JP6351524B2 - Spinel crystal structure LiaMxMnyO4 powder and method for producing the same - Google Patents

Spinel crystal structure LiaMxMnyO4 powder and method for producing the same Download PDF

Info

Publication number
JP6351524B2
JP6351524B2 JP2015042447A JP2015042447A JP6351524B2 JP 6351524 B2 JP6351524 B2 JP 6351524B2 JP 2015042447 A JP2015042447 A JP 2015042447A JP 2015042447 A JP2015042447 A JP 2015042447A JP 6351524 B2 JP6351524 B2 JP 6351524B2
Authority
JP
Japan
Prior art keywords
powder
lithium
source
plasma
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015042447A
Other languages
Japanese (ja)
Other versions
JP2016160157A (en
Inventor
宏隆 曽根
宏隆 曽根
裕輔 山本
裕輔 山本
尚 杉江
尚 杉江
剛志 牧
剛志 牧
隆行 渡邉
隆行 渡邉
田中 学
学 田中
大輔 岡元
大輔 岡元
拓也 影山
拓也 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Kyushu University NUC
Original Assignee
Toyota Industries Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Kyushu University NUC filed Critical Toyota Industries Corp
Priority to JP2015042447A priority Critical patent/JP6351524B2/en
Publication of JP2016160157A publication Critical patent/JP2016160157A/en
Application granted granted Critical
Publication of JP6351524B2 publication Critical patent/JP6351524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、スピネル型結晶構造のLiMnに関する。 The present invention relates to Li a M x Mn y O 4 having a spinel crystal structure.

スピネル型結晶構造の化合物には、ニッケル、マンガン、コバルト、鉄などの金属酸化物があり、これらの化合物は電子材料などに利用されている。特に、スピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)は、リチウムイオン二次電池の正極活物質として用いられることが知られており、その製造方法についても知られている。 Spinel-type crystal structure compounds include metal oxides such as nickel, manganese, cobalt, and iron, and these compounds are used as electronic materials. In particular, Li a M x Mn y O 4 having a spinel crystal structure (M is a metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2.2, 1.8 ≦ x + y ≦ 2.2) is known to be used as a positive electrode active material of a lithium ion secondary battery, and its manufacturing method is also known.

例えば、特許文献1には、炭酸リチウム、炭酸マンガン及び水酸化ニッケルを原料として用い、空気中、600℃で焼成した平均粒子径11μmのLiNi0.5Mn1.5が記載されており、また、炭酸リチウム及び炭酸マンガンを原料として用い、空気中、600℃で焼成した平均粒子径9μmのLiMnも記載されている。そして、同文献には、これらの金属酸化物を正極活物質として具備する二次電池が記載されている。 For example, Patent Document 1 describes LiNi 0.5 Mn 1.5 O 4 having an average particle diameter of 11 μm, which is calcined in air at 600 ° C. using lithium carbonate, manganese carbonate and nickel hydroxide as raw materials. Moreover, LiMn 2 O 4 having an average particle size of 9 μm, which is fired at 600 ° C. in air using lithium carbonate and manganese carbonate as raw materials, is also described. In the same document, a secondary battery including these metal oxides as a positive electrode active material is described.

特許文献2には、炭酸リチウム及び酸化マンガンを原料として用い、空気中、1000℃で焼成したLiMnが記載されており、さらに、LiMnを正極活物質として具備する二次電池が記載されている。 Patent Document 2 describes LiMn 2 O 4 baked in air at 1000 ° C. using lithium carbonate and manganese oxide as raw materials, and further includes a secondary battery comprising LiMn 2 O 4 as a positive electrode active material. Is described.

特許文献3には、炭酸リチウム、二酸化マンガンなどを原料として用い、空気中、950℃で焼成した平均粒子径10μm程度のスピネル型リチウムマンガンニッケル酸化物が記載されており、当該酸化物を正極活物質として具備する二次電池が記載されている。   Patent Document 3 describes spinel type lithium manganese nickel oxide having an average particle size of about 10 μm, which is obtained by using lithium carbonate, manganese dioxide or the like as a raw material and calcined at 950 ° C. in the air. A secondary battery provided as a substance is described.

特許文献1〜3に記載されるように、スピネル型結晶構造のLiMnは、炭酸リチウムなどのLi源と炭酸マンガンなどのMMn源とを酸素雰囲気下で焼成することにより製造される。そして、この製造方法で得られるLiMnは、概ね平均粒子径10〜30μm程度である。 As described in Patent Documents 1~3, Li a M x Mn y O 4 of the spinel crystal structure, firing the M x Mn y source, such as a Li source and a manganese carbonate such as lithium carbonate in an oxygen atmosphere It is manufactured by doing. Then, Li a M x Mn y O 4 obtained by this production method is generally average about particle size 10 to 30 [mu] m.

特開2014−241229号公報JP 2014-241229 A 特開2013−214489号公報JP 2013-214489 A 特許第5572268号Japanese Patent No. 5572268

上述したように、従来のスピネル型結晶構造のLiMnは、概ね平均粒子径10〜30μm程度のものであった。そして、より細かい平均粒子径のものを得るために、さらなる粉砕を施しても、平均粒子径は0.6〜1μm程度の水準に留まっていた。そのため、より微細な粉末を得るためには、粉砕方法ではなく、製造方法自体に抜本的な変更が必要であった。 As described above, the conventional spinel crystal structure Li a M x Mn y O 4 has an average particle diameter of about 10 to 30 μm. And even if it grind | pulverized further in order to obtain the thing of a finer average particle diameter, the average particle diameter remained at the level of about 0.6-1 micrometer. Therefore, in order to obtain a finer powder, it was necessary to drastically change the production method itself, not the pulverization method.

本発明は、かかる事情に鑑みて為されたものであり、新たなLiMn粉末の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a manufacturing method of a new Li a M x Mn y O 4 powder.

本発明者は、従来の製造方法とは全く異なる条件下でLiMn粉末を得ることを想起した。具体的には、温度10000℃程度となるプラズマ内に所望のLiMnの原料となり得る原料物質又は原料混合物を投入すること、気体又は液体状態で原料物質又は原料混合物を反応させること、プラズマ内外の極端な温度差を利用して、生成物を急冷し微細な粉末を得ることを想起した。そして、本発明者が、試行錯誤を繰り返して鋭意検討したところ、上記製造方法にて、非常に微細な粒子径のスピネル型結晶構造のLiMn粉末が得られたことを確認した。そして、本発明者はかかる発見に基づき本発明を完成させた。 The present inventor has conceived that Li a M x Mn y O 4 powder is obtained under completely different conditions from the conventional production method. Specifically, a raw material or raw material mixture that can be a raw material of desired Li a M x Mn y O 4 is introduced into a plasma at a temperature of about 10,000 ° C., and the raw material or raw material mixture is reacted in a gas or liquid state. It was recalled that the product was quenched by using an extreme temperature difference between the inside and outside of the plasma to obtain a fine powder. Then, the present inventors found was examined intensively by repeated trial and error, in the manufacturing method, very that Li a M x Mn y O 4 powder of fine particle size spinel crystalline structure was obtained confirmed. The inventor has completed the present invention based on such findings.

すなわち、本発明のスピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)粉末(以下、本発明の粉末ということがある。)は、平均粒子径が10nm〜400nmの範囲内であることを特徴とする。 That is, Li a M x Mn y O 4 (M is a metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2.2, 1.8 of the spinel type crystal structure of the present invention. ≦ x + y ≦ 2.2) powder (hereinafter sometimes referred to as the powder of the present invention) is characterized by having an average particle diameter in the range of 10 nm to 400 nm.

また、本発明のスピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)粉末の製造方法(以下、本発明の製造方法ということがある。)は、LiMn源及び酸素ガスを導入流にて、プラズマ内に導入する工程、を含むことを特徴とする。 Further, Li a M x Mn y O 4 (M is a metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2.2, 1.8) of the spinel crystal structure of the present invention. ≦ x + y ≦ 2.2) The powder production method (hereinafter sometimes referred to as the production method of the present invention) introduces a Li a M x Mn y O 4 source and oxygen gas into the plasma by an introduction flow. Including a process.

本発明の製造方法は、微細な粒径のLiMn粉末を提供できる。 The production method of the present invention can provide a Li a M x Mn y O 4 powder having a fine particle size.

プラズマ発生装置の模式図である。It is a schematic diagram of a plasma generator. 実施例1、実施例3、実施例6の粉末のX線回折チャートである。2 is an X-ray diffraction chart of powders of Example 1, Example 3, and Example 6. FIG. 実施例1の粉末の透過型電子顕微鏡像である。2 is a transmission electron microscope image of the powder of Example 1. FIG. 実施例3の粉末の透過型電子顕微鏡像である。4 is a transmission electron microscope image of the powder of Example 3. 実施例6の粉末の透過型電子顕微鏡像である。7 is a transmission electron microscope image of the powder of Example 6. 実施例1の粉末の走査型電子顕微鏡像である。2 is a scanning electron microscope image of the powder of Example 1. FIG. 実施例6の粉末の走査型電子顕微鏡像である。7 is a scanning electron microscope image of the powder of Example 6. 市販のスピネル型結晶構造のLiMn粉末の走査型電子顕微鏡像である。Is a scanning electron micrograph of LiMn 2 O 4 powder of a commercially available spinel-type crystal structure. 実施例10の粉末の透過型電子顕微鏡像である。3 is a transmission electron microscope image of the powder of Example 10. FIG.

以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x〜y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   The best mode for carrying out the present invention will be described below. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

以下、本発明の製造方法に沿って、本発明を説明する。   Hereinafter, the present invention will be described along the manufacturing method of the present invention.

本発明のスピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)粉末の製造方法は、LiMn源及び酸素ガスを導入流にて、プラズマ内に導入する工程、を含むことを特徴とする。 Li a M x Mn y O 4 (M is a metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2.2, 1.8 ≦ x + y) ≦ 2.2) The method for producing powder is characterized by including a step of introducing a Li a M x Mn y O 4 source and oxygen gas into the plasma in an introduced flow.

LiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)におけるMは、原子価2〜4を取り得る金属元素である。好ましいMとして、Mg、Al、Ti、Cr、Fe、Co、Ni、Cu、Laを例示できる。aは上記の範囲内であればよく、0.9≦a≦1.1の範囲内でもよい。xは上記の範囲内であればよく、0≦x≦0.6の範囲内でもよい。yは上記の範囲内であればよく、1≦y≦2.1の範囲内でもよい。x+yは上記の範囲内であればよく、1.9≦x+y≦2.1の範囲内でもよい。具体的なLiMnとしては、LiMn、LiNi0.5Mn1.5、LiAl0.1Mn1.9、LiCrMnO、LiCoMnO、LiFe0.5Mn1.5、LiLa0.05Mn1.95、Li0.91Mn2.09((Li0.91Mn0.09)Mnと同義とする。)を例示できる。 M in Li a M x Mn y O 4 (M is metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1, 1 ≦ y ≦ 2.2, 1.8 ≦ x + y ≦ 2.2) , A metal element capable of taking valences 2-4. Preferred examples of M include Mg, Al, Ti, Cr, Fe, Co, Ni, Cu, and La. a may be in the above range, and may be in a range of 0.9 ≦ a ≦ 1.1. x should just be in said range, and may be in the range of 0 <= x <= 0.6. y should just be in said range, and may be in the range of 1 <= y <= 2.1. x + y should just be in said range, and may be in the range of 1.9 <= x + y <= 2.1. Specific examples of Li a M x Mn y O 4 include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiAl 0.1 Mn 1.9 O 4 , LiCrMnO 4 , LiCoMnO 4 , LiFe 0. 5 Mn 1.5 O 4 , LiLa 0.05 Mn 1.95 O 4 , Li 0.91 Mn 2.09 O 4 (same as (Li 0.91 Mn 0.09 ) Mn 2 O 4 ) Can be illustrated.

LiMn源としては、本発明の粉末の原料となり得る原料物質又は原料混合物であればよく、例えば、LiMnそのものでも良いし、また、Li源とMMn源とを併用してもよい。LiMn源は粉末状態のものが好ましい。 The Li a M x Mn y O 4 source may be a raw material substance or a raw material mixture that can be a raw material of the powder of the present invention. For example, Li a M x Mn y O 4 itself may be used. and M x Mn y source may be used in combination. The Li a M x Mn y O 4 source is preferably in a powder state.

Li源としては、金属リチウムやリチウム化合物であればよい。リチウム化合物としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示できる。Li源は、1種類でもよいし、2種類以上用いてもよい。   The Li source may be metallic lithium or a lithium compound. Examples of the lithium compound include lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, lithium acetate, lithium oxalate, and lithium halide. One type of Li source may be used, or two or more types may be used.

Mn源としては、M、Mn、M化合物、Mn化合物を、所望とするMMnの割合となるように、採用すればよい。M化合物又はMn化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩、ハロゲン酸塩を例示できる。 The M x Mn y source, M, Mn, M compound, a Mn compound, such that the ratio of M x Mn y to desired, may be adopted. Examples of the M compound or Mn compound include oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates, and halogenates.

Li源とMMn源との割合は、リチウムとMMnとの元素のモル比がa:x+y及びその近辺となるようにすればよく、具体的な数値で示すと、1:1.5〜1:2.5の範囲内にあるのが好ましく、特にモル比1:2近辺が好ましい。 The ratio of the Li source to the M x Mn y source may be such that the molar ratio of the elements of lithium and M x Mn y is a: x + y and the vicinity thereof. The molar ratio is preferably in the range of 1.5 to 1: 2.5, and particularly a molar ratio of around 1: 2.

本発明の製造方法は、プラズマ発生装置を用いて実施される。プラズマは、アーク放電、高周波電磁誘導、マイクロ波加熱放電などで発生させればよい。   The manufacturing method of the present invention is carried out using a plasma generator. The plasma may be generated by arc discharge, high frequency electromagnetic induction, microwave heating discharge, or the like.

高周波電磁誘導式のプラズマ発生装置の場合、その周波数は、例えば0.5〜400MHzの範囲内、好ましくは1〜80MHzの範囲内とすればよい。プラズマ出力は、例えば3〜300kWの範囲内、好ましくは5〜100kWの範囲内とすればよい。プラズマ発生装置内の圧力は適宜設定すればよく、例えば10kPa〜大気圧の範囲内を例示できる。プラズマ出力やプラズマ発生装置内の圧力を変動させることで、本発明の粉末の平均粒子径を変化させることができる。例えば、プラズマ出力を増加することで、本発明の粉末の平均粒子径を小さくすることができる。   In the case of a high frequency electromagnetic induction type plasma generator, the frequency may be, for example, in the range of 0.5 to 400 MHz, preferably in the range of 1 to 80 MHz. The plasma output may be, for example, in the range of 3 to 300 kW, preferably in the range of 5 to 100 kW. What is necessary is just to set the pressure in a plasma generator suitably, for example, the inside of the range of 10 kPa-atmospheric pressure can be illustrated. The average particle size of the powder of the present invention can be changed by changing the plasma output or the pressure in the plasma generator. For example, the average particle diameter of the powder of the present invention can be reduced by increasing the plasma output.

導入流としては、プラズマの安定性を考慮して、プラズマ下で使用し得る気体を主流とするのが好ましい。上記気体としては、ヘリウム、アルゴンなどの希ガスが好ましい。導入ガス流量としては、20〜120L/min.を例示できる。   As the introduction flow, in consideration of the stability of the plasma, a gas that can be used under the plasma is preferably used as the main flow. As the gas, a rare gas such as helium or argon is preferable. The introduced gas flow rate is 20 to 120 L / min. Can be illustrated.

プラズマ発生装置の種類によるが、本発明の製造方法においては、導入流として、LiMn源を運搬するキャリヤーガス、キャリヤーガスとは別にコイル内に導入されるインナーガス、及び、プラズマ発生部位を不活性雰囲気下にするためのプロセスガスを採用するのが好ましい。 Depending on the type of plasma generator, in the production method of the present invention, as an introduction flow, a carrier gas carrying a Li a M x Mn y O 4 source, an inner gas introduced into the coil separately from the carrier gas, and It is preferable to employ a process gas for bringing the plasma generation site into an inert atmosphere.

キャリヤーガスの流量としては、1〜10L/min.を例示できる。インナーガスの流量としては、1〜10L/min.を例示できる。プロセスガスの流量としては、15〜100L/min.を例示できる。   The flow rate of the carrier gas is 1 to 10 L / min. Can be illustrated. The flow rate of the inner gas is 1 to 10 L / min. Can be illustrated. The flow rate of the process gas is 15 to 100 L / min. Can be illustrated.

酸素ガスは、キャリヤーガス、インナーガス及び/又はプロセスガスの一部として、例えば、導入ガス全体の0.4〜20体積%で導入されればよい。プラズマ発生装置のガス配管の安定性、LiMn源及び酸素のプラズマ内での反応均一性などを考慮すると、酸素ガスはプロセスガスの一部として導入されるのが、酸素ガスを最も好適に希釈できる点から好ましい。酸素ガスの導入量は、例えば0.5〜10L/min.を例示できる。酸素ガス量を変動させることで本発明の粉末の平均粒子径を変化させることができ、酸素ガス量を増加することで本発明の粉末の平均粒子径を大きくすることができる。 The oxygen gas may be introduced as a part of the carrier gas, the inner gas and / or the process gas, for example, in an amount of 0.4 to 20% by volume of the entire introduced gas. Considering the stability of the gas piping of the plasma generator, the Li a M x Mn y O 4 source and the uniformity of the reaction of oxygen in the plasma, oxygen gas is introduced as part of the process gas. This is preferable because the gas can be diluted most suitably. The amount of oxygen gas introduced is, for example, 0.5 to 10 L / min. Can be illustrated. The average particle size of the powder of the present invention can be changed by changing the amount of oxygen gas, and the average particle size of the powder of the present invention can be increased by increasing the amount of oxygen gas.

ここで、LiMn源としてLi源とMMn源を用いた場合の本発明の粉末の生成機構について考察する。プラズマ内の温度は、8000〜20000℃程度である。Li源とMMn源はプラズマ内で気化又は分解状態となる。プラズマ内にLi源及びMMn源とともに酸素ガスを導入することで、Li源はLiO等のリチウム酸化物に、MMn源はMnO等のマンガン酸化物又はマンガン−M複合酸化物に変換され得る。なお、LiOはLi単体よりも融点が高く、また、MnOはMn単体及びMnO、Mn、Mnなどのマンガン酸化物の中で最も融点が高いため、高温のプラズマ内から放出されて冷却される過程において、LiOとMnOは冷却初期段階で核生成しやすい化合物といえる。そして、LiOとMnOの融点を比較するとMnOの融点の方が高いため、MnOの核生成が先に生じると考えられる。 Here, consider the powder generation mechanism of the present invention using a Li source and M x Mn y source as Li a M x Mn y O 4 source. The temperature in plasma is about 8000-20000 degreeC. Li source and the M x Mn y source will be vaporized or decomposed state in the plasma. By introducing the Li source and M x Mn y source together with oxygen gas into plasma, Li source lithium oxides such as Li 2 O, M x Mn y source of manganese oxide or manganese -M complex, such as MnO It can be converted to an oxide. Since Li 2 O has a higher melting point than Li alone, and MnO has the highest melting point among Mn alone and manganese oxides such as MnO 2 , Mn 2 O 3 , Mn 3 O 4, etc. It can be said that Li 2 O and MnO are compounds that are easily nucleated in the initial stage of cooling in the process of being discharged from the inside and cooled. Then, when the melting points of Li 2 O and MnO are compared, the melting point of MnO is higher, so it is considered that nucleation of MnO occurs first.

ここで、例えば、融点が1705Kであり沸点が2873KであるLiOと、融点が2113Kであり沸点が3400KであるMnOとは、融点と沸点の間の温度範囲が、共に2200〜2800K程度の範囲で重複している。したがって、液体状態のLiOとMnOは酸素存在下で冷却されて核を生成し、これらが凝集することで、LiMnが生成されると推定される。この反応を反応式で示すと、以下のとおりとなる。
2LiO(liq.)+ 8MnO(liq.)+ 3O(gas)→ 4LiMn
Here, for example, Li 2 O having a melting point of 1705K and a boiling point of 2873K and MnO having a melting point of 2113K and a boiling point of 3400K both have a temperature range between the melting point and the boiling point of about 2200 to 2800K. Duplicate in range. Therefore, it is presumed that Li 2 O and MnO in the liquid state are cooled in the presence of oxygen to generate nuclei, and these aggregate to form LiMn 2 O 4 . This reaction is represented by the following reaction formula.
2Li 2 O (liq.) + 8MnO (liq.) + 3O 2 (gas) → 4LiMn 2 O 4

さらに、生じたLiMn結晶核は、さらなる急速冷却により、結晶構造及び結晶成長が制御され、その結果、微細なLiMn粒子が得られると推定される。 Furthermore, it is estimated that the resulting LiMn 2 O 4 crystal nucleus is controlled in crystal structure and crystal growth by further rapid cooling, and as a result, fine LiMn 2 O 4 particles are obtained.

本発明の製造方法で得られるLiMn粒子(以下、本発明の粒子という。)は、高温状態から室温付近にまで、急激に冷却されるため、結晶成長する期間がほとんどない。そのため、本発明の粒子は、一般的な製造方法で得られるような、特定の軸が成長した針状結晶となることが妨げられている。その結果、本発明の粉末に含まれる本発明の粒子は、各軸の結晶成長速度にムラの無い形状となっている。そして、本発明の粒子の一態様として、多数の平面で構成される多面体形状のものが観察された。多面体の具体例として、三角形及び四角形の平面を含むもの、四角形及び六角形の平面を含むもの、又は、三角形、四角形及び六角形の平面を含むものを例示できる。さらに、多面体の具体例として、8つの三角形よりなる八面体から該八面体の頂点を頭頂点とする6つの四角錐を除去した切頂八面体を例示できる。 Since Li a M x Mn y O 4 particles (hereinafter referred to as particles of the present invention) obtained by the production method of the present invention are rapidly cooled from a high temperature state to near room temperature, the crystal growth period is almost the same. Absent. For this reason, the particles of the present invention are prevented from becoming needle-like crystals having a specific axis grown as obtained by a general production method. As a result, the particles of the present invention contained in the powder of the present invention have a shape with no unevenness in the crystal growth rate of each axis. And as an aspect of the particles of the present invention, a polyhedral shape composed of a large number of planes was observed. Specific examples of the polyhedron include those including triangular and quadrangular planes, those including quadrangular and hexagonal planes, and those including triangular, quadrangular and hexagonal planes. Further, as a specific example of the polyhedron, a truncated octahedron obtained by removing six quadrangular pyramids having the apex of the octahedron as the head apex from an octahedron consisting of eight triangles can be exemplified.

本発明の粉末は、その平均粒子径が10nm〜400nmの範囲内であるのが好ましく、30nm〜150nmの範囲内がより好ましい。ここでの平均粒子径とは、本発明の粉末を走査型電子顕微鏡や透過型電子顕微鏡などの電子顕微鏡で観察した場合における、観察された粒子像の外接円の直径の算術平均値を意味する。例えば、六角形の粒子像が観察されたら、その外接円を作成し、該外接円の直径を測定する。そのようにして、例えば200個の粒子につき、各外接円の直径を測定して、その算術平均値を算出する。この値が平均粒子径である。   The average particle size of the powder of the present invention is preferably in the range of 10 nm to 400 nm, more preferably in the range of 30 nm to 150 nm. The average particle diameter here means the arithmetic average value of the diameter of the circumscribed circle of the observed particle image when the powder of the present invention is observed with an electron microscope such as a scanning electron microscope or a transmission electron microscope. . For example, when a hexagonal particle image is observed, a circumscribed circle is created and the diameter of the circumscribed circle is measured. Thus, for example, for 200 particles, the diameter of each circumscribed circle is measured, and the arithmetic average value is calculated. This value is the average particle size.

本発明の製造方法において、LiMnを含むガス流の冷却速度が増加すれば、LiMn結晶核の結晶成長が初期段階で中断されるため、より微細であり、かつ形状が均一なLiMn粒子が得られるといえる。 In the production method of the present invention, if the cooling rate of the gas flow containing Li a M x Mn y O 4 is increased, crystal growth of the Li a M x Mn y O 4 crystal nucleus is interrupted in the initial stage, It can be said that Li a M x Mn y O 4 particles that are fine and have a uniform shape can be obtained.

したがって、本発明の製造方法において、導入流がプラズマ内を通過した後の通過流を当該通過流に対向する冷却ガス流で冷却する工程を有すると、より微細なLiMn粒子が得られるため、より好ましい。 Therefore, in the manufacturing method of the present invention, when the introduction flow has a step of cooling the passage flow after passing through the plasma with the cooling gas flow opposite to the passage flow, the finer Li a M x Mn y O 4. Since particles are obtained, it is more preferable.

冷却ガス流のガスとしては、ヘリウム、アルゴンなどの希ガスや、酸素、空気が好ましく、これらを混合して用いてもよい。冷却ガス流の温度は室温でもよいし、室温以下でもよい。冷却ガスの流量としては、導入流よりも小さい流量であればよく、例えば1〜30L/min.の範囲内を例示できる。   As the gas of the cooling gas flow, a rare gas such as helium and argon, oxygen, and air are preferable, and these may be mixed and used. The temperature of the cooling gas flow may be room temperature or may be below room temperature. The flow rate of the cooling gas may be a flow rate smaller than the introduction flow, for example, 1 to 30 L / min. This can be illustrated as an example.

なお、微細なLiMn粉末が電池の正極活物質として使用された場合、例えば、電池の反応抵抗を低減できる、高速の充放電でも十分な容量を示すことができるなどの効果が期待される。 In addition, when fine Li a M x Mn y O 4 powder is used as the positive electrode active material of the battery, for example, the reaction resistance of the battery can be reduced, and a sufficient capacity can be exhibited even at high speed charge / discharge. Expected to be effective.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。なお、本発明の粉末には、不純物が含まれるものもある。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art. Some powders of the present invention contain impurities.

以下に、実施例及び比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited by these Examples.

(実施例1)
図1に示すプラズマ発生装置を用いて、実施例1の粉末を製造した。図1に示すプラズマ発生装置において黒塗り矢印は冷却水を表す。
Example 1
The powder of Example 1 was manufactured using the plasma generator shown in FIG. In the plasma generator shown in FIG. 1, black arrows represent cooling water.

Li源として炭酸リチウム、MMn源として二酸化マンガンを準備し、これらをモル比1:4で混合して混合粉体とした。そして、混合粉体を粉体供給器に配置した。なお、当該混合粉体におけるリチウムとマンガンの元素モル比は1:2である。 Lithium carbonate as a Li source, to prepare manganese dioxide as M x Mn y source, these molar ratio of 1: obtain a mixed powder were mixed at 4. Then, the mixed powder was placed in a powder feeder. The element molar ratio of lithium and manganese in the mixed powder is 1: 2.

プラズマ発生装置内に、プロセスガスとしてアルゴンと酸素の体積比59:1の混合ガスを60L/min.で供給し、インナーガスとしてアルゴンを5L/min.で供給し、キャリヤーガスとしてアルゴンを3L/min.で供給した。電力供給装置から電力を供給し、周波数4MHzの磁場をコイルに印加して、出力20kWのプラズマを発生させた。なお、プラズマ発生装置内の圧力は大気圧とした。   In the plasma generator, a mixed gas having a volume ratio of 59: 1 of argon and oxygen of 60 L / min. And argon as the inner gas at 5 L / min. At a flow rate of 3 L / min. Supplied with. Electric power was supplied from the power supply device, and a magnetic field with a frequency of 4 MHz was applied to the coil to generate plasma with an output of 20 kW. The pressure in the plasma generator was atmospheric pressure.

プラズマの安定後、粉体供給器を作動させ、混合粉体を400mg/min.の供給量で、キャリヤーガスとともに、プラズマ内へ導入した。プラズマ内を通過した後の通過流とともに放出された粉末を収集し、実施例1の粉末とした。   After the plasma was stabilized, the powder feeder was operated, and the mixed powder was charged at 400 mg / min. Was introduced into the plasma together with the carrier gas. The powder discharged together with the flow after passing through the plasma was collected and used as the powder of Example 1.

なお、実施例1においては、冷却ガスを使用しなかった。   In Example 1, no cooling gas was used.

(実施例2)
プロセスガスとしてアルゴンと酸素の体積比57.5:2.5の混合ガスを60L/min.で供給した以外は、実施例1と同様の方法で、実施例2の粉末を製造した。
(Example 2)
As a process gas, a mixed gas having a volume ratio of 57.5: 2.5 of argon and oxygen was 60 L / min. The powder of Example 2 was produced in the same manner as in Example 1 except that the powder was supplied in the above.

(実施例3)
プロセスガスとしてアルゴンと酸素の体積比55:5の混合ガスを60L/min.で供給した以外は、実施例1と同様の方法で、実施例3の粉末を製造した。
(Example 3)
As a process gas, a mixed gas of 55: 5 by volume of argon and oxygen was used at 60 L / min. The powder of Example 3 was produced in the same manner as in Example 1 except that the powder was supplied in Step 3.

(実施例4)
プロセスガスとしてアルゴンと酸素の体積比52.5:7.5の混合ガスを60L/min.で供給した以外は、実施例1と同様の方法で、実施例4の粉末を製造した。
Example 4
As a process gas, a mixed gas having a volume ratio of 52.5: 7.5 of argon and oxygen was 60 L / min. The powder of Example 4 was produced in the same manner as in Example 1 except that the powder was supplied in Step 4.

(実施例5)
導入流がプラズマ内を通過した後の通過流を当該通過流に対向する冷却ガス流で冷却する工程を実施するために、冷却ガスとして室温のアルゴンを10L/min.で供給した以外は、実施例3と同様の方法で、実施例5の粉末を製造した。
(Example 5)
In order to perform the step of cooling the flow after the introduction flow has passed through the plasma with the cooling gas flow facing the flow, argon at room temperature is used as the cooling gas at 10 L / min. The powder of Example 5 was produced in the same manner as in Example 3, except that the powder was supplied in Step 5.

(実施例6)
冷却ガスとして室温のアルゴンを20L/min.で供給した以外は、実施例5と同様の方法で、実施例6の粉末を製造した。
(Example 6)
Argon at room temperature was used as a cooling gas at 20 L / min. The powder of Example 6 was produced in the same manner as in Example 5 except that the powder was supplied in Step 6.

(実施例7)
プラズマの出力を25kWとした以外は、実施例3と同様の方法で、実施例7の粉末を製造した。
(Example 7)
The powder of Example 7 was produced in the same manner as in Example 3, except that the plasma output was 25 kW.

(実施例8)
プラズマの出力を30kWとした以外は、実施例3と同様の方法で、実施例8の粉末を製造した。
(Example 8)
The powder of Example 8 was produced in the same manner as in Example 3, except that the plasma output was 30 kW.

(比較例1)
プロセスガスとしてアルゴンを60L/min.で供給した以外は、実施例1と同様の方法で、比較例1の粉末を製造した。
(Comparative Example 1)
Argon is used as a process gas at 60 L / min. The powder of Comparative Example 1 was produced in the same manner as in Example 1, except that the powder was supplied in Step 1.

実施例1〜8、比較例1の粉末の製造方法の一覧表を表1に示す。   Table 1 shows a list of methods for producing the powders of Examples 1 to 8 and Comparative Example 1.

(評価例1)
粉末X線回折装置にて、実施例1〜8の粉末及び比較例1の粉末のX線回折を測定した。実施例1〜8の粉末から得られたX線回折チャートにおいては、いずれもスピネル型結晶構造のLiMn及び(Li0.91Mn0.09)Mnに特有の回折パターンが観察された。また、実施例1〜8の粉末から得られたX線回折チャートにおいては、不純物であるMnに該当する回折ピークも観察された。ここで、各X線回折チャートの比較から、プロセスガスにおける酸素量が増加するに従い、Mnが減少することが確認できた。さらに、冷却ガスの存在により、Mnが減少することも確認できた。実施例1、実施例3、実施例6の粉末のX線回折チャートを図2に示し、これらのX線回折チャートから算出された各粉末に含まれる成分の質量%を、表2に示す。
(Evaluation example 1)
X-ray diffraction of the powders of Examples 1 to 8 and the powder of Comparative Example 1 was measured with a powder X-ray diffractometer. In the X-ray diffraction charts obtained from the powders of Examples 1 to 8, diffraction patterns peculiar to LiMn 2 O 4 and (Li 0.91 Mn 0.09 ) Mn 2 O 4 having a spinel crystal structure are present. Observed. In addition, in the X-ray diffraction charts obtained from the powders of Examples 1 to 8, diffraction peaks corresponding to Mn 3 O 4 as an impurity were also observed. Here, it was confirmed from the comparison of the respective X-ray diffraction charts that Mn 3 O 4 decreased as the amount of oxygen in the process gas increased. Furthermore, it was also confirmed that Mn 3 O 4 was reduced due to the presence of the cooling gas. The X-ray diffraction charts of the powders of Example 1, Example 3, and Example 6 are shown in FIG. 2, and the mass% of the components contained in each powder calculated from these X-ray diffraction charts is shown in Table 2.

他方、比較例1の粉末から得られたX線回折チャートにおいては、主にMnとスピネル型結晶構造ではないLiMnOに特有の回折パターンが観察された。 On the other hand, in the X-ray diffraction chart obtained from the powder of Comparative Example 1, a diffraction pattern peculiar to Mn 3 O 4 and LiMnO 2 which is not a spinel crystal structure was observed.

本発明の製造方法においては、酸素ガスの存在に因り、好適にスピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)粉末が製造されることが裏付けられた。 In the production method of the present invention, Li a M x Mn y O 4 (M is a metal, 0.8 ≦ a ≦ 1.1, 0 ≦ x ≦ 1) preferably has a spinel crystal structure due to the presence of oxygen gas. 1 ≦ y ≦ 2.2, 1.8 ≦ x + y ≦ 2.2) was confirmed to be produced.

(評価例2)
実施例1〜8の粉末を透過型電子顕微鏡(TEM)で観察した。得られた各TEM像において、粒子200個につき、各粒子像の外接円の直径を測定し、その算術平均値である平均粒子径を算出した。結果を表3に示す。また、実施例1、実施例3、実施例6の粉末のTEM像を図3〜5に示す。
(Evaluation example 2)
The powders of Examples 1 to 8 were observed with a transmission electron microscope (TEM). In each of the obtained TEM images, the diameter of the circumscribed circle of each particle image was measured for 200 particles, and the average particle diameter that was the arithmetic average value was calculated. The results are shown in Table 3. Moreover, the TEM image of the powder of Example 1, Example 3, and Example 6 is shown to FIGS.

実施例1〜4の結果から、酸素ガス量を増加することで、本発明の粉末の平均粒子径は大きくなる傾向にあるといえる。実施例3、実施例5〜6の結果から、冷却ガス量を増加することで、本発明の粉末の平均粒子径は小さくなるといえる。また、実施例3、実施例7〜8の結果から、プラズマ出力を増加することで、本発明の粉末の平均粒子径は小さくなるといえる。   From the results of Examples 1 to 4, it can be said that the average particle diameter of the powder of the present invention tends to increase by increasing the amount of oxygen gas. From the results of Example 3 and Examples 5 to 6, it can be said that the average particle size of the powder of the present invention is reduced by increasing the cooling gas amount. Moreover, it can be said from the results of Example 3 and Examples 7 to 8 that the average particle diameter of the powder of the present invention is reduced by increasing the plasma output.

また、実施例1及び実施例6の粉末を走査型電子顕微鏡(SEM)で観察した。実施例1、実施例6の粉末のSEM像を図6〜7に示す。図6〜7のSEM像から、本発明の粉末には、針状などではなく、多面体形状の粒子が存在することがわかる。図6〜7のSEM像には、切頂八面体形状の粒子も観察された。観察された切頂八面体は六角形の{111面}×8面、四角形の{100面}×6面で構成されている。{100面}があることによって、八面体の頂点の応力集中(ヤーン・テラー効果)を緩和することが出来、Liの出入りがしやすくなり、二次電池の入出力特性が向上すると考えられる。切頂八面体形状の粒子につき、四角形と六角形とで共有する辺の長さaと、該六角形と他の六角形とで共有する辺の長さbとを測定した。実施例1及び実施例6の粉末について、切頂八面体形状の粒子の200箇所につき測定したaとbの算術平均値を表4に示す。なお、各六角形それぞれのaとbの関係は、いずれもb≦1.5aを満足していた。   Moreover, the powder of Example 1 and Example 6 was observed with the scanning electron microscope (SEM). SEM images of the powders of Examples 1 and 6 are shown in FIGS. From the SEM images of FIGS. 6 to 7, it can be seen that the powder of the present invention contains polyhedral particles rather than needles. In the SEM images of FIGS. 6 to 7, truncated octahedral particles were also observed. The observed truncated octahedron is composed of a hexagonal {111 plane} × 8 plane and a square {100 plane} × 6 plane. Presence of {100 face} can alleviate stress concentration at the top of the octahedron (Yarn-Teller effect), facilitate Li entry and exit, and improve the input / output characteristics of the secondary battery. For truncated octahedron shaped particles, the side length a shared by the square and the hexagon and the side length b shared by the hexagon and the other hexagon were measured. Table 4 shows the arithmetic average values of a and b measured for 200 portions of the truncated octahedron-shaped particles for the powders of Example 1 and Example 6. Note that the relation between a and b in each hexagon satisfied b ≦ 1.5a.

参考として、市販のスピネル型結晶構造のLiMn粉末(株式会社豊島製作所)を走査型電子顕微鏡で観察したSEM像を図8に示す。 As a reference, FIG. 8 shows an SEM image of a commercially available spinel crystal structure LiMn 2 O 4 powder (Toshima Seisakusho Co., Ltd.) observed with a scanning electron microscope.

(実施例9)
図1に示すプラズマ発生装置を用いて、実施例9の粉末を製造した。
Example 9
The powder of Example 9 was manufactured using the plasma generator shown in FIG.

Li源として炭酸リチウム、MMn源として二酸化マンガン及びNi粉末を準備し、これらをモル比1:3:1で混合して混合粉体とした。そして、混合粉体を粉体供給器に配置した。なお、当該混合粉体におけるリチウム、マンガン、ニッケルの元素モル比は2:3:1であり、リチウムと、マンガン及びニッケルとの元素モル比は1:2である。 Lithium carbonate as a Li source, to prepare the manganese dioxide and Ni powder as M x Mn y source, these molar ratio of 1: 3: was mixed powder was mixed with 1. Then, the mixed powder was placed in a powder feeder. In addition, the element molar ratio of lithium, manganese, and nickel in the mixed powder is 2: 3: 1, and the element molar ratio of lithium, manganese, and nickel is 1: 2.

プラズマ発生装置内に、プロセスガスとしてアルゴンと酸素の体積比57.5:2.5の混合ガスを60L/min.で供給し、インナーガスとしてアルゴンを5L/min.で供給し、キャリヤーガスとしてアルゴンを3L/min.で供給した。電力供給装置から電力を供給し、周波数4MHzの磁場をコイルに印加して、出力20kWのプラズマを発生させた。なお、プラズマ発生装置内の圧力は大気圧とした。   In the plasma generator, a mixed gas having a volume ratio of 57.5: 2.5 of argon and oxygen as a process gas was 60 L / min. And argon as the inner gas at 5 L / min. At a flow rate of 3 L / min. Supplied with. Electric power was supplied from the power supply device, and a magnetic field with a frequency of 4 MHz was applied to the coil to generate plasma with an output of 20 kW. The pressure in the plasma generator was atmospheric pressure.

プラズマの安定後、粉体供給器を作動させ、混合粉体を400mg/min.の供給量で、キャリヤーガスとともに、プラズマ内へ導入した。プラズマ内を通過した後の通過流とともに放出された粉末を収集し、実施例9の粉末とした。   After the plasma was stabilized, the powder feeder was operated, and the mixed powder was charged at 400 mg / min. Was introduced into the plasma together with the carrier gas. The powder discharged together with the flow after passing through the plasma was collected and used as the powder of Example 9.

なお、実施例9においては、冷却ガスを使用しなかった。   In Example 9, no cooling gas was used.

(実施例10)
プロセスガスとしてアルゴンと酸素の体積比55:5の混合ガスを60L/min.で供給した以外は、実施例9と同様の方法で、実施例10の粉末を製造した。
(Example 10)
As a process gas, a mixed gas of 55: 5 by volume of argon and oxygen was used at 60 L / min. A powder of Example 10 was produced in the same manner as in Example 9, except that the powder was supplied in Step 10.

(実施例11)
導入流がプラズマ内を通過した後の通過流を当該通過流に対向する冷却ガス流で冷却する工程を実施するために、冷却ガスとして室温のアルゴンを10L/min.で供給した以外は、実施例9と同様の方法で、実施例11の粉末を製造した。
(Example 11)
In order to perform the step of cooling the flow after the introduction flow has passed through the plasma with the cooling gas flow facing the flow, argon at room temperature is used as the cooling gas at 10 L / min. The powder of Example 11 was produced in the same manner as in Example 9, except that it was supplied in

(実施例12)
冷却ガスとして室温のアルゴンを20L/min.で供給した以外は、実施例11と同様の方法で、実施例12の粉末を製造した。
(Example 12)
Argon at room temperature was used as a cooling gas at 20 L / min. A powder of Example 12 was produced in the same manner as in Example 11, except that the powder was supplied in Step 12.

(評価例3)
粉末X線回折装置にて、実施例9〜12の粉末のX線回折を測定した。実施例9〜12の粉末から得られたX線回折チャートにおいては、いずれもスピネル型結晶構造のLiNi0.5Mn1.5に特有の回折パターンが観察された。
(Evaluation example 3)
X-ray diffraction of the powders of Examples 9 to 12 was measured with a powder X-ray diffractometer. In the X-ray diffraction charts obtained from the powders of Examples 9 to 12, a diffraction pattern specific to LiNi 0.5 Mn 1.5 O 4 having a spinel crystal structure was observed.

(評価例4)
実施例10の粉末をTEMで観察した。実施例10の粉末のTEM像を図9に示す。TEM像から微細な粒径の粒子が観察された。
(Evaluation example 4)
The powder of Example 10 was observed with TEM. A TEM image of the powder of Example 10 is shown in FIG. From the TEM image, fine particles were observed.

Claims (5)

LiMn源及び酸素ガスを導入流にて、プラズマ内に導入する工程、
を含むことを特徴とする、平均粒子径が10nm〜400nmの範囲内であり、スピネル型結晶構造のLiMn(Mは金属、0.8≦a≦1.1、0≦x≦1、1≦y≦2.2、1.8≦x+y≦2.2)粉末の製造方法であって、
前記Li Mn 源は、Li Mn 、及び/又は、Li源とM Mn 源との併用であり、
前記Li源は、金属リチウム、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムから選択され、
前記M Mn 源は、M、Mの酸化物、Mの水酸化物、Mの炭酸塩、Mの硝酸塩、Mの硫酸塩、Mの酢酸塩、Mのシュウ酸塩、Mのハロゲン酸塩、Mn、Mnの酸化物、Mnの水酸化物、Mnの炭酸塩、Mnの硝酸塩、Mnの硫酸塩、Mnの酢酸塩、Mnのシュウ酸塩、Mnのハロゲン酸塩から選択され、
前記平均粒子径は、Li Mn 粉末を電子顕微鏡で観察した場合における、観察された粒子像の外接円の直径の算術平均値を意味する、Li Mn 粉末の製造方法
Introducing a Li a M x Mn y O 4 source and oxygen gas into the plasma by an introduction flow;
Li a M x Mn y O 4 (M is a metal, 0.8 ≦ a ≦ 1.1, 0) having an average particle diameter in the range of 10 nm to 400 nm and having a spinel crystal structure a ≦ x ≦ 1,1 ≦ y ≦ 2.2,1.8 ≦ x + y ≦ 2.2) method of producing a powder,
The Li a M x Mn y O 4 source is a combination of Li a M x Mn y O 4 and / or a Li source and a M x Mny y source,
The Li source is selected from metallic lithium, lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, lithium acetate, lithium oxalate, lithium halide,
Wherein M x Mn y source, M, oxides of M, a hydroxide of M, carbonates M, nitrates M, M sulfates, acetates of M, oxalate M, M halogen acid Selected from salts, Mn, Mn oxide, Mn hydroxide, Mn carbonate, Mn nitrate, Mn sulfate, Mn acetate, Mn oxalate, Mn halogenate,
The average particle diameter, in the case where the Li a M x Mn y O 4 powder was observed with an electron microscope, means the arithmetic mean value of the observed circumcircle of the particle image diameter, Li a M x Mn y O 4 Powder manufacturing method .
前記LiMn粉末は、多面体形状の粒子を含む請求項1に記載のLiMn粉末の製造方法。 2. The method for producing Li a M x Mn y O 4 powder according to claim 1 , wherein the Li a M x Mn y O 4 powder includes polyhedral particles. 前記導入流がプラズマ内を通過した後の通過流を、当該通過流に対向する冷却ガス流で冷却する工程、
を含む請求項1又は2に記載のLiMn粉末の製造方法。
Cooling the flow after the introduced flow has passed through the plasma with a cooling gas flow facing the flow;
Li a M x Mn y O 4 powder method as claimed in claim 1 or 2 including.
前記LiMn粉末は、六角形の{111面}が8面、及び、四角形の{100面}が6面で構成された切頂八面体形状の粒子を含む請求項1〜3のいずれか1項に記載のLiMn粉末の製造方法The Li a M x Mn y O 4 powder is 8 faces {111 plane} hexagonal, and, according to claim 1, {100 plane} quadrangle comprising particles of truncated octahedron shape composed of six surfaces Li a M x Mn y O 4 powder manufacturing method according to any one of to 3. 前記粒子の切頂八面体形状において、四角形と六角形とで共有する辺の長さaと、該六角形と他の六角形とで共有する辺の長さbが、b≦1.5aを満足する請求項4に記載のLiMn粉末の製造方法In the truncated octahedron shape of the particle, the side length a shared by the square and the hexagon and the side length b shared by the hexagon and the other hexagon satisfy b ≦ 1.5a. Li a M x Mn y O 4 powder method as claimed in claim 4, satisfying.
JP2015042447A 2015-03-04 2015-03-04 Spinel crystal structure LiaMxMnyO4 powder and method for producing the same Active JP6351524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042447A JP6351524B2 (en) 2015-03-04 2015-03-04 Spinel crystal structure LiaMxMnyO4 powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042447A JP6351524B2 (en) 2015-03-04 2015-03-04 Spinel crystal structure LiaMxMnyO4 powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016160157A JP2016160157A (en) 2016-09-05
JP6351524B2 true JP6351524B2 (en) 2018-07-04

Family

ID=56846390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042447A Active JP6351524B2 (en) 2015-03-04 2015-03-04 Spinel crystal structure LiaMxMnyO4 powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6351524B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446596B2 (en) * 2019-03-26 2024-03-11 宏隆 曽根 Method for producing lithium metal composite oxide powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110156A (en) * 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
JP4360143B2 (en) * 2003-07-17 2009-11-11 株式会社豊田中央研究所 Method for producing active material for lithium secondary battery
JP5180448B2 (en) * 2006-08-09 2013-04-10 関東電化工業株式会社 Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate
JP2011014279A (en) * 2009-06-30 2011-01-20 Panasonic Corp Positive electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP5612375B2 (en) * 2009-09-29 2014-10-22 日本碍子株式会社 Positive electrode active material and lithium secondary battery using the same
JP6075633B2 (en) * 2013-07-16 2017-02-08 株式会社豊田自動織機 Electroconductive material encapsulating material and method for producing the same

Also Published As

Publication number Publication date
JP2016160157A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5847352B2 (en) Lithium metal composite oxide powder
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP6492543B2 (en) Method for producing nickel cobalt aluminum composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5971109B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR101421758B1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
WO2017061633A1 (en) Lithium-nickel-containing composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
US11239464B2 (en) Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
JP5569034B2 (en) Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
JP2016204239A (en) Aluminum coated nickel cobalt composite hydroxide particle and manufacturing method therefor, cathode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor and non-aqueous electrolyte secondary battery
KR20120136381A (en) Positive-electrode active material for lithium ion battery, positive electrode for lithium battery, and lithium ion battery
KR101092400B1 (en) Method For Preparing Lithium manganese oxide And Lithium manganese metal oxide With Spinel And Nanostructure
WO2017119451A1 (en) Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
JP2012216476A (en) Method for producing lithium transition metal compound
JP2019023148A (en) Method for producing transition metal hydroxide particles, method for producing lithium transition metal composite oxide, method for producing positive electrode for lithium secondary battery, method for producing lithium secondary battery, and transition metal hydroxide particles
JP2017202971A (en) Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6970368B2 (en) Lithium compound powder, a method for producing this lithium compound powder, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6351524B2 (en) Spinel crystal structure LiaMxMnyO4 powder and method for producing the same
JP7313112B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2019021426A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP2019021424A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP2012190648A (en) Lithium transition metal-based compound manufacturing method
JP7532880B2 (en) Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250