JP6352223B2 - Method for producing perovskite solar cell - Google Patents

Method for producing perovskite solar cell Download PDF

Info

Publication number
JP6352223B2
JP6352223B2 JP2015134570A JP2015134570A JP6352223B2 JP 6352223 B2 JP6352223 B2 JP 6352223B2 JP 2015134570 A JP2015134570 A JP 2015134570A JP 2015134570 A JP2015134570 A JP 2015134570A JP 6352223 B2 JP6352223 B2 JP 6352223B2
Authority
JP
Japan
Prior art keywords
perovskite
solar cell
layer
titanium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015134570A
Other languages
Japanese (ja)
Other versions
JP2017017252A (en
JP2017017252A5 (en
Inventor
暹 吉川
暹 吉川
整 吉川
整 吉川
輝樹 高安
輝樹 高安
金児 小野田
金児 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Showa Co Ltd
Original Assignee
Kyoto University
Showa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Showa Co Ltd filed Critical Kyoto University
Priority to JP2015134570A priority Critical patent/JP6352223B2/en
Priority to PCT/JP2016/069516 priority patent/WO2017006839A1/en
Publication of JP2017017252A publication Critical patent/JP2017017252A/en
Publication of JP2017017252A5 publication Critical patent/JP2017017252A5/ja
Application granted granted Critical
Publication of JP6352223B2 publication Critical patent/JP6352223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、金属チタン材料を使用し、光電変換層として有機無機ペロブスカイト化合物を用いた光電変換素子の製造方法及びその製造方法にて作製したペロブスカイト型太陽電池に関する。   The present invention relates to a method for manufacturing a photoelectric conversion element using a metal titanium material and using an organic / inorganic perovskite compound as a photoelectric conversion layer, and a perovskite solar cell manufactured by the method.

光電変換素子は、単結晶型シリコン太陽電池、多結晶型シリコン太陽電池、アモルファスシリコン太陽電池、非シリコン系の化合物半導体を用いた太陽電池等に広汎に使用されている。しかしながら、これらの太陽電池は、高真空下で製造することが必要であり、製造コストが高くなるという問題点があった。   Photoelectric conversion elements are widely used in single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, solar cells using non-silicon compound semiconductors, and the like. However, these solar cells need to be manufactured under a high vacuum, and there is a problem that the manufacturing cost is increased.

これらの太陽電池を置き換える次世代太陽電池として、低コストで製造可能な有機系太陽電池が期待されている。この有機系太陽電池の一つとして、色素増感太陽電池が提案されている。色素増感太陽電池は、(i)導電性基板上、二酸化チタンのナノ粒子からなる層が形成されており、これに増感色素を吸着させた光電極と、(ii)導電性基板上に、白金等の還元性層が形成された対極とを互いに対向配置し、(iii)それら基板間に電解質溶液を注入し、この電解液を封止した構造である。色素増感太陽電池は製造プロセスが簡単であり、低コストにて製造できる。しかしながら、従来の色素増感太陽電池では、電解液として有機溶媒等の液体を使用するので、耐久性を向上させることが求められている。また、色素増感太陽電池では、シリコン太陽電池等と比べて、変換効率が低いことも改善が求められている。   Organic solar cells that can be manufactured at low cost are expected as next-generation solar cells that replace these solar cells. As one of the organic solar cells, a dye-sensitized solar cell has been proposed. The dye-sensitized solar cell has (i) a layer of titanium dioxide nanoparticles formed on a conductive substrate, a photoelectrode on which the sensitizing dye is adsorbed, and (ii) a conductive substrate. And (iii) a structure in which an electrolyte solution is injected between the substrates and the electrolyte solution is sealed. The dye-sensitized solar cell has a simple manufacturing process and can be manufactured at low cost. However, in a conventional dye-sensitized solar cell, since a liquid such as an organic solvent is used as an electrolytic solution, it is required to improve durability. Further, the dye-sensitized solar cell is also required to be improved in that the conversion efficiency is lower than that of a silicon solar cell or the like.

上記問題点を解決するために、特許文献1においては、透明導電膜をコーティングしたガラス板やプラスチックス材を負極基板として用い、増感剤として有機、無機ペロブスカイト結晶を用いた新たな太陽電池が提案されている。これをペロブスカイト型太陽電池という。ペロブスカイト型太陽電池は、色素増感太陽電池に比べて変換効率が高いこと、シリコン太陽電池に比べて可視光の利用効率が高いこと、薄膜形状の太陽電池でありフレキシブル化が可能なこと、作製コストが低いこと等の利点あり、注目されている。しかしながら、従来のペロブスカイト型太陽電池では、透明導電膜の電気抵抗が大きいために、大面積化すると光電変換効率の低下を招くことについて、改善が求められている。   In order to solve the above problems, Patent Document 1 discloses a new solar cell using a glass plate or plastics material coated with a transparent conductive film as a negative electrode substrate, and using organic or inorganic perovskite crystals as a sensitizer. Proposed. This is called a perovskite solar cell. Perovskite solar cells have higher conversion efficiency than dye-sensitized solar cells, higher utilization efficiency of visible light than silicon solar cells, thin-film solar cells that can be made flexible, There is an advantage such as low cost, and it is attracting attention. However, in the conventional perovskite solar cell, since the electrical resistance of the transparent conductive film is large, there is a demand for improvement in that the photoelectric conversion efficiency is reduced when the area is increased.

特開2014-72327号公報JP 2014-72327 A

本発明は、色素増感太陽電池で懸念されている増感色素が光劣化すること、電解液の揮散すること、漏洩による耐久性が低いこと、シリコン系太陽電池及び化合物半導体系太陽電池で懸念されている製造コストが高いこと等の課題を解決することを目的とする。   The present invention is concerned with photosensitizing dyes that are concerned about dye-sensitized solar cells, that the electrolyte solution is volatilized, that durability due to leakage is low, silicon-based solar cells, and compound semiconductor-based solar cells. It aims at solving the problems such as the high manufacturing cost.

本発明は、負極基板に金属チタンを使用し、光電変換層に有機無機ペロブスカイト化合物を用いる。   In the present invention, titanium metal is used for the negative electrode substrate, and an organic / inorganic perovskite compound is used for the photoelectric conversion layer.

本発明者等は、従来技術の問題点を解決すべく鋭意検討をした処、特定の構造を備えるペロブスカイト型太陽電池が上記目的を達成できることを見出した。   As a result of diligent investigations to solve the problems of the prior art, the present inventors have found that a perovskite solar cell having a specific structure can achieve the above object.

即ち、本発明は、下記のペロブスカイト型太陽電池である。   That is, the present invention is the following perovskite solar cell.

項1.
負極、正孔ブロック層、ペロブスカイト層、正孔輸送層及び正極が順に形成されているペロブスカイト型太陽電池であって、
前記負極が、金属チタン、チタン合金、表面処理した金属チタン及び表面処理したチタン合金からなる群から選ばれる少なくとも一種の材料で構成されており、
前記正極側から光照射がなされることを特徴とする、ペロブスカイト型太陽電池。
Item 1.
A perovskite solar cell in which a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer and a positive electrode are formed in order,
The negative electrode is composed of at least one material selected from the group consisting of titanium metal, titanium alloy, surface-treated metal titanium, and surface-treated titanium alloy,
A perovskite solar cell, which is irradiated with light from the positive electrode side.

項2.
前記正孔ブロック層とペロブスカイト層との間に、メソポーラス金属酸化物層が形成されていることを特徴とする、前記項1に記載のペロブスカイト型太陽電池。
Item 2.
2. The perovskite solar cell according to item 1, wherein a mesoporous metal oxide layer is formed between the hole blocking layer and the perovskite layer.

項3.
前記正孔ブロック層の厚さが1〜500nmであり、該正孔ブロック層がn型半導体、電子輸送性導電性高分子及び電子輸送性無機塩からなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項1又は2に記載のペロブスカイト型太陽電池。
Item 3.
The hole blocking layer has a thickness of 1 to 500 nm, and the hole blocking layer is composed of at least one material selected from the group consisting of an n-type semiconductor, an electron transporting conductive polymer, and an electron transporting inorganic salt. Item 3. The perovskite solar cell according to Item 1 or 2, wherein

項4.
前記正孔ブロック層が、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、炭酸セシウム、フラーレン誘導体、グラフェン誘導体及びペリレン誘導体からなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項1〜3のいずれかに記載のペロブスカイト型太陽電池。
Item 4.
The hole blocking layer is made of at least one material selected from the group consisting of titanium oxide, zinc oxide, zirconium oxide, aluminum oxide, cesium carbonate, fullerene derivatives, graphene derivatives, and perylene derivatives. The perovskite solar cell according to any one of Items 1 to 3.

項5.
前記酸化チタンが、金属チタン又はチタン合金を表面処理することで調製された酸化チタンであることを特徴とする、前記項4に記載のペロブスカイト型太陽電池。
Item 5.
Item 5. The perovskite solar cell according to Item 4, wherein the titanium oxide is titanium oxide prepared by surface-treating metal titanium or a titanium alloy.

項6.
前記表面処理が、金属チタン又はチタン合金を、大気酸化処理及び陽極酸化処理からなる群から選ばれる少なくとも一種の表面処理であることを特徴とする、前記項5に記載のペロブスカイト型太陽電池。
Item 6.
Item 6. The perovskite solar cell according to Item 5, wherein the surface treatment is at least one surface treatment selected from the group consisting of atmospheric oxidation treatment and anodization treatment of titanium metal or a titanium alloy.

項7.
前記酸化チタンが、酸化チタン前駆体であるチタニウムアルコキシド化合物を加水分解処理及び加熱処理することで調製された酸化チタンであることを特徴とする、前記項4〜6のいずれかに記載のペロブスカイト型太陽電池。
Item 7.
Item 7. The perovskite type according to any one of Items 4 to 6, wherein the titanium oxide is titanium oxide prepared by subjecting a titanium alkoxide compound, which is a titanium oxide precursor, to hydrolysis treatment and heat treatment. Solar cell.

項8.
前記酸化チタンが、更に四塩化チタン水溶液を用いて表面処理することで調製された酸化チタンであることを特徴とする、前記項4〜7のいずれかに記載のペロブスカイト型太陽電池。
Item 8.
Item 8. The perovskite solar cell according to any one of Items 4 to 7, wherein the titanium oxide is titanium oxide prepared by surface treatment using a titanium tetrachloride aqueous solution.

項9.
前記メソポーラス金属酸化物層の厚さが5〜5,000nmであり、該メソポーラス金属酸化物層が酸化チタン、酸化アルミニウム、酸化ジルコニウム及び酸化ニオブからなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項2に記載のペロブスカイト型太陽電池。
Item 9.
The mesoporous metal oxide layer has a thickness of 5 to 5,000 nm, and the mesoporous metal oxide layer is made of at least one material selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, and niobium oxide. The perovskite solar cell according to Item 2, wherein the perovskite solar cell is characterized.

項10.
前記ペロブスカイト層の厚さが5〜10,000nmであり、該ペロブスカイト層がRNH3PbX3、R(NH2)2PbX3、RNH3SnX3及びR(NH2)2SnX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)からなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項1〜9のいずれかに記載のペロブスカイト型太陽電池。
Item 10.
The perovskite layer has a thickness of 5 to 10,000 nm, and the perovskite layer is RNH 3 PbX 3 , R (NH 2 ) 2 PbX 3 , RNH 3 SnX 3 and R (NH 2 ) 2 SnX 3 (R is an alkyl group) Wherein X is at least one kind of material selected from the group consisting of Cl, Br and I selected from the group consisting of Cl, Br and I). The perovskite solar cell according to any one of the above.

項11.
前記RNH3PbX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)が、CH3NH3PbI3であることを特徴とする、前記項10に記載のペロブスカイト型太陽電池。
Item 11.
The RNH 3 PbX 3 (R is an alkyl group, X is at least one halogen selected from the group consisting of Cl, Br and I) is CH 3 NH 3 PbI 3 , Item 11. A perovskite solar cell according to Item 10.

項12.
前記RNH3PbX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)が、CH3NH3PbI3-nCln(nは0から3である)であることを特徴とする、前記項10に記載のペロブスカイト型太陽電池の製造方法。
Item 12.
RNH 3 PbX 3 (R is an alkyl group, X is at least one halogen selected from the group consisting of Cl, Br and I), but CH 3 NH 3 PbI 3-n Cl n (n is 0 to 0) 3. The method for producing a perovskite solar cell according to Item 10, wherein:

項13.
前記正孔輸送層の厚さが1〜5,000 nmであり、該正孔輸送層がp型半導体で構成されていることを特徴とする、前記項1〜12のいずれかに記載のペロブスカイト型太陽電池。
Item 13.
13. The perovskite solar according to any one of Items 1 to 12, wherein the hole transport layer has a thickness of 1 to 5,000 nm, and the hole transport layer is composed of a p-type semiconductor. battery.

項14.
前記正孔輸送層が、spiro-OMeTAD誘導体、酸化モリブデン、酸化バナジウム、ヨウ化銅、チオシアン酸銅、ポリチオフェン及びポリトリフェニルアミンからなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項1〜13のいずれかに記載のペロブスカイト型太陽電池。
Item 14.
The hole transport layer is composed of at least one material selected from the group consisting of a spiro-OMeTAD derivative, molybdenum oxide, vanadium oxide, copper iodide, copper thiocyanate, polythiophene, and polytriphenylamine. The perovskite solar cell according to any one of Items 1 to 13.

項15.
前記正孔輸送層が、酸素、リチウム化合物、コバルト化合物、バナジウム化合物及びモリブデン化合物からなる群から選ばれる少なくとも一種の材料を用いてドープされることで調製された正孔輸送層であることを特徴とする、前記項1〜14のいずれかに記載のペロブスカイト型太陽電池。
Item 15.
The hole transport layer is a hole transport layer prepared by doping with at least one material selected from the group consisting of oxygen, lithium compounds, cobalt compounds, vanadium compounds, and molybdenum compounds. The perovskite solar cell according to any one of Items 1 to 14.

項16.
前記正極が、金、銀、アルミニウム、錫ドープ酸化インジウム、フッ素ドープ酸化錫、酸化錫、インジウム亜鉛酸化物、酸化亜鉛、アルミドープ亜鉛、PEDOT:PSS、グラフェン、ポリアニリン及びカーボンナノチューブからなる群から選ばれる少なくとも一種の材料で構成されており、該正極が、薄膜形状、ナノワイヤー形状又はグリッド形状であることを特徴とする、前記項1〜15のいずれかに記載のペロブスカイト型太陽電池。
Item 16.
The positive electrode is selected from the group consisting of gold, silver, aluminum, tin-doped indium oxide, fluorine-doped tin oxide, tin oxide, indium zinc oxide, zinc oxide, aluminum-doped zinc, PEDOT: PSS, graphene, polyaniline, and carbon nanotubes 16. The perovskite solar cell according to any one of Items 1 to 15, wherein the positive electrode has a thin film shape, a nanowire shape, or a grid shape.

項17.
前記ペロブスカイト型太陽電池が、負極、正孔ブロック層、ペロブスカイト層、正孔輸送層、正極及び反射防止膜が順に形成されていることを特徴とする、前記項1〜16のいずれかに記載のペロブスカイト型太陽電池。
Item 17.
17. The perovskite solar cell, wherein a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer, a positive electrode, and an antireflection film are sequentially formed. Perovskite solar cell.

項18.
前記反射防止膜が、酸化モリブデン、フッ化マグネシウム及びフッ化リチウムからなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、前記項17に記載のペロブスカイト型太陽電池。
Item 18.
Item 18. The perovskite solar cell according to Item 17, wherein the antireflection film is made of at least one material selected from the group consisting of molybdenum oxide, magnesium fluoride, and lithium fluoride.

項19.
集光装置が正極側に配置されているものであることを特徴とする、前記項1〜18のいずれかに記載のペロブスカイト型太陽電池。
Item 19.
Item 18. The perovskite solar cell according to any one of Items 1 to 18, wherein the condensing device is disposed on the positive electrode side.

項20.
蓄電装置が配置されているものであることを特徴とする、前記項1〜19のいずれかに記載のペロブスカイト型太陽電池。
Item 20.
Item 20. The perovskite solar cell according to any one of Items 1 to 19, wherein a power storage device is disposed.

本発明のペロブスカイト型太陽電池は、チタンやチタン合金を負極基板とすることにおいて大面積な太陽電池においても高い光電変換特性を発揮させることができる。   The perovskite solar cell of the present invention can exhibit high photoelectric conversion characteristics even in a large-area solar cell by using titanium or a titanium alloy as a negative electrode substrate.

本発明のペロブスカイト型太陽電池の一実施形態を示す概略図(断面図)である。具体的には、負極、正孔ブロック層、メソポーラス金属酸化物層、ペロブスカイト層、正孔輸送層及び正極が順に形成されており、正極側から光照射をすることを示す概略図(断面図)である。It is the schematic (sectional drawing) which shows one Embodiment of the perovskite type solar cell of this invention. Specifically, a negative electrode, a hole blocking layer, a mesoporous metal oxide layer, a perovskite layer, a hole transport layer, and a positive electrode are formed in order, and a schematic diagram showing that light irradiation is performed from the positive electrode side (cross-sectional view) It is.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

ペロブスカイト型太陽電池
本発明のペロブスカイト型太陽電池は、以下の部材にて構成される。
Perovskite solar cell The perovskite solar cell of the present invention is composed of the following members.

本発明のペロブスカイト型太陽電池は、負極、正孔ブロック層、ペロブスカイト層、正孔輸送層及び正極が順に形成されているであって、前記負極が、金属チタン、チタン合金、表面処理した金属チタン及び表面処理したチタン合金からなる群から選ばれる少なくとも一種の材料で構成されており、前記正極側から光照射がなされることを特徴とする。   In the perovskite solar cell of the present invention, a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer, and a positive electrode are formed in this order, and the negative electrode is made of metal titanium, titanium alloy, and surface-treated metal titanium. And at least one material selected from the group consisting of surface-treated titanium alloys, and light irradiation is performed from the positive electrode side.

本明細書では、金属チタン、チタン合金、表面処理した金属チタン及び表面処理したチタン合金からなる群から選ばれる材料を単にチタン材料と記すこともある。   In the present specification, a material selected from the group consisting of titanium metal, titanium alloy, surface-treated metal titanium, and surface-treated titanium alloy may be simply referred to as titanium material.

(1)負極
負極は、金属チタン、チタン合金、表面処理した金属チタン及び表面処理したチタン合金からなる群から選ばれる少なくとも一種の材料で構成されている。金属チタンやチタン合金等の金属チタン材料や、これらの金属チタン材料を表面処理した材料を用いることができる。
(1) Negative electrode The negative electrode is composed of at least one material selected from the group consisting of titanium metal, titanium alloy, surface-treated metal titanium, and surface-treated titanium alloy. Metal titanium materials such as metal titanium and titanium alloys, and materials obtained by surface treatment of these metal titanium materials can be used.

チタン合金材料を使用する場合、その種類については、特に限定されない。当該チタン合金として、Ti-6Al-4V、Ti-4.5Al-3V-2Fe-2Mo、Ti-0.5Pd等が好ましい。   When a titanium alloy material is used, the type is not particularly limited. As the titanium alloy, Ti-6Al-4V, Ti-4.5Al-3V-2Fe-2Mo, Ti-0.5Pd and the like are preferable.

チタン材料として、金属チタンやチタン合金材料を、バフ研磨や電解研磨等を実施することで、鏡面処理した材料が更に好ましい。   As the titanium material, a material obtained by mirror-treating metal titanium or titanium alloy material by buffing or electrolytic polishing is more preferable.

負極基板の厚みは、通常0.01〜10mm程度が好ましく、0.01〜5mm程度より好ましく、0.05〜1mm程度が更に好ましい。   The thickness of the negative electrode substrate is usually preferably about 0.01 to 10 mm, more preferably about 0.01 to 5 mm, and still more preferably about 0.05 to 1 mm.

従来の透明導電膜を形成させた負極と比較して、チタン材料は電気抵抗値が低い。そのため、従来の透明導電膜を用いたペロブスカイト型太陽電池と比較すると、チタン材料はセル面積が大きい割に、光電変換効率が高くなり、結果として高電力を発生させることが可能となる。   Compared with the negative electrode in which the conventional transparent conductive film was formed, the titanium material has a low electrical resistance value. Therefore, compared with a perovskite solar cell using a conventional transparent conductive film, the titanium material has a large photoelectric conversion efficiency for a large cell area, and as a result, high power can be generated.

従来のペロブスカイト型太陽電池では、光照射は、透明導電膜を形成させた負極から実施している。   In a conventional perovskite solar cell, light irradiation is performed from a negative electrode on which a transparent conductive film is formed.

本願発明のペロブスカイト型太陽電池では、負極に使用するチタン材料は、光透過性がないことから、正極から光照射を実施することが特徴である。   In the perovskite solar cell of the present invention, since the titanium material used for the negative electrode does not have light transmittance, it is characterized in that light irradiation is performed from the positive electrode.

また金属チタン又はチタン合金を、鏡面処理等の物理的研磨、化学エッチング等の化学的研磨等の表面処理を実施することが好ましい。   In addition, it is preferable to carry out a surface treatment such as physical polishing such as mirror surface treatment or chemical polishing such as chemical etching on titanium metal or a titanium alloy.

(2)正孔ブロック層
正孔ブロック層は、光電変換層の有機無機ペロブスカイト化合物にて電荷分離して生じた正孔が負極側に移動することなく、電荷分離した電子だけが負極側に移動するために重要な役割を果たす層となる。
(2) Hole blocking layer The hole blocking layer does not move holes generated by charge separation in the organic-inorganic perovskite compound of the photoelectric conversion layer to the negative electrode side, but only electrons that have been charge separated move to the negative electrode side. It becomes a layer that plays an important role.

電荷分離にて生成した正孔を負極側に移動することを防ぎ、電子だけを負極基板側に移動させるためには、緻密な正孔ブロック層が必要となる。   In order to prevent the holes generated by the charge separation from moving to the negative electrode side and move only the electrons to the negative electrode substrate side, a dense hole blocking layer is required.

正孔ブロック層は、その厚さが1〜500nm程度であることが好ましい。正孔ブロック層の厚みは、1〜100 nm程度であることがより好ましい。   The hole blocking layer preferably has a thickness of about 1 to 500 nm. The thickness of the hole blocking layer is more preferably about 1 to 100 nm.

正孔ブロック層は、n型半導体、電子輸送性導電性高分子及び電子輸送性無機塩からなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。正孔ブロック層は、n型半導体であることが好ましい。   The hole blocking layer is preferably made of at least one material selected from the group consisting of an n-type semiconductor, an electron transporting conductive polymer, and an electron transporting inorganic salt. The hole blocking layer is preferably an n-type semiconductor.

正孔ブロック層は、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、炭酸セシウム、フラーレン誘導体、グラフェン誘導体及びペリレン誘導体からなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。   The hole blocking layer is preferably made of at least one material selected from the group consisting of titanium oxide, zinc oxide, zirconium oxide, aluminum oxide, cesium carbonate, fullerene derivatives, graphene derivatives, and perylene derivatives.

前記酸化チタンは、金属チタン又はチタン合金を表面処理することで調製された酸化チタンであることが好ましい。   The titanium oxide is preferably titanium oxide prepared by surface treatment of titanium metal or a titanium alloy.

前記表面処理は、金属チタン又はチタン合金を、大気酸化処理及び陽極酸化処理からなる群から選ばれる少なくとも一種の表面処理であることが好ましい。   The surface treatment is preferably at least one surface treatment selected from the group consisting of atmospheric oxidation treatment and anodizing treatment for titanium metal or a titanium alloy.

正孔ブロック層は、金属チタンを大気酸化処理、陽極酸化処理等の酸化処理することにおいて形成される酸化チタン層が好ましい。この大気酸化処理温度としては、300〜700℃程度が好ましく。400〜600℃程度で大気酸化処理するのが好ましい。   The hole blocking layer is preferably a titanium oxide layer formed by subjecting titanium metal to oxidation treatment such as atmospheric oxidation treatment or anodization treatment. The atmospheric oxidation treatment temperature is preferably about 300 to 700 ° C. It is preferable to carry out atmospheric oxidation treatment at about 400 to 600 ° C.

また陽極酸化処理としては、金属チタンに対してエッチング作用を有しない無機酸及び有機酸よりなる群から選択される少なくとも一種の酸やこれらの塩化合物を含有する電解液中で、陽極酸化を行い、チタンの酸化皮膜を形成する工程のことである。   As anodizing treatment, anodic oxidation is performed in an electrolytic solution containing at least one acid selected from the group consisting of inorganic acids and organic acids that do not have an etching action on metal titanium and a salt compound thereof. It is a process of forming an oxide film of titanium.

陽極酸化時の電圧値と酸化チタン皮膜厚には比例関係があることから、印加電圧をコントロールすることにより、正孔ブロック層の厚みを容易にコントロールできるので、好ましい。陽極酸化電圧としては、1〜200V程度が好ましく、10〜100V程度が更に好ましい。   Since there is a proportional relationship between the voltage value during anodization and the thickness of the titanium oxide film, it is preferable because the thickness of the hole blocking layer can be easily controlled by controlling the applied voltage. The anodization voltage is preferably about 1 to 200V, more preferably about 10 to 100V.

チタンに対してエッチング作用を有しない電解液としては、無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも一種の化合物(以下無機酸等とも記す)を含有する電解液であることが好ましい。前記無機酸等を含有する電解液は、リン酸、リン酸塩等の希薄な水溶液であることが好ましい。チタンに対してエッチング作用を有しない有機酸としては、酢酸、アジピン酸、乳酸等が好ましい。またこれらの酸の塩である、リン酸二水素ナトリウム、リン酸水素二ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、アジピン酸カリウム、乳酸ナトリウム等を用いることもできる。   The electrolytic solution having no etching action on titanium is an electrolytic solution containing at least one compound selected from the group consisting of inorganic acids, organic acids and salts thereof (hereinafter also referred to as inorganic acids). Is preferred. The electrolytic solution containing the inorganic acid or the like is preferably a dilute aqueous solution such as phosphoric acid or phosphate. As the organic acid having no etching action on titanium, acetic acid, adipic acid, lactic acid and the like are preferable. Further, salts of these acids such as sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium hydrogen carbonate, sodium acetate, potassium adipate, sodium lactate and the like can also be used.

その他、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム等の電解質を含有する電解液を用いることが好ましい。   In addition, it is preferable to use an electrolytic solution containing an electrolyte such as sodium sulfate, potassium sulfate, magnesium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, or calcium nitrate.

前記無機酸等としては、リン酸及びリン酸塩が最も好ましい。   As the inorganic acid, phosphoric acid and phosphate are most preferable.

電解液は、無機酸等の希薄な水溶液であることが好ましい。電解液中の無機酸等の濃度は、経済性等の理由から、1重量%程度の範囲であることが好ましい。例えば、リン酸が含まれる電解液では、0.01〜10重量%程度の濃度範囲が好ましく、0.1〜10重量%程度の濃度範囲がより好ましく、1〜3重量%程度の濃度範囲が更に好ましい。   The electrolytic solution is preferably a dilute aqueous solution such as an inorganic acid. The concentration of the inorganic acid or the like in the electrolytic solution is preferably in the range of about 1% by weight for reasons such as economy. For example, in an electrolytic solution containing phosphoric acid, a concentration range of about 0.01 to 10% by weight is preferable, a concentration range of about 0.1 to 10% by weight is more preferable, and a concentration range of about 1 to 3% by weight is more preferable.

これらの酸は、一種単独で使用してもよく、また有機酸、無機酸の別を問わず、これらの酸を二種以上任意に組み合わせて使用してもよい。二種以上の酸を含有する電解液の好ましい態様の一例として、リン酸塩及びリン酸を含有する水溶液が挙げられる。   These acids may be used alone or in combination of two or more of these acids regardless of whether they are organic acids or inorganic acids. As an example of the preferable aspect of the electrolyte solution containing 2 or more types of acids, the aqueous solution containing a phosphate and phosphoric acid is mentioned.

当該電解液における上記酸の配合割合については、使用する酸及び酸の塩の種類、陽極酸化条件等によって異なるが、通常、上記酸の総量で0.01〜10重量%程度が好ましく、0.1〜10重量%程度がより好ましく、1〜3重量%程度が更に好ましい。   The mixing ratio of the acid in the electrolytic solution varies depending on the type of acid and acid salt to be used, anodizing conditions, etc., but is generally about 0.01 to 10% by weight, preferably 0.1 to 10% by weight in terms of the total amount of the acid. % Is more preferable, and about 1 to 3% by weight is still more preferable.

前記酸化チタンは、酸化チタン前駆体であるチタニウムアルコキシド化合物を加水分解処理及び加熱処理することで調製された酸化チタンであることが好ましい。この正孔ブロック層は、金属チタンを処理しないものの上に酸化チタン前駆体であるチタニウムアルコキシド化合物をコーティングした後、加水分解及び加熱処理にて形成したものでもよい。   The titanium oxide is preferably titanium oxide prepared by subjecting a titanium alkoxide compound, which is a titanium oxide precursor, to hydrolysis treatment and heat treatment. The hole blocking layer may be formed by coating a titanium alkoxide compound, which is a titanium oxide precursor, on a material not treated with titanium metal, followed by hydrolysis and heat treatment.

前記酸化チタンは、更に四塩化チタン水溶液を用いて表面処理することで調製された酸化チタンであることが好ましい。酸化処理にて得られた酸化チタン層上に、四塩化チタン水溶液で表面処理をすることにより、更に緻密な正孔ブロック層が形成され、正孔ブロック効果は高くなる。   The titanium oxide is preferably titanium oxide prepared by surface treatment using a titanium tetrachloride aqueous solution. By subjecting the titanium oxide layer obtained by the oxidation treatment to surface treatment with an aqueous solution of titanium tetrachloride, a denser hole blocking layer is formed, and the hole blocking effect is enhanced.

該正孔ブロック層は、フラーレン誘導体等の電子輸送性導電性高分子及び炭酸セシウム等の電子輸送性無機塩らなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。   The hole blocking layer is preferably composed of at least one material selected from the group consisting of electron transporting conductive polymers such as fullerene derivatives and electron transporting inorganic salts such as cesium carbonate.

また酸化チタン以外に、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、炭酸セシウム等の無機n型半導体、フラーレン誘導体、グラフェン誘導体、ペリレン誘導体等の有機n型半導体で構成されるものであっても良い。   In addition to titanium oxide, an organic n-type semiconductor such as an inorganic n-type semiconductor such as zinc oxide, zirconium oxide, aluminum oxide, or cesium carbonate, a fullerene derivative, a graphene derivative, or a perylene derivative may be used.

(3)メソポーラス金属酸化物層
ペロブスカイト型太陽電池で、正孔ブロック層とペロブスカイト層との間に、メソポーラス金属酸化物層が形成されていることが好ましい。
(3) Mesoporous metal oxide layer In a perovskite solar cell, a mesoporous metal oxide layer is preferably formed between the hole blocking layer and the perovskite layer.

メソポーラス金属酸化物層は、微細孔をもつ多孔質な構造を有している。このため、メソポーラス金属酸化物層の内部にも均一に光電変換層である有機無機ペロブスカイト化合物を担持させることが好ましい。   The mesoporous metal oxide layer has a porous structure with fine pores. For this reason, it is preferable to support the organic-inorganic perovskite compound, which is a photoelectric conversion layer, evenly in the mesoporous metal oxide layer.

メソポーラス金属酸化物層は、その厚さは5〜5,000nm程度であることが好ましく、100〜500nm程度であることがより好ましい。このメソポーラス金属酸化物は、メソポーラス金属酸化物層は、酸化チタン、酸化アルミニウム、酸化ジルコニウム及び酸化ニオブからなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。   The thickness of the mesoporous metal oxide layer is preferably about 5 to 5,000 nm, and more preferably about 100 to 500 nm. In this mesoporous metal oxide, the mesoporous metal oxide layer is preferably composed of at least one material selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide and niobium oxide.

平均粒子径が好ましくは1〜1,000nm程度、より好ましくは10〜50nm程度の酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ等の粉末を、エタノール、イソプロパノール等のアルコール等の溶媒に混合させてペースト剤を調製することが好ましい。   A paste in which a powder of titanium oxide, aluminum oxide, zirconium oxide, niobium oxide or the like having an average particle diameter of preferably about 1 to 1,000 nm, more preferably about 10 to 50 nm is mixed with a solvent such as ethanol or isopropanol. It is preferable to prepare an agent.

次いで、このペースト剤をスピンコーティング、ディップコーティング、スクリーン印刷、エアスプレー等のコーティング処理の後、100〜600℃で加熱処理することが好ましい。   Subsequently, it is preferable to heat-treat this paste agent at 100-600 degreeC after coating processes, such as spin coating, dip coating, screen printing, and air spray.

また、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ粉末のペースト剤をスピンコーティング、ディップコーティング、スクリーン印刷、エアスプレー等のコーティング処理の後、100〜600℃加熱処理することで、正孔ブロック層とペロブスカイト層との間に、メソポーラス金属酸化物を形成させることも可能である。   In addition, the hole blocking layer can be obtained by heat treating the paste agent of titanium oxide, aluminum oxide, zirconium oxide, niobium oxide powder by spin coating, dip coating, screen printing, air spraying, etc., followed by heat treatment at 100-600 ° C. It is also possible to form a mesoporous metal oxide between the perovskite layer and the perovskite layer.

(4)ペロブスカイト層
ペロブスカイト層は電荷分離層である。ペロブスカイト層は、その厚さが5〜10,000nm程度であることが好ましく、50〜500nm程度であることがより好ましい。
(4) Perovskite layer The perovskite layer is a charge separation layer. The thickness of the perovskite layer is preferably about 5 to 10,000 nm, and more preferably about 50 to 500 nm.

ペロブスカイト層は、RNH3PbX3、R(NH2)2PbX3、RNH3SnX3及びR(NH2)2SnX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)からなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。 The perovskite layer is composed of RNH 3 PbX 3 , R (NH 2 ) 2 PbX 3 , RNH 3 SnX 3 and R (NH 2 ) 2 SnX 3 (R is an alkyl group, X is a group consisting of Cl, Br and I. It is preferably made of at least one material selected from the group consisting of at least one selected halogen.

RNH3PbX3、R(NH2)2PbX3、RNH3SnX3及びR(NH2)2SnX3のRは、アルキル基であり、直鎖又は分岐構造を有するものが好ましい。Rは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基等が挙げられる。 R in RNH 3 PbX 3 , R (NH 2 ) 2 PbX 3 , RNH 3 SnX 3 and R (NH 2 ) 2 SnX 3 is an alkyl group, and preferably has a linear or branched structure. Examples of R include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, a pentyl group, a hexyl group, an octyl group, a nonyl group, and a dodecyl group.

RNH3PbX3、R(NH2)2PbX3、RNH3SnX3及びR(NH2)2SnX3のXはハロゲンであり、Cl、Br及びIからなる群から選ばれるハロゲンが好ましく、それから選ばれる複数のハロゲンを組み合わせたものが好ましい。 X in RNH 3 PbX 3 , R (NH 2 ) 2 PbX 3 , RNH 3 SnX 3 and R (NH 2 ) 2 SnX 3 is a halogen, preferably a halogen selected from the group consisting of Cl, Br and I; A combination of a plurality of selected halogens is preferred.

RNH3PbX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)は、CH3NH3PbI3であることが好ましい。ペロブスカイト層として、より好ましくは濃い褐色を呈しており、300nmから800nmの可視光の領域を全吸収するCH3NH3PbI3である。 RNH 3 PbX 3 (R is an alkyl group and X is at least one halogen selected from the group consisting of Cl, Br and I) is preferably CH 3 NH 3 PbI 3 . The perovskite layer is more preferably dark brown and CH 3 NH 3 PbI 3 that absorbs all visible light from 300 nm to 800 nm.

RNH3PbX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)が、CH3NH3PbI3-nCln(nは0から3である)であることが好ましい。更に好ましく、CH3NH3PbI3-nCln(nは0から3である)を使用すると、コーティング手法が簡素化できるだけではなく、光吸収によってペロブスカイト結晶内で生じた電子や正孔の拡散長が長くなり、光電変換効率が向上する。 RNH 3 PbX 3 (R is an alkyl group, X is at least one halogen selected from the group consisting of Cl, Br and I), but CH 3 NH 3 PbI 3-n Cl n (n is 0 to 3 It is preferable that More preferably, the use of CH 3 NH 3 PbI 3-n Cl n (where n is from 0 to 3) not only simplifies the coating technique, but also diffuses electrons and holes generated in the perovskite crystal due to light absorption. The length is increased and the photoelectric conversion efficiency is improved.

有機無機ペロブスカイト層を形成させるためには、先ずハロゲン化アルキルアミン、ハロゲン化鉛、ハロゲン化錫を溶媒に溶解する。ハロゲンはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである。次いで、その溶解物を、スプレー法、スピンコーティング法、ディップコーティング法、ダイコート法等にてコーティングした後、乾燥させることが好ましい。或いは蒸着して製膜した電荷分離層であるペロブスカイト層を成膜することも可能である。   In order to form the organic / inorganic perovskite layer, first, an alkylamine halide, lead halide, and tin halide are dissolved in a solvent. Halogen is at least one halogen selected from the group consisting of Cl, Br and I. Subsequently, it is preferable that the dissolved material is coated by a spray method, a spin coating method, a dip coating method, a die coating method or the like and then dried. Alternatively, it is possible to form a perovskite layer which is a charge separation layer formed by vapor deposition.

前記溶媒として、γ-ブチルラクトン、メチルホルメート、エチルアセテート等のエステル類;アセトン、ジメチルケトン類等のケトン類;ジエチルエーテル、ジイソピルエーテル等のエーテル類;メタノール、エタノール等のアルコール類;塩化エチレン、クロロホルム等のハロゲン化炭化水素;アセトニトリル、プロピオニトリル等のニトリル系溶媒;N,N-ジメチルホルムアミド、ジメチルスルホキシド等を好ましく用いることができる。   Examples of the solvent include esters such as γ-butyllactone, methyl formate, and ethyl acetate; ketones such as acetone and dimethyl ketone; ethers such as diethyl ether and diisopropyl ether; alcohols such as methanol and ethanol; Halogenated hydrocarbons such as ethylene chloride and chloroform; nitrile solvents such as acetonitrile and propionitrile; N, N-dimethylformamide, dimethyl sulfoxide and the like can be preferably used.

(5)正孔輸送層
正孔輸送層は、光電変換層に有機無機ペロブスカイト化合物にて電荷分離して生じた電子を正極に移動させることなく、正孔が正極側に移動させるための重要な役割を果たす層となる。
(5) Hole transport layer The hole transport layer is important for moving the holes to the positive electrode side without moving the electrons generated by the charge separation with the organic / inorganic perovskite compound in the photoelectric conversion layer to the positive electrode. A layer that plays a role.

正孔輸送層は、p型半導体であることが好ましく、その厚さが1〜5,000nm程度であることが好ましく、1〜300nm程度であることがより好ましい。   The hole transport layer is preferably a p-type semiconductor, and the thickness thereof is preferably about 1 to 5,000 nm, and more preferably about 1 to 300 nm.

該正孔輸送層はp型半導体で構成されていることが好ましい。   The hole transport layer is preferably composed of a p-type semiconductor.

正孔輸送層は、spiro-OMeTAD誘導体、酸化モリブデン、酸化バナジウム、ヨウ化銅、チオシアン酸銅、ポリチオフェン及びポリトリフェニルアミンからなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。spiro-OMeTAD誘導体とは、2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン及び同化合物の誘導体である。   The hole transport layer is preferably composed of at least one material selected from the group consisting of a spiro-OMeTAD derivative, molybdenum oxide, vanadium oxide, copper iodide, copper thiocyanate, polythiophene, and polytriphenylamine. The spiro-OMeTAD derivative is 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenylamino) -9,9′-spirobifluorene and derivatives of the same compound.

正孔輸送層をドープしたものを使う方が好ましい。   It is preferable to use a material doped with a hole transport layer.

正孔輸送層は、酸素、リチウム化合物、コバルト化合物、バナジウム化合物及びモリブデン化合物からなる群から選ばれる少なくとも一種の材料を用いてドープされることで調製された正孔輸送層であることが好ましい。このドープするものとして、更に好ましくは、バナジウム化合物及びモリブデン化合物からなる群から選ばれる少なくとも一種の材料である。   The hole transport layer is preferably a hole transport layer prepared by doping with at least one material selected from the group consisting of oxygen, lithium compounds, cobalt compounds, vanadium compounds and molybdenum compounds. More preferably, the material to be doped is at least one material selected from the group consisting of vanadium compounds and molybdenum compounds.

正孔輸送層を形成するためには、正孔輸送層を形成させる成分を溶媒に溶解させたものをスプレー法、スピンコーティング法、ディップコーティング法等にてコーティングした後、乾燥させることで正孔輸送層を成膜することが好ましい。   In order to form the hole transport layer, the component in which the component for forming the hole transport layer is dissolved in a solvent is coated by a spray method, a spin coating method, a dip coating method, etc. and then dried. It is preferable to form a transport layer.

前記溶媒としては、γ-ブチルラクトン、メチルホルメート、エチルアセテート等のエステル類;アセトン、ジメチルケトン類等のケトン類;ジエチルエーテル、ジイソピルエーテル等のエーテル類;メタノール、エタノール等のアルコール類;塩化エチレン、クロロホルム等のハロゲン化炭化水素;アセトニトリル、プロピオニトリル等のニトリル系溶媒;クロロベンゼン、ジクロロベンゼン、トルエン等の炭化水素溶媒等を好ましく用いることができる。   Examples of the solvent include esters such as γ-butyllactone, methyl formate, and ethyl acetate; ketones such as acetone and dimethyl ketone; ethers such as diethyl ether and diisopropyl ether; alcohols such as methanol and ethanol Halogenated hydrocarbons such as ethylene chloride and chloroform; nitrile solvents such as acetonitrile and propionitrile; hydrocarbon solvents such as chlorobenzene, dichlorobenzene and toluene can be preferably used.

(6)正極
正極は、金、銀、アルミニウム、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、酸化錫(SnO2)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)、アルミドープ亜鉛(AZO)、PEDOT:PSS、グラフェン、カーボンナノチューブ及びポリアニリンからなる群から選ばれる少なくとも一種の材料で構成されることが好ましい。PEDOT:PSSとは、高分子電解質であるポリエチレンスルホン酸(PSS)を、良好な導電特性を示すPEDOT (poly -3-4- ethylenedioxythiophene)に添加した混合物である。
(6) Positive electrode Positive electrode is gold, silver, aluminum, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), It is preferably composed of at least one material selected from the group consisting of aluminum-doped zinc (AZO), PEDOT: PSS, graphene, carbon nanotubes, and polyaniline. PEDOT: PSS is a mixture obtained by adding poly (ethylene sulfonic acid) (PSS), which is a polymer electrolyte, to PEDOT (poly-3-4-ethylenedioxythiophene) that exhibits good conductive properties.

正極は、薄膜形状、ナノワイヤー形状又はグリッド形状であることが好ましい。   The positive electrode preferably has a thin film shape, a nanowire shape, or a grid shape.

正極は、その厚みは、1〜1,000nm程度が好ましく、1〜300nm程度がより好ましい。   The thickness of the positive electrode is preferably about 1 to 1,000 nm, and more preferably about 1 to 300 nm.

正極の成膜方法として、蒸着、スパッタリング、スプレー法、スピンコーティング法、ディップコーティング法等でコーティングすることが好ましい。   As the positive electrode film formation method, it is preferable to perform coating by vapor deposition, sputtering, spraying, spin coating, dip coating, or the like.

本願発明のペロブスカイト型太陽電池は、負極に光透過性のないチタン材料を用いているために、光照射を正極側から実施する。   Since the perovskite solar cell of the present invention uses a titanium material that does not transmit light for the negative electrode, light irradiation is performed from the positive electrode side.

正極から光照射することから、正極は開口部を有することが好ましい。正極の開口部の面積は、正極の面積に対して50〜99%程度であることが好ましく、90〜99%程度であることがより好ましい。   Since light is irradiated from the positive electrode, the positive electrode preferably has an opening. The area of the opening of the positive electrode is preferably about 50 to 99%, more preferably about 90 to 99% with respect to the area of the positive electrode.

(7)反射防止膜
ペロブスカイト型太陽電池は、光透過性を向上させるに反射防止膜加工を施すことが好ましい。ペロブスカイト型太陽電池は、負極、正孔ブロック層、ペロブスカイト層、正孔輸送層、正極及び反射防止膜が順に形成されていることが好ましい。
(7) Antireflection film The perovskite solar cell is preferably subjected to antireflection film processing in order to improve light transmittance. In the perovskite solar cell, a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer, a positive electrode, and an antireflection film are preferably formed in this order.

反射防止膜は、酸化モリブデン(MoOx)、フッ化マグネシウム(MgF2)及びフッ化リチウム(LiF)からなる群から選ばれる少なくとも一種の材料で構成されていることが好ましい。 The antireflection film is preferably made of at least one material selected from the group consisting of molybdenum oxide (MoOx), magnesium fluoride (MgF 2 ), and lithium fluoride (LiF).

反射防止膜の成膜方法として、蒸着、スパッタリング、スプレー法、スピンコーティング法、ディップコーティング法等にてコーティングすることが好ましい。   As a method for forming the antireflection film, coating is preferably performed by vapor deposition, sputtering, spraying, spin coating, dip coating, or the like.

(8)集光装置
本願発明のペロブスカイト型太陽電池は、光照射を正極側から実施する。ペロブスカイト型太陽電池は、集光装置が正極側に配置されているものが好ましい。ペロブスカイト型太陽電池において、正極又は反射防止膜の側に集光装置を配置されているものであることが好ましい。更に高い光電変換効率に相当する高い発電が可能である。
(8) Concentrator The perovskite solar cell of the present invention performs light irradiation from the positive electrode side. The perovskite solar cell preferably has a condensing device arranged on the positive electrode side. In the perovskite solar cell, it is preferable that the condensing device is disposed on the positive electrode or antireflection film side. Furthermore, high power generation corresponding to high photoelectric conversion efficiency is possible.

光照射手段は、集光装置を介して正極又は反射防止膜の側から配置されている。正極と光源との間に集光装置を設置することにより、無駄に使用されている光を集光し、高い光電変換効率に相当する高電力が達成される。   The light irradiation means is arranged from the positive electrode or the antireflection film side through the light collecting device. By installing a condensing device between the positive electrode and the light source, light that is wasted is collected, and high power corresponding to high photoelectric conversion efficiency is achieved.

集光装置を用いて入射光を収束させる際の集光率は、110〜5,000%程度が好ましく、200〜4,000%程度が更に好ましく、300〜3,000%程度が更に好ましく、500〜900%程度が特に好ましい。例えば集光率を500%に設定することは、集光装置を用いて元の入射光を5倍に収束させることである。   The condensing rate when converging incident light using a condensing device is preferably about 110 to 5,000%, more preferably about 200 to 4,000%, further preferably about 300 to 3,000%, and about 500 to 900%. Particularly preferred. For example, setting the condensing rate to 500% means converging the original incident light by five times using the condensing device.

集光装置としては、特に限定されるものではないが、ガラスやPMMA(Polymethyl methacrylate)、PET(Polyethylene terephthalate)、PEN(Polyethylene naphthalate)等の透明プラスチックス製のリニアフレネルレンズ等の集光レンズを用いることが好ましい。   The condensing device is not particularly limited, but condensing lenses such as linear Fresnel lenses made of transparent plastics such as glass, PMMA (Polymethyl methacrylate), PET (Polyethylene terephthalate), PEN (Polyethylene naphthalate), etc. It is preferable to use it.

(9)蓄電装置
ペロブスカイト型太陽電池は、蓄電装置が配置されていることが好ましい。
(9) Power storage device The perovskite solar cell preferably includes a power storage device.

ペロブスカイト型太陽電池にて発電した多量の直流電力を蓄電池に蓄えることによって、安定した電力の達成を確保することができる。太陽電池と蓄電池機能を併用することにより、従来の太陽電池にて問題となっている天候や時刻等によって発電量が大きく影響することを未然に防ぐことが可能である。   By storing a large amount of DC power generated by the perovskite solar cell in the storage battery, it is possible to ensure the achievement of stable power. By using the solar battery and the storage battery function together, it is possible to prevent the power generation amount from being greatly influenced by the weather, time, or the like, which is a problem in the conventional solar battery.

ぺロブスカイト型太陽電池で発電する直流電力を蓄える蓄電池として、正極に二酸化鉛(PbO2)、負極に鉛(Pb)、電解液に希硫酸(H2SO4)を用いた二次電池である鉛蓄電池;正極にオキシ水酸化ニッケル(NiOOH)、負極に水素吸蔵合金、電解液に水酸化カリウムのアルカリ水溶液を用いた二次電池であるニッケル水素電池;正極にリチウム含有金属酸化物、負極にグラファイト等の炭素材、電解液に有機電解液を用いた二次電池であるリチウム電池;正極に硫黄、負極にナトリウム、電解質にβ-アルミナを用いた二次電池であるNAS電池;等の電池から任意に選択することが好ましい。 A secondary battery that uses lead dioxide (PbO 2 ) for the positive electrode, lead (Pb) for the negative electrode, and dilute sulfuric acid (H 2 SO 4 ) for the electrolyte, as a storage battery that stores DC power generated by the perovskite solar cell. Lead-acid battery; nickel oxyhydroxide (NiOOH) for the positive electrode, hydrogen storage alloy for the negative electrode, nickel-metal hydride battery that uses an alkaline aqueous solution of potassium hydroxide for the electrolyte; lithium-containing metal oxide for the positive electrode; Lithium battery, which is a secondary battery using a carbon material such as graphite, and an organic electrolyte as an electrolyte; NAS battery, which is a secondary battery using sulfur as a positive electrode, sodium as a negative electrode, and β-alumina as an electrolyte; It is preferable to select arbitrarily.

ぺロブスカイト太陽電池で発生した電力を、水の電気分解にて水素に転換して保存することが好ましい。貯め易く、運び易い水素の特徴を活かすことができる。   It is preferable to store the electric power generated in the perovskite solar cell by converting it into hydrogen by electrolysis of water. The characteristics of hydrogen that can be easily stored and transported can be utilized.

以下、実施例を挙げて本発明を説明する。本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to these examples.

[実施例1]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。次いでエタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 1]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Subsequently, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
グローブボックス(美和製作所製)内で調製したチタンテトラプロポキシド(和光純薬工業製)10μLをエタノール(和光純薬工業製)1mLに溶解させた。次いでこの溶液を、スピンコータ(ミカサ製、MS-A100)を用いて、チタン材料上に正孔ブロック層をコーティングした。
(2) Preparation of hole blocking layer 10 μL of titanium tetrapropoxide (manufactured by Wako Pure Chemical Industries) prepared in a glove box (manufactured by Miwa Seisakusho) was dissolved in 1 mL of ethanol (manufactured by Wako Pure Chemical Industries). Next, this solution was coated with a hole blocking layer on a titanium material using a spin coater (manufactured by Mikasa, MS-A100).

スピンコーティング条件は、チタンテトラプロポキシドエタノール溶液50μLをチタン材料に滴下した後、スピンコータを用いて1,000rpmにて40秒間コーティングした。次いで、125℃、1分間乾燥する操作を5回実施した。次いで500℃で20分間加熱処理し、正孔ブロック層を作製させた。   As spin coating conditions, 50 μL of titanium tetrapropoxide ethanol solution was dropped onto the titanium material, and then coated at 1,000 rpm for 40 seconds using a spin coater. Next, an operation of drying at 125 ° C. for 1 minute was performed 5 times. Subsequently, it heat-processed for 20 minutes at 500 degreeC, and produced the positive hole block layer.

(3)メソポーラス金属酸化物層の作製
酸化チタンペースト(Dyesol 18NR-T)をエタノールに2:7の重量比にて分散させた。次いでこの溶液50μLを、上記正孔ブロック層を形成させたチタン材料上に滴下し、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。次いで500℃で15分間加熱処理し、メソポーラス金属酸化物層を作製した。
(3) Preparation of mesoporous metal oxide layer Titanium oxide paste (Dyesol 18NR-T) was dispersed in ethanol at a weight ratio of 2: 7. Next, 50 μL of this solution was dropped on the titanium material on which the hole blocking layer was formed, and coating was performed at 3,000 rpm for 40 seconds using a spin coater. Next, heat treatment was performed at 500 ° C. for 15 minutes to produce a mesoporous metal oxide layer.

(4)ペロブスカイト層の作製
400 mgのヨウ化鉛PbI2(アルドリッチ製)を1mLのジメチルホルムアミド(DMF 和光純薬工業製)に溶解させた。次いでこの溶液を、上記したメソポーラス金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた。次いでスピンコータを用いて3,000rpmにて40秒間コーティングさせた。次いで70℃にて30分間乾燥させた。
(4) Preparation of perovskite layer
400 mg of lead iodide PbI 2 (Aldrich) was dissolved in 1 mL of dimethylformamide (DMF Wako Pure Chemical Industries). Subsequently, this solution was dripped so that it might spread over the titanium material in which the above-mentioned mesoporous metal oxide layer was formed. Next, coating was performed at 3,000 rpm for 40 seconds using a spin coater. Subsequently, it was dried at 70 ° C. for 30 minutes.

次いでヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃、2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。次いでジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。   Next, hydrogen iodide (30 mL, 0.227 mol, 57 wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8 mL, 0.273 mol, 40% methanol solution, manufactured by Tokyo Chemical Industry) were stirred at 0 ° C. for 2 hours. The solvent was then evaporated and the product was dissolved in ethanol. Next, methylamine iodide was obtained by recrystallization from diethyl ether.

上記処理にて得られた10mgのヨウ化メチルアミンCH3NH3Iを1mLの2-プロパノール(和光純薬工業製)に溶解させた。次いでこの溶液150μLを滴下させた後、30秒間放置後スピンコータを用いて3,000rpmにて40秒間コーティングさせた。その後、70℃にて30分間乾燥させ、ペロブスカイト層を作製した。 10 mg of methylamine iodide CH 3 NH 3 I obtained by the above treatment was dissolved in 1 mL of 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.). Next, 150 μL of this solution was dropped, and after standing for 30 seconds, coating was performed at 3,000 rpm for 40 seconds using a spin coater. Then, it dried at 70 degreeC for 30 minutes, and produced the perovskite layer.

(5)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(5) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。その後、酸素存在下12時間放置した。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater. Thereafter, it was left for 12 hours in the presence of oxygen.

(6)正極の作製
上記した正孔輸送層を形成させたチタン材料上に、蒸着装置(美和製作所製、MSVDE-YSS)を用いて金を25nm蒸着させ、ペロブスカイト型太陽電池を作製した。
(6) Production of positive electrode On the titanium material on which the above-described hole transport layer was formed, gold was deposited to a thickness of 25 nm using a vapor deposition apparatus (MSVDE-YSS, manufactured by Miwa Seisakusho), and a perovskite solar cell was produced.

(7)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表1に示した。
(7) Evaluation Results Table 1 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells produced by the above procedure.

[実施例2]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。次いでエタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 2]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Subsequently, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記のチタン材料を500℃で20分間加熱処理(大気酸化処理)し、正孔ブロック層を作製させた。
(2) Preparation of hole blocking layer The above titanium material was heat-treated at 500 ° C. for 20 minutes (atmospheric oxidation) to prepare a hole blocking layer.

(3)メソポーラス金属酸化物層の作製
酸化チタンペースト(Dyesol 18NR-T)をエタノールに2:7の重量比にて分散させた。次いでこの溶液50μLを、上記正孔ブロック層を形成させたチタン材料上に滴下し、スピンコータを用いて3,000rpmにて40秒間コーティングする操作を実施した。次に500℃にて20分間加熱処理し、メソポーラス金属酸化物層を作製した。
(3) Preparation of mesoporous metal oxide layer Titanium oxide paste (Dyesol 18NR-T) was dispersed in ethanol at a weight ratio of 2: 7. Next, 50 μL of this solution was dropped on the titanium material on which the hole blocking layer was formed, and an operation of coating with a spin coater at 3,000 rpm for 40 seconds was performed. Next, heat treatment was performed at 500 ° C. for 20 minutes to produce a mesoporous metal oxide layer.

(4)ペロブスカイト層の作製
400mgのPbI2を1 mLのジメチルホルムアミド(DMF)に溶解させた。この溶液を、上記したメソポーラス金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた後、70℃にて30分間乾燥させた。
(4) Preparation of perovskite layer
400 mg of PbI 2 was dissolved in 1 mL of dimethylformamide (DMF). This solution was dropped over the titanium material on which the above-mentioned mesoporous metal oxide layer was formed, and then coated with a spin coater at 3,000 rpm for 40 seconds, and then at 70 ° C. for 30 minutes. Dried.

次にヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。次いでジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。   Next, hydrogen iodide (30 mL, 0.227 mol, 57 wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8 mL, 0.273 mol, 40% methanol solution, manufactured by Tokyo Chemical Industry) were stirred at 0 ° C. for 2 hours. The solvent was then evaporated and the product was dissolved in ethanol. Next, methylamine iodide was obtained by recrystallization from diethyl ether.

上記処理にて得られた10mgのCH3NH3Iを1mLの2-プロパノールに溶解させた。次いでこの溶液300μLを滴下させた後、30秒間放置後スピンコータを用いて3,000 rpmにて40秒間コーティングさせた。その後、70℃にて30分間乾燥させ、ペロブスカイト層を作製した。 10 mg of CH 3 NH 3 I obtained by the above treatment was dissolved in 1 mL of 2-propanol. Next, 300 μL of this solution was dropped, and after standing for 30 seconds, coating was performed at 3,000 rpm for 40 seconds using a spin coater. Then, it dried at 70 degreeC for 30 minutes, and produced the perovskite layer.

(5)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(5) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、またペロブスカイト層の劣化を防ぐために、10nm蒸着させ(ドープ)、正孔輸送層を作製した。   Subsequently, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited by 10 nm (dope) in order to improve the hole transport efficiency and prevent the perovskite layer from being deteriorated by using a vapor deposition apparatus, thereby producing a hole transport layer.

(6)正極の作製
上記した正孔輸送層を形成させたチタン材料上に蒸着装置を用いて銀を10nm蒸着させた。次いで反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(6) Production of positive electrode Silver was deposited to a thickness of 10 nm using a vapor deposition device on the titanium material on which the hole transport layer was formed. Next, 20 nm of molybdenum oxide was deposited as an antireflection film to produce a perovskite solar cell.

(7)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表2に示した。
(7) Evaluation results Table 2 shows the results of the photoelectric conversion efficiency of the perovskite solar cells manufactured by the above procedure.

実施例1と比較して、実施例2は、正孔ブロック層は鏡面処理した金属チタンを500℃で20分間加熱処理するという簡易的な手法にて作製した。   Compared with Example 1, in Example 2, the hole blocking layer was produced by a simple technique in which a mirror-treated metal titanium was heat-treated at 500 ° C. for 20 minutes.

それにも係らず、実施例1の2倍以上の光電変換効率が得られた。正孔輸送層に酸化モリブデンを蒸着したことや対極として金を銀に変化させたこと、蒸着の膜厚を変化させたこと、反射防止膜として酸化モリブデンを蒸着したこと等による光電変換効率による向上が認められた。   Nevertheless, a photoelectric conversion efficiency more than twice that of Example 1 was obtained. Improvement by photoelectric conversion efficiency by depositing molybdenum oxide on hole transport layer, changing gold to silver as counter electrode, changing film thickness of deposition, depositing molybdenum oxide as antireflection film, etc. Was recognized.

[実施例3]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。次いでエタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン(株)製)内で酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 3]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Subsequently, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was carried out in a UV ozone cleaner UV253S (manufactured by Philgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記のチタン材料を500℃にて20分間加熱処理(大気酸化)し、正孔ブロック層を作製させた。
(2) Production of hole blocking layer The above titanium material was heat-treated (atmospheric oxidation) at 500 ° C. for 20 minutes to produce a hole blocking layer.

(3)メソポーラス金属酸化物層の作製
Al2O3 2-プロパノール分散液(アルドリッチ製)を2-プロパノールに1:2の体積比で分散させた。次いでこの溶液50μLを、上記正孔ブロック層を形成させたチタン材料上に滴下し、スピンコータを用いて3,000 rpmにて40秒間コーティングした。次に100℃にて10分間加熱処理し、金属酸化物層を作製した。
(3) Fabrication of mesoporous metal oxide layer
An Al 2 O 3 2-propanol dispersion (manufactured by Aldrich) was dispersed in 2-propanol at a volume ratio of 1: 2. Next, 50 μL of this solution was dropped onto the titanium material on which the hole blocking layer was formed, and coating was performed at 3,000 rpm for 40 seconds using a spin coater. Next, it heat-processed for 10 minutes at 100 degreeC, and produced the metal oxide layer.

(4)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。溶媒を蒸発させた後、生成物をエタノールに溶解させた。その後、ジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。次にPbCl2(アルドリッチ製)(245mg)と上記処理にて得られたCH3NH3I (420mg)のジメチルホルムアミド(DMF)溶液を調整した。
(4) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Kasei) were stirred at 0 ° C for 2 hours. . After evaporating the solvent, the product was dissolved in ethanol. Then, methyl iodide was obtained by recrystallization from diethyl ether. Next, a dimethylformamide (DMF) solution of PbCl 2 (manufactured by Aldrich) (245 mg) and CH 3 NH 3 I (420 mg) obtained by the above treatment was prepared.

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて80秒間コーティングさせた。その後、80℃にて30分間乾燥させた。次に、100℃90分間加熱処理し、ペロブスカイト層を作製した。   This solution was dropped over the titanium material on which the metal oxide layer was formed, and then coated for 80 seconds at 3,000 rpm using a spin coater. Then, it was dried at 80 ° C. for 30 minutes. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(5)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(5) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて、酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、ペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, using a vapor deposition apparatus, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited to a thickness of 10 nm in order to prevent the perovskite layer from deteriorating in order to improve the hole transport efficiency, thereby preparing a hole transport layer.

(6)正極の作製
上記した正孔輸送層を形成させたチタン材料上に、蒸着装置を用いて銀を10nm蒸着させた。次いで反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(6) Production of positive electrode On the titanium material on which the above-described hole transport layer was formed, silver was deposited to a thickness of 10 nm using a vapor deposition apparatus. Next, 20 nm of molybdenum oxide was deposited as an antireflection film to produce a perovskite solar cell.

(7)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表3に示した。
(7) Evaluation results Table 3 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells fabricated by the above procedure.

[実施例4]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。更に、エタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で、酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 4]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Further, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記のチタン材料を500℃にて20分間加熱処理(大気酸化)し、正孔ブロック層を作製させた。
(2) Production of hole blocking layer The above titanium material was heat-treated (atmospheric oxidation) at 500 ° C. for 20 minutes to produce a hole blocking layer.

(3)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。溶媒を蒸発させた後、生成物をエタノールに溶解させた。その後、ジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。245mgのPbCl2(アルドリッチ製)420mgと上記処理にて得られたCH3NH3I 420mgを1mLのジメチルホルムアミド(DMF)に溶解させた。
(3) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Chemical Industry) were stirred at 0 ° C for 2 hours. . After evaporating the solvent, the product was dissolved in ethanol. Then, methyl iodide was obtained by recrystallization from diethyl ether. 245 mg of PbCl 2 (manufactured by Aldrich) and 420 mg of CH 3 NH 3 I obtained by the above treatment were dissolved in 1 mL of dimethylformamide (DMF).

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて80秒間コーティングさせた後、80℃にて30分間乾燥させた。次いで100℃90分間加熱処理し、ペロブスカイト層を作製した。   After dripping this solution over the titanium material on which the above metal oxide layer was formed, it was coated at 3,000 rpm for 80 seconds using a spin coater, and then dried at 80 ° C. for 30 minutes. I let you. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(4)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(4) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後、蒸着装置を用いて酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、ペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited with a thickness of 10 nm to prevent the perovskite layer from deteriorating in order to improve the hole transport efficiency by using a vapor deposition device, thereby preparing a hole transport layer.

(5)正極の作製
上記した正孔輸送層を形成させたチタン材料上に、蒸着装置を用いて銀を10nm蒸着させた。次いで反射防止膜として酸化モリブデンを20 nm蒸着させてペロブスカイト型太陽電池を作製した。
(5) Production of positive electrode On the titanium material on which the above-described hole transport layer was formed, silver was vapor-deposited to 10 nm using a vapor deposition apparatus. Next, 20 nm of molybdenum oxide was deposited as an antireflection film to produce a perovskite solar cell.

(6)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表4に示した。実施例4はメソポーラス層を含まない。
(6) Evaluation results Table 4 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells fabricated by the above procedure. Example 4 does not include a mesoporous layer.

[実施例5]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。更に、エタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で、酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 5]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Further, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記のチタン材料を700℃にて20分間加熱処理し(大気酸化)、正孔ブロック層を作製させた。
(2) Production of hole blocking layer The above titanium material was heat-treated at 700 ° C. for 20 minutes (atmospheric oxidation) to produce a hole blocking layer.

(3)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。次に、ジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。PbCl2(アルドリッチ製)(245mg)と上記処理にて得られたCH3NH3I (420mg)のジメチルホルムアミド(DMF)溶液を調整した。
(3) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Chemical Industry) were stirred at 0 ° C for 2 hours. . The solvent was then evaporated and the product was dissolved in ethanol. Next, methyl iodide was obtained by recrystallization from diethyl ether. A dimethylformamide (DMF) solution of PbCl 2 (manufactured by Aldrich) (245 mg) and CH 3 NH 3 I (420 mg) obtained by the above treatment was prepared.

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて2,000 rpmにて80秒間コーティングさせた。その後、80℃にて30分間乾燥させた。次に、100℃90分間加熱処理し、ペロブスカイト層を作製した。   This solution was dropped over the titanium material on which the metal oxide layer was formed, and then coated at 2,000 rpm for 80 seconds using a spin coater. Then, it was dried at 80 ° C. for 30 minutes. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(4)正孔輸送層の作製
80mgのspiro-OMeTADを1mLのクロルベンゼンに溶解させた。520mgのLi-TFSIを1mLのアセトニトリルに溶解させた溶液17.5μLと、tert-ブチルピリジン28.8μLを加えた。次いでこの溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000 rpmにて40秒間コーティングさせた。
(4) Preparation of hole transport layer
80 mg of spiro-OMeTAD was dissolved in 1 mL of chlorobenzene. 17.5 μL of a solution in which 520 mg of Li-TFSI was dissolved in 1 mL of acetonitrile and 28.8 μL of tert-butylpyridine were added. Next, this solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、ペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, in order to improve the hole transport efficiency, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited by 10 nm to prevent deterioration of the perovskite layer by using a vapor deposition device, thereby preparing a hole transport layer.

(5)正極の作製
上記した正孔輸送層を形成させたチタン材料上に蒸着装置を用いて銀を10nm蒸着させた。その後、反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(5) Production of positive electrode Silver was deposited to a thickness of 10 nm on the titanium material on which the hole transport layer was formed using a vapor deposition device. Thereafter, a perovskite solar cell was fabricated by depositing molybdenum oxide as an antireflection film to a thickness of 20 nm.

(6)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表5に示した。実施例5はメソポーラス層を含まない。
(6) Evaluation results Table 5 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells fabricated by the above procedure. Example 5 does not include a mesoporous layer.

[実施例6]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。更に、エタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 6]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Further, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記のチタン材料を300℃で20分間加熱処理(大気酸化)し、正孔ブロック層を作製した。
(2) Production of hole blocking layer The above titanium material was heat-treated (atmospheric oxidation) at 300 ° C. for 20 minutes to produce a hole blocking layer.

(3)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。その後、ジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。次にPbCl2(アルドリッチ製)(245mg)と上記処理にて得られたCH3NH3I (420mg)のジメチルホルムアミド(DMF)溶液を調整した。
(3) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Chemical Industry) were stirred at 0 ° C for 2 hours. . The solvent was then evaporated and the product was dissolved in ethanol. Then, methyl iodide was obtained by recrystallization from diethyl ether. Next, a dimethylformamide (DMF) solution of PbCl 2 (manufactured by Aldrich) (245 mg) and CH 3 NH 3 I (420 mg) obtained by the above treatment was prepared.

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて2,000 rpmにて80秒間コーティングさせた。その後、80℃にて30分間乾燥させた。次に、100℃90分間加熱処理し、ペロブスカイト層を作製した。   This solution was dropped over the titanium material on which the metal oxide layer was formed, and then coated at 2,000 rpm for 80 seconds using a spin coater. Then, it was dried at 80 ° C. for 30 minutes. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(4)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(4) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

この溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   This solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて、酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、ペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, using a vapor deposition apparatus, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited to a thickness of 10 nm in order to prevent the perovskite layer from deteriorating in order to improve the hole transport efficiency, thereby preparing a hole transport layer.

(5)正極の作製
上記した正孔輸送層を形成させたチタン材料上に、蒸着装置を用いて銀を10nm蒸着させた。その後、反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(5) Production of positive electrode On the titanium material on which the above-described hole transport layer was formed, silver was vapor-deposited to 10 nm using a vapor deposition apparatus. Thereafter, a perovskite solar cell was fabricated by depositing molybdenum oxide as an antireflection film to a thickness of 20 nm.

(6)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表6に示した。実施例6はメソポーラス層を含まない。
(6) Evaluation results Table 6 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells fabricated by the above procedure. Example 6 does not include a mesoporous layer.

[実施例7]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。更に、エタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で酸素フロー(0.05MPa、5分間)を実施し、次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 7]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Further, it was ultrasonically washed with ethanol for 15 minutes and then dried. Subsequently, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen), followed by ultraviolet irradiation for 30 minutes, and then nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記チタン材料を1重量%リン酸中で、10V、30V、50V、100V又は150Vで夫々10分間陽極酸化を行い、チタン材料表面に酸化チタン層を形成させた。次いで基板を0.04M TiCl4水溶液に洗浄し、80℃で30分間放置し、その後、純水及びエタノールで洗浄した。
(2) Preparation of hole blocking layer The titanium material was anodized at 10 V, 30 V, 50 V, 100 V or 150 V in 1 wt% phosphoric acid for 10 minutes, respectively, to form a titanium oxide layer on the surface of the titanium material. . Next, the substrate was washed with 0.04M TiCl 4 aqueous solution, allowed to stand at 80 ° C. for 30 minutes, and then washed with pure water and ethanol.

(3)メソポーラス金属酸化物層の作製
酸化チタンペースト(Dyesol 18NR-T)をエタノールに2:7の重量比にて分散させた溶液50μLを、上記正孔ブロック層を形成させたチタン材料上に滴下し、スピンコータを用いて3,000rpmにて40秒間コーティングする操作を実施した。次に500℃にて20分間加熱処理し、メソポーラス金属酸化物層を作製した。
(3) Preparation of mesoporous metal oxide layer 50 μL of a solution of titanium oxide paste (Dyesol 18NR-T) dispersed in ethanol at a weight ratio of 2: 7 was applied onto the titanium material on which the hole blocking layer was formed. The solution was dropped and coated using a spin coater at 3,000 rpm for 40 seconds. Next, heat treatment was performed at 500 ° C. for 20 minutes to produce a mesoporous metal oxide layer.

(4)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。次いでジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。PbCl2(アルドリッチ製)(245mg)と上記処理にて得られたCH3NH3I (420mg)のジメチルホルムアミド(DMF)溶液を調整した。
(4) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Kasei) were stirred at 0 ° C for 2 hours. . The solvent was then evaporated and the product was dissolved in ethanol. Next, methylamine iodide was obtained by recrystallization from diethyl ether. A dimethylformamide (DMF) solution of PbCl 2 (manufactured by Aldrich) (245 mg) and CH 3 NH 3 I (420 mg) obtained by the above treatment was prepared.

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて2,000 rpmにて80秒間コーティングさせた。その後、80℃にて30分間乾燥させた。次に、100℃90分間加熱処理し、ペロブスカイト層を作製した。   This solution was dropped over the titanium material on which the metal oxide layer was formed, and then coated at 2,000 rpm for 80 seconds using a spin coater. Then, it was dried at 80 ° C. for 30 minutes. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(5)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(5) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るため、ペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, in order to improve the hole transport efficiency, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited by 10 nm to prevent deterioration of the perovskite layer by using a vapor deposition device, thereby preparing a hole transport layer.

(6)正極の作製
上記した正孔輸送層を形成させたチタン材料上に、蒸着装置を用いて銀を10nm蒸着させた。その後、反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(6) Production of positive electrode On the titanium material on which the above-described hole transport layer was formed, silver was deposited to a thickness of 10 nm using a vapor deposition apparatus. Thereafter, a perovskite solar cell was fabricated by depositing molybdenum oxide as an antireflection film to a thickness of 20 nm.

(7)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表7に示した。
(7) Evaluation Results Table 7 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells produced by the above procedure.

[実施例8]
(1)負極
負極として、金属チタンを鏡面処理したチタン材料を、アセトンにて15分間超音波洗浄した。更に、エタノールで15分間超音波洗浄した後、乾燥させた。次いでUVオゾンクリーナーUV253S(フィルジェン製)内で酸素フロー(0.05MPa、5分間)を実施した。次いで紫外線照射を30分間実施し、次いで窒素フロー(0.2MPa、7.5分間)を実施した。
[Example 8]
(1) As a negative electrode , a titanium material obtained by mirror-treating titanium metal was ultrasonically cleaned with acetone for 15 minutes. Further, it was ultrasonically washed with ethanol for 15 minutes and then dried. Next, oxygen flow (0.05 MPa, 5 minutes) was performed in a UV ozone cleaner UV253S (manufactured by Filgen). UV irradiation was then performed for 30 minutes followed by a nitrogen flow (0.2 MPa, 7.5 minutes).

(2)正孔ブロック層の作製
上記チタン材料を1重量%リン酸中で、10V又は30Vで夫々10分間陽極酸化を行い、チタン材料表面に酸化チタン層を形成させた。
(2) Production of hole blocking layer The titanium material was anodized in 1% by weight phosphoric acid at 10V or 30V for 10 minutes, respectively, to form a titanium oxide layer on the surface of the titanium material.

(3)メソポーラス金属酸化物層の作製
酸化チタンペースト(Dyesol 18NR-T)をエタノールに2:7の重量比にて分散させた。この溶液50μLを、上記正孔ブロック層を形成させたチタン材料上に滴下し、スピンコータを用いて3,000rpmにて40秒間コーティングする操作を実施した。
(3) Preparation of mesoporous metal oxide layer Titanium oxide paste (Dyesol 18NR-T) was dispersed in ethanol at a weight ratio of 2: 7. 50 μL of this solution was dropped onto the titanium material on which the hole blocking layer was formed, and an operation of coating with a spin coater at 3,000 rpm for 40 seconds was performed.

次に500℃にて20分間加熱処理し、メソポーラス金属酸化物層を作製した。次に、0.04M TiCl4水溶液に洗浄した基板を、80℃で30分間放置し、その後、純水、エタノールで洗浄した。 Next, heat treatment was performed at 500 ° C. for 20 minutes to produce a mesoporous metal oxide layer. Next, the substrate washed with 0.04M TiCl 4 aqueous solution was left at 80 ° C. for 30 minutes, and then washed with pure water and ethanol.

(4)ペロブスカイト層の作製
ヨウ化水素(30mL、0.227mol、57wt%水溶液、アルドリッチ製)とメチルアミン(27.8mL、0.273mol、40%メタノール溶液、東京化成製)を、0℃2時間撹拌した。次いで溶媒を蒸発させた後、生成物をエタノールに溶解させた。次いでジエチルエーテルから、再結晶により、ヨウ化メチルアミンを得た。次にPbCl2(アルドリッチ製)(245mg)と上記処理にて得られたCH3NH3I (420mg)のジメチルホルムアミド(DMF)溶液を調整した。
(4) Preparation of perovskite layer Hydrogen iodide (30mL, 0.227mol, 57wt% aqueous solution, manufactured by Aldrich) and methylamine (27.8mL, 0.273mol, 40% methanol solution, manufactured by Tokyo Kasei) were stirred at 0 ° C for 2 hours. . The solvent was then evaporated and the product was dissolved in ethanol. Next, methylamine iodide was obtained by recrystallization from diethyl ether. Next, a dimethylformamide (DMF) solution of PbCl 2 (manufactured by Aldrich) (245 mg) and CH 3 NH 3 I (420 mg) obtained by the above treatment was prepared.

この溶液を、上記した金属酸化物層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて2,000 rpmにて80秒間コーティングさせた。その後、80℃にて30分間乾燥させた。次に、100℃90分間加熱処理し、ペロブスカイト層を作製した。   This solution was dropped over the titanium material on which the metal oxide layer was formed, and then coated at 2,000 rpm for 80 seconds using a spin coater. Then, it was dried at 80 ° C. for 30 minutes. Next, heat treatment was performed at 100 ° C. for 90 minutes to produce a perovskite layer.

(5)正孔輸送層の作製
2,2',7,7'-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9'-スピロビフルオレン(spiro-OMeTAD、メルク製)クロロベンゼン溶液(80mg/mL)を調整した。添加剤としてリチウムビストリフルオロメタンスルホニルイミド(Li-TFSI、東京化成工業製)アセトニトリル(アルドリッチ製)溶液( 520mg/mL) 17.5μLとtert-ブチルピリジン(アルドリッチ製)28.8μLを加えた。
(5) Preparation of hole transport layer
Prepare 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino) -9,9'-spirobifluorene (spiro-OMeTAD, Merck) chlorobenzene solution (80mg / mL) did. As additives, 17.5 μL of lithium bistrifluoromethanesulfonylimide (Li-TFSI, manufactured by Tokyo Chemical Industry Co., Ltd.) acetonitrile (Aldrich) solution (520 mg / mL) and 28.8 μL of tert-butylpyridine (Aldrich) were added.

Spiro-OMeTADクロロロベンゼン溶液を上記したペロブスカイト層を形成させたチタン材料上全体に行き亘るように滴下させた後、スピンコータを用いて3,000rpmにて40秒間コーティングさせた。   The Spiro-OMeTAD chlorobenzene solution was dropped over the titanium material on which the perovskite layer was formed, and then coated at 3,000 rpm for 40 seconds using a spin coater.

その後蒸着装置を用いて、酸化モリブデン(和光純薬工業製)を正孔輸送効率の向上を図るためやペロブスカイト層の劣化を防ぐために10nm蒸着させ、正孔輸送層を作製した。   Thereafter, using a vapor deposition apparatus, molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was vapor-deposited to a thickness of 10 nm in order to improve the hole transport efficiency and to prevent the perovskite layer from deteriorating, thereby preparing a hole transport layer.

(6)正極の作製
上記した正孔輸送層を形成させたチタン材料上に蒸着装置を用いて銀を10nm蒸着させた。その後、反射防止膜として酸化モリブデンを20nm蒸着させてペロブスカイト型太陽電池を作製した。
(6) Production of positive electrode Silver was deposited to a thickness of 10 nm using a vapor deposition device on the titanium material on which the hole transport layer was formed. Thereafter, a perovskite solar cell was fabricated by depositing molybdenum oxide as an antireflection film to a thickness of 20 nm.

(7)評価結果
上記の手順にて作製したペロブスカイト型太陽電池を、光電変換効率について調べた結果を、表8に示した。
(7) Evaluation results Table 8 shows the results of investigating the photoelectric conversion efficiency of the perovskite solar cells fabricated by the above procedure.

1 負極
2 正孔ブロック層
3 メソポーラス金属酸化物層
4 ペロブスカイト層
5 正孔輸送層
6 正極
7 光
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Hole block layer 3 Mesoporous metal oxide layer 4 Perovskite layer 5 Hole transport layer 6 Positive electrode 7 Light

Claims (15)

負極、正孔ブロック層、ペロブスカイト層、正孔輸送層及び正極が順に形成されているペロブスカイト型太陽電池の製造方法であって、
当該ペロブスカイト型太陽電池は前記正極側から光照射がなされることを特徴とし、
前記負極が、金属チタン、チタン合金、表面処理した金属チタン及び表面処理したチタン合金からなる群から選ばれる少なくとも一種のチタン材料で構成されており、
(1)負極のチタン材料を、チタンに対してエッチング作用を有しない電解液中で、10〜50Vの電圧で、陽極酸化処理の表面処理を行い、更に四塩化チタン水溶液を用いて表面処理することで、
(2)チタンの酸化皮膜の正孔ブロック層を形成すること、
(3)ペロブスカイト層を形成すること、
(4)正孔輸送層を形成すること、及び
(5)正極を成膜することを含む
ペロブスカイト型太陽電池の製造方法。
A method for producing a perovskite solar cell in which a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer and a positive electrode are formed in order,
The perovskite solar cell is characterized in that light is irradiated from the positive electrode side,
The negative electrode is composed of at least one titanium material selected from the group consisting of metal titanium, titanium alloy, surface-treated metal titanium, and surface-treated titanium alloy,
(1) The anode material is surface-treated with an anodizing treatment at a voltage of 10 to 50 V in an electrolyte solution that does not have an etching action on titanium, and further treated with an aqueous solution of titanium tetrachloride. With that
(2) forming a hole blocking layer of a titanium oxide film;
(3) forming a perovskite layer;
(4) A method for producing a perovskite solar cell, comprising: forming a hole transport layer; and (5) depositing a positive electrode.
(6)前記正孔ブロック層とペロブスカイト層との間に、メソポーラス金属酸化物層を形成することを含む、
請求項1に記載のペロブスカイト型太陽電池の製造方法。
(6) including forming a mesoporous metal oxide layer between the hole blocking layer and the perovskite layer,
A method for producing a perovskite solar cell according to claim 1.
前記ペロブスカイト型太陽電池が、負極、正孔ブロック層、ペロブスカイト層、正孔輸送層、正極及び反射防止膜が順に形成されているペロブスカイト型太陽電池であり、
(7)反射防止膜を成膜することを含む、
請求項1又は2に記載のペロブスカイト型太陽電池の製造方法。
The perovskite solar cell is a perovskite solar cell in which a negative electrode, a hole blocking layer, a perovskite layer, a hole transport layer, a positive electrode and an antireflection film are formed in this order,
(7) including forming an antireflection film;
A method for producing a perovskite solar cell according to claim 1 or 2.
(8)集光装置を正極側に配置することを含む、
請求項1〜3のいずれかに記載のペロブスカイト型太陽電池の製造方法。
(8) including disposing the light collecting device on the positive electrode side,
The manufacturing method of the perovskite type solar cell in any one of Claims 1-3.
(9)蓄電装置を配置することを含む、
請求項1〜4のいずれかに記載のペロブスカイト型太陽電池の製造方法。
(9) including arranging a power storage device;
The manufacturing method of the perovskite type solar cell in any one of Claims 1-4.
前記メソポーラス金属酸化物層の厚さが5〜5,000 nmであり、該メソポーラス金属酸化物層が酸化チタン、酸化アルミニウム、酸化ジルコニウム及び酸化ニオブからなる群から選ばれる少なくとも一種の材料で構成されている、請求項2に記載のペロブスカイト型太陽電池の製造方法。   The mesoporous metal oxide layer has a thickness of 5 to 5,000 nm, and the mesoporous metal oxide layer is made of at least one material selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, and niobium oxide. A method for producing a perovskite solar cell according to claim 2. 前記ペロブスカイト層の厚さが5〜10,000 nmであり、該ペロブスカイト層がRNH3PbX3、R(NH2)2PbX3、RNH3SnX3及びR(NH2)2SnX3(Rはアルキル基であり、XはCl、Br及びIからなる群から選ばれる少なくとも一種のハロゲンである)からなる群から選ばれる少なくとも一種の材料で構成されている、請求項1〜のいずれかに記載のペロブスカイト型太陽電池の製造方法。 The perovskite layer has a thickness of 5 to 10,000 nm, and the perovskite layer is RNH 3 PbX 3 , R (NH 2 ) 2 PbX 3 , RNH 3 SnX 3 and R (NH 2 ) 2 SnX 3 (R is an alkyl group) in it, X is Cl, is composed of at least one material selected from the group consisting of at least one of a halogen) is selected from the group consisting of Br and I, as claimed in any one of claims 1 to 6 A method for manufacturing a perovskite solar cell. 前記RNH3PbX3が、CH3NH3PbI3である、請求項に記載のペロブスカイト型太陽電池の製造方法。 The method for producing a perovskite solar cell according to claim 7 , wherein the RNH 3 PbX 3 is CH 3 NH 3 PbI 3 . 前記RNH3PbX3が、CH3NH3PbI3-nCln(nは0から3である)である、請求項に記載のペロブスカイト型太陽電池の製造方法。 Wherein RNH 3 PbX 3 is a CH 3 NH 3 PbI 3-n Cl n (n is from 0 to 3), the production method of the perovskite-type solar cell of claim 7. 前記正孔輸送層の厚さが1〜5,000 nmであり、該正孔輸送層がp型半導体で構成されている、請求項1〜のいずれかに記載のペロブスカイト型太陽電池の製造方法。 The method for producing a perovskite solar cell according to any one of claims 1 to 9 , wherein the hole transport layer has a thickness of 1 to 5,000 nm, and the hole transport layer is composed of a p-type semiconductor. 前記正孔輸送層が、spiro-OMeTAD誘導体、酸化モリブデン、酸化バナジウム、ヨウ化銅、チオシアン酸銅、ポリチオフェン及びポリトリフェニルアミンからなる群から選ばれる少なくとも一種の材料で構成されている、請求項1〜10のいずれかに記載のペロブスカイト型太陽電池の製造方法。 The hole transport layer is composed of at least one material selected from the group consisting of a spiro-OMeTAD derivative, molybdenum oxide, vanadium oxide, copper iodide, copper thiocyanate, polythiophene, and polytriphenylamine. The manufacturing method of the perovskite type solar cell in any one of 1-10 . 前記正孔輸送層が、酸素、リチウム化合物、コバルト化合物、バナジウム化合物及びモリブデン化合物からなる群から選ばれる少なくとも一種の材料を用いてドープされることで調製された正孔輸送層である、請求項1〜11のいずれかに記載のペロブスカイト型太陽電池の製造方法。 The hole transport layer is a hole transport layer prepared by doping with at least one material selected from the group consisting of oxygen, lithium compounds, cobalt compounds, vanadium compounds, and molybdenum compounds. method for producing a perovskite-type solar cell according to any one of 1-11. 前記正極が、金、銀、アルミニウム、錫ドープ酸化インジウム、フッ素ドープ酸化錫、酸化錫、インジウム亜鉛酸化物、酸化亜鉛、アルミドープ亜鉛、PEDOT:PSS、グラフェン、ポリアニリン及びカーボンナノチューブからなる群から選ばれる少なくとも一種の材料で構成されており、該正極が、薄膜形状、ナノワイヤー形状又はグリッド形状である、請求項1〜12のいずれかに記載のペロブスカイト型太陽電池の製造方法。 The positive electrode is selected from the group consisting of gold, silver, aluminum, tin-doped indium oxide, fluorine-doped tin oxide, tin oxide, indium zinc oxide, zinc oxide, aluminum-doped zinc, PEDOT: PSS, graphene, polyaniline, and carbon nanotubes at least one is composed of a material, the positive electrode, a thin film shape, a nanowire shape or grid shape, manufacturing method of the perovskite-type solar cell according to any one of claims 1 to 12 is. 前記反射防止膜が、酸化モリブデン、フッ化マグネシウム及びフッ化リチウムからなる群から選ばれる少なくとも一種の材料で構成されていることを特徴とする、請求項3に記載のペロブスカイト型太陽電池の製造方法。   The method for producing a perovskite solar cell according to claim 3, wherein the antireflection film is made of at least one material selected from the group consisting of molybdenum oxide, magnesium fluoride, and lithium fluoride. . 前記チタンに対してエッチング作用を有しない電解液が、無機酸、有機酸及びこれらの塩よりなる群から選択される少なくとも一種の化合物を含有する電解液である、請求項1〜14のいずれかに記載のペロブスカイト型太陽電池の製造方法。 Electrolyte having no etching action on the titanium, inorganic acids, an electrolytic solution containing at least one compound selected from the group consisting of organic acids and their salts, any of claims 1-14 A method for producing a perovskite solar cell according to claim 1.
JP2015134570A 2015-07-03 2015-07-03 Method for producing perovskite solar cell Active JP6352223B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015134570A JP6352223B2 (en) 2015-07-03 2015-07-03 Method for producing perovskite solar cell
PCT/JP2016/069516 WO2017006839A1 (en) 2015-07-03 2016-06-30 Perovskite solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134570A JP6352223B2 (en) 2015-07-03 2015-07-03 Method for producing perovskite solar cell

Publications (3)

Publication Number Publication Date
JP2017017252A JP2017017252A (en) 2017-01-19
JP2017017252A5 JP2017017252A5 (en) 2017-07-27
JP6352223B2 true JP6352223B2 (en) 2018-07-04

Family

ID=57685458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134570A Active JP6352223B2 (en) 2015-07-03 2015-07-03 Method for producing perovskite solar cell

Country Status (2)

Country Link
JP (1) JP6352223B2 (en)
WO (1) WO2017006839A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725219B2 (en) * 2015-07-31 2020-07-15 積水化学工業株式会社 Solar cell
CN106910829A (en) * 2017-03-08 2017-06-30 新乡学院 A kind of preparation method of flexible solar battery
JP2018157147A (en) * 2017-03-21 2018-10-04 積水化学工業株式会社 Solid-state junction photoelectric converter
JP6995596B2 (en) * 2017-12-08 2022-01-14 住友化学株式会社 Photoelectric conversion element
CN109932337B (en) * 2017-12-18 2021-08-03 有研半导体硅材料股份公司 Device and method for evaluating compactness of silicon-based back sealing film
CN108286833B (en) * 2018-01-05 2019-12-13 山东省圣泉生物质石墨烯研究院 Black body absorption type coating, photo-thermal conversion component comprising same and solar water heater
CN108793196B (en) * 2018-03-01 2021-08-20 复旦大学 Silver salt and cerium salt co-doped cuprous thiocyanate composite film and preparation method and application thereof
CN116504535A (en) * 2018-09-21 2023-07-28 环境光子学公司 Dye sensitized photovoltaic cell
CN112136225A (en) 2018-11-20 2020-12-25 松下知识产权经营株式会社 Solar cell
CN109742236A (en) * 2018-12-13 2019-05-10 东莞理工学院 A kind of perovskite solar battery of ionic liquid enhanced sensitivity and preparation method thereof
CN113508472A (en) 2019-04-16 2021-10-15 松下知识产权经营株式会社 Solar cell
JP2021077788A (en) * 2019-11-11 2021-05-20 三菱ケミカル株式会社 Photoelectric conversion element
CN115152042A (en) 2020-03-12 2022-10-04 松下知识产权经营株式会社 Solar cell
CN116282135A (en) * 2023-02-27 2023-06-23 吉林大学 Preparation method and application of Cu-doped Ga2-XInXO3 solid solution nano material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071682A (en) * 2002-08-02 2004-03-04 Casio Electronics Co Ltd Inorganic-organic thin-film composite material
JP4317381B2 (en) * 2003-04-18 2009-08-19 Tdk株式会社 Method for producing oxide semiconductor electrode for photoelectric conversion
US20110056556A1 (en) * 2008-05-12 2011-03-10 Konica Minolta Business Technologies, Inc. Dye-sensitized solar cell and method for manufacturing the same
JP4608030B2 (en) * 2009-03-10 2011-01-05 昭和電工株式会社 Method for producing transparent conductive material
JP2014026903A (en) * 2012-07-30 2014-02-06 Sharp Corp Photoelectric conversion element and dye-sensitized solar cell
HUE059781T2 (en) * 2012-09-18 2022-12-28 Univ Oxford Innovation Ltd Optoelectronic device
WO2014165830A2 (en) * 2013-04-04 2014-10-09 The Regents Of The University Of California Electrochemical solar cells
JP6304980B2 (en) * 2013-09-10 2018-04-04 大阪瓦斯株式会社 Photoelectric conversion device using perovskite materials
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP6730037B2 (en) * 2015-01-27 2020-07-29 積水化学工業株式会社 Solar cells and organic semiconductor materials

Also Published As

Publication number Publication date
WO2017006839A1 (en) 2017-01-12
JP2017017252A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6352223B2 (en) Method for producing perovskite solar cell
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Huang et al. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells
Shahiduzzaman et al. Low-temperature-processed brookite-based TiO2 heterophase junction enhances performance of planar perovskite solar cells
Raj et al. Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell
EP3172776B9 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
Chen et al. Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells
US10332689B2 (en) Solar cell and process for producing the same
Xie et al. Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells
JP6141054B2 (en) Organic-inorganic nano-hybrid photoelectric conversion device
Zheng et al. Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction
JP6304980B2 (en) Photoelectric conversion device using perovskite materials
Chi et al. Surface modifications of CdS/CdSe co-sensitized TiO 2 photoelectrodes for solid-state quantum-dot-sensitized solar cells
Xie et al. TiO2-B as an electron transporting material for highly efficient perovskite solar cells
Karuppuchamy et al. Cathodic electrodeposition of TiO2 thin films for dye-sensitized photoelectrochemical applications
Tao et al. Polyoxometalate doped tin oxide as electron transport layer for low cost, hole-transport-material-free perovskite solar cells
KR101540364B1 (en) ZSO-base perovskite solar cell and its preparation method
Soultati et al. Organic solar cells of enhanced efficiency and stability using zinc oxide: zinc tungstate nanocomposite as electron extraction layer
Jiang et al. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure
Zheng et al. Surface states in TiO 2 submicrosphere films and their effect on electron transport
Das et al. Zn2SnO4 as an alternative photoanode for dye sensitized solar cells: current status and future scope
CN111029470A (en) Perovskite solar cell based on nano grass-shaped mesoporous layer and preparation method thereof
Xiao et al. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells
Wu et al. Effect of sodium on photovoltaic properties of dye-sensitized solar cells assembled with anatase TiO2 nanosheets with exposed {0 0 1} facets
Wang et al. Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6352223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250