received power measuring device 12 for measuring the received power of the power line 2 and the received power measuring device 13 for measuring the power generation output of the self-sustained power generation device 20 at the time of a power failure are received power within a range of 0 to 160 kW which is the full scale of the inverter. It is configured to output analog signals S1 and S2 within a range of 4 mA to 20 mA according to electric power.
Specifically, the analog signal S1 output from the received power measuring instrument 12 and the analog signal S2 output from the received power measuring instrument 13 are set to have a magnitude determined by the following equations (1) and (2). Has been.

S1=4(mA)+0.1(mA/kW)×P0・・・(1)
S2=4(mA)+0.1(mA/kW)×P1・・・(2)
P0:正常時での商用電力系統1からの受電電力(kW)
P1:停電時での自立発電装置20全体の実際の発電出力(kW)
S1 = 4 (mA) +0.1 (mA / kW) × P0 (1)
S2 = 4 (mA) +0.1 (mA / kW) × P1 (2)
P0: Power received from the commercial power system 1 at normal time (kW)
P1: Actual power generation output (kW) of the entire self-sustained power generation apparatus 20 during a power failure

また、停電時における自立発電装置20全体の実際の発電出力P1を計測する受電電力計測器13が出力するアナログ信号S2は、減算器15に入力され、アナログ信号発生器14が出力する所定のアナログ信号S3が減算される。
また、このアナログ信号発生器14は、発電出力制御手段51から自立発電装置20全体の設定発電出力P1aが入力され、当該設定発電出力P1aに応じた4mA〜20mAの範囲内のアナログ信号S3を出力するように構成されている。
即ち、この減算器15から出力されるアナログ信号S4は、自立発電装置20全体の設定発電出力P1aに対する実際の発電出力P1の差に応じた値をとるようになり、実際の発電出力P1が設定発電出力P1aに一致する場合には、一定の値をとるようになる。
即ち、この減算器15は、自立発電装置20全体の設定発電出力P1aに対する実際の発電出力P1の差に応じたアナログ信号S4を発電出力差信号として出力する手段として機能することになる。
具体的に、このアナログ信号発生器14が出力するアナログ信号S3、及び減算器15から出力されるアナログ信号S4の大きさは、下記の式(3)及び(4)で求められる大きさとなる。
Further, the analog signal S2 output from the received power measuring instrument 13 that measures the actual power generation output P1 of the entire independent power generation apparatus 20 at the time of a power failure is input to the subtractor 15 and the predetermined analog output from the analog signal generator 14 is output. The signal S3 is subtracted.
The analog signal generator 14 receives the set power generation output P1a of the self-sustained power generation apparatus 20 as a whole from the power generation output control means 51, and outputs an analog signal S3 within a range of 4 mA to 20 mA according to the set power generation output P1a. Is configured to do.
That is, the analog signal S4 output from the subtracter 15 takes a value corresponding to the difference between the actual power generation output P1 and the set power generation output P1a of the entire independent power generation apparatus 20, and the actual power generation output P1 is set. When it coincides with the power generation output P1a, it takes a constant value.
That is, the subtractor 15 functions as a means for outputting the analog signal S4 corresponding to the difference between the actual power generation output P1 and the set power generation output P1a of the entire independent power generation apparatus 20 as a power generation output difference signal.
Specifically, the magnitudes of the analog signal S3 output from the analog signal generator 14 and the analog signal S4 output from the subtractor 15 are determined by the following equations (3) and (4).

S3=4(mA)+0.1(mA/kW)×(P1a−1.6(kW))・・・(3)
S4=S2−(S3−4(mA)) =4.16(mA)+0.1(mA/kW)×(P1−P1a)・・・(4)
P1a:自立発電装置20全体の設定発電出力(kW)
S3 = 4 (mA) +0.1 (mA / kW) × (P1a−1.6 (kW)) (3)
S4 = S2- (S3-4 (mA)) = 4.16 (mA) +0.1 (mA / kW) × (P1-P1a) (4)
P1a: Set power generation output (kW) of the self-sustaining power generation device 20 as a whole

受電電力計測器12が出力する電力線2の受電電力に応じた値をとるアナログ信号S1と、減算器15が出力する自立発電装置20全体の設定発電出力P1aに対する実際の発電出力P1の差に応じた値をとるアナログ信号S4とは、切替器16により択一的に切り替えられて、連系発電装置30に入力される。
具体的に、この切替器16は、トランスファ接点式(電圧ON/OFFで切り替わる)のスイッチで構成されている。この切替器16において、常開接点16aにはアナログ信号S1が入力され、一方、常閉接点16bにはアナログ信号S4が入力され、更に、共通接点16cから出力されたアナログ信号S1,S2の何れか一方が連系発電装置30の制御部36に入力される。
According to the difference between the analog signal S1 that takes a value corresponding to the received power of the power line 2 output by the received power measuring instrument 12 and the actual generated output P1 with respect to the set generated output P1a of the self-sustained power generation apparatus 20 that is output by the subtractor 15 The analog signal S <b> 4 having a predetermined value is selectively switched by the switch 16 and input to the grid power generation apparatus 30.
Specifically, the switch 16 is composed of a transfer contact type switch (switched by voltage ON / OFF). In the switching device 16, the analog signal S1 is input to the normally open contact 16a, while the analog signal S4 is input to the normally closed contact 16b, and any one of the analog signals S1 and S2 output from the common contact 16c. One of them is input to the control unit 36 of the grid power generation apparatus 30.

また、切替器16は、停電検出手段53により停電が検出された停電時に、発電出力制御手段51によりON状態からOFF状態(図1に示す状態)に切り替えられる。
即ち、商用電力系統1からの受電が正常に行われている正常時には、切替器16がON状態(共通接点16cを常開接点16aに接続する状態)とされて、電力線2の受電電力に応じた値をとるアナログ信号S1が連系発電装置30の制御部36に入力され、一方、商用電力系統1からの受電が停止する停電時には、切替器16がOFF状態(共通接点16cを常閉接点16bに接続する状態)とされて、自立発電装置20全体の設定発電出力P1aに対する実際の発電出力P1の差に応じた値をとるアナログ信号S4が連系発電装置30の制御部36に入力されることになる。
The switch 16 is switched from the ON state to the OFF state (the state shown in FIG. 1) by the power generation output control unit 51 when a power failure is detected by the power failure detection unit 53.
That is, when the power reception from the commercial power system 1 is normally performed, the switch 16 is turned on (a state in which the common contact 16c is connected to the normally open contact 16a), and according to the power received by the power line 2. On the other hand, the switch 16 is in an OFF state (the common contact 16c is a normally closed contact) at the time of a power failure in which the power reception from the commercial power system 1 is stopped. 16b), an analog signal S4 having a value corresponding to the difference between the actual power generation output P1 and the set power generation output P1a of the entire independent power generation apparatus 20 is input to the control unit 36 of the grid power generation apparatus 30. Will be.

そして、連系発電装置30の制御部36は、入力されるアナログ信号S1,S4が一定値の4.16mAに維持されるように、エンジン32の回転数を設定することにより、連系発電装置30の発電出力が制御される。
よって、正常時には、受電電力計測器12が出力するアナログ信号S1が一定値の4.16mAに維持され、言い換えれば電力線2の受電電力がこの一定値に対応する1.6kWに維持されるように、連系発電装置30全体の発電出力P2が制御されることになる。
一方、停電時には、減算器15が出力するアナログ信号S4が一定値の4.16mAに維持され、言い換えれば自立発電装置20全体の実際の発電出力P1が設定発電出力P1aに一致して維持されるように、連系発電装置30全体の発電出力P2が制御されることになる。
このように、上記発電出力制御手段51が、停電時において、アナログ信号発生器14に対して、自立発電装置20全体の設定発電出力P1aを入力することで、自立発電装置20全体の実際の発電出力P1が所定の設定発電出力P1aとなるように連系発電装置30全体の発電出力P2を制御することを、発電出力制御と呼ぶ。
このように構成された発電システムは、複数の発電装置Bの発電出力を特定電力負荷8の消費電力の変動に対して適切に追従させるように各発電装置Bの発電出力を適切に制御すると共に、負荷投入や負荷遮断に伴う急激な消費電力の変動にも対応するための設定発電出力調整処理を実行するように構成されており、その詳細について以下に説明を加える。
And the control part 36 of the interconnection power generator 30 sets the rotation speed of the engine 32 so that the input analog signals S1 and S4 are maintained at a constant value of 4.16 mA, so that the interconnection power generator 30 power generation outputs are controlled.
Therefore, at the normal time, the analog signal S1 output from the received power measuring instrument 12 is maintained at a constant value of 4.16 mA, in other words, the received power of the power line 2 is maintained at 1.6 kW corresponding to the constant value. Thus, the power generation output P2 of the entire interconnection power generation apparatus 30 is controlled.
On the other hand, at the time of a power failure, the analog signal S4 output from the subtractor 15 is maintained at a constant value of 4.16 mA, in other words, the actual power generation output P1 of the entire self-sustained power generation apparatus 20 is maintained in accordance with the set power generation output P1a. As described above, the power generation output P2 of the entire grid power generation apparatus 30 is controlled.
As described above, when the power generation output control means 51 inputs the set power generation output P1a of the entire independent power generation apparatus 20 to the analog signal generator 14 at the time of a power failure, the actual power generation of the entire independent power generation apparatus 20 is performed. Controlling the power generation output P2 of the entire grid power generation apparatus 30 so that the output P1 becomes a predetermined set power generation output P1a is referred to as power generation output control.
The power generation system configured in this manner appropriately controls the power generation output of each power generation device B so that the power generation outputs of the plurality of power generation devices B appropriately follow the fluctuations in the power consumption of the specific power load 8. The set power generation output adjustment process is also executed to cope with a sudden change in power consumption caused by load application or load interruption. The details will be described below.

〔設定発電出力調整処理〕
制御装置50の発電出力制御手段51は、上述したように、発電出力制御において、自立発電装置20の実際の発電出力P1が所定の設定発電出力P1aとなるように連系発電装置30の発電出力P2を制御するが、それに加えて、複数の特定電力負荷8の電力線6に対する投入又は解列状態に基づいて自立発電装置20の設定発電出力P1aを調整する設定発電出力調整処理を実行するように構成されている。
具体的には、制御装置50は、図2及び図3も参照して、電力線6に対して現在投入されており次に解列される可能性がある特定電力負荷8である現投入電力負荷8a、8cの現消費電力Qa,Qcを解列予定消費電力Xとして導出する解列予定消費電力導出手段54、及び、電力線6に対して現在解列されており次に投入される可能性がある特定電力負荷8である現解列電力負荷8b、8dの現消費電力Qa,Qcを投入予定消費電力Yとして導出する投入予定消費電力導出手段55として機能する。そして、発電出力制御手段51は、設定発電出力調整処理において、自立発電装置20の設定発電出力P1aを解列予定消費電力X以上とし、且つ、自立発電装置20の定格発電出力P1maxに対する設定発電出力P1aの差分を投入予定消費電力Y以上に維持する形態で、自立発電装置20の設定発電出力P1aを調整する。
[Set power generation output adjustment processing]
As described above, the power generation output control means 51 of the control device 50 uses the power generation output of the grid power generation device 30 so that the actual power generation output P1 of the self-sustained power generation device 20 becomes a predetermined set power generation output P1a in the power generation output control. In addition to controlling P2, a set power generation output adjustment process for adjusting the set power generation output P1a of the stand-alone power generation device 20 based on the input or disconnected state of the plurality of specific power loads 8 with respect to the power line 6 is executed. It is configured.
Specifically, referring to FIG. 2 and FIG. 3, the control device 50 also refers to the current input power load that is the specific power load 8 that is currently input to the power line 6 and may be disconnected next. The scheduled power consumption deriving means 54 for deriving the current power consumptions Qa and Qc of 8a and 8c as the scheduled power consumption X, and the power line 6 are currently disconnected and may be input next. It functions as the planned power consumption deriving means 55 for deriving the current power consumption Qa, Qc of the current solution power loads 8b, 8d, which are a specific power load 8, as the planned power consumption Y. Then, in the set power generation output adjustment process, the power generation output control means 51 sets the set power generation output P1a of the self-sustained power generation device 20 to be equal to or higher than the scheduled power consumption X, and the set power generation output relative to the rated power generation output P1max of the self-supporting power generation device 20 The set power generation output P1a of the self-sustained power generation apparatus 20 is adjusted in such a manner that the difference in P1a is maintained to be equal to or higher than the scheduled power consumption Y.

このように自立発電装置20の設定発電出力P1aを調整することで、自立発電装置20による発電出力P1の低下側の調整幅が当該解列予定消費電力X以上に確保され、且つ、自立発電装置20による発電出力P1の増加側の調整幅が当該投入予定消費電力Y以上に確保されることになる。
よって、将来において現投入電力負荷8a、8cの何れかが電力線6から解列された場合でも、自立発電装置20の発電出力P1をその解列された特定電力負荷8の消費電力に相等する分だけ急激に低下させることができ、一方、将来において現解列電力負荷8b、8dの何れかが電力線6に投入された場合でも、自立発電装置20の発電出力をその投入された特定電力負荷8の消費電力に相等する分だけ急激に増加させることができというように、複数の発電装置Bの発電出力が特定電力負荷8の消費電力の変動に対して適切に追従することになる。
次に、上記解列予定消費電力X及び上記投入予定消費電力Yの具体的な導出方法の詳細について説明する。
By adjusting the set power generation output P1a of the self-sustained power generation device 20 in this way, the adjustment range on the lower side of the power generation output P1 by the self-sustained power generation device 20 is ensured to be equal to or greater than the scheduled power consumption X and the self-sustained power generation device. Thus, the adjustment range on the increase side of the power generation output P1 by 20 is ensured to be equal to or more than the scheduled power consumption Y.
Therefore, even if any of the currently input power loads 8a and 8c is disconnected from the power line 6 in the future, the power generation output P1 of the self-sustained power generation apparatus 20 is equivalent to the power consumption of the disconnected specific power load 8. On the other hand, even if any of the current solution power loads 8b and 8d is input to the power line 6 in the future, the power generation output of the self-sustained power generation apparatus 20 can be reduced to the specific power load 8 that has been input. Thus, the power generation outputs of the plurality of power generation devices B appropriately follow the fluctuations in the power consumption of the specific power load 8 so that the power generation output can be increased abruptly by an amount equivalent to the power consumption.
Next, details of a specific method for deriving the scheduled power consumption X and the scheduled power consumption Y will be described.

(第1の解列予定消費電力Xの導出方法)
先ず、解列予定消費電力Xの導出方法の一例として、第1の導出方法について説明する。
それぞれの特定電力負荷8に対して設けられている消費電力計測器10は、対応する特定電力負荷8の遮断器9が投入状態にあるときに当該特定電力負荷8の消費電力を計測するものであることから、電力線6に対して現在投入されており次に解列される可能性がある現投入電力負荷8a、8cのそれぞれにおける現在の消費電力を現消費電力として計測する手段であると言える。
そして、かかる第1の解列予定消費電力Xの導出方法において、解列予定消費電力導出手段54は、図3に示すように、現投入電力負荷8a、8cのそれぞれの現消費電力Qa、Qcの最大値Qcを解列予定消費電力X1として導出する。
すると、発電出力制御手段51による設定発電出力調整処理では、図2に示すように、このように現消費電力Qa、Qcの最大値Qcとして導出した解列予定消費電力X1を利用して、自立発電装置20の設定発電出力P1aが常にその解列予定消費電力X1以上に維持されることになる。
よって、少なくとも現投入電力負荷8a、8cのうち最大の現消費電力Qcを有する現投入電力負荷8cが電力線6から解列された場合でも、自立発電装置20の発電出力P1をその解列された特定電力負荷8cの消費電力Qcに相等する分だけ急激に低下させることができるようになる。
(Derivation Method of First Disjunction Scheduled Power Consumption X)
First, a first derivation method will be described as an example of a method for deriving the scheduled power consumption X.
The power consumption measuring device 10 provided for each specific power load 8 measures the power consumption of the specific power load 8 when the circuit breaker 9 of the corresponding specific power load 8 is in the on state. Therefore, it can be said that it is a means for measuring the current power consumption in each of the currently input power loads 8a and 8c that are currently input to the power line 6 and that may be disconnected next as the current power consumption. .
In the first method for deriving the planned scheduled power consumption X, the scheduled power consumption deriving unit 54 performs the current power consumption Qa, Qc of the current input power loads 8a, 8c, as shown in FIG. Is derived as the scheduled power consumption X1.
Then, in the set power generation output adjustment processing by the power generation output control means 51, as shown in FIG. 2, the scheduled power consumption X1 derived as the maximum value Qc of the current power consumption Qa and Qc in this way is used independently. The set power generation output P1a of the power generation device 20 is always maintained at or above the scheduled power consumption X1.
Therefore, even when the current input power load 8c having the maximum current power consumption Qc among at least the current input power loads 8a and 8c is disconnected from the power line 6, the power generation output P1 of the independent power generator 20 is disconnected. As a result, the power can be rapidly reduced by an amount equivalent to the power consumption Qc of the specific power load 8c.

(第2の解列予定消費電力Xの導出方法)
次に、解列予定消費電力Xの導出方法の一例として、第2の導出方法について説明する。
かかる第2の解列予定消費電力Xの導出方法において、解列予定消費電力導出手段54は、図3に示すように、記憶部56によりそれぞれの遮断器9a、9b、9c、9dの許容電力La,Lb,Lc,Ldを予め記憶すると共に、遮断器状態検出センサ11で現在投入状態であると検出された遮断器9a、9cのそれぞれの許容電力La、Lcの最大値Lcを解列予定消費電力X2として導出する。
すると、発電出力制御手段51による設定発電出力調整処理では、図2に示すように、このように投入状態の遮断器9a、9cのそれぞれの許容電力La、Lcの最大値Lcとして導出した解列予定消費電力X2を利用して、自立発電装置20の設定発電出力P1aが常にその解列予定消費電力X2以上に維持されることになる。
よって、少なくとも投入状態である遮断器9a、9cのうち最大の許容電力Lcを有する遮断器9cが解列状態に切り替わって当該遮断器9cに接続された現投入電力負荷8cが電力線6から解列された場合でも、自立発電装置20の発電出力Paをその解列状態となった遮断器9cに接続された特定電力負荷8cの消費電力Qcに相等する分だけ急激に低下させることができるようになる。
(Method for Deriving Second Disjunction Scheduled Power Consumption X)
Next, a second derivation method will be described as an example of a method for deriving the scheduled power consumption X.
In the second method for deriving the scheduled disconnection power consumption X, the scheduled disconnection power consumption deriving means 54, as shown in FIG. 3, allows the storage unit 56 to accept the allowable power of each circuit breaker 9a, 9b, 9c, 9d. La, Lb, Lc, and Ld are stored in advance, and the maximum values Lc of the allowable powers La and Lc of the circuit breakers 9a and 9c detected by the circuit breaker state detection sensor 11 as being currently turned on are scheduled to be disconnected. Derived as power consumption X2.
Then, in the set power generation output adjustment process by the power generation output control means 51, as shown in FIG. 2, the discontinuity derived as the maximum values Lc of the allowable powers La and Lc of the circuit breakers 9a and 9c in the on state as described above Using the planned power consumption X2, the set power generation output P1a of the self-sustained power generation apparatus 20 is always maintained to be equal to or higher than the scheduled power consumption X2.
Therefore, the circuit breaker 9c having the maximum allowable power Lc among the circuit breakers 9a and 9c in the on state is switched to the disconnected state, and the current input power load 8c connected to the circuit breaker 9c is disconnected from the power line 6. Even in such a case, the power generation output Pa of the self-sustained power generation apparatus 20 can be rapidly reduced by an amount equivalent to the power consumption Qc of the specific power load 8c connected to the circuit breaker 9c in the disconnected state. Become.

(投入予定消費電力Yの導出方法)
次に、投入予定消費電力Yの導出方法の一例について説明する。
かかる投入予定消費電力Yの導出方法において、投入予定消費電力導出手段55は、図3に示すように、記憶部56によりそれぞれの遮断器9a、9b、9c、9dの許容電力La,Lb,Lc,Ldを予め記憶すると共に、遮断器状態検出センサ11で現在解列状態であると検出された遮断器9b、9dのそれぞれの許容電力Lb、Ldの最大値Lbを投入予定消費電力Yとして導出する。
すると、発電出力制御手段51による設定発電出力調整処理では、図2に示すように、このように解列状態の遮断器9b、9dのそれぞれの許容電力Lb、Ldの最大値Lbとして導出した投入予定消費電力Yを利用して、自立発電装置20の設定発電出力P1aの定格出力Pmaxに対する差分が、常にその投入予定消費電力Y以上に維持されることになる。
よって、少なくとも解列状態である遮断器9b、9dのうち最大の許容電力Lbを有する遮断器9bが投入状態に切り替わって当該遮断器9bに接続された特定電力負荷8bが電力線6に投入された場合でも、自立発電装置20の発電出力Paをその投入状態となった遮断器9bに接続された特定電力負荷8bの消費電力Qbに相等する分だけ急激に増加させることができるようになる。
(Method for deriving planned power consumption Y)
Next, an example of a method for deriving the scheduled power consumption Y will be described.
In the method for deriving the planned power consumption Y, the planned power consumption deriving means 55 is configured such that, as shown in FIG. 3, the storage unit 56 allows the allowable power La, Lb, Lc of each of the circuit breakers 9a, 9b, 9c, 9d. , Ld are stored in advance, and the maximum allowable values Lb of the circuit breakers 9b, 9d detected by the circuit breaker state detection sensor 11 as being currently disconnected are derived as the scheduled power consumption Y. To do.
Then, in the set power generation output adjustment processing by the power generation output control means 51, as shown in FIG. 2, the input derived as the maximum values Lb of the allowable power Lb and Ld of the circuit breakers 9b and 9d in the disconnected state as described above Using the planned power consumption Y, the difference between the set power output P1a of the self-sustained power generation apparatus 20 and the rated output Pmax is always maintained to be equal to or higher than the planned power consumption Y.
Therefore, the circuit breaker 9b having the maximum allowable power Lb among the circuit breakers 9b and 9d in the disconnected state is switched to the on state, and the specific power load 8b connected to the circuit breaker 9b is input to the power line 6. Even in this case, the power generation output Pa of the self-sustained power generation apparatus 20 can be rapidly increased by an amount equivalent to the power consumption Qb of the specific power load 8b connected to the circuit breaker 9b that has been turned on.

これまでに説明した発電出力制御では、停電時において、例えば急激且つ大幅な消費電力の低下を伴う負荷遮断が発生して自立発電装置20全体の実際の発電出力P1が急激且つ大幅に低下された場合、自立発電装置20全体の設定発電出力P1aに対する実際の発電出力P1の差が急激且つ大幅に低下することで、減算器15が出力するアナログ信号S4が設定下限値である4mAを下回って低下することがある。そして、このアナログ信号S4をそのまま連系発電装置30の制御部36に入力すると、当該制御部36は、特定電力負荷8が全て解列したと誤認識し、結果、エンジン32の異常停止を招くことが懸念される。
そこで、切替器16の共通接点16c側には、連系発電装置30の制御部36に入力されるアナログ信号S1,S4を設定下限値(例えば4mA)以上に制限するリミッタ17が設けられている。即ち、このリミッタ17により、連系発電装置30の制御部36に入力されるアナログ信号S1,S4は、常に設定下限値以上に維持される。
よって、停電時において、減算器15が出力するアナログ信号S4が設定下限値を下回って低下した場合でも、このリミッタ17によって、連系発電装置30の制御部36に入力されるアナログ信号S4'は、設定下限値に維持されることになるので、制御部36は、その入力された4mAのアナログ信号S4'を一定値の4.16mAに維持する程度に、エンジン32の回転数を比較的小規模に低下させて発電出力の低下幅を制限することになるので、当該エンジン32の異常停止を回避することができる。
尚、このように、急激且つ大幅な消費電力の低下が発生して、自立発電装置20全体の実際の発電出力P1を急激且つ大幅に低下させたときに、連系発電装置30全体の発電出力P2の低下を制限した場合には、連系発電装置30から電力線6を介して自立発電装置20に向けて電流が逆流することが懸念される。そこで、自立発電装置20の発電電力の出力側には、かかる電流の逆流を防止する保護装置29が設けられている。
In the power generation output control described so far, at the time of a power failure, for example, a load interruption accompanied by a rapid and significant reduction in power consumption occurs, and the actual power generation output P1 of the entire self-sustained power generation apparatus 20 is suddenly and significantly reduced. In this case, the difference between the actual power generation output P1 and the set power generation output P1a of the self-sustained power generation apparatus 20 as a whole suddenly and greatly decreases, so that the analog signal S4 output from the subtractor 15 decreases below the set lower limit of 4 mA. There are things to do. When this analog signal S4 is directly input to the control unit 36 of the grid power generation apparatus 30, the control unit 36 erroneously recognizes that all the specific power loads 8 have been disconnected, resulting in an abnormal stop of the engine 32. There is concern.
Therefore, a limiter 17 is provided on the common contact 16c side of the switch 16 to limit the analog signals S1 and S4 input to the control unit 36 of the grid power generation apparatus 30 to a set lower limit value (for example, 4 mA) or more. . That is, the limiter 17 always maintains the analog signals S1 and S4 input to the control unit 36 of the grid power generation apparatus 30 at or above the set lower limit value.
Therefore, even when the analog signal S4 output from the subtractor 15 falls below the set lower limit during a power failure, the analog signal S4 ′ input to the control unit 36 of the grid power generation apparatus 30 by the limiter 17 is Therefore, the controller 36 keeps the input 4 mA analog signal S4 ′ at a constant value of 4.16 mA so that the rotational speed of the engine 32 is relatively small. Since the reduction in power generation output is limited by reducing the scale, abnormal stop of the engine 32 can be avoided.
Note that when the actual power generation output P1 of the entire self-sustained power generation apparatus 20 is suddenly and greatly reduced as a result of the sudden and significant reduction in power consumption, the power generation output of the entire grid power generation apparatus 30 is thus reduced. When the decrease in P2 is restricted, there is a concern that the current flows backward from the grid power generation device 30 to the self-sustained power generation device 20 via the power line 6. Therefore, a protection device 29 for preventing the backflow of the current is provided on the output side of the generated power of the self-supporting power generation device 20.

以下、停電検出手段53により停電が検出された停電時に各手段により実行される処理フローの詳細について説明する。
先ず、図4の時間t0に示すタイミングで停電検出手段53により停電が検出されると、停電時解列手段52により、切替器5がON状態からOFF状態に切り替えられて、一般電力負荷4が複数の発電装置Bから解列された状態となる。
その後、発電出力制御手段51により、図4の時間t0〜時間t1に示すように各発電装置Bに対して電力負荷が投入されていない無負荷の状態で、複数の発電装置Bを起動させる停電時起動処理が実行される。
この停電時起動処理では、先ず、自立発電装置20を自立起動させた後に、その自立発電装置20の発電電力を、電力線6を介して連系発電装置30に供給することで、当該自立発電装置20の発電電力を利用して連系発電装置30を起動させる。
更に、この停電時起動処理において、連系発電装置30を起動させるにあたり、複数の連系発電装置30を同時に起動させるのではなく、その複数の連系発電装置30を順次起動させることで、自立発電装置20に対して投入される連系発電装置30の起動用の電力負荷が瞬間的に過大となることが回避されている。
The details of the processing flow executed by each means at the time of a power failure in which a power failure is detected by the power failure detection means 53 will be described below.
First, when a power failure is detected by the power failure detection means 53 at the timing indicated by time t0 in FIG. 4, the switch 5 is switched from the ON state to the OFF state by the power failure disconnecting means 52, and the general power load 4 is The power generators B are disconnected from each other.
Thereafter, the power generation output control means 51 causes the power generation devices B to start up in a no-load state in which no power load is applied to each power generation device B as shown at time t0 to time t1 in FIG. Start-up processing is executed.
In the start-up process at the time of a power failure, first, the self-sustained power generation apparatus 20 is activated independently, and then the power generated by the self-sustained power generation apparatus 20 is supplied to the grid power generation apparatus 30 via the power line 6. The grid-connected power generator 30 is activated using 20 generated power.
Furthermore, in the start-up process at the time of a power failure, when starting the grid power generation apparatus 30, instead of simultaneously starting the plurality of grid power generation apparatuses 30, the plurality of grid power generation apparatuses 30 are sequentially started, so that It is avoided that the power load for starting up the grid power generation device 30 input to the power generation device 20 is excessively large.

発電出力制御手段51は、停電時において、上記停電時起動処理を実行して複数の発電装置Bを起動させた上で、発電出力制御を実行する。
この発電出力制御では、上述したように、アナログ信号発生器14に対して、上述した設定発電出力調整処理により調整される設定発電出力P1aを入力することで、連系発電装置30の制御部36により、自立発電装置20全体の実際の発電出力P1が所定の設定発電出力P1aとなるように、連系発電装置30全体の発電出力P2が制御される。
In the event of a power failure, the power generation output control means 51 performs the power generation output control after executing the power failure start process to activate a plurality of power generators B.
In this power generation output control, as described above, the set power generation output P1a adjusted by the above-described set power generation output adjustment processing is input to the analog signal generator 14, thereby the control unit 36 of the grid power generation apparatus 30. Thus, the power generation output P2 of the entire grid power generation apparatus 30 is controlled so that the actual power generation output P1 of the entire self-sustained power generation apparatus 20 becomes the predetermined set power generation output P1a.

尚、発電装置Bに投入される特定電力負荷8全体の消費電力Qが、自立発電装置20全体の設定発電出力P1aに達するまでの期間は、図4の時間t1〜時間t2の期間に示すように、連系発電装置30は、特定電力負荷8から解列された状態となって発電を停止したアイドリング状態となり、自立発電装置20のみで特定電力負荷8全体の消費電力Qを賄う。即ち、自立発電装置20において、制御部26は、出力電圧を上記基準電圧に維持する形態でエンジン22の出力を制御することで、自立発電装置20全体の実際の発電出力P1が特定電力負荷8の消費電力に一致する。   Note that the period until the power consumption Q of the entire specific power load 8 input to the power generation apparatus B reaches the set power generation output P1a of the entire independent power generation apparatus 20 is shown as the period from time t1 to time t2 in FIG. In addition, the grid power generation device 30 is disconnected from the specific power load 8 and is in an idling state in which power generation is stopped, and the power consumption Q of the specific power load 8 as a whole is covered only by the independent power generation device 20. That is, in the self-sustained power generation apparatus 20, the control unit 26 controls the output of the engine 22 in such a manner that the output voltage is maintained at the reference voltage, so that the actual power generation output P1 of the entire self-sustained power generation apparatus 20 becomes the specific power load 8. It matches the power consumption.

次に、特定電力負荷8全体の消費電力Qが、上記設定発電出力P1aを超えた場合には、自立発電装置20全体の発電出力P1は設定発電出力P1aに維持した状態で上記発電出力制御が実行される。
すると、図4の時間t2〜時間t3の期間に示すように、連系発電装置30全体の発電出力P2が、特定電力負荷8全体の消費電力Qから自立発電装置20全体の設定発電出力P1aを差し引いた分を補う形態で制御されることになる。
Next, when the power consumption Q of the entire specific power load 8 exceeds the set power generation output P1a, the power generation output control is performed in a state where the power generation output P1 of the entire independent power generator 20 is maintained at the set power generation output P1a. Executed.
Then, as shown in the period from time t2 to time t3 in FIG. 4, the power generation output P2 of the entire grid power generation device 30 obtains the set power generation output P1a of the entire independent power generation device 20 from the power consumption Q of the entire specific power load 8. It will be controlled in a form that compensates for the subtracted amount.

更に、図4の時間t3以降の期間に示すように、複数の連系発電装置30全体の発電出力P2が当該複数の連系発電装置30全体の定格発電出力P2a(140kW)に到達している期間は、連系発電装置30全体の発電出力P2が定格発電出力P2aを超えて増加することができないことから、自立発電装置20の制御部26が出力電圧を上記基準電圧に維持するように発電出力P1を調整するように働き、自立発電装置20全体の実際の発電出力P1が、特定電力負荷8全体の消費電力Qから連系発電装置30全体の定格発電出力P2aを差し引いた分を補う形態で制御されることになる。
尚、図4の時間t4に示すように、負荷遮断等により特定電力負荷8全体の消費電力Qが急激且つ大幅に低下した場合にも、自立発電装置20の制御部26が出力電圧を上記基準電圧に維持するように発電出力P1を急激且つ大幅に低下させることになる。
Further, as shown in the period after time t3 in FIG. 4, the power generation output P2 of the plurality of interconnection power generation apparatuses 30 as a whole reaches the rated power generation output P2a (140 kW) of the plurality of interconnection generation apparatuses 30 as a whole. During the period, since the power generation output P2 of the entire grid power generation apparatus 30 cannot increase beyond the rated power generation output P2a, the control unit 26 of the self-sustained power generation apparatus 20 generates power so as to maintain the output voltage at the reference voltage. The mode is such that the output P1 is adjusted, and the actual power generation output P1 of the entire independent power generation apparatus 20 compensates for the subtraction of the rated power generation output P2a of the entire grid power generation apparatus 30 from the power consumption Q of the entire specific power load 8. It will be controlled by.
Note that, as shown at time t4 in FIG. 4, even when the power consumption Q of the specific power load 8 as a whole suddenly and significantly decreases due to load interruption or the like, the control unit 26 of the independent power generator 20 sets the output voltage to the above reference. The power generation output P1 is suddenly and greatly reduced so as to maintain the voltage.

また、特定電力負荷8全体の消費電力Qが、連系発電装置30全体の発電出力P2を定格発電出力P2a以下に抑えられる状態まで低下した場合には、上述した時間t2〜時間t3の期間と同様、自立発電装置20全体の実際の発電出力P1が設定発電出力P1aに維持され、連系発電装置30全体の発電出力P2が、特定電力負荷8全体の消費電力Qから自立発電装置20の設定発電出力p1aを差し引いた分を補う形態で制御されることになる。
尚、本実施形態において、受電電力の範囲(0〜160kW)、受電電力計測器13やアナログ信号発生器14が出力するアナログ信号Sの範囲(4mA〜20mA)、連系発電装置30におけるエンジン32の回転数設定のために入力されるアナログ信号S1,S4の目標値(4.16mA)などとして挙げた各種数値については、本願発明を限定するものではなく、適宜実施状況に応じて設定可能な数値である。
Further, when the power consumption Q of the entire specific power load 8 is reduced to a state where the power generation output P2 of the entire grid power generation device 30 can be suppressed to the rated power generation output P2a or less, the above-described period of time t2 to time t3 Similarly, the actual power generation output P1 of the entire independent power generation apparatus 20 is maintained at the set power generation output P1a, and the power generation output P2 of the entire interconnection power generation apparatus 30 is set from the power consumption Q of the entire specific power load 8 to the setting of the independent power generation apparatus 20. Control is performed in a form that compensates for the subtraction of the power generation output p1a.
In this embodiment, the range of the received power (0 to 160 kW), the range of the analog signal S output from the received power measuring instrument 13 and the analog signal generator 14 (4 mA to 20 mA), and the engine 32 in the interconnection power generator 30. Various numerical values cited as the target values (4.16 mA) of the analog signals S1 and S4 input for setting the number of rotations are not intended to limit the present invention, and can be set according to the implementation situation as appropriate. It is a numerical value.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記実施形態では、発電出力制御手段51が、設定発電出力調整処理において、解列予定消費電力Xや投入予定消費電力Yを導出し、それを利用して自立発電装置20の設定発電出力P1aを調整するように構成したが、別に、例えば複数の特定電力負荷8に接続されたそれぞれの遮断器9の許容電力Lが略同じものである場合には、遮断器状態検出センサ11で現在投入状態であると検出された遮断器9の数、又は、遮断器状態検出センサ11で現在投入状態であると検出された遮断器9の数に基づいて、自立発電装置20の設定発電出力P1aを調整しても構わない。
このような場合、例えば、現在投入状態であると検出された遮断器9の数が多いほど、又は、現在解列状態であると検出された遮断器9の数が少ないほど、自立発電装置20の設定発電出力P1aを大きくする形態で、自立発電装置20の設定発電出力P1aを調整すれば、負荷投入や負荷遮断が行われた場合に備えて自立発電装置20の発電出力P1の上昇側又は低下側の調整幅を常に確保することができるようになる。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
(1) In the above embodiment, the power generation output control means 51 derives the scheduled power consumption X and the scheduled power consumption Y in the set power generation output adjustment process, and uses them to set power generation of the independent power generator 20. Although the output P1a is configured to be adjusted, separately, for example, when the allowable power L of each circuit breaker 9 connected to the plurality of specific power loads 8 is substantially the same, the circuit breaker state detection sensor 11 Based on the number of circuit breakers 9 detected to be currently turned on or the number of circuit breakers 9 detected to be currently turned on by the breaker state detection sensor 11, the set power generation output of the independent power generator 20 P1a may be adjusted.
In such a case, for example, the greater the number of circuit breakers 9 detected as being currently turned on, or the smaller the number of circuit breakers 9 detected as being currently disconnected, the more self-sustaining power generators 20 are. If the set power generation output P1a of the self-sustaining power generation apparatus 20 is adjusted in a form in which the set power generation output P1a is increased, the power generation output P1 of the self-supporting power generation apparatus 20 is increased or reduced in preparation for when a load is turned on or off. It is possible to always ensure the adjustment range on the lower side.

(2)上記実施形態では、本発明に係る発電システムを、停電を検出して当該停電時に全ての電力負荷Aから一般電力負荷4を解列させて発電装置Bの発電電力を一般電力負荷4以外の特定電力負荷8のみに供給する状態とするように構成したが、別に、このような解列処理を行うことなく、停電時において全ての電力負荷Aを特定電力負荷8とみなして当該全ての電力負荷Aに対して発電電力を供給するように構成しても構わない。
また、上記実施の形態では、本発明に係る発電システムを、商用電力系統1からの受電を行うものとして構成したが、商用電力系統1とは独立したものとして構成することも可能である。
(2) In the above-described embodiment, the power generation system according to the present invention detects a power failure and disconnects the general power load 4 from all the power loads A at the time of the power failure so that the power generated by the power generation apparatus B is converted to the general power load 4. The power supply is configured to be supplied only to the specific power load 8 other than the above. However, without performing such a disconnection process, all the power loads A are regarded as the specific power load 8 at the time of a power failure, and The power load A may be configured to supply generated power.
Moreover, in the said embodiment, although the electric power generation system which concerns on this invention was comprised as what receives electric power from the commercial power grid 1, it is also possible to comprise as a thing independent of the commercial power grid 1. FIG.

本発明は、基準電圧及び基準周波数の発電電力を電力線を介して複数の特定電力負荷に供給可能な複数の発電装置を備え、
前記複数の発電装置の発電出力を制御する発電出力制御を実行する発電出力制御手段を備えた発電システムとして好適に利用可能である。
The present invention comprises a plurality of power generators capable of supplying generated power of a reference voltage and a reference frequency to a plurality of specific power loads via a power line,
It can be suitably used as a power generation system provided with power generation output control means for executing power generation output control for controlling the power generation output of the plurality of power generation devices.

1 :商用電力系統
2 :電力線
6 :電力線
8 :特定電力負荷
9 :遮断器
10 :消費電力計測器(消費電力計測手段)
11 :遮断器状態検出センサ(遮断器状態検出手段)
20 :自立発電装置(第1発電装置)
30 :連系発電装置(第2発電装置)
51 :発電出力制御手段
52 :停電時解列手段
53 :停電検出手段
54 :解列予定消費電力導出手段
55 :投入予定消費電力導出手段
56 :記憶部
1: Commercial power system 2: Power line 6: Power line 8: Specific power load 9: Circuit breaker 10: Power consumption measuring device (power consumption measuring means)
11: Breaker state detection sensor (breaker state detection means)
20: Stand-alone power generator (first power generator)
30: Interconnection power generator (second power generator)
51: Power generation output control means 52: Disconnection means at power failure 53: Power failure detection means 54: Scheduled power consumption deriving means 55: Scheduled power consumption deriving means 56: Storage section

Claims (8)

基準電圧及び基準周波数の発電電力を電力線を介して複数の特定電力負荷に供給可能な複数の発電装置を備え、
前記複数の発電装置の発電出力を制御する発電出力制御を実行する発電出力制御手段を備えた発電システムであって、
前記複数の発電装置として、第1発電装置と第2発電装置とを備え、
前記第1発電装置が、出力電圧を基準電圧に維持するように発電出力を調整する発電電圧制御を実行するように構成され、
前記発電出力制御手段が、前記発電出力制御において、前記第1発電装置の実際の発電出力が所定の設定発電出力となるように前記第2発電装置の発電出力を制御すると共に、前記複数の特定電力負荷の前記電力線に対する投入又は解列状態に基づいて前記第1発電装置の設定発電出力を調整する設定発電出力調整処理を実行する発電システム。
A plurality of power generators capable of supplying generated power of a reference voltage and a reference frequency to a plurality of specific power loads via a power line,
A power generation system comprising power generation output control means for executing power generation output control for controlling power generation output of the plurality of power generation devices,
As the plurality of power generation devices, a first power generation device and a second power generation device,
The first power generator is configured to perform power generation voltage control for adjusting the power generation output so as to maintain the output voltage at a reference voltage;
In the power generation output control, the power generation output control means controls the power generation output of the second power generation device so that the actual power generation output of the first power generation device becomes a predetermined set power generation output, and the plurality of specified A power generation system that executes a set power generation output adjustment process that adjusts a set power generation output of the first power generation device based on an input or disconnected state of a power load with respect to the power line.
前記電力線に対して現在投入されており次に解列される可能性がある特定電力負荷である現投入電力負荷の消費電力を解列予定消費電力として導出する解列予定消費電力導出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記第1発電装置の設定発電出力を前記解列予定消費電力以上に維持する形態で、当該設定発電出力を調整する請求項1に記載の発電システム。
Dissociation scheduled power consumption deriving means for deriving the power consumption of the currently input power load, which is a specific power load that is currently input to the power line and that may be disconnected next, as the planned disconnection power consumption ,
The said power generation output control means adjusts the said setting power generation output in the form which maintains the setting power generation output of a said 1st power generator more than the said scheduled disconnection power consumption in the said setting power generation output adjustment process. Power generation system.
前記現投入電力負荷のそれぞれにおける現在の消費電力を現消費電力として計測する消費電力計測手段を備え、
前記解列予定消費電力導出手段が、前記現投入電力負荷におけるそれぞれの現消費電力の最大値を前記解列予定消費電力として導出する請求項2に記載の発電システム。
Comprising power consumption measuring means for measuring the current power consumption in each of the current input power loads as the current power consumption,
The power generation system according to claim 2, wherein the scheduled power consumption deriving unit derives the maximum value of each current power consumption in the current input power load as the scheduled power consumption.
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記解列予定消費電力導出手段が、前記それぞれの遮断器の許容電力を予め記憶すると共に、前記遮断器状態検出手段で現在投入状態であると検出された遮断器におけるそれぞれの許容電力の最大値を前記解列予定消費電力として導出する請求項2に記載の発電システム。
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
The scheduled power consumption derivation means stores in advance the allowable power of each of the circuit breakers, and the maximum value of each allowable power in the circuit breaker detected by the circuit breaker state detection means as being currently turned on The power generation system according to claim 2, wherein the power is derived as the scheduled power consumption.
前記電力線に対して現在解列されており次に投入される可能性がある特定電力負荷である現解列電力負荷の消費電力を投入予定消費電力として導出する投入予定消費電力導出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記第1発電装置の定格発電出力に対する前記設定発電出力の差分を前記投入予定消費電力以上に維持する形態で、当該設定発電出力を調整する請求項1ないし4の何れか1項に記載の発電システム。
A planned power consumption derivation means for deriving the power consumption of the current power line load that is a specific power load that is currently disconnected from the power line and that may be input next, as the planned power consumption;
The power generation output control means adjusts the set power generation output in the form of maintaining the difference between the set power generation output with respect to the rated power generation output of the first power generation device in the set power generation output adjustment process to be equal to or higher than the scheduled power consumption. The power generation system according to any one of claims 1 to 4.
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記投入予定消費電力導出手段が、前記それぞれの遮断器の許容電力を予め記憶すると共に、前記遮断器状態検出手段で現在解列状態であると検出された遮断器におけるそれぞれの許容電力の最大値を前記投入予定消費電力として導出する請求項5に記載の発電システム。
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
The estimated power consumption deriving unit stores in advance the allowable power of each of the circuit breakers, and the maximum value of each allowable power in the circuit breaker detected by the circuit breaker state detection unit as being currently disconnected. The power generation system according to claim 5, wherein the power is derived as the scheduled power consumption.
前記複数の特定電力負荷のそれぞれにおける前記電力線との接続部に、前記特定電力負荷を前記電力線に投入する投入状態と前記特定電力負荷を前記電力線から解列する解列状態とを切替自在な遮断器をそれぞれ備えると共に、当該それぞれの遮断器の状態を検出する遮断器状態検出手段を備え、
前記発電出力制御手段が、前記設定発電出力調整処理において、前記遮断器状態検出手段で現在投入状態であると検出された遮断器の数、又は、前記遮断器状態検出手段で現在解列状態であると検出された遮断器の数に基づいて、前記第1発電装置の設定発電出力を調整する請求項1に記載の発電システム。
Switching between a power-on state in which the specific power load is input to the power line and a disconnection state in which the specific power load is disconnected from the power line can be switched at a connection portion of each of the plurality of specific power loads with the power line. Each comprising a breaker, and comprising breaker state detection means for detecting the state of each breaker,
In the set power generation output adjustment process, the power generation output control means is the number of circuit breakers detected as being currently turned on by the circuit breaker state detection means, or is currently disconnected by the circuit breaker state detection means. The power generation system according to claim 1, wherein a set power generation output of the first power generation device is adjusted based on the number of circuit breakers detected as being present.
商用電力系統からの受電が停止する停電を検出する停電検出手段と、
前記停電検出手段により停電が検出された停電時に、前記電力負荷のうち前記特定電力負荷を除く一般電力負荷を前記複数の発電装置から解列させて、前記複数の発電装置の発電電力を前記特定電力負荷のみに供給する状態とする停電時解列手段とを備え、
前記発電出力制御手段が、前記停電検出手段により停電が検出された停電時に、前記複数の発電装置を起動させる停電時起動処理を実行した上で、前記発電出力制御及び前記設定発電出力調整処理を実行する請求項1ないし7の何れか1項に記載の発電システム。
A power failure detection means for detecting a power failure that stops receiving power from the commercial power system;
When a power failure is detected by the power failure detection means, a general power load excluding the specific power load among the power loads is disconnected from the plurality of power generation devices, and the generated power of the plurality of power generation devices is specified. Including a means for disconnecting at the time of a power failure to supply only to the power load,
The power generation output control means performs the power generation output control and the set power generation output adjustment process after executing a power failure start process for starting the plurality of power generation devices in the event of a power failure when the power failure is detected by the power failure detection means. The power generation system according to any one of claims 1 to 7, which is executed.
JP2014013515A 2014-01-28 2014-01-28 Power generation system Active JP6289123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013515A JP6289123B2 (en) 2014-01-28 2014-01-28 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013515A JP6289123B2 (en) 2014-01-28 2014-01-28 Power generation system

Publications (2)

Publication Number Publication Date
JP2015142426A true JP2015142426A (en) 2015-08-03
JP6289123B2 JP6289123B2 (en) 2018-03-07

Family

ID=53772453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013515A Active JP6289123B2 (en) 2014-01-28 2014-01-28 Power generation system

Country Status (1)

Country Link
JP (1) JP6289123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050428A (en) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 Control apparatus, electric power system with the same, control method, and control program
JP2021090289A (en) * 2019-12-04 2021-06-10 日鉄エンジニアリング株式会社 Control device of on-site power generation equipment, control method of on-site power generation equipment, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069668A (en) * 1999-08-27 2001-03-16 Matsushita Seiko Co Ltd Power management device
JP2001197789A (en) * 1999-11-08 2001-07-19 Toshiba Corp Controller for combined cycle power plant
JP2003189469A (en) * 2001-12-12 2003-07-04 Toshiba Corp Power supply system in accordance with load fluctuation
JP2007124797A (en) * 2005-10-27 2007-05-17 Toshiba Corp Apparatus and method for controlling autonomous operation
JP2008278700A (en) * 2007-05-02 2008-11-13 Ntt Facilities Inc Distributed generating set, and method for controlling and retaining power quality
JP2011250650A (en) * 2010-05-31 2011-12-08 Shimizu Corp Electric power system
US20120283890A1 (en) * 2011-05-05 2012-11-08 State Grid Corporation Of China (Sgcc) Control Apparatus for Micro-grid Connect/Disconnect from Grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069668A (en) * 1999-08-27 2001-03-16 Matsushita Seiko Co Ltd Power management device
JP2001197789A (en) * 1999-11-08 2001-07-19 Toshiba Corp Controller for combined cycle power plant
JP2003189469A (en) * 2001-12-12 2003-07-04 Toshiba Corp Power supply system in accordance with load fluctuation
JP2007124797A (en) * 2005-10-27 2007-05-17 Toshiba Corp Apparatus and method for controlling autonomous operation
JP2008278700A (en) * 2007-05-02 2008-11-13 Ntt Facilities Inc Distributed generating set, and method for controlling and retaining power quality
JP2011250650A (en) * 2010-05-31 2011-12-08 Shimizu Corp Electric power system
US20120283890A1 (en) * 2011-05-05 2012-11-08 State Grid Corporation Of China (Sgcc) Control Apparatus for Micro-grid Connect/Disconnect from Grid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050428A (en) * 2016-09-23 2018-03-29 三菱日立パワーシステムズ株式会社 Control apparatus, electric power system with the same, control method, and control program
JP2021090289A (en) * 2019-12-04 2021-06-10 日鉄エンジニアリング株式会社 Control device of on-site power generation equipment, control method of on-site power generation equipment, and program
JP7289259B2 (en) 2019-12-04 2023-06-09 日鉄エンジニアリング株式会社 ON-SITE GENERATOR CONTROL DEVICE, ON-SITE GENERATOR CONTROL METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP6289123B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP5508796B2 (en) Power supply system control method and power supply system control apparatus
EP3069431B1 (en) Uninterruptible power supply control
US9391537B2 (en) Photovoltaic system and power supply system
JP6033438B2 (en) Power control system
JP2015226426A (en) Emergency power generation system
TWI593213B (en) Uninterruptable power device
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid&#39;s islanding
JPWO2015029431A1 (en) Distributed power system, power conditioner
JP2006271097A (en) Power supply controller
US20160164341A1 (en) Uninterruptible power supply control
JP2019083689A (en) Power conditioner, power system, control method of power conditioner
JP5123673B2 (en) Power converter
JP6289123B2 (en) Power generation system
JP2018170934A (en) Electric power conversion device, and electric power conversion system
JP2015050835A (en) Distributed power supply system, power conditioner
JP5980100B2 (en) Emergency power generation system
JP5955200B2 (en) Emergency power generation system
JP2018170933A (en) Electric power conversion device, and electric power conversion system
JP5907851B2 (en) Emergency power generation system
JP2017184485A (en) Power generation system
JP6208613B2 (en) Power generation system
JP2017085813A (en) Power management device
JP6245467B2 (en) Power converter for wind power generation
JP2018207786A (en) Control method for power control system, power control system, and power controller
JP6202896B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150