JP6352640B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP6352640B2
JP6352640B2 JP2014011394A JP2014011394A JP6352640B2 JP 6352640 B2 JP6352640 B2 JP 6352640B2 JP 2014011394 A JP2014011394 A JP 2014011394A JP 2014011394 A JP2014011394 A JP 2014011394A JP 6352640 B2 JP6352640 B2 JP 6352640B2
Authority
JP
Japan
Prior art keywords
battery
flat surface
battery container
central region
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014011394A
Other languages
Japanese (ja)
Other versions
JP2015138753A (en
Inventor
正明 岩佐
正明 岩佐
松本 洋
洋 松本
佐々木 孝
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014011394A priority Critical patent/JP6352640B2/en
Publication of JP2015138753A publication Critical patent/JP2015138753A/en
Application granted granted Critical
Publication of JP6352640B2 publication Critical patent/JP6352640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複数の角形二次電池によって構成される電池モジュールに関する。   The present invention relates to a battery module including a plurality of prismatic secondary batteries.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高エネルギー密度を有するリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, as electric devices become smaller and lighter, lithium ion secondary batteries having high energy density have attracted attention, and their research, development, and commercialization are rapidly progressing.

また、地球温暖化や枯渇燃料の問題から電気自動車(EV)や駆動の一部を電気モーターで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源として高容量かつ高出力の二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧の非水溶液系のリチウムイオン二次電池が注目されている。特に角形リチウムイオン二次電池は、複数の電池によって電池モジュール(組電池)を構成したときの体積効率が優れているため、HEV用またはEV用の電源として開発への期待が高まっている。   In addition, electric vehicles (EV) and hybrid electric vehicles (HEV) that assist part of driving with electric motors have been developed by each automobile manufacturer due to global warming and depleted fuel problems. Secondary batteries have been demanded. As a power source that meets such requirements, high-voltage non-aqueous lithium ion secondary batteries have attracted attention. In particular, the prismatic lithium ion secondary battery is excellent in volumetric efficiency when a battery module (assembled battery) is constituted by a plurality of batteries, and therefore, the expectation for development as a power source for HEV or EV is increasing.

HEV用あるいはEV用などの用途において、二次電池は、多くの場合、ハイレートと呼ばれる大電流での充放電を繰り返すような使い方がされている(例えば、特許文献1を参照)。特許文献1に記載されているように、捲回状の電極体を有する二次電池では特に、捲回軸方向の中央寄りにおいて、それより外側に比較して内圧が高くなりがちである。また、外装ケースの扁平な形状を維持するような拘束の仕方が選択されていると面圧を均一に保持できず、二次電池の劣化が進行する。   In applications such as HEV or EV, secondary batteries are often used to repeatedly charge and discharge at a high current called high rate (see, for example, Patent Document 1). As described in Patent Document 1, particularly in a secondary battery having a wound electrode body, the inner pressure tends to be higher at the center in the winding axis direction than at the outside. In addition, if a restraining method that maintains the flat shape of the outer case is selected, the surface pressure cannot be maintained uniformly, and the secondary battery deteriorates.

そこで、特許文献1に記載の二次電池アセンブリでは、二次電池の最大面積の側面である被圧迫面に接触する、離散的に設けられた複数の接触部の形状または配置を、被圧迫面への圧迫力が片寄り領域において中央領域より強くなるように選択している。これにより、被圧迫面への圧迫力が片寄り領域において中央領域より強くなるようにして二次電池の内圧を均一化することでき、ハイレートで使用される二次電池であっても面圧を均一に保持することができ、二次電池の劣化の進行を抑制することができることが記載されている。   Therefore, in the secondary battery assembly described in Patent Document 1, the shape or arrangement of a plurality of discretely provided contact portions that are in contact with the pressed surface that is the side surface of the maximum area of the secondary battery is the compressed surface. The selection force is selected so that the pressing force is stronger in the offset region than in the central region. As a result, the internal pressure of the secondary battery can be made uniform so that the pressing force on the pressed surface is stronger than the central region in the offset region, and the surface pressure can be reduced even for a secondary battery used at a high rate. It is described that it can be kept uniform and the progress of deterioration of the secondary battery can be suppressed.

特許第5187400号公報Japanese Patent No. 5187400

特許文献1に記載の二次電池アセンブリにおいて、接触部は、二次電池の被圧迫面に向かって連結部から突出して形成されている。そして、捲回状の電極体における捲回軸方向の中央から外れた部位に対応する両方の片寄り領域での接触部の突出高さが、該片寄り領域の間の中央領域での接触部の突出高さに比較して高くされている。これにより、接触部は、両方の片寄り領域にて被圧迫面をより強く圧迫し、中央領域にて被圧迫面をより弱く圧迫している。   In the secondary battery assembly described in Patent Document 1, the contact portion is formed to protrude from the connecting portion toward the pressed surface of the secondary battery. And the protrusion height of the contact part in both offset regions corresponding to the part deviated from the center in the winding axis direction in the wound electrode body is the contact part in the center region between the offset regions. It is higher than the protruding height. Thereby, the contact portion presses the pressed surface more strongly in both offset regions, and presses the pressed surface more weakly in the central region.

特許文献1に記載の二次電池アセンブリは、捲回状の電極体における捲回軸方向の面圧を均一化することはできるが、被圧迫面に沿う捲回軸方向に垂直な方向における面圧が不均一になる虞がある。この場合、電極体を構成する電極間の距離に差が生じ、二次電池の劣化が進行する虞がある。   The secondary battery assembly described in Patent Document 1 can equalize the surface pressure in the winding axis direction of the wound electrode body, but the surface in the direction perpendicular to the winding axis direction along the pressed surface. There is a possibility that the pressure becomes non-uniform. In this case, a difference occurs in the distance between the electrodes constituting the electrode body, and the secondary battery may be deteriorated.

本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、二次電池の電池容器に作用する面圧をより均一化することができ、二次電池の劣化を抑制することができる電池モジュールを提供することにある。   This invention is made | formed in view of the said subject, The place made into the objective can make more uniform the surface pressure which acts on the battery container of a secondary battery, and suppresses deterioration of a secondary battery. It is in providing the battery module which can be.

前記目的を達成すべく、本発明の電池モジュールは、扁平な捲回電極群を収容する扁平箱型の電池容器を備える複数の二次電池を該電池容器の厚さ方向にスペーサを介して積層させた電池モジュールであって、前記スペーサは、前記電池容器の幅広の扁平面に当接する当接部を有し、前記扁平面の中央領域における前記当接部の弾性係数が、前記扁平面の端部領域における前記当接部の弾性係数よりも低いことを特徴とする。   In order to achieve the above object, the battery module of the present invention is configured by laminating a plurality of secondary batteries including a flat box type battery container that accommodates a flat wound electrode group via a spacer in the thickness direction of the battery container. The spacer includes a contact portion that contacts a wide flat surface of the battery container, and an elastic coefficient of the contact portion in a central region of the flat surface is the flat surface. It is characterized by being lower than the elastic coefficient of the contact portion in the end region.

本発明の電池モジュールによれば、二次電池の電池容器の扁平面の膨張量が多い中央領域における当接部の弾性係数が、膨張量が少ない端部領域における当接部の弾性係数よりも低いので、当接部の弾性変形によって扁平面の中央領域の変形を許容し、中央領域に作用する面圧を低下させ、扁平面に沿う任意の方向において電池容器に作用する面圧を均一化することができ、二次電池の劣化をより効果的に抑制することができる。   According to the battery module of the present invention, the elastic coefficient of the contact portion in the central region where the expansion amount of the flat surface of the battery container of the secondary battery is large is larger than the elastic coefficient of the contact portion in the end region where the expansion amount is small. Since it is low, deformation of the central region of the flat surface is allowed by elastic deformation of the contact portion, the surface pressure acting on the central region is reduced, and the surface pressure acting on the battery container in any direction along the flat surface is made uniform And deterioration of the secondary battery can be more effectively suppressed.

本発明の実施の形態に係る電池モジュールを示す斜視図。The perspective view which shows the battery module which concerns on embodiment of this invention. 図1に示す電池モジュールから取外した二次電池とセルホルダの斜視図。The perspective view of the secondary battery and cell holder which were removed from the battery module shown in FIG. 図2に示す二次電池とセルホルダの組立状態を示す斜視図。The perspective view which shows the assembly state of the secondary battery and cell holder which are shown in FIG. 図2に示す二次電池の斜視図。The perspective view of the secondary battery shown in FIG. 図2に示す二次電池が備える捲回電極群の分解斜視図。The exploded perspective view of the winding electrode group with which the secondary battery shown in FIG. 2 is provided. 図3のA−A線に沿う二次電池とセルホルダのスペーサの概略断面図。FIG. 4 is a schematic cross-sectional view of a secondary battery and a cell holder spacer taken along line AA in FIG. 3. 図3のB−B線に沿う二次電池とセルホルダのスペーサの概略断面図。FIG. 4 is a schematic cross-sectional view of a secondary battery and a cell holder spacer along line BB in FIG. 3. 図6に示すスペーサの当接部の配置を示す二次電池の正面図。The front view of the secondary battery which shows arrangement | positioning of the contact part of the spacer shown in FIG. 膨張した二次電池の平面図と図6に対応するスペーサの断面図。The top view of the expanded secondary battery and sectional drawing of the spacer corresponding to FIG. 膨張した二次電池の側面図と図7に対応するスペーサの断面図。The side view of the expanded secondary battery and sectional drawing of the spacer corresponding to FIG. 図8に示すスペーサの当接部の配置の変形例を示す二次電池の正面図。The front view of the secondary battery which shows the modification of arrangement | positioning of the contact part of the spacer shown in FIG. 図8に示すスペーサの当接部の配置の変形例を示す二次電池の正面図。The front view of the secondary battery which shows the modification of arrangement | positioning of the contact part of the spacer shown in FIG.

以下、図面を参照して本発明の電池モジュールの実施の形態について説明する。   Hereinafter, embodiments of a battery module of the present invention will be described with reference to the drawings.

(電池モジュール)
図1は、本発明の実施の形態に係る電池モジュールMの斜視図である。図2は、図1に示す電池モジュールMから取外した二次電池100とセルホルダ200の分解状態を示す斜視図である。図3は、図2に示す二次電池100とセルホルダ200の組立状態を示す斜視図である。なお、図2および図3において、後述する当接部の図示は省略している。
(Battery module)
FIG. 1 is a perspective view of a battery module M according to an embodiment of the present invention. 2 is a perspective view showing an exploded state of the secondary battery 100 and the cell holder 200 removed from the battery module M shown in FIG. 3 is a perspective view showing an assembled state of the secondary battery 100 and the cell holder 200 shown in FIG. 2 and 3, illustration of a contact portion described later is omitted.

本実施形態の電池モジュールMは、扁平箱型の電池容器1を備える複数の二次電池100を、電池容器1の厚さ方向にセルホルダ200を介して積層させた構成を有している。各図に、電池容器1の厚さ方向および二次電池100の積層方向をX軸方向、電池容器1の幅方向をY軸方向、電池容器1の高さ方向をZ軸方向とする、XYZ直交座標系を示す。   The battery module M of the present embodiment has a configuration in which a plurality of secondary batteries 100 including a flat box type battery container 1 are stacked via a cell holder 200 in the thickness direction of the battery container 1. In each figure, the thickness direction of the battery case 1 and the stacking direction of the secondary batteries 100 are the X-axis direction, the width direction of the battery case 1 is the Y-axis direction, and the height direction of the battery case 1 is the Z-axis direction. An orthogonal coordinate system is shown.

セルホルダ200は、二次電池100の積層方向の両端に配置される一対の端部セルホルダ210と、二次電池100の間に配置される複数の中間セルホルダ220とによって構成されている。以下の説明では、端部セルホルダ210と中間セルホルダ220を総称して、セルホルダ200という場合がある。   The cell holder 200 includes a pair of end cell holders 210 disposed at both ends of the secondary battery 100 in the stacking direction, and a plurality of intermediate cell holders 220 disposed between the secondary batteries 100. In the following description, the end cell holder 210 and the intermediate cell holder 220 may be collectively referred to as the cell holder 200 in some cases.

図示は省略するが、一対の端部セルホルダ210の外側には、一対のサイドプレートが配置され、これら一対のサイドプレートの幅方向両端部が二次電池100の積層方向に延びる一対のサイドフレームによって締結されている。これにより、端部セルホルダ210、中間セルホルダ220および二次電池100からなる積層体の周囲は、一対のサイドプレートと一対のサイドフレームによって固縛され、個々の二次電池100は、端部セルホルダ210と中間セルホルダ220との間または一対の中間セルホルダ220,220の間に挟持されて固定されている。   Although not shown, a pair of side plates are arranged outside the pair of end cell holders 210, and a pair of side frames extending in the stacking direction of the secondary battery 100 at both ends in the width direction of the pair of side plates. It is concluded. As a result, the periphery of the laminate composed of the end cell holder 210, the intermediate cell holder 220, and the secondary battery 100 is secured by the pair of side plates and the pair of side frames, and each secondary battery 100 is secured to the end cell holder 210. And the intermediate cell holder 220 or between the pair of intermediate cell holders 220, 220.

端部セルホルダ210は、概ね中間セルホルダ220を電池容器1の幅方向(Y軸方向)に沿う扁平面1aに沿って二分割した構成を有し、中間セルホルダ220との間に二次電池100を保持している。したがって、以下の説明では中間セルホルダ220の構成について説明し、端部セルホルダ210の構成については説明を省略する。   The end cell holder 210 has a configuration in which the intermediate cell holder 220 is roughly divided into two along the flat surface 1 a along the width direction (Y-axis direction) of the battery container 1, and the secondary battery 100 is interposed between the end cell holder 210 and the intermediate cell holder 220. keeping. Therefore, in the following description, the configuration of the intermediate cell holder 220 will be described, and the description of the configuration of the end cell holder 210 will be omitted.

中間セルホルダ220は、電池容器1の幅方向両側の側面1bに対向して配置される長方形板状の一対の側板221と、電池容器1の幅方向に延びて電池容器1の下端面1dに対向して配置される長方形板状の底板222と、電池容器1の幅方向に沿う幅広の扁平面1aに対向するスペーサ230とを備えている。複数の二次電池100は、電池容器1の厚さ方向にスペーサ230を介して積層されている。   The intermediate cell holder 220 extends in the width direction of the battery container 1 and faces the lower end surface 1d of the battery container 1 and a pair of rectangular side plates 221 arranged to face the side surfaces 1b on both sides of the battery container 1 in the width direction. And a rectangular plate-like bottom plate 222, and a spacer 230 facing the wide flat surface 1a along the width direction of the battery case 1. The plurality of secondary batteries 100 are stacked via spacers 230 in the thickness direction of the battery container 1.

一対の側板221は、電池容器1の幅方向に対向し、電池容器1の厚さ方向(X軸方向)において、スペーサ230の両側にそれぞれ電池容器1の厚さの約半分ずつの幅を有している。側板221の幅は、電池容器1の厚さ方向の両側に一対のセルホルダ200を配置したときに、電池容器1の厚さ方向に隣接する一対の側板221の端部同士が電池容器1の厚さの約半分の位置で当接するか、または僅かな隙間をあけて対向するように設定されている。側板221の中央部には、開口部221a、221b、221cが形成されている。開口部221a、221b、221cは、スペーサ230を介して隣接する一対の電池容器1の扁平面1aの間に形成される空間に連通している。   The pair of side plates 221 face each other in the width direction of the battery case 1, and have a width about half the thickness of the battery case 1 on both sides of the spacer 230 in the thickness direction (X-axis direction) of the battery case 1. doing. The width of the side plate 221 is such that when the pair of cell holders 200 are arranged on both sides in the thickness direction of the battery case 1, the end portions of the pair of side plates 221 adjacent in the thickness direction of the battery case 1 are the thicknesses of the battery case 1. It is set so that it abuts at a position about half the height, or faces with a slight gap. Openings 221 a, 221 b, and 221 c are formed at the center of the side plate 221. The openings 221 a, 221 b, and 221 c communicate with a space formed between the flat surfaces 1 a of the adjacent battery containers 1 through the spacer 230.

底板222は、電池容器1の幅方向に延びて、側板221と同様にスペーサ230の両側にそれぞれ電池容器1の厚さの約半分ずつの幅を有し、一対の側板221の下端部を連結して電池容器1の下端面1dに対向している。底板222のX軸方向の幅は、側板221と同様に、電池容器1の厚さ方向の両側に一対のセルホルダ200を配置したときに、電池容器1の厚さ方向に隣接する一対の底板222の端部同士が電池容器1の厚さの約半分の位置で当接するか、または僅かな隙間をあけて対向するように設定されている。   The bottom plate 222 extends in the width direction of the battery case 1 and has a width about half the thickness of the battery case 1 on both sides of the spacer 230 in the same manner as the side plate 221, and connects the lower ends of the pair of side plates 221. Then, it faces the lower end surface 1d of the battery case 1. The width in the X-axis direction of the bottom plate 222 is similar to that of the side plate 221 when a pair of cell holders 200 are disposed on both sides in the thickness direction of the battery case 1, a pair of bottom plates 222 adjacent in the thickness direction of the battery case 1. These end portions are set to contact each other at about half the thickness of the battery container 1 or to face each other with a slight gap.

スペーサ230は、電池容器1の幅方向に延びて対向する一対の側板221を連結し、電池容器1の扁平面1aに対向している。スペーサ230は、電池容器1の高さ方向(Z軸方向)に扁平面1aに沿って間隔を開けて配置された上端部スペーサ231、中間部スペーサ232および下端部スペーサ233を備えている。上端部スペーサ231、中間部スペーサ232および下端部スペーサ233は、隣接する二つの二次電池100の電池容器1の扁平面1aの間に配置され、扁平面1aに対向して配置される。   The spacer 230 extends in the width direction of the battery case 1 and connects a pair of opposing side plates 221 to face the flat surface 1 a of the battery case 1. The spacer 230 includes an upper end spacer 231, an intermediate spacer 232, and a lower end spacer 233 that are arranged at intervals along the flat surface 1 a in the height direction (Z-axis direction) of the battery case 1. The upper end spacer 231, the intermediate spacer 232, and the lower end spacer 233 are disposed between the flat surfaces 1 a of the battery containers 1 of the two adjacent secondary batteries 100, and are disposed to face the flat surfaces 1 a.

上端部スペーサ231は、中間部スペーサ232および下端部スペーサ233よりもZ軸方向の幅が広くなっている。上端部スペーサ231の幅は、後述する捲回電極群40の湾曲部40cと電池容器1の上端面1cとの間の寸法(図7参照)に対応している。上端部スペーサ231と下端部スペーサ233との間には、複数の中間部スペーサ232が電池容器1の高さ方向に間隔を開けて配置されている。中間部スペーサ232同士の間隔は、中間部スペーサ232と上端部スペーサ231または下端部スペーサ233との間隔よりも広くなっている。これにより、電池容器1の高さ方向両端における側板221の開口部221a、221cの高さ方向の寸法よりも、その間の複数の開口部221bの高さ方向の寸法が大きくされている。   The upper end spacer 231 is wider in the Z-axis direction than the intermediate spacer 232 and the lower end spacer 233. The width of the upper end spacer 231 corresponds to a dimension (see FIG. 7) between a curved portion 40c of a wound electrode group 40 to be described later and the upper end surface 1c of the battery case 1. Between the upper end spacer 231 and the lower end spacer 233, a plurality of intermediate spacers 232 are arranged at intervals in the height direction of the battery container 1. The interval between the intermediate spacers 232 is wider than the interval between the intermediate spacer 232 and the upper end spacer 231 or the lower end spacer 233. Thereby, the dimension of the height direction of the some opening part 221b in between is made larger than the dimension of the height direction of opening part 221a, 221c of the side plate 221 in the height direction both ends of the battery container 1. FIG.

上端部スペーサ231、中間部スペーサ232および下端部スペーサ233は、電池容器1の高さ方向(Z軸方向)に互いに間隔を開けて配置されることで、角形二次電池100の電池容器1の幅広の扁平面1aに沿って、その幅方向(Y軸方向)に延びる複数のスリットS1、S2、S3を形成している。各スペーサ231、232、233間の間隔に対応して、上端部スペーサ231と中間部スペーサ232との間、および中間部スペーサ232と下端部スペーサ233との間には、Z軸方向の幅が比較的狭いスリットS1、S3が形成されている。また、中間部スペーサ232同士の間には、Z軸方向の幅が比較的広いスリットS2が形成されている。   The upper end spacer 231, the intermediate spacer 232, and the lower end spacer 233 are arranged at an interval from each other in the height direction (Z-axis direction) of the battery container 1, so that the battery container 1 of the rectangular secondary battery 100 can be provided. A plurality of slits S1, S2, and S3 extending in the width direction (Y-axis direction) are formed along the wide flat surface 1a. Corresponding to the interval between the spacers 231, 232, 233, the width in the Z-axis direction is between the upper end spacer 231 and the intermediate spacer 232 and between the intermediate spacer 232 and the lower end spacer 233. Relatively narrow slits S1 and S3 are formed. A slit S2 having a relatively wide width in the Z-axis direction is formed between the intermediate spacers 232.

電池容器1の上端面1c側のスリットS1は、対向する側板221、221の開口部221a、221aを連通し、中間部スペーサ232同士の間のスリットS2は、開口部221b、221bを連通し、電池容器1の下端面1d側のスリットS3は、開口部221c、221cを連通している。これにより、スリットS1、S2、S3に冷却媒体を通過させ、二次電池100の電池容器1の扁平面1aを冷却できるようになっている。   The slit S1 on the upper end surface 1c side of the battery case 1 communicates with the openings 221a and 221a of the opposing side plates 221 and 221. The slit S2 between the intermediate spacers 232 communicates with the openings 221b and 221b. The slit S3 on the lower end surface 1d side of the battery case 1 communicates with the openings 221c and 221c. Thereby, the cooling medium is allowed to pass through the slits S1, S2, and S3, and the flat surface 1a of the battery container 1 of the secondary battery 100 can be cooled.

端部セルホルダ210および中間セルホルダ220は、例えば、ガラスエポキシ樹脂、ポリプロピレン、ポリブチレンテレフタレート、ポリカーボネート、ナイロン樹脂などの樹脂材料や複合樹脂材料、アルミニウム、アルミニウム合金、銅、銅合金、マグネシウム合金、ステンレスなどの金属材料、または樹脂と金属の複合材によって構成することができる。また、樹脂材料を使用する場合は難燃性状を有していることが望ましい。   The end cell holder 210 and the intermediate cell holder 220 are, for example, glass epoxy resin, polypropylene, polybutylene terephthalate, polycarbonate, nylon resin and other resin materials, composite resin materials, aluminum, aluminum alloy, copper, copper alloy, magnesium alloy, stainless steel, etc. It can be composed of a metal material or a composite material of resin and metal. Moreover, when using a resin material, it is desirable to have a flame-retardant property.

(二次電池)
次に、本実施の形態の電池モジュールMに用いられる二次電池100の構成の一例について詳細に説明する。図4は、図2に示す二次電池100の斜視図である。
(Secondary battery)
Next, an example of the configuration of the secondary battery 100 used in the battery module M of the present embodiment will be described in detail. 4 is a perspective view of the secondary battery 100 shown in FIG.

二次電池100は、扁平な矩形箱型の電池容器1を備えている。電池容器1内には、後述する扁平な捲回電極群40が収容されている(図6および図7参照)。電池容器1は、上部開口を有する扁平な直方体形状の電池缶10と、該電池缶10の上部開口を密閉して封止する電池蓋20とによって構成されている。電池缶10および電池蓋20の材料としては、例えばアルミニウムまたはアルミニウム合金を用いることができる。電池缶10は、例えば、これらの材料に深絞り加工を施すことによって形成されている。   The secondary battery 100 includes a flat rectangular box-shaped battery container 1. A flat wound electrode group 40 described later is accommodated in the battery container 1 (see FIGS. 6 and 7). The battery container 1 includes a flat rectangular parallelepiped battery can 10 having an upper opening and a battery lid 20 that seals and seals the upper opening of the battery can 10. As a material of the battery can 10 and the battery lid 20, for example, aluminum or an aluminum alloy can be used. The battery can 10 is formed, for example, by subjecting these materials to deep drawing.

電池容器1は、扁平箱型の直方体形状を有することで、電池容器1の幅方向(Y軸方向)に沿う電池缶10の側面であって最大面積を有する一対の扁平面1aと、電池容器1の厚さ方向(X軸方向)に沿う電池缶10の側面であって扁平面1aよりも面積が小さい側面1bと、電池蓋20の表面である上端面1cと、電池缶10の底面である下端面1dとを有している。   The battery container 1 has a flat box-shaped rectangular parallelepiped shape, and thus a pair of flat surfaces 1a having the maximum area on the side surface of the battery can 10 along the width direction (Y-axis direction) of the battery container 1, and the battery container The side surface 1b of the battery can 10 along the thickness direction (X-axis direction) 1 is smaller than the flat surface 1a, the upper end surface 1c that is the surface of the battery lid 20, and the bottom surface of the battery can 10. It has a certain lower end surface 1d.

電池蓋20は、電池缶10の上端部の全周に、例えばレーザ溶接によって接合されることで、電池缶10の上部開口を封止している。電池蓋20は、長方形の板状に形成され、長手方向の一端と他端に、それぞれ絶縁部材21を介して正極、負極端子2、3が設けられ、電池容器1内の図示を省略する集電板と接続されて蓋組立体が構成されている。また、電池蓋20には、注液口22とガス排出弁23とが設けられている。注液口22は、電池蓋20を電池缶10に接合した後に電池容器1内に電解液を注入するのに用いられ、電解液の注入後に注液栓24が溶接されて封口される。   The battery lid 20 seals the upper opening of the battery can 10 by being joined to the entire periphery of the upper end portion of the battery can 10 by, for example, laser welding. The battery lid 20 is formed in a rectangular plate shape, and is provided with a positive electrode and a negative electrode terminal 2, 3 via an insulating member 21 at one end and the other end in the longitudinal direction, respectively, and the illustration inside the battery container 1 is omitted. A lid assembly is configured by being connected to the electric plate. The battery lid 20 is provided with a liquid injection port 22 and a gas discharge valve 23. The liquid injection port 22 is used for injecting the electrolytic solution into the battery container 1 after joining the battery lid 20 to the battery can 10, and the liquid injection plug 24 is welded and sealed after the injection of the electrolytic solution.

正極、負極端子2、3は、電池蓋20の外側に配置される外部端子2a、3aと、電池蓋20を貫通して一端が外部端子2a、3aに導通接続される接続端子2b、3bを有している。接続端子2b、3bの他端は、電池蓋20の内側に絶縁部材を介して配置される正極、負極集電板に接続されている。正極側の外部端子2a、接続端子2bおよび集電板は、アルミニウム合金で製作され、負極側の外部端子3a、接続端子3bおよび集電板は、銅合金で製作されている。外部端子2a、3aには、バスバーを締結するためのボルト2c、3cが突設されている。   The positive and negative terminals 2 and 3 include external terminals 2a and 3a disposed outside the battery lid 20, and connection terminals 2b and 3b that penetrate the battery lid 20 and have one end electrically connected to the external terminals 2a and 3a. Have. The other ends of the connection terminals 2b and 3b are connected to positive and negative current collectors disposed inside the battery lid 20 via an insulating member. The external terminal 2a, the connection terminal 2b, and the current collector on the positive electrode side are made of an aluminum alloy, and the external terminal 3a, the connection terminal 3b, and the current collector on the negative electrode side are made of a copper alloy. Bolts 2c and 3c for fastening the bus bar are projected from the external terminals 2a and 3a.

ガス排出弁23は、例えば、電池蓋20をプレス加工によって部分的に薄肉化することで形成されている。なお、電池蓋20の貫通孔に薄膜部材を例えばレーザ溶接等により取り付けてガス排出弁23としてもよい。ガス排出弁23は、例えば過充電等の異常によって二次電池100が発熱して電池容器1の内部でガスが発生し、電池容器1内の圧力が所定圧力まで上昇したときに開裂し、電池容器1の内部のガスを外部に放出することで、電池容器1内の圧力を低減する。   The gas discharge valve 23 is formed, for example, by partially thinning the battery lid 20 by pressing. The gas discharge valve 23 may be formed by attaching a thin film member to the through hole of the battery lid 20 by, for example, laser welding. The gas discharge valve 23 is opened when the secondary battery 100 generates heat due to an abnormality such as overcharge and the like, and gas is generated inside the battery container 1 and the pressure in the battery container 1 rises to a predetermined pressure. By releasing the gas inside the container 1 to the outside, the pressure in the battery container 1 is reduced.

図5は、二次電池100の電池容器1内に収容される捲回電極群40を展開した状態を示す分解斜視図である。   FIG. 5 is an exploded perspective view showing a state where the wound electrode group 40 accommodated in the battery container 1 of the secondary battery 100 is developed.

捲回電極群40は、正極、負極電極41、42と、セパレータ43、44とを交互に重ねて積層させた電極積層体を、図示しない軸芯の周りに捲回して扁平状に成形することで設けられている。捲回電極群40は、扁平形状に形成されることで、平坦な表面を有する一対の平坦部40bと、該平坦部40bの上下両端に連続する湾曲した表面を有する一対の湾曲部40cとを有している。正極、負極電極41、42とセパレータ43、44は、平坦部40bにおいて平坦な状態で積層され、湾曲部40cにおいて半円筒状に湾曲した状態で積層されている。   The wound electrode group 40 is formed by flatly winding an electrode laminate in which positive and negative electrodes 41 and 42 and separators 43 and 44 are alternately laminated and wound around a shaft core (not shown). Is provided. The wound electrode group 40 is formed in a flat shape so that a pair of flat portions 40b having a flat surface and a pair of curved portions 40c having curved surfaces continuous at both upper and lower ends of the flat portion 40b are provided. Have. The positive and negative electrodes 41 and 42 and the separators 43 and 44 are stacked in a flat state at the flat portion 40b, and are stacked in a curved state in a semicylindrical shape at the bending portion 40c.

正極電極41は、例えば、アルミニウム箔等からなる正極金属箔41aを備え、正極金属箔41aの表裏両面に形成された正極合剤層41bを有している。帯状の正極金属箔41aの幅方向の一側は、正極合剤層41bが塗工されず、正極金属箔41aを露出させた箔露出部41cとされている。   The positive electrode 41 includes a positive electrode metal foil 41a made of, for example, an aluminum foil, and has a positive electrode mixture layer 41b formed on both the front and back surfaces of the positive electrode metal foil 41a. One side in the width direction of the strip-shaped positive electrode metal foil 41a is a foil exposed portion 41c where the positive electrode mixture layer 41b is not coated and the positive electrode metal foil 41a is exposed.

負極電極42は、例えば、銅箔等からなる負極金属箔42aを備え、負極金属箔42aの表裏両面に形成された負極合剤層42bを有している。帯状の負極金属箔42aの幅方向の一側は、負極合剤層42bが塗工されず、負極金属箔42aが露出された箔露出部42cとされている。   The negative electrode 42 includes, for example, a negative electrode metal foil 42a made of copper foil or the like, and has a negative electrode mixture layer 42b formed on both front and back surfaces of the negative electrode metal foil 42a. One side in the width direction of the strip-shaped negative electrode metal foil 42a is a foil exposed portion 42c where the negative electrode mixture layer 42b is not applied and the negative electrode metal foil 42a is exposed.

正極合剤層41bは、例えば、以下のように製作することができる。まず、正極活物質として層状ニッケルコバルトマンガン酸リチウム(化学式Li(NixCoyMn1-x-y)O)100重量部に対し、導電材として合計10重量部の鱗片状黒鉛やアセチレンブラックと結着剤として4重量部のポリフッ化ビニリデン(以下、PVDFという)とを添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという)を添加し、混練して正極スラリーを製作する。次に、この正極スラリーを、例えば、厚さ15μmのアルミニウム箔の両面に箔露出部41cを残して塗布することで正極合剤層41bを形成する。その後、乾燥、プレス、裁断の各工程を経て、例えば、アルミニウム箔を含まない正極活物質塗布部の厚さ(表裏両面の合計)が70μmの正極電極41を得ることができる。 The positive electrode mixture layer 41b can be manufactured, for example, as follows. First, the layered lithium nickel cobalt manganese oxide as a positive electrode active material (chemical formula Li (Ni x Co y Mn 1 -xy) O 2) relative to 100 parts by weight of scaly graphite and acetylene black and forming a total of 10 parts by weight as the conductive material 4 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as an adhesive, N-methylpyrrolidone (hereinafter referred to as NMP) is added thereto as a dispersion solvent, and kneaded to produce a positive electrode slurry. Next, the positive electrode mixture layer 41b is formed by applying the positive electrode slurry, for example, on both surfaces of an aluminum foil having a thickness of 15 μm, leaving the exposed foil portions 41c. Thereafter, through each step of drying, pressing, and cutting, for example, a positive electrode 41 having a thickness of the positive electrode active material application portion that does not include an aluminum foil (total of both front and back surfaces) of 70 μm can be obtained.

負極合剤層42bは、例えば、以下のように製作することができる。まず、負極活物質として黒鉛質炭素粉末100重量部に対して、増粘調整剤としてカルボキシメチルセルロース(以下、CMCという)水溶液を添加、混合後に、結着剤として1重量部のスチレン・ブタジエンゴム(以下、SBRという)を添加し、混練後に粘度調整して負極スラリーを製作する。次に、この負極スラリーを、例えば、厚さ10μmの銅箔の両面に箔露出部42cを残して塗布することで負極合剤層42bを形成する。その後、乾燥、プレス、裁断の各工程を経て、例えば、銅箔を含まない負極活物質塗布部の厚さ(表裏両面の合計)が40μmの負極電極42を得ることができる。   The negative electrode mixture layer 42b can be manufactured, for example, as follows. First, an aqueous solution of carboxymethyl cellulose (hereinafter referred to as CMC) as a thickener is added to 100 parts by weight of graphitic carbon powder as a negative electrode active material, and after mixing, 1 part by weight of styrene-butadiene rubber (as a binder) (Hereinafter referred to as SBR) is added, and the viscosity is adjusted after kneading to produce a negative electrode slurry. Next, the negative electrode mixture layer 42b is formed by applying the negative electrode slurry, for example, on both surfaces of a copper foil having a thickness of 10 μm, leaving the foil exposed portions 42c. Thereafter, through each step of drying, pressing, and cutting, for example, the negative electrode 42 having a negative electrode active material application portion that does not include a copper foil (total of both front and back surfaces) of 40 μm can be obtained.

セパレータ43、44を介して正極電極41と負極電極42を重ねて捲回し、捲回電極群40を製作するには、まず、図示しない軸芯にセパレータ43、44の各先端部を溶着させ、セパレータ43、44と、正極、負極電極41、42とを交互に重ねて捲回する。このとき、正極電極41の巻始め側端部が負極電極42の巻始め側端部よりも捲回後の捲回電極群40の内側に位置するように、正極電極41の巻始め側端部を負極電極42の巻始め側端部よりも軸芯側に配置して捲回する。   In order to produce the wound electrode group 40 by winding the positive electrode 41 and the negative electrode 42 with the separators 43 and 44 being overlapped, firstly, the tips of the separators 43 and 44 are welded to a shaft core (not shown), The separators 43 and 44 and the positive and negative electrodes 41 and 42 are alternately stacked and wound. At this time, the winding start side end of the positive electrode 41 is positioned so that the winding start side end of the positive electrode 41 is located inside the wound electrode group 40 after winding than the winding start side end of the negative electrode 42. Is wound around the axial center side of the winding start side end of the negative electrode 42.

ここで、捲回電極群40の軸芯と平行な方向、すなわち帯状の正極電極41、負極電極42の幅方向と平行な方向を軸D方向と定義する。この場合、正極電極41の箔露出部41cと負極電極42の箔露出部42cとは、捲回電極群40の軸D方向の一端と他端に位置するように配置する。すなわち、正極、負極電極41、42は、軸D方向の両端に箔露出部41c、42cが位置するように積層して捲回されている。   Here, a direction parallel to the axis of the wound electrode group 40, that is, a direction parallel to the width direction of the strip-like positive electrode 41 and the negative electrode 42 is defined as an axis D direction. In this case, the foil exposed portion 41 c of the positive electrode 41 and the foil exposed portion 42 c of the negative electrode 42 are arranged so as to be positioned at one end and the other end in the axis D direction of the wound electrode group 40. That is, the positive and negative electrodes 41 and 42 are laminated and wound so that the foil exposed portions 41c and 42c are positioned at both ends in the axis D direction.

負極合剤層42bの幅、すなわち軸D方向の寸法は、正極合剤層41bの幅よりも広くされている。また、セパレータ43の幅は、捲回電極群40の一方の側縁において、正極電極41の箔露出部41cがセパレータ43から露出する寸法とされている。セパレータ44の幅は、捲回電極群40の他方の側縁において、負極電極42の箔露出部42cがセパレータ44から露出する寸法とされている。   The width of the negative electrode mixture layer 42b, that is, the dimension in the axis D direction is made wider than the width of the positive electrode mixture layer 41b. The width of the separator 43 is such that the foil exposed portion 41 c of the positive electrode 41 is exposed from the separator 43 at one side edge of the wound electrode group 40. The width of the separator 44 is set such that the foil exposed portion 42 c of the negative electrode 42 is exposed from the separator 44 at the other side edge of the wound electrode group 40.

捲回電極群40の巻始め側、換言すれば、軸芯側には空洞部40aが形成されている。また、捲回電極群40の巻終り側は、最外周がセパレータ44であり、その内側が負極電極42である。従って、正極合剤層41bは、巻始め側から巻終り側まで、幅方向のすべての部分が負極合剤層42bの間に配置されている。   A hollow portion 40a is formed on the winding start side of the wound electrode group 40, in other words, on the axial core side. Further, the winding electrode group 40 has a winding end side on which the outermost periphery is a separator 44 and the inner side is a negative electrode 42. Accordingly, the positive electrode mixture layer 41b is disposed between the negative electrode mixture layer 42b in the width direction from the winding start side to the winding end side.

図6は、図3のA−A線に沿うXY平面に平行な面で切断した二次電池100と中間セルホルダ220の概略断面図である。図7は、図3のB−B線に沿うXZ平面に平行な面で切断した二次電池100とセルホルダ200の概略断面図である。なお、各図において、電池容器1の厚さ方向両側に配置された二つのセルホルダ200のうち、一方の図示を省略している。また、捲回電極群40の図示を簡略化し、電池容器1内に収容された集電板、絶縁部材、絶縁シート、電解液、電池蓋20に設けられた正極、負極端子2、3等、電池容器1と捲回電極群40以外の構成の図示を省略している。   FIG. 6 is a schematic cross-sectional view of the secondary battery 100 and the intermediate cell holder 220 cut along a plane parallel to the XY plane along the line AA in FIG. FIG. 7 is a schematic cross-sectional view of the secondary battery 100 and the cell holder 200 cut along a plane parallel to the XZ plane along the line BB in FIG. In addition, in each figure, one illustration is abbreviate | omitted among the two cell holders 200 arrange | positioned at the thickness direction both sides of the battery container 1. FIG. Moreover, the illustration of the wound electrode group 40 is simplified, and a current collector plate, an insulating member, an insulating sheet, an electrolytic solution housed in the battery container 1, a positive electrode provided on the battery lid 20, a negative electrode terminal 2, 3, etc. Illustrations of components other than the battery container 1 and the wound electrode group 40 are omitted.

捲回電極群40は、図5に示す軸D方向の両端の箔露出部41c、42cが、それぞれ平坦部40bにおいて束ねられて接合されることで、図6に示す接合部41d、42dが形成されている。捲回電極群40は、接合部41d、42dがそれぞれ不図示の正極、負極集電板に、例えば、超音波溶接によって接合されることで、正極、負極集電板を介して電池蓋20に固定される。これにより、正極、負極電極41、42の箔露出部41c、42cが、それぞれ正極、負極端子2、3に電気的に接続されている。   In the wound electrode group 40, the foil exposed portions 41c and 42c at both ends in the direction of the axis D shown in FIG. 5 are bundled and joined at the flat portion 40b to form the joined portions 41d and 42d shown in FIG. Has been. The wound electrode group 40 is joined to the battery lid 20 via the positive electrode and the negative electrode current collector plate by joining the joint portions 41d and 42d to a positive electrode and a negative electrode current collector plate (not shown), for example, by ultrasonic welding. Fixed. Thus, the foil exposed portions 41c and 42c of the positive and negative electrodes 41 and 42 are electrically connected to the positive and negative terminals 2 and 3, respectively.

また、捲回電極群40は、不図示の正極、負極集電板によって、軸D方向が電池缶10の扁平面1aおよび下端面1dに沿って、好ましくはこれらに平行に配置されるように支持されている。これにより、捲回電極群40の軸D方向は、電池容器1の幅方向(Y軸方向)と平行になる。捲回電極群40が電池容器1に収容された状態で、平坦部40bは、電池容器1の扁平面1aに対向し、一対の湾曲部40c,40cは、それぞれ電池容器1の上端面1cと下端面1d、すなわち電池蓋20の下面と電池缶10の底面に対向している。捲回電極群40と電池容器1との間には、不図示の絶縁シートが配置されている。   Further, the wound electrode group 40 is arranged such that the direction of the axis D is along the flat surface 1a and the lower end surface 1d of the battery can 10 and preferably in parallel with the positive and negative current collectors (not shown). It is supported. Thereby, the axis D direction of the wound electrode group 40 is parallel to the width direction (Y-axis direction) of the battery case 1. In a state where the wound electrode group 40 is accommodated in the battery container 1, the flat part 40 b faces the flat surface 1 a of the battery container 1, and the pair of curved parts 40 c and 40 c are respectively connected to the upper end surface 1 c of the battery container 1. The lower end surface 1d faces the lower surface of the battery lid 20 and the bottom surface of the battery can 10. An insulating sheet (not shown) is disposed between the wound electrode group 40 and the battery container 1.

二次電池100を組み立てる際には、まず、電池蓋20、絶縁部材21、正極端子2、負極端子3、絶縁部材、集電板、捲回電極群40等からなる蓋組立体を構成する。次に、蓋組立体に固定した捲回電極群40を電池缶10の上部開口から挿入し、電池蓋20を電池缶10の上部開口に封止溶接する。次いで、注液口22から電池容器1内に非水電解液を注入し、その後、注液口22に注液栓24を封止溶接することによって、二次電池100が製作される。非水電解液としては、例えばエチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。 When the secondary battery 100 is assembled, first, a lid assembly including the battery lid 20, the insulating member 21, the positive electrode terminal 2, the negative electrode terminal 3, the insulating member, the current collector plate, the wound electrode group 40, and the like is configured. Next, the wound electrode group 40 fixed to the lid assembly is inserted from the upper opening of the battery can 10, and the battery lid 20 is sealed and welded to the upper opening of the battery can 10. Next, the secondary battery 100 is manufactured by injecting a nonaqueous electrolytic solution into the battery container 1 from the liquid injection port 22 and then sealingly welding the liquid injection plug 24 to the liquid injection port 22. As the non-aqueous electrolyte, for example, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / liter in a mixed solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2. Things can be used.

(スペーサ)
次に、セルホルダ200が備えるスペーサ230について、詳細に説明する。図8は、スペーサ230が備える当接部232a、232b、232c、232dの配置を示す二次電池100の正面図である。
(Spacer)
Next, the spacer 230 provided in the cell holder 200 will be described in detail. FIG. 8 is a front view of the secondary battery 100 showing the arrangement of the contact portions 232a, 232b, 232c, and 232d included in the spacer 230. FIG.

図1に示す電池モジュールMは、複数の二次電池100がセルホルダ200を介して電池容器1の厚さ方向(X軸方向)に積層されることで、図2および図3に示すスペーサ230を介して複数の二次電池100を厚さ方向に積層させた構成を有している。スペーサ230は、電池容器1の扁平面1aに当接する当接部232a、232b、232c、232dを有している。当接部232a、232b、232c、232dは、扁平面1aに対向する中間部スペーサ232に設けられ、電池容器1の高さ方向(Z軸方向)に扁平面1aに沿って、複数の当接部232a、232cと複数の当接部232b、232dが配置されている。   The battery module M shown in FIG. 1 has a plurality of secondary batteries 100 stacked in the thickness direction (X-axis direction) of the battery container 1 via the cell holder 200, so that the spacer 230 shown in FIGS. A plurality of secondary batteries 100 are stacked in the thickness direction. The spacer 230 has contact portions 232 a, 232 b, 232 c, and 232 d that contact the flat surface 1 a of the battery container 1. The contact portions 232a, 232b, 232c, and 232d are provided on the intermediate spacer 232 facing the flat surface 1a, and a plurality of contacts are formed along the flat surface 1a in the height direction (Z-axis direction) of the battery case 1. The parts 232a and 232c and a plurality of contact parts 232b and 232d are arranged.

当接部232a、232b、232c、232dは、例えば、シリコーン樹脂等の弾性を有する樹脂材料によって構成することができる。また、当接部232a、232b、232c、232dと中間部スペーサ232との接合は、例えば、接着やろう付けなどを当接部232a、232b、232c、232dの材質に応じて適宜選択することができる。   The contact portions 232a, 232b, 232c, and 232d can be made of an elastic resin material such as silicone resin, for example. In addition, for joining the contact portions 232a, 232b, 232c, 232d and the intermediate spacer 232, for example, adhesion or brazing can be appropriately selected according to the material of the contact portions 232a, 232b, 232c, 232d. it can.

図6および図8に示すように、電池容器1の幅方向(Y軸方向)において、電池容器1の扁平面1aの中央領域Y1に設けられた当接部232aの弾性係数は、中央領域Y1の両側の端部領域Y2に設けられた当接部232bの弾性係数よりも低くされている。同様に、中央領域Y1に設けられた当接部232cの弾性係数は、端部領域Y2に設けられた当接部232dの弾性係数よりも低くされている。   As shown in FIGS. 6 and 8, in the width direction (Y-axis direction) of the battery case 1, the elastic coefficient of the contact portion 232a provided in the central region Y1 of the flat surface 1a of the battery case 1 is the central region Y1. It is made lower than the elastic coefficient of the contact part 232b provided in the edge part area | region Y2 of both sides. Similarly, the elastic coefficient of the contact portion 232c provided in the central region Y1 is set lower than the elastic coefficient of the contact portion 232d provided in the end region Y2.

ここで、電池容器1の幅方向における中央領域Y1は、例えば、電池容器1の扁平面1aが捲回電極群40の平坦部40bの中央部に対向する領域である。端部領域Y2は、角形の電池容器1の角部を含む側面1bと中央領域Y1との間の領域であり、扁平面1aの周縁部を含む中央領域Y1の外側の領域である。端部領域Y2において、扁平面1aは捲回電極群40の接合部41d、42dおよびその近傍に対向している。   Here, the central region Y1 in the width direction of the battery case 1 is, for example, a region in which the flat surface 1a of the battery case 1 faces the central part of the flat portion 40b of the wound electrode group 40. The end region Y2 is a region between the side surface 1b including the corner portion of the rectangular battery case 1 and the central region Y1, and is an outer region of the central region Y1 including the peripheral portion of the flat surface 1a. In the end region Y2, the flat surface 1a faces the joints 41d and 42d of the wound electrode group 40 and the vicinity thereof.

図7および図8に示すように、電池容器1の高さ方向(Z軸方向)において、電池容器1の扁平面1aの中央領域Z1に設けられた当接部232aの弾性係数は、中央領域Z1の両側の端部領域Z2に設けられた当接部232cの弾性係数よりも低くされている。同様に、中央領域Z1に設けられた当接部232bの弾性係数は、端部領域Z2に設けられた当接部232dの弾性係数よりも低くされている。すなわち、高さ方向中央側の当接部232a、232bの弾性係数は、それぞれ、高さ方向端部側の当接部232c、232dの弾性係数よりも低い。   As shown in FIGS. 7 and 8, in the height direction (Z-axis direction) of the battery case 1, the elastic coefficient of the contact portion 232a provided in the central region Z1 of the flat surface 1a of the battery case 1 is the central region. It is made lower than the elastic coefficient of the contact part 232c provided in the edge part area | region Z2 of the both sides of Z1. Similarly, the elastic coefficient of the contact part 232b provided in the central region Z1 is set lower than the elastic coefficient of the contact part 232d provided in the end region Z2. That is, the elastic coefficients of the contact portions 232a and 232b on the center side in the height direction are lower than the elastic coefficients of the contact portions 232c and 232d on the height direction end side, respectively.

ここで、電池容器1の高さ方向における中央領域Z1は、例えば、電池容器1の扁平面1aが捲回電極群40の平坦部40bの中央部に対向する領域である。端部領域Z2は、角形の電池容器1の角部を含む上端面1cおよび下端面1dと中央領域Z1との間の領域であり、扁平面1aの周縁部を含む中央領域Z1の上下の領域である。端部領域Z2において、扁平面1aは捲回電極群40の湾曲部40cおよびその近傍に対向している。   Here, the central region Z1 in the height direction of the battery case 1 is, for example, a region where the flat surface 1a of the battery case 1 faces the central portion of the flat portion 40b of the wound electrode group 40. The end region Z2 is a region between the upper end surface 1c and the lower end surface 1d including the corners of the rectangular battery case 1 and the central region Z1, and is a region above and below the central region Z1 including the peripheral portion of the flat surface 1a. It is. In the end region Z2, the flat surface 1a faces the curved portion 40c of the wound electrode group 40 and its vicinity.

好ましくは、扁平面1aのY軸方向およびZ軸方向の中央領域Y1およびZ1に配置された当接部232aの弾性係数が最も低くされ、扁平面1aのY軸方向およびZ軸方向の端部領域Y2およびZ2に配置された当接部232dの弾性係数が最も高くされる。この場合、扁平面1aのY軸方向の端部領域Y2に配置され、かつZ軸方向の中央領域Z1に配置された232bと、扁平面1aのY軸方向の中央領域Y1に配置され、かつZ軸方向の端部領域Z2に配置された232cとの間の弾性係数の大小関係は、後述する各領域における扁平面1aの膨張量の大小関係に応じて決定される。   Preferably, the elastic coefficient of the contact portion 232a disposed in the central regions Y1 and Z1 in the Y-axis direction and the Z-axis direction of the flat surface 1a is the lowest, and the Y-axis direction and Z-axis direction end portions of the flat surface 1a The elastic coefficient of the contact portion 232d arranged in the regions Y2 and Z2 is the highest. In this case, 232b is disposed in the end region Y2 in the Y-axis direction of the flat surface 1a and is disposed in the central region Z1 in the Z-axis direction, and is disposed in the central region Y1 in the Y-axis direction of the flat surface 1a. The magnitude relationship of the elastic coefficients with the 232c arranged in the end region Z2 in the Z-axis direction is determined according to the magnitude relationship of the expansion amount of the flat surface 1a in each region described later.

次に、本実施形態の電池モジュールMの作用について説明する。   Next, the operation of the battery module M of this embodiment will be described.

図9は、図3に示す二次電池100の膨張状態における平面図とA−A線に沿う中間部スペーサ232の断面図である。図10は、図3に示す二次電池100の膨張状態における側面図とB−B線に沿う中間部スペーサ232の断面図である。各図では、本実施形態を理解しやすくするために、電池容器1の膨張を誇張して表している。また、図10において、上端部スペーサ231、下端部スペーサ233および底板222等の図示は省略している。   FIG. 9 is a plan view of the secondary battery 100 shown in FIG. 3 in an expanded state and a cross-sectional view of the intermediate spacer 232 along the line AA. FIG. 10 is a side view of the secondary battery 100 shown in FIG. 3 in an expanded state and a cross-sectional view of the intermediate spacer 232 along the line BB. In each drawing, the expansion of the battery container 1 is exaggerated for easy understanding of the present embodiment. In FIG. 10, the upper end spacer 231, the lower end spacer 233, the bottom plate 222, and the like are not shown.

本実施形態の電池モジュールMは、複数の二次電池100の正極、負極端子2、3を介して、各二次電池100の捲回電極群40に充電された電力をモーター等の外部の装置に供給し、発電機等の外部の電力源から供給された電力を各二次電池100の正極、負極端子2、3を介して捲回電極群40に充電する。捲回電極群40は、二次電池100の充放電に伴って膨張、収縮する。捲回電極群40は、平坦部40bの中央部が膨張しやすく、その周囲の接合部41d、42dおよび湾曲部40cが膨脹しにくい。そのため、仮に捲回電極群40を自由に膨張させた場合には、平坦部40bの中央部を頂点とする凸曲面状に膨張する。   The battery module M according to the present embodiment is configured such that the power charged in the wound electrode group 40 of each secondary battery 100 is supplied to an external device such as a motor via the positive and negative terminals 2 and 3 of the plurality of secondary batteries 100. The wound electrode group 40 is charged via the positive and negative terminals 2 and 3 of each secondary battery 100 with the power supplied from an external power source such as a generator. The wound electrode group 40 expands and contracts as the secondary battery 100 is charged and discharged. In the wound electrode group 40, the central portion of the flat portion 40b is likely to expand, and the surrounding joint portions 41d and 42d and the curved portion 40c are unlikely to expand. Therefore, if the wound electrode group 40 is freely expanded, the wound electrode group 40 expands into a convex curved surface having the central portion of the flat portion 40b as a vertex.

より具体的には、捲回電極群40の膨張時に比較的膨張しやすい平坦部40bは、正面視で四角形の外形を有している。この四角形の外形の上辺部分と下辺部分に膨脹しにくい湾曲部40cが隣接し、四角形の外形の左辺部分と右辺部分に膨脹しにくい接合部41d、42dが形成されている。そのため、仮に捲回電極群40を自由に膨張させた場合には、平坦部40bの正面視で四角形の外形の各辺に近い周縁部ほど膨張しにくく、各辺から遠い中央部ほど膨張しやすい。これにより、平坦部40bは、四角錐状の凸曲面形状に膨張する。   More specifically, the flat portion 40b that is relatively easily expanded when the wound electrode group 40 is expanded has a quadrangular outer shape when viewed from the front. A curved portion 40c that hardly expands is adjacent to an upper side portion and a lower side portion of the rectangular outer shape, and joint portions 41d and 42d that are difficult to expand are formed on the left side portion and the right side portion of the rectangular outer shape. For this reason, if the wound electrode group 40 is freely expanded, the peripheral portion closer to each side of the rectangular outer shape in the front view of the flat portion 40b is less likely to expand, and the central portion farther from each side is more likely to expand. . Thereby, the flat part 40b expand | swells to a quadrangular pyramid convex curved surface shape.

そのため、電池容器1の扁平面1aの膨張量は、捲回電極群40の平坦部40bの中央部に対向する中央領域Y1、Z1が最も多く、該中央領域Y1、Z1の周囲の端部領域Y2、Z2に向けて漸次減少する。すなわち、電池容器1の扁平面1aの膨張量は、捲回電極群40の軸D方向に平行な幅方向(Y軸方向)において、扁平面1aの中央領域Y1の膨張量が端部領域Y2の膨張量よりも多いだけでなく、捲回電極群40の軸D方向に垂直な高さ方向(Z軸方向)においても、扁平面1aの中央領域Z1の膨張量が端部領域Z2の膨張量よりも多くなっている。したがって、例えば、特許文献1に記載された従来の二次電池アセンブリが備える接触部を用いた場合、軸D方向に垂直な電池容器1の扁平面1aに沿う高さ方向における面圧が不均一になる虞がある。   Therefore, the expansion amount of the flat surface 1a of the battery container 1 is the largest in the central regions Y1 and Z1 facing the central portion of the flat portion 40b of the wound electrode group 40, and the end regions around the central regions Y1 and Z1. It gradually decreases toward Y2 and Z2. That is, the expansion amount of the flat surface 1a of the battery container 1 is such that the expansion amount of the central region Y1 of the flat surface 1a is the end region Y2 in the width direction (Y-axis direction) parallel to the axis D direction of the wound electrode group 40. In addition to the expansion amount of the wound electrode group 40, the expansion amount of the central region Z1 of the flat surface 1a is also expanded in the end region Z2 in the height direction (Z-axis direction) perpendicular to the axis D direction of the wound electrode group 40. More than the amount. Therefore, for example, when the contact portion included in the conventional secondary battery assembly described in Patent Document 1 is used, the surface pressure in the height direction along the flat surface 1a of the battery container 1 perpendicular to the axis D direction is not uniform. There is a risk of becoming.

これに対し、本実施形態の電池モジュールMは、中央領域Y1、Z1における当接部232aの弾性係数が、端部領域Y2、Z2における当接部232b、232c、232dの弾性係数よりも低くされている。すなわち、扁平面1aの膨張量が相対的に多い領域である中央領域Y1、Z1における当接部232aの弾性係数が、扁平面1aの膨張量が相対的に少ない領域である端部領域Y2、Z2における当接部232b、232c、232dの弾性係数よりも低くされている。   On the other hand, in the battery module M of the present embodiment, the elastic coefficient of the contact part 232a in the central regions Y1, Z1 is made lower than the elastic coefficient of the contact parts 232b, 232c, 232d in the end regions Y2, Z2. ing. That is, the center region Y1, which is a region where the amount of expansion of the flat surface 1a is relatively large, the end region Y2, which is a region where the elastic coefficient of the contact portion 232a in the Z1 is relatively small, It is made lower than the elastic coefficient of the contact parts 232b, 232c, 232d in Z2.

図9に示すように、電池容器1の幅方向(Y軸方向)における電池容器1の厚さ方向(X方向)の扁平面1aの膨張量は、中央領域Y1の方が端部領域Y2よりも大きい。しかし、中央領域Y1に当接する当接部232a、232cの弾性係数は、それぞれ、端部領域Y2に当接する当接部232b、232dの弾性係数よりも低い。そのため、端部領域Y2の当接部232b、232dが中央領域Y1にも配置されている場合と比較して、扁平面1aの膨張時に中央領域Y1の当接部232a、232cから中央領域Y1に作用する弾性力を低減し、中央領域Y1の膨張を許容しやすくすることができる。   As shown in FIG. 9, the expansion amount of the flat surface 1a in the thickness direction (X direction) of the battery case 1 in the width direction (Y-axis direction) of the battery case 1 is larger in the central region Y1 than in the end region Y2. Is also big. However, the elastic coefficients of the contact portions 232a and 232c that contact the central region Y1 are lower than the elastic coefficients of the contact portions 232b and 232d that contact the end region Y2, respectively. Therefore, compared with the case where the contact portions 232b and 232d of the end region Y2 are also disposed in the central region Y1, the contact portions 232a and 232c of the central region Y1 are moved from the contact portions 232a and 232c of the central region Y1 to the central region Y1. The acting elastic force can be reduced and the central region Y1 can be easily allowed to expand.

これに伴い、中央領域Y1の当接部232a、232cの変形量は、それぞれ、端部領域Y2の当接部232b、232dの変形量よりも大きくなる。しかし、中央領域Y1の当接部232a、232cの弾性係数は、それぞれ、端部領域Y2の当接部232b、232dの弾性係数よりも低い。そのため、当接部232aから扁平面1aに作用する弾性力と当接部232bから扁平面1aに作用する弾性力との差、および、当接部232cから扁平面1aに作用する弾性力と当接部232dから扁平面1aに作用する弾性力との差を、それぞれ減少させることができる。したがって、捲回電極群40の軸D方向に平行な電池容器1の幅方向において、膨張量が多く面圧が高くなりやすい捲回電極群40の平坦部40bの中央部の面圧を減少させ、捲回電極群40に作用する面圧を均一化することができる。   Accordingly, the deformation amounts of the contact portions 232a and 232c in the central region Y1 are larger than the deformation amounts of the contact portions 232b and 232d in the end region Y2, respectively. However, the elastic coefficients of the contact portions 232a and 232c in the central region Y1 are lower than the elastic coefficients of the contact portions 232b and 232d in the end region Y2, respectively. Therefore, the difference between the elastic force acting on the flat surface 1a from the contact portion 232a and the elastic force acting on the flat surface 1a from the contact portion 232b, and the elastic force acting on the flat surface 1a from the contact portion 232c. The difference from the elastic force acting on the flat surface 1a from the contact portion 232d can be reduced. Therefore, in the width direction of the battery case 1 parallel to the axis D direction of the wound electrode group 40, the surface pressure at the center of the flat portion 40b of the wound electrode group 40 that tends to increase the amount of expansion and increase the surface pressure is reduced. The surface pressure acting on the wound electrode group 40 can be made uniform.

さらに、図10に示すように、電池容器1の高さ方向(Z軸方向)における電池容器1の厚さ方向(X方向)の扁平面1aの膨張量は、中央領域Z1の方が端部領域Z2よりも大きい。しかし、中央領域Z1に当接する当接部232a、232bの弾性係数は、それぞれ、端部領域Z2に当接する当接部232c、232dの弾性係数よりも低い。そのため、端部領域Z2の当接部232c、232dが中央領域Z1にも配置されている場合と比較して、扁平面1aの膨張時に中央領域Z1の当接部232a、232bから中央領域Z1に作用する弾性力を低減し、中央領域Z1の膨張を許容しやすくすることができる。   Furthermore, as shown in FIG. 10, the expansion amount of the flat surface 1a in the thickness direction (X direction) of the battery case 1 in the height direction (Z-axis direction) of the battery case 1 is the end portion in the central region Z1. It is larger than the region Z2. However, the elastic coefficients of the contact portions 232a and 232b that contact the central region Z1 are lower than the elastic coefficients of the contact portions 232c and 232d that contact the end region Z2, respectively. Therefore, compared with the case where the contact portions 232c and 232d of the end region Z2 are also arranged in the central region Z1, the contact portions 232a and 232b of the central region Z1 are moved from the contact portions 232a and 232b of the central region Z1 to the central region Z1. The acting elastic force can be reduced, and the expansion of the central region Z1 can be easily allowed.

これに伴い、中央領域Z1の当接部232a、232bの変形量は、それぞれ、端部領域Z2の当接部232c、232dの変形量よりも大きくなる。しかし、中央領域Z1の当接部232a、232bの弾性係数は、それぞれ、端部領域Z2の当接部232c、232dの弾性係数よりも低い。そのため、当接部232aから扁平面1aに作用する弾性力と当接部232cから扁平面1aに作用する弾性力との差、および、当接部232bから扁平面1aに作用する弾性力と当接部232dから扁平面1aに作用する弾性力との差を、それぞれ減少させることができる。したがって、捲回電極群40の軸D方向に垂直な電池容器1の高さ方向において、膨張量が多く面圧が高くなりやすい捲回電極群40の平坦部40bの中央部の面圧を減少させ、捲回電極群40に作用する面圧を均一化することができる。   Accordingly, the deformation amounts of the contact portions 232a and 232b in the central region Z1 are larger than the deformation amounts of the contact portions 232c and 232d in the end region Z2, respectively. However, the elastic coefficients of the contact portions 232a and 232b in the central region Z1 are lower than the elastic coefficients of the contact portions 232c and 232d in the end region Z2, respectively. Therefore, the difference between the elastic force that acts on the flat surface 1a from the contact portion 232a and the elastic force that acts on the flat surface 1a from the contact portion 232c, and the elastic force that acts on the flat surface 1a from the contact portion 232b. The difference from the elastic force acting on the flat surface 1a from the contact portion 232d can be reduced. Therefore, in the height direction of the battery case 1 perpendicular to the axis D direction of the wound electrode group 40, the surface pressure at the central portion of the flat portion 40b of the wound electrode group 40 that tends to increase the amount of swelling and increase the surface pressure is reduced. The surface pressure acting on the wound electrode group 40 can be made uniform.

以上説明したように、本実施形態の電池モジュールMによれば、捲回電極群40の軸D方向に平行な電池容器1の幅方向だけでなく、軸D方向に垂直な電池容器1の高さ方向においても、扁平面1aおよび捲回電極群40に作用する面圧をより均一化することができる。したがって、本実施形態の電池モジュールMによれば、二次電池100の劣化をより効果的に抑制することができる。   As described above, according to the battery module M of the present embodiment, not only the width direction of the battery container 1 parallel to the axis D direction of the wound electrode group 40 but also the height of the battery container 1 perpendicular to the axis D direction. Also in the vertical direction, the surface pressure acting on the flat surface 1a and the wound electrode group 40 can be made more uniform. Therefore, according to the battery module M of the present embodiment, the deterioration of the secondary battery 100 can be more effectively suppressed.

また、図7に示すように、電池容器1の高さ方向において、電池容器1の扁平面1aの中央領域Z1に当接する当接部232a、232bの厚さを、それぞれ、扁平面1aの端部領域Z2に当接する当接部232c、232dの厚さよりも厚くしてもよい。同様に、電池容器1の幅方向において、電池容器1の扁平面1aの中央領域Y1に当接する当接部232a、232cの厚さを、それぞれ、扁平面1aの端部領域Y2に当接する当接部232b、232dの厚さよりも厚くしてもよい。これにより、扁平面1aの中央領域Y1、Z1の変形をより許容しやすくすることができ、扁平面1aの中央領域Y1、Z1において捲回電極群40に作用する面圧をより低減することが可能になる。   Further, as shown in FIG. 7, in the height direction of the battery container 1, the thicknesses of the contact portions 232 a and 232 b that contact the central region Z <b> 1 of the flat surface 1 a of the battery container 1 respectively You may make it thicker than the thickness of contact part 232c, 232d contact | abutted to partial area Z2. Similarly, in the width direction of the battery case 1, the thicknesses of the contact portions 232a and 232c that come into contact with the central region Y1 of the flat surface 1a of the battery case 1 are respectively set to contact with the end region Y2 of the flat surface 1a. You may make it thicker than the thickness of contact part 232b, 232d. Thereby, the deformation of the central regions Y1 and Z1 of the flat surface 1a can be more easily allowed, and the surface pressure acting on the wound electrode group 40 in the central regions Y1 and Z1 of the flat surface 1a can be further reduced. It becomes possible.

また、スペーサ230の上端部スペーサ231および下端部スペーサ233は、それぞれ平坦部40bの上端と電池蓋20との間の部分、および平坦部40bの下端と電池容器1の下端面1dとの間の部分に対向するように設けられている。これらの部分は、捲回電極群40の膨張による影響を比較的受けにくい。したがって、電池容器1の膨張、収縮によらず、電池容器1の厚さ方向両側の一対の上端部スペーサ231および一対の下端部スペーサ233によって電池容器1を確実に挟持し、端部セルホルダ210と中間セルホルダ220の間、および中間セルホルダ220同士の間に二次電池100を確実に保持することができる。   Further, the upper end spacer 231 and the lower end spacer 233 of the spacer 230 are respectively a portion between the upper end of the flat portion 40b and the battery lid 20, and between the lower end of the flat portion 40b and the lower end surface 1d of the battery case 1. It is provided so as to face the part. These portions are relatively less susceptible to the expansion of the wound electrode group 40. Therefore, regardless of the expansion and contraction of the battery container 1, the battery container 1 is securely held by the pair of upper end spacers 231 and the pair of lower end spacers 233 on both sides in the thickness direction of the battery container 1. The secondary battery 100 can be reliably held between the intermediate cell holders 220 and between the intermediate cell holders 220.

また、セルホルダ200の電池容器1の幅方向に対向する一対の側板221に、当接部232a、232bと当接部232c、232dとの間のスリットS2に連通する開口部221bが形成されている。そのため、冷却媒体を、一方の側板221の開口部221bからスリットS2に流入させ、冷却媒体によって電池容器1の扁平面1aを効果的に冷却して、二次電池100の性能を向上させることができる。同様に、側板221の上下の開口部221a、221cから冷却媒体をスリットS1、S3に流入させ、冷却媒体によって電池容器1の扁平面1aを効果的に冷却して、二次電池100の性能を向上させることができる。   In addition, an opening 221b communicating with the slit S2 between the contact portions 232a and 232b and the contact portions 232c and 232d is formed in the pair of side plates 221 facing the width direction of the battery case 1 of the cell holder 200. . Therefore, it is possible to improve the performance of the secondary battery 100 by allowing a cooling medium to flow into the slit S2 from the opening 221b of the one side plate 221 and effectively cooling the flat surface 1a of the battery container 1 with the cooling medium. it can. Similarly, the cooling medium is caused to flow into the slits S1 and S3 from the upper and lower openings 221a and 221c of the side plate 221, and the flat surface 1a of the battery case 1 is effectively cooled by the cooling medium, thereby improving the performance of the secondary battery 100. Can be improved.

なお、当接部232a、232b、232c、232dの配置は、図8に示す配置に限定されない。当接部232a、232b、232c、232dの配置の変形例を、図11および図12に示す。   In addition, arrangement | positioning of contact part 232a, 232b, 232c, 232d is not limited to the arrangement | positioning shown in FIG. Modification examples of the arrangement of the contact portions 232a, 232b, 232c, and 232d are shown in FIGS.

図11に示すように、扁平面1aの高さ方向(Z軸方向)の中央領域Z1に当接し、かつ扁平面1aの幅方向(Y軸方向)の中央領域Y1aに当接する当接部232aのY軸方向の長さが、扁平面1aのZ軸方向の端部領域Z2に当接し、かつ扁平面1aのY軸方向の中央領域Y1bに当接する当接部232cのY軸方向の長さよりも、長くなるようにしてもよい。この場合、扁平面1aのY軸方向の中央領域Y1a、Y1bは、扁平面1aのZ軸方向の中央側ほど、Y軸方向の幅が広くなっている。   As shown in FIG. 11, an abutting portion 232a that abuts the central region Z1 in the height direction (Z-axis direction) of the flat surface 1a and abuts the central region Y1a in the width direction (Y-axis direction) of the flat surface 1a. The length in the Y-axis direction of the abutting portion 232c that abuts the end region Z2 in the Z-axis direction of the flat surface 1a and the central region Y1b in the Y-axis direction of the flat surface 1a Instead, it may be longer. In this case, the central regions Y1a and Y1b in the Y-axis direction of the flat surface 1a are wider in the Y-axis direction toward the center side in the Z-axis direction of the flat surface 1a.

このように、扁平面1aのZ軸方向において、Y軸方向の中央領域Y1a、Y1bの長さを異ならせることで、例えば、扁平面1aが中央部を頂点とする球面状に膨張する場合にも、扁平面1aの膨張形状に対応して、扁平面1aの膨張量が多い領域における当接部232a、232cの弾性係数を、扁平面1aの膨張量が少ない領域における当接部232b、232dの弾性係数よりも低くすることができる。したがって、扁平面1aの膨張形状に対応して、扁平面1aおよび捲回電極群40に作用する面圧をより精度よく均一化することができる。   In this way, in the Z-axis direction of the flat surface 1a, the length of the central regions Y1a and Y1b in the Y-axis direction is made different, for example, when the flat surface 1a expands into a spherical shape with the central portion at the apex. Also, corresponding to the expansion shape of the flat surface 1a, the elastic coefficients of the contact portions 232a and 232c in the region where the flat surface 1a has a large expansion amount are set as the elastic coefficients of the contact portions 232b and 232d in the region where the flat surface 1a has a small expansion amount. It can be made lower than the elastic modulus. Accordingly, the surface pressure acting on the flat surface 1a and the wound electrode group 40 can be equalized more accurately corresponding to the expanded shape of the flat surface 1a.

また、図12に示すように、扁平面1aのY軸方向において当接部232a、232cの弾性係数を異ならせず、扁平面1aのZ軸方向において中央領域Z1の当接部232aの弾性係数を端部領域Z2の当接部232cの弾性係数よりも低くしてもよい。例えば、二次電池100の電池容器1内に収容される捲回電極群40の構成や配置が異なれば、扁平面1aのY軸方向において膨張量にほとんど差なく、Z軸方向においてのみ中央領域Z1の膨張量が端部領域Z2よりも大きくなることが起こり得る。   Further, as shown in FIG. 12, the elastic coefficients of the contact portions 232a and 232c in the Y-axis direction of the flat surface 1a are not changed, and the elastic coefficients of the contact portions 232a of the central region Z1 in the Z-axis direction of the flat surface 1a. May be lower than the elastic coefficient of the contact portion 232c of the end region Z2. For example, if the configuration and arrangement of the wound electrode group 40 accommodated in the battery container 1 of the secondary battery 100 are different, there is almost no difference in the amount of expansion in the Y-axis direction of the flat surface 1a, and the central region only in the Z-axis direction. It is possible that the expansion amount of Z1 becomes larger than the end region Z2.

このような場合には、扁平面1aのY軸方向において当接部232a、232cの弾性係数を異ならせず、扁平面1aのZ軸方向において中央領域Z1の当接部232aの弾性係数を端部領域Z2の当接部232cの弾性係数よりも低くすることで、前述の当接部232a、232b、232c、232dと同様の効果を得ることができる。   In such a case, the elastic coefficients of the contact portions 232a and 232c in the Y-axis direction of the flat surface 1a are not changed, and the elastic coefficients of the contact portions 232a of the central region Z1 in the Z-axis direction of the flat surface 1a are end. By making it lower than the elastic coefficient of the contact part 232c of the partial region Z2, the same effect as the above-mentioned contact parts 232a, 232b, 232c, 232d can be obtained.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。例えば、中間部スペーサの数は4本に限定されず、例えば3本でも5本以上でもよい。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention. For example, the number of intermediate spacers is not limited to four, and may be three or five or more, for example.

1…電池容器
1a…扁平面
1b…側面
1c…上端面
1d…下端面
40…捲回電極群
40b…平坦部
40c…湾曲部
41c、42c…箔露出部
41d、42d…接合部
100…二次電池
200…セルホルダ
210…端部セルホルダ(セルホルダ)
220…中間セルホルダ(セルホルダ)
221…側板
221b…開口部
222…底板
230…スペーサ
232…中間部スペーサ(スペーサ)
232a−232d…当接部
D…軸
M…電池モジュール
S2…スリット(当接部の間の空間)
Y1、Y1a、Y1b、Z1…中央領域
Y2、Z2…端部領域
DESCRIPTION OF SYMBOLS 1 ... Battery container 1a ... Flat surface 1b ... Side surface 1c ... Upper end surface 1d ... Lower end surface 40 ... Winding electrode group 40b ... Flat part 40c ... Curved part 41c, 42c ... Foil exposed part 41d, 42d ... Joint part 100 ... Secondary Battery 200 ... cell holder 210 ... end cell holder (cell holder)
220 ... Intermediate cell holder (cell holder)
221 ... Side plate 221b ... Opening 222 ... Bottom plate 230 ... Spacer 232 ... Intermediate spacer (spacer)
232a-232d ... contact part D ... axis M ... battery module S2 ... slit (space between contact parts)
Y1, Y1a, Y1b, Z1 ... central region Y2, Z2 ... end region

Claims (3)

扁平な捲回電極群を収容する扁平箱型の電池容器を備える複数の二次電池を該電池容器の厚さ方向にスペーサを介して積層させた電池モジュールであって、
前記スペーサは、前記電池容器の幅広の扁平面に当接する当接部を有し、
前記扁平面の中央領域に当接する前記当接部の弾性係数が、前記扁平面の端部領域に当接する前記当接部の弾性係数よりも低く、
前記捲回電極群は、軸方向が前記扁平面と前記電池容器の下端面に平行に配置され、
前記下端面に垂直な前記電池容器の高さ方向に複数の前記当接部が配置され、前記高さ方向の前記中央領域に当接する前記当接部の弾性係数が、前記高さ方向の前記端部領域に当接する前記当接部の弾性係数よりも低く、
前記捲回電極群の前記軸方向に平行な前記電池容器の幅方向の前記中央領域に当接する前記当接部の弾性係数が、前記幅方向の前記端部領域に当接する前記当接部の弾性係数よりも低く、
前記捲回電極群は、前記電池容器の前記下端面と上端面にそれぞれ対向する一対の湾曲部と、前記扁平面に対向する一対の平坦部と、該平坦部において前記軸方向の両端の箔露出部を束ねて接合した接合部と、を有し、
前記扁平面の膨張量は、前記平坦部の中央部に対向する前記中央領域が最も多く、該中央領域の周囲の前記端部領域に向けて漸次減少し、
前記高さ方向の前記中央領域に当接し、かつ前記幅方向の前記中央領域に当接する前記当接部の前記幅方向の長さが、前記高さ方向の前記端部領域に当接し、かつ前記幅方向の前記中央領域に当接する前記当接部の前記幅方向の長さよりも長いことを特徴とする電池モジュール。
A battery module in which a plurality of secondary batteries including a flat box type battery container that accommodates a flat wound electrode group are stacked via a spacer in the thickness direction of the battery container,
The spacer has a contact portion that contacts the wide flat surface of the battery container,
Elastic modulus of the abutting portion abutting the central region of the flat surface, rather lower than the elastic coefficient of the abutment portion abuts against the end region of the flat surface,
The wound electrode group is arranged such that the axial direction is parallel to the flat surface and the lower end surface of the battery container,
A plurality of the contact portions are arranged in a height direction of the battery container perpendicular to the lower end surface, and an elastic coefficient of the contact portion that contacts the central region in the height direction is the height direction of the battery container. the abuts against the end regions rather lower than the elastic coefficient of the abutment portion,
The elastic coefficient of the contact portion that contacts the central region in the width direction of the battery container parallel to the axial direction of the wound electrode group is that of the contact portion that contacts the end region in the width direction. rather than lower than the elastic coefficient,
The wound electrode group includes a pair of curved portions opposed to the lower end surface and the upper end surface of the battery container, a pair of flat portions opposed to the flat surface, and foils at both ends in the axial direction in the flat portion. And having a joint part obtained by bundling and exposing the exposed part,
The amount of expansion of the flat surface is the largest in the central region facing the central portion of the flat portion, and gradually decreases toward the end region around the central region ,
A length in the width direction of the abutting portion that abuts on the central region in the height direction and abuts on the central region in the width direction abuts on the end region in the height direction; and the width direction the said abutment portion and the widthwise direction of that batteries module to said longer than the length of which abuts the central region of.
前記電池容器を前記厚さ方向に挟持するセルホルダを備え、
前記セルホルダは、前記電池容器の前記厚さ方法に沿う一対の側面に対向する一対の側板と、前記電池容器の前記下端面に対向すると共に前記幅方向に延びて前記一対の側板を連結する底板と、前記扁平面に対向する前記スペーサと、を備え、
前記側板は、前記当接部の間の空間に連通する開口部を有することを特徴とする請求項1に記載の電池モジュール。
A cell holder for clamping the battery container in the thickness direction;
The cell holder includes a pair of side plates facing a pair of side surfaces along the thickness method of the battery container, and a bottom plate facing the lower end surface of the battery container and extending in the width direction to connect the pair of side plates. And the spacer facing the flat surface,
The battery module according to claim 1, wherein the side plate has an opening communicating with a space between the contact portions.
前記当接部は、弾性を有する樹脂材料によって構成されていることを特徴とする請求項1または請求項2に記載の電池モジュール。 The abutment, battery module according to claim 1 or claim 2, characterized in that it is constituted by a resin material having elasticity.
JP2014011394A 2014-01-24 2014-01-24 Battery module Active JP6352640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011394A JP6352640B2 (en) 2014-01-24 2014-01-24 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011394A JP6352640B2 (en) 2014-01-24 2014-01-24 Battery module

Publications (2)

Publication Number Publication Date
JP2015138753A JP2015138753A (en) 2015-07-30
JP6352640B2 true JP6352640B2 (en) 2018-07-04

Family

ID=53769604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011394A Active JP6352640B2 (en) 2014-01-24 2014-01-24 Battery module

Country Status (1)

Country Link
JP (1) JP6352640B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379737B2 (en) * 2014-06-27 2018-08-29 株式会社豊田自動織機 Battery module
KR101967703B1 (en) * 2015-10-05 2019-04-10 주식회사 엘지화학 Battery module and battery pack including the same
JP6724552B2 (en) * 2016-05-26 2020-07-15 トヨタ自動車株式会社 Battery
DE102017008102A1 (en) * 2017-08-29 2019-02-28 Carl Freudenberg Kg Energy storage system
WO2019189850A1 (en) 2018-03-30 2019-10-03 三菱ケミカル株式会社 Partition member and assembled battery
WO2020054228A1 (en) * 2018-09-11 2020-03-19 三洋電機株式会社 Power supply device
JP7441013B2 (en) * 2018-09-28 2024-02-29 三洋電機株式会社 assembled battery
DE102018221477A1 (en) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Battery module comprising a plurality of battery cells
JP7089678B2 (en) * 2019-03-27 2022-06-23 トヨタ自動車株式会社 Batteries assembled
CN111900292A (en) * 2019-05-07 2020-11-06 宁德时代新能源科技股份有限公司 Battery pack and vehicle
JPWO2020261729A1 (en) * 2019-06-28 2020-12-30
US20230104739A1 (en) * 2020-01-30 2023-04-06 Panasonic Holdings Corporation Nonaqueous electrolyte secondary cell and secondary cell module
CN115023849A (en) * 2020-02-03 2022-09-06 三洋电机株式会社 Power supply device, and electrically powered vehicle and power storage device using same
CN115004467A (en) * 2020-03-31 2022-09-02 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
JPWO2021199546A1 (en) * 2020-03-31 2021-10-07
CN113540618B (en) * 2021-07-16 2022-07-22 重庆电子工程职业学院 Electric automobile power distribution system with stable working condition
DE102021131036A1 (en) 2021-11-26 2023-06-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Battery system, vehicle comprising the battery system, manufacturing method for the battery system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048867A (en) * 1998-07-31 2000-02-18 Toyota Motor Corp Battery pack
JP5187400B2 (en) * 2010-06-16 2013-04-24 トヨタ自動車株式会社 Secondary battery assembly
JP5889333B2 (en) * 2011-12-06 2016-03-22 日立オートモティブシステムズ株式会社 Assembled battery
JP6016026B2 (en) * 2013-02-15 2016-10-26 トヨタ自動車株式会社 Battery pack and battery module

Also Published As

Publication number Publication date
JP2015138753A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6352640B2 (en) Battery module
JP6166994B2 (en) Assembled battery
JP6582489B2 (en) Square secondary battery and battery pack using the same
JP6214758B2 (en) Prismatic secondary battery
JP6198844B2 (en) Assembled battery
JP5889333B2 (en) Assembled battery
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP6891930B2 (en) Square secondary battery and assembled battery using it
JP2014157722A (en) Battery pack
JP2015118773A (en) Secondary battery module
WO2019188825A1 (en) Battery cell
WO2016132897A1 (en) Battery pack
US20210175510A1 (en) Secondary battery and manufacturing method of secondary battery
JP6186449B2 (en) Assembled battery
US10158107B2 (en) Battery comprising insulative films
US10312548B2 (en) Battery and battery manufacturing method
US20140023913A1 (en) Prismatic secondary battery
JP6530819B2 (en) Secondary battery
JP5768002B2 (en) Secondary battery
JP2021120961A (en) Square secondary battery and battery pack using the same
CN111801814B (en) Sealed battery
JP2022014715A (en) Secondary battery
JP2015204236A (en) Secondary battery and battery module
CN112909345B (en) Secondary battery and method for manufacturing secondary battery
CN117954809A (en) Battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250