JP7446596B2 - Method for producing lithium metal composite oxide powder - Google Patents

Method for producing lithium metal composite oxide powder Download PDF

Info

Publication number
JP7446596B2
JP7446596B2 JP2019058988A JP2019058988A JP7446596B2 JP 7446596 B2 JP7446596 B2 JP 7446596B2 JP 2019058988 A JP2019058988 A JP 2019058988A JP 2019058988 A JP2019058988 A JP 2019058988A JP 7446596 B2 JP7446596 B2 JP 7446596B2
Authority
JP
Japan
Prior art keywords
composite oxide
metal composite
lithium metal
lithium
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019058988A
Other languages
Japanese (ja)
Other versions
JP2020158339A (en
Inventor
宏隆 曽根
周平 吉田
裕輔 山本
尚 杉江
隆行 渡邉
学 田中
拓也 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019058988A priority Critical patent/JP7446596B2/en
Publication of JP2020158339A publication Critical patent/JP2020158339A/en
Application granted granted Critical
Publication of JP7446596B2 publication Critical patent/JP7446596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム元素、チタン元素、及び、酸素元素を含むリチウム金属複合酸化物粉末、その製造方法、並びにリチウム金属複合酸化物粉末を用いた二次電池及びその製造方法に関する。 The present invention relates to a lithium metal composite oxide powder containing lithium element, titanium element, and oxygen element, a method for producing the same, a secondary battery using the lithium metal composite oxide powder, and a method for producing the same.

リチウム元素、チタン元素及び酸素元素を含むリチウム金属複合酸化物は、リチウムイオン二次電池や全固体電池、リチウムイオンキャパシタ等の二次電池用の負極活物質として使用できることが知られている。
例えば、特許文献1及び特許文献2には、スピネル型のLiTi12、ラムスデライト型のLiTi、ラムスデライト型のLiTi等のリチウム金属複合酸化物が紹介されている。また、特許文献1にはこれらのリチウム金属複合酸化物がリチウムイオン二次電池に用いられる旨が紹介され、特許文献2には、それに加えて、当該リチウム金属複合酸化物がリチウムイオンキャパシタに用いられる旨も紹介されている。
更に、特許文献1及び特許文献2には、上記のリチウム金属複合酸化物のうちラムスデライト型のものはスピネル型のものに比べて理論容量が大きい旨が紹介されている。
It is known that a lithium metal composite oxide containing a lithium element, a titanium element, and an oxygen element can be used as a negative electrode active material for secondary batteries such as lithium ion secondary batteries, all-solid-state batteries, and lithium ion capacitors.
For example, Patent Document 1 and Patent Document 2 introduce lithium metal composite oxides such as spinel-type Li 4 Ti 5 O 12 , ramsdellite-type LiTi 2 O 4 , and ramsdellite-type Li 2 Ti 3 O 7 . has been done. Furthermore, Patent Document 1 introduces that these lithium metal composite oxides are used for lithium ion secondary batteries, and Patent Document 2 also introduces that the lithium metal composite oxides are used for lithium ion capacitors. It is also introduced that it can be done.
Further, Patent Document 1 and Patent Document 2 introduce that among the above-mentioned lithium metal composite oxides, the ramsdellite type has a larger theoretical capacity than the spinel type.

特開2010-267462号公報Japanese Patent Application Publication No. 2010-267462 特開2017-48077号公報JP 2017-48077 Publication

特許文献1及び特許文献2等に紹介されている従来の製造方法によると、種々のリチウム金属複合酸化物粉末を製造することが可能である。しかし乍ら、近年、二次電池の用途は拡大の一途をたどり、当該二次電池に用いられるリチウム金属複合酸化物粉末についても、従来のものとは異なる、新規なものが望まれている。
本発明は、かかる事情に鑑みてなされたものであり、新規なリチウム金属複合酸化物粉末を製造し得る、リチウム金属複合酸化物粉末の製造方法を提供することを目的とする。
According to the conventional manufacturing method introduced in Patent Document 1, Patent Document 2, etc., it is possible to manufacture various lithium metal composite oxide powders. However, in recent years, the uses of secondary batteries have continued to expand, and new lithium metal composite oxide powders that are different from conventional ones are desired for use in secondary batteries.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a lithium metal composite oxide powder that can produce a novel lithium metal composite oxide powder.

本発明のリチウム金属複合酸化物粉末の製造方法は、
リチウム元素、チタン元素、及び、酸素元素を含むリチウム金属複合酸化物源を導入流にて、プラズマ内に導入する工程を有する、平均粒子径がナノ水準であるリチウム金属複合酸化物粉末の製造方法である。
The method for producing lithium metal composite oxide powder of the present invention includes:
A method for producing a lithium metal composite oxide powder having an average particle size on the nano level, comprising the step of introducing a lithium metal composite oxide source containing lithium element, titanium element, and oxygen element into plasma in an introduction flow. It is.

本発明のリチウム金属複合酸化物粉末の製造方法によると、新規なリチウム金属複合酸化物粉末を製造し得る。 According to the method for producing lithium metal composite oxide powder of the present invention, a novel lithium metal composite oxide powder can be produced.

プラズマ発生装置の模式図である。FIG. 1 is a schematic diagram of a plasma generator. 実施例1のリチウム金属複合酸化物粉末のTEM像である。1 is a TEM image of the lithium metal composite oxide powder of Example 1. 実施例2のリチウム金属複合酸化物粉末のTEM像である。3 is a TEM image of the lithium metal composite oxide powder of Example 2. 実施例1及び実施例2のリチウム金属複合酸化物粉末のX線回折チャートである。1 is an X-ray diffraction chart of lithium metal composite oxide powders of Examples 1 and 2.

以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限x及び上限yをその範囲に含む。そして、これらの上限値及び下限値、並びに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらにこれらの数値範囲内から任意に選択した数値を新たな数値範囲の上限、下限の数値とすることもできる。 The best mode for carrying out the present invention will be described below. Note that, unless otherwise specified, the numerical range "x to y" described herein includes the lower limit x and the upper limit y. A numerical range can be constructed by arbitrarily combining these upper and lower limit values, as well as the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from within these numerical ranges can be used as the upper and lower limits of the new numerical range.

(リチウム金属複合酸化物粉末)
本発明のリチウム金属複合酸化物粉末の製造方法は、リチウム元素、チタン元素、及び、酸素元素を含むリチウム金属複合酸化物源を導入流にて、プラズマ内に導入する工程を有する。また、本発明のリチウム金属複合酸化物粉末の製造方法によると平均粒子径がナノ水準であるリチウム金属複合酸化物粉末を製造できる。本明細書において「平均粒子径がナノ水準である」とは、平均粒子径が1nm以上1000nm未満の範囲内であることを指すものとする。つまり本発明の製造方法で得られたリチウム金属複合酸化物粉末の平均粒子径は上記範囲内である。なお、本発明の製造方法により得られたリチウム金属複合酸化物粉末の平均粒子径がナノ水準であるか否かは、後述するように電子顕微鏡像によって確認できる。
以下、必要に応じて、本発明のリチウム金属複合酸化物粉末の製造方法で得られるリチウム金属複合酸化物粉末を、本発明のリチウム金属複合酸化物粉末と称する場合がある。また、本発明のリチウム金属複合酸化物粉末の製造方法を、単に、本発明の製造方法と称する場合がある。
本発明のリチウム金属複合酸化物粉末は多数の粒子からなる。各々の粒子は結晶子からなるものであっても良いし、幾つかの結晶子が複合化したものであっても良い。
(Lithium metal composite oxide powder)
The method for producing a lithium metal composite oxide powder of the present invention includes the step of introducing a lithium metal composite oxide source containing a lithium element, a titanium element, and an oxygen element into plasma in an introduction flow. Further, according to the method for producing a lithium metal composite oxide powder of the present invention, a lithium metal composite oxide powder having an average particle size on the nano level can be produced. As used herein, "the average particle size is on the nano level" refers to the average particle size being in the range of 1 nm or more and less than 1000 nm. That is, the average particle diameter of the lithium metal composite oxide powder obtained by the production method of the present invention is within the above range. Note that whether or not the average particle size of the lithium metal composite oxide powder obtained by the production method of the present invention is on the nano level can be confirmed by an electron microscope image as described later.
Hereinafter, the lithium metal composite oxide powder obtained by the method for producing lithium metal composite oxide powder of the present invention may be referred to as the lithium metal composite oxide powder of the present invention, if necessary. Further, the method for producing lithium metal composite oxide powder of the present invention may be simply referred to as the production method of the present invention.
The lithium metal composite oxide powder of the present invention consists of a large number of particles. Each particle may be composed of crystallites, or may be a composite of several crystallites.

以下、本発明の製造方法に沿って、本発明を説明する。 The present invention will be explained below along with the manufacturing method of the present invention.

本発明の製造方法は、リチウム元素、チタン元素、及び、酸素元素を含むリチウム金属複合酸化物源を材料とする。したがって、本発明の製造方法で製造される本発明のリチウム金属複合酸化物粉末は、リチウム金属複合酸化物源に由来するリチウム元素、チタン元素及び酸素元素を含む、粉末状のリチウム金属複合酸化物であるといえる。 The manufacturing method of the present invention uses a lithium metal composite oxide source containing lithium element, titanium element, and oxygen element as a material. Therefore, the lithium metal composite oxide powder of the present invention produced by the production method of the present invention is a powdered lithium metal composite oxide containing lithium element, titanium element, and oxygen element derived from a lithium metal composite oxide source. You can say that.

リチウム元素、チタン元素及び酸素元素を含むリチウム金属複合酸化物は、スピネル型のものとラムスデライト型のものとに大別される。
スピネル型のリチウム金属複合酸化物としては、Li4+zTi12(但し、0≦z≦3)を満足するものが例示され、このうちLiTi12が一般的である。
ラムスデライト型のリチウム金属複合酸化物としては、Li2+yTi(但し、0≦y≦3)を満足するもの及びLi1+xTi(但し、0≦x≦3)を満足するものが例示される。このうち前者としてはLiTiが一般的であり、後者としてはLiTiが一般的である。
Lithium metal composite oxides containing lithium element, titanium element, and oxygen element are broadly classified into spinel type and ramsdellite type.
Examples of spinel-type lithium metal composite oxides include those satisfying Li 4+z Ti 5 O 12 (0≦z≦3), of which Li 4 Ti 5 O 12 is common.
Ramsdellite type lithium metal composite oxides include those that satisfy Li 2+y Ti 3 O 7 (however, 0≦y≦3) and Li 1+x Ti 2 O 4 (however, 0≦x≦3). Things are exemplified. Among these, Li 2 Ti 3 O 7 is common as the former, and LiTi 2 O 4 is common as the latter.

リチウム金属複合酸化物は、リチウム元素、チタン元素及び酸素元素を含むものであれば良く、その他の金属元素を含んでも良い。当該その他の金属元素として、第1族元素、第2族元素、遷移金属及び第13族元素からなる群から選ばれる少なくとも1種を例示できる。好ましくは遷移金属であり、Cr又はFeが例示される。 The lithium metal composite oxide may contain a lithium element, a titanium element, and an oxygen element, and may also contain other metal elements. Examples of the other metal elements include at least one selected from the group consisting of Group 1 elements, Group 2 elements, transition metals, and Group 13 elements. Preferably it is a transition metal, such as Cr or Fe.

また、本発明におけるリチウム金属複合酸化物は、上記のLi4+zTi12(但し、0≦z≦3)、Li2+yTi(但し、0≦y≦3)又はLi1+xTiを基本構造とするものであるのが良く、更にその他のドープ元素を含み得る。ドープ元素としては上記のその他の金属元素が例示される。また、当該リチウム金属複合酸化物におけるTiの一部は他の遷移金属で置換されても良い。 In addition, the lithium metal composite oxide in the present invention includes the above-mentioned Li 4+z Ti 5 O 12 (however, 0≦z≦3), Li 2+y Ti 3 O 7 (however, 0≦y≦3), or Li 1+x Ti 2 It is preferable that the basic structure is O 4 and may further contain other doping elements. Examples of doping elements include the other metal elements mentioned above. Further, a part of Ti in the lithium metal composite oxide may be replaced with another transition metal.

本発明のリチウム金属複合酸化物粉末は、これら各種のリチウム金属複合酸化物の一種のみを含むものであっても良いし、二種以上を含むものであっても良い。場合によっては、二種以上のリチウム金属複合酸化物が複合化したものであっても良い。 The lithium metal composite oxide powder of the present invention may contain only one kind of these various lithium metal composite oxides, or may contain two or more kinds. In some cases, it may be a composite of two or more types of lithium metal composite oxides.

本発明のリチウム金属複合酸化物粉末は、二次電池用の負極活物質として使用することができる。その場合、本発明のリチウム金属複合酸化物粉末のみを負極活物質として使用しても良いし、本発明のリチウム金属複合酸化物粉末にその他の負極活物質を併用しても良い。本発明のリチウム金属複合酸化物粉末に併用し得るその他の負極活物質については後述する。 The lithium metal composite oxide powder of the present invention can be used as a negative electrode active material for secondary batteries. In that case, only the lithium metal composite oxide powder of the present invention may be used as the negative electrode active material, or the lithium metal composite oxide powder of the present invention may be used in combination with other negative electrode active materials. Other negative electrode active materials that can be used in combination with the lithium metal composite oxide powder of the present invention will be described later.

本発明のリチウム金属複合酸化物粉末の製造方法は、リチウム金属複合酸化物源を導入流にて、プラズマ内に導入する工程を有する。
リチウム金属複合酸化物源は、リチウム元素、チタン元素、及び、酸素ガスとなり得る酸素元素を含みさえすれば良く、粉末状の本発明のリチウム金属複合酸化物の原料となり得る原料物質又は原料混合物であれば良い。つまり、リチウム金属複合酸化物源は、上記したリチウム金属複合酸化物と同じものであっても良いし、異なるものであっても良いし、単体であっても良いし、複数の単体の混合体であっても良い。更には、リチウム金属複合酸化物源は固体状、液体状、ガス状の何れの性状であっても良いし、これらの混合物であっても良い。
The method for producing lithium metal composite oxide powder of the present invention includes the step of introducing a lithium metal composite oxide source into plasma in an introduction flow.
The lithium metal composite oxide source only needs to contain a lithium element, a titanium element, and an oxygen element that can become oxygen gas, and is a raw material or raw material mixture that can be a raw material for the powdered lithium metal composite oxide of the present invention. It's good to have. In other words, the lithium metal composite oxide source may be the same as the above-mentioned lithium metal composite oxide, it may be different, it may be a single substance, or it may be a mixture of multiple single substances. It may be. Furthermore, the lithium metal composite oxide source may be in a solid, liquid, or gaseous state, or may be a mixture thereof.

本発明の製造方法において、リチウム金属複合酸化物源は、プラズマ内に導入されるため、プラズマ内に導入し易い形状、すなわち、粉末状、液体状及び/又はガス状であるのが好ましい。 In the manufacturing method of the present invention, since the lithium metal composite oxide source is introduced into the plasma, it is preferably in a form that can be easily introduced into the plasma, that is, in the form of powder, liquid, and/or gas.

以下、必要に応じて、リチウム金属複合酸化物源に含まれるリチウム元素を有するものをLi源と称し、チタン元素を有するものをTi源と称し、酸素ガスとなり得る酸素元素を有するものをO源と称する。リチウム金属複合酸化物源の取り扱い性を考慮すると、少なくともLi源及びTi源は粉末状であるのが好ましい。Li源及びTi源は、各々単独で使用しても良いし、これらのうち二種以上を含む化合物の状態で使用しても良い。O源はLi源及びTi源の少なくとも一種とともに化合物の状態で使用しても良いし、単独でつまり酸素ガスの状態で使用しても良い。 Hereinafter, as necessary, a lithium metal composite oxide source containing a lithium element will be referred to as a Li source, a source containing a titanium element will be referred to as a Ti source, and a source containing an oxygen element that can become oxygen gas will be referred to as an O source. It is called. Considering the ease of handling the lithium metal composite oxide source, it is preferable that at least the Li source and the Ti source are in powder form. The Li source and the Ti source may each be used alone, or may be used in the form of a compound containing two or more of them. The O source may be used in the form of a compound together with at least one of the Li source and the Ti source, or may be used alone, that is, in the form of oxygen gas.

具体的には、Li源は、リチウム単体つまり金属リチウムであっても良いし、リチウム元素に加えてチタン元素及び酸素元素の一方又は両方を含む化合物であっても良い。更には、リチウム源を必須とし上記以外の元素を含む化合物であっても良い。 Specifically, the Li source may be lithium alone, that is, metallic lithium, or may be a compound containing one or both of a titanium element and an oxygen element in addition to the lithium element. Furthermore, it may be a compound that requires a lithium source and contains elements other than those mentioned above.

このようなLi源としては、リチウム単体、又は、LiCO、LiOH、LiNO、Li4/3Ti5/3、LiO、Li、LiOに代表されるリチウム化合物を例示することができる。その他、LiBr、Li、LiCl、LiF、LiH、LiI、LiN、LiN等を用いても良い。Li源は、これらの何れかを単独で用いても良いし、これらの複数を組み合わせて用いても良い。 Such Li sources include lithium alone or lithium such as Li 2 CO 3 , LiOH, LiNO 3 , Li 4/3 Ti 5/3 O 4 , Li 2 O, Li 2 O 2 , and LiO 2 . Compounds can be exemplified. In addition, LiBr, Li 2 C 2 , LiCl, LiF, LiH, LiI, LiN 3 , Li 3 N, etc. may be used. As the Li source, any one of these may be used alone, or a plurality of these may be used in combination.

Ti源もまた単体であっても良いし、上記のLi源とともに化合物を構成しても良いし、上記のO源とともに酸化物等の化合物を構成しても良いし、その他の元素とともに化合物を構成しても良い。例えばTi源は、単体で使用しても良いし、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、酢酸塩、シュウ酸塩、ハロゲン酸塩等の金属化合物の状態で使用しても良い。 The Ti source may also be a single substance, it may form a compound together with the above Li source, it may form a compound such as an oxide together with the above O source, or it may form a compound together with other elements. It may be configured. For example, Ti sources may be used alone or in the form of metal compounds such as oxides, hydroxides, carbonates, nitrates, sulfates, acetates, oxalates, and halogenates. good.

具体的には、Ti源としては、チタン単体、TiO、Ti、TiO、HTiO、HTiO、HTiO、TiC、TiOSO、Ti(SO、Ti(SO、TiCl等を例示できる。 Specifically, Ti sources include titanium alone, TiO, Ti 2 O 3 , TiO 2 , H 2 TiO 4 , H 2 TiO 3 , H 4 TiO 4 , TiC, TiOSO 4 , Ti 2 (SO 4 ) 3 , Ti(SO 4 ) 2 , TiCl 2 and the like.

リチウム金属複合酸化物源におけるLi源及びTi源の割合は、リチウム元素及びチタン元素のモル比が、目的とするリチウム金属複合酸化物における各元素のモル比に近い値となるよう設定すれば良い。 The ratio of the Li source and the Ti source in the lithium metal composite oxide source may be set so that the molar ratio of the lithium element and the titanium element is close to the molar ratio of each element in the target lithium metal composite oxide. .

但し、実施例の欄で詳しく述べるように、本発明の製造方法においては、リチウム金属複合酸化物源に含まれるリチウム元素とチタン元素とのモル比をLi:Ti=1:1とした場合と、Li:Ti=1:2とした場合とで、得られたリチウム金属複合酸化物粉末に含まれるリチウム金属複合酸化物の組成比が大きく変化した。 However, as described in detail in the Examples section, in the production method of the present invention, the molar ratio of the lithium element and the titanium element contained in the lithium metal composite oxide source is Li:Ti = 1:1. , the composition ratio of the lithium metal composite oxide contained in the obtained lithium metal composite oxide powder changed greatly between the cases where Li:Ti=1:2.

具体的には、Li:Ti=1:1とした場合には、リチウム金属複合酸化物粉末におけるスピネル型のLiTi12の含有率が非常に多くなり、Li:Ti=1:2とした場合には、リチウム金属複合酸化物粉末におけるラムスデライト型のLiTiの含有率が増大した。
このため、本発明の製造方法においては、目的とするリチウム金属複合酸化物に応じて、リチウム金属複合酸化物源に含まれるリチウム元素とチタン元素とのモル比を適宜適切に設定するのが良いと考えられる。
Specifically, when Li:Ti=1:1, the content of spinel-type Li 4 Ti 5 O 12 in the lithium metal composite oxide powder becomes very large, and Li:Ti=1:2. In this case, the content of ramsdellite type Li 2 Ti 3 O 7 in the lithium metal composite oxide powder increased.
Therefore, in the production method of the present invention, it is preferable to appropriately set the molar ratio of lithium element and titanium element contained in the lithium metal composite oxide source depending on the target lithium metal composite oxide. it is conceivable that.

例えば、目的とするリチウム金属複合酸化物粉末が、Li2+yTi(但し、0≦y≦3)を満足するラムスデライト型のリチウム金属複合酸化物を多く含むものである場合には、リチウム金属複合酸化物源は、1モルのリチウム元素に対して1モルを超えるチタン元素を含むのが好ましいと考えられる。また、この場合、リチウム金属複合酸化物源におけるリチウム元素とチタン元素のモル比の好ましい範囲としては、1:1.2~1:3、1:1.5~1:2.5、1:1.6~1:2.3、1:1.8~1:2.2、1:1.9~1:2.1の各範囲を挙げることができる。リチウム元素とチタン元素のモル比は、1:2に近い程良いと推測される。 For example, if the target lithium metal composite oxide powder contains a large amount of ramsdellite-type lithium metal composite oxide that satisfies Li 2+y Ti 3 O 7 (0≦y≦3), lithium metal It is considered preferable that the composite oxide source contains more than 1 mole of titanium element per 1 mole of lithium element. Further, in this case, the preferable range of the molar ratio of lithium element and titanium element in the lithium metal composite oxide source is 1:1.2 to 1:3, 1:1.5 to 1:2.5, 1: The ranges include 1.6 to 1:2.3, 1:1.8 to 1:2.2, and 1:1.9 to 1:2.1. It is estimated that the closer the molar ratio of lithium element to titanium element is to 1:2, the better.

また、例えば、目的とするリチウム金属複合酸化物粉末が、Li4+zTi12(但し、0≦z≦3)を満足するスピネル型のリチウム金属複合酸化物を多く含むものである場合には、リチウム金属複合酸化物源は、1モルのリチウム元素に対して2モル未満のチタン元素を含むのが好ましいと考えられる。また、この場合、リチウム金属複合酸化物源におけるリチウム元素とチタン元素のモル比の好ましい範囲としては、1:1.5~1:0.5、1:1.3~1:0.7、1:1.2~1:0.8、1:1.1~1:0.9の各範囲を挙げることができる。リチウム元素とチタン元素のモル比は、1:1に近い程良いと推測される。 For example, if the target lithium metal composite oxide powder contains a large amount of spinel-type lithium metal composite oxide that satisfies Li 4+z Ti 5 O 12 (0≦z≦3), lithium It is considered preferable that the metal composite oxide source contains less than 2 moles of titanium element per 1 mole of lithium element. In this case, the preferable range of the molar ratio of lithium element to titanium element in the lithium metal composite oxide source is 1:1.5 to 1:0.5, 1:1.3 to 1:0.7, Examples include the ranges of 1:1.2 to 1:0.8 and 1:1.1 to 1:0.9. It is assumed that the closer the molar ratio of lithium element to titanium element is to 1:1, the better.

本発明の製造方法は、プラズマ発生装置を用いて実施される。プラズマは、アーク放電、多相アーク放電、高周波電磁誘導、マイクロ波加熱放電などで発生させればよい。本発明の製造方法は、熱プラズマ法によってリチウム金属複合酸化物粉末を製造する方法と捉えることができる。 The manufacturing method of the present invention is carried out using a plasma generator. Plasma may be generated by arc discharge, multiphase arc discharge, high frequency electromagnetic induction, microwave heating discharge, or the like. The manufacturing method of the present invention can be regarded as a method of manufacturing lithium metal composite oxide powder by a thermal plasma method.

高周波電磁誘導式のプラズマ発生装置の場合、その周波数は、例えば0.5~400MHzの範囲内、好ましくは1~80MHzの範囲内とすればよい。プラズマ出力は、例えば3~300kWの範囲内、好ましくは5~100kWの範囲内とすればよい。プラズマ発生装置内の圧力は適宜設定すればよく、例えば10kPa~大気圧の範囲内を例示できる。プラズマ出力やプラズマ発生装置内の圧力を変動させることで、本発明のリチウム金属複合酸化物粉末の平均粒子径を変化させることができる。例えば、プラズマ出力を増加することで、本発明のリチウム金属複合酸化物粉末の平均粒子径を小さくすることができる。 In the case of a high frequency electromagnetic induction type plasma generator, the frequency may be, for example, within the range of 0.5 to 400 MHz, preferably within the range of 1 to 80 MHz. The plasma output may be, for example, within the range of 3 to 300 kW, preferably within the range of 5 to 100 kW. The pressure within the plasma generator may be set appropriately, and can be, for example, within a range of 10 kPa to atmospheric pressure. The average particle size of the lithium metal composite oxide powder of the present invention can be changed by varying the plasma output and the pressure within the plasma generator. For example, by increasing the plasma output, the average particle size of the lithium metal composite oxide powder of the present invention can be reduced.

導入流はプラズマへ向かう気体の流動によって発生する。導入流としては、プラズマの安定性を考慮して、プラズマ下で使用し得る気体を主流とするのが好ましい。導入流を構成する気体、つまり、導入ガスとしては、ヘリウム、アルゴンなどの希ガスが好ましい。導入ガスの流量としては、20~120L/分を例示できる。 The inlet flow is generated by the flow of gas toward the plasma. Considering the stability of the plasma, it is preferable that the main flow is a gas that can be used under the plasma. The gas constituting the introduced flow, that is, the introduced gas, is preferably a rare gas such as helium or argon. An example of the flow rate of the introduced gas is 20 to 120 L/min.

プラズマ発生装置の種類によるが、本発明の製造方法においては、導入ガスとして、上記したLi源、Ti源及びO源を運搬するキャリヤーガス、キャリヤーガスとは別にコイル内に導入されるインナーガス、及び、プラズマ発生部位を不活性雰囲気下にするためのプロセスガスを採用するのが好ましい。 Although it depends on the type of plasma generator, in the manufacturing method of the present invention, the introduced gas includes a carrier gas that carries the above-mentioned Li source, Ti source, and O source, an inner gas that is introduced into the coil separately from the carrier gas, Further, it is preferable to employ a process gas for placing the plasma generation site under an inert atmosphere.

キャリヤーガスの流量としては、1~10L/分を例示できる。インナーガスの流量としては、1~10L/分を例示できる。プロセスガスの流量としては、15~100L/分を例示できる。 An example of the flow rate of the carrier gas is 1 to 10 L/min. An example of the flow rate of the inner gas is 1 to 10 L/min. An example of the flow rate of the process gas is 15 to 100 L/min.

導入ガスは酸素ガスを含んでも良いし、含まなくても良い。導入ガスが酸素ガスを含む場合、当該酸素ガスをO源とみなすことができる。なお、本発明の製造方法におけるO源はガス状に限定されず、例えばLi源及び/又はTi源ともに化合物を構成していても良い。この場合には、導入ガスは酸素ガスを含まなくても良い。 The introduced gas may or may not contain oxygen gas. When the introduced gas contains oxygen gas, the oxygen gas can be considered as an O source. Note that the O source in the manufacturing method of the present invention is not limited to a gaseous one, and for example, both the Li source and/or the Ti source may constitute a compound. In this case, the introduced gas does not need to contain oxygen gas.

酸素ガスを含む導入ガスを用いる場合、導入ガスの酸素濃度の好ましい範囲としては、導入ガス、例えば上記したキャリヤーガス、インナーガス、及び、プロセスガス等、導入流を構成するガスの体積の総和を100体積%としたときに、0.5~10体積%、2~6体積%、3~5体積%、及び3.5~4.5体積%の各範囲を挙げ得る。 When using an introduced gas containing oxygen gas, the preferred range of the oxygen concentration of the introduced gas is the sum of the volumes of the introduced gases, such as the carrier gas, inner gas, process gas, etc. that make up the introduced flow. When 100% by volume, the following ranges may be mentioned: 0.5 to 10% by volume, 2 to 6% by volume, 3 to 5% by volume, and 3.5 to 4.5% by volume.

本発明のリチウム金属複合酸化物粉末の生成機構について考察する。プラズマ内の温度は、8000~20000℃程度である。プラズマ内に導入されたリチウム金属複合酸化物源は、プラズマ内で気化又は分解状態となると考えられる。そして、当該リチウム金属複合酸化物源に含まれるリチウム元素、チタン元素及び酸素元素は、プラズマ内において、各々高温のガスとして存在すると考えられる。 The production mechanism of the lithium metal composite oxide powder of the present invention will be discussed. The temperature inside the plasma is about 8000 to 20000°C. The lithium metal composite oxide source introduced into the plasma is considered to be in a vaporized or decomposed state within the plasma. It is believed that the lithium element, titanium element, and oxygen element contained in the lithium metal composite oxide source each exist as high-temperature gases in the plasma.

ここで、プラズマ内の上記各元素は、導入ガスとともに流動したり、自重で落下したりすることで、プラズマ外に移動する。このとき、上記各元素がおかれる雰囲気の温度は、急激に降下し、各元素を含むガスの温度もまた急激に降下する。当該温度降下に伴って、上記の各元素は気相→液相→固相の順に相転移する。
リチウム、チタン及びこれらの化合物のうち、金属チタンの核生成温度は最も高く、2400℃程度である。このため、本発明の製造方法においては、先ず金属チタンが核生成し、次いで、当該金属チタンの結晶核にリチウムが酸化を伴いながら凝縮することで、目的物であるリチウム金属複合酸化物、例えば上記したLiTi12やLiTiが生成すると推測される。
Here, each of the above elements within the plasma moves out of the plasma by flowing together with the introduced gas or falling under its own weight. At this time, the temperature of the atmosphere in which each element is placed drops rapidly, and the temperature of the gas containing each element also drops rapidly. As the temperature decreases, each of the above elements undergoes a phase transition in the order of gas phase → liquid phase → solid phase.
Among lithium, titanium, and their compounds, metallic titanium has the highest nucleation temperature, about 2400°C. Therefore, in the production method of the present invention, metal titanium is first nucleated, and then lithium is condensed on the crystal nuclei of the metal titanium with oxidation, thereby producing the target lithium metal composite oxide, e.g. It is estimated that the above-mentioned Li 4 Ti 5 O 12 and Li 2 Ti 3 O 7 are generated.

本発明の製造方法によると、ナノ水準のリチウム金属複合酸化物粉末が得られる。これは、主として、本発明の製造方法が熱プラズマ法を用いることに因ると考えられる。
つまり、本発明の製造方法において、リチウム金属複合酸化物の合成に用いるプラズマは非常に高温であり、また、高温の範囲もプラズマ内のみであるから、例えば電気炉等に比べて非常に狭い範囲である。このため、プラズマに導入されたリチウム金属複合酸化物源は、プラズマを通過した後に、急激に冷却されてリチウム金属複合酸化物となる。このような急激な冷却に因り、リチウム金属複合酸化物の結晶成長は抑制されるため、本発明の製造方法で得られるリチウム金属複合酸化物粉末は、平均粒子径がナノ水準という非常に微細なリチウム金属複合酸化物粒子で構成される。
プラズマ内で高温に加熱されたリチウム金属複合酸化物源を急激に冷却するためには、導入流の流量を適宜コントロールするのが合理的である。当該導入流の流量の好ましい範囲は、20L/分以上、30L/分以上、50L/分以上、60L/分以上の各範囲を例示できる。当該好ましい流量に上限はないが、強いて挙げるとすれば、200L/分以下とするのが合理的である。
According to the manufacturing method of the present invention, nano-level lithium metal composite oxide powder can be obtained. This is considered to be mainly due to the fact that the manufacturing method of the present invention uses a thermal plasma method.
In other words, in the production method of the present invention, the plasma used to synthesize the lithium metal composite oxide has a very high temperature, and the high temperature range is only within the plasma, so the range is very narrow compared to, for example, an electric furnace. It is. Therefore, after passing through the plasma, the lithium metal composite oxide source introduced into the plasma is rapidly cooled and becomes a lithium metal composite oxide. Due to such rapid cooling, crystal growth of the lithium metal composite oxide is suppressed, so the lithium metal composite oxide powder obtained by the production method of the present invention has extremely fine particles with an average particle size on the nano level. Composed of lithium metal composite oxide particles.
In order to rapidly cool down the lithium metal composite oxide source heated to a high temperature in the plasma, it is reasonable to appropriately control the flow rate of the introduced flow. Preferred ranges of the flow rate of the introduced flow include, for example, 20 L/min or more, 30 L/min or more, 50 L/min or more, and 60 L/min or more. There is no upper limit to the preferable flow rate, but if I had to choose one, it would be reasonable to set it to 200 L/min or less.

本発明の製造方法で得られるリチウム金属複合酸化物粉末は、多数のリチウム金属複合酸化物粒子で構成される。本発明のリチウム金属複合酸化物粉末を構成するリチウム金属複合酸化物粒子(以下、本発明の粒子という。)は、上記したように、高温状態から室温付近にまで、急激に冷却されるため、結晶成長する期間がほとんどない。そのため、本発明の粒子は、一般的な製造方法で得られるような、特定の軸が成長した針状結晶となることが妨げられている。その結果、本発明のリチウム金属複合酸化物粉末に含まれる本発明の粒子は、各軸の結晶成長速度にムラの無い形状となっている。 The lithium metal composite oxide powder obtained by the production method of the present invention is composed of a large number of lithium metal composite oxide particles. As described above, the lithium metal composite oxide particles constituting the lithium metal composite oxide powder of the present invention (hereinafter referred to as the particles of the present invention) are rapidly cooled from a high temperature state to around room temperature. There is almost no period for crystal growth. Therefore, the particles of the present invention are prevented from becoming acicular crystals with specific axes grown, which can be obtained by common manufacturing methods. As a result, the particles of the present invention contained in the lithium metal composite oxide powder of the present invention have a shape with uniform crystal growth rate on each axis.

本発明のリチウム金属複合酸化物粉末を構成する本発明の粒子は、その結晶子径が0.1nm~150nmの範囲内にあるのが好ましく、1nm~100nmの範囲にあるのがより好ましく、50nm~90nmの範囲にあるのがさらに好ましく、60~80nmの範囲にあるのがなお好ましい。本発明の粒子の結晶子径は、X線回折法で得られた回折ピークの半値幅と回折角を基にシェラーの式を用いて算出できる。なお、当該回折ピークが複数である場合には、各々の回折ピークを基に複数の結晶子径を算出し、その算術平均値を本発明の粒子の結晶子径とみなしても良い。 The particles of the present invention constituting the lithium metal composite oxide powder of the present invention preferably have a crystallite diameter within the range of 0.1 nm to 150 nm, more preferably within the range of 1 nm to 100 nm, and preferably 50 nm to 100 nm. It is more preferably in the range of ~90 nm, and even more preferably in the range of 60 to 80 nm. The crystallite diameter of the particles of the present invention can be calculated using the Scherrer equation based on the half-width of the diffraction peak and the diffraction angle obtained by X-ray diffraction. In addition, when the said diffraction peak is plural, a plurality of crystallite diameters may be calculated based on each diffraction peak, and the arithmetic mean value may be regarded as the crystallite diameter of the particle|grains of this invention.

本発明のリチウム金属複合酸化物粉末は、その平均粒子径がナノ水準すなわち1nm以上1000nm未満の範囲内である。当該平均粒子径の好ましい範囲としては、1nm以上400nm以下、1nm以上200nm以下、10nm以上100nm未満、15nm以上90nm以下、20nm以上80nm以下、30nm以上70nm以下、40nm以上60nm以下の各範囲を挙げることができる。
なお、ここでの平均粒子径とは、本発明のリチウム金属複合酸化物粉末を走査型電子顕微鏡や透過型電子顕微鏡などの電子顕微鏡で観察した場合における、観察された粒子像の外接円の直径の算術平均値を意味する。例えば、四角形の粒子像が観察されたら、その外接円を作成し、該外接円の直径を測定する。そのようにして、例えば200個の粒子につき、各外接円の直径を測定して、その算術平均値を算出する。この値が平均粒子径である。
The lithium metal composite oxide powder of the present invention has an average particle diameter in the nano-level, that is, in the range of 1 nm or more and less than 1000 nm. Preferred ranges of the average particle diameter include the following ranges: 1 nm to 400 nm, 1 nm to 200 nm, 10 nm to less than 100 nm, 15 nm to 90 nm, 20 nm to 80 nm, 30 nm to 70 nm, and 40 nm to 60 nm. Can be done.
Note that the average particle diameter here refers to the diameter of the circumscribed circle of the observed particle image when the lithium metal composite oxide powder of the present invention is observed with an electron microscope such as a scanning electron microscope or a transmission electron microscope. means the arithmetic mean value of For example, when a rectangular particle image is observed, its circumscribed circle is created and the diameter of the circumscribed circle is measured. In this way, the diameter of each circumscribed circle is measured for, for example, 200 particles, and the arithmetic mean value is calculated. This value is the average particle diameter.

本発明の製造方法において、リチウム金属複合酸化物源を含むガス流の冷却速度が増加すれば、リチウム金属複合酸化物における結晶核の結晶成長が初期段階で中断されるため、より微細であり、かつ形状が均一なリチウム金属複合酸化物粒子が得られるといえる。 In the production method of the present invention, if the cooling rate of the gas flow containing the lithium metal composite oxide source is increased, the crystal growth of the crystal nuclei in the lithium metal composite oxide is interrupted at an early stage, so that the crystal nuclei become finer. It can also be said that lithium metal composite oxide particles having a uniform shape can be obtained.

したがって、より微細な本発明の粒子を含む本発明のリチウム金属複合酸化物粉末を得るためには、本発明の製造方法に、導入流がプラズマ内を通過した後の通過流を当該通過流に対向する冷却ガス流で冷却する工程を設けるのが良いと言える。 Therefore, in order to obtain the lithium metal composite oxide powder of the present invention containing finer particles of the present invention, in the production method of the present invention, the passing flow after the introduction flow passes through the plasma must be added to the passing flow. It can be said that it is better to provide a step of cooling with opposing cooling gas flows.

冷却ガス流のガスとしては、ヘリウム、アルゴンなどの希ガスや、酸素、空気を例示することができ、これらを混合して用いてもよい。上記した導入流用の導入ガスと同様に、冷却ガス流用のガスとしては酸素ガスを含まないものを用いても良いし、酸素ガスを含むものを用いても良い。
冷却ガス流の温度は室温でもよいし、室温以下でもよい。冷却ガスの流量としては、導入流よりも小さい流量であればよく、例えば1~30L/分の範囲内を例示できる。
Examples of the gas for the cooling gas flow include rare gases such as helium and argon, oxygen, and air, and a mixture of these may be used. Similar to the introduction gas for the introduction flow described above, the gas for the cooling gas flow may be one that does not contain oxygen gas or one that contains oxygen gas.
The temperature of the cooling gas stream may be at room temperature or below room temperature. The flow rate of the cooling gas may be any flow rate smaller than the introduced flow, for example, within the range of 1 to 30 L/min.

なお、微細な本発明の粒子で構成される本発明のリチウム金属複合酸化物粉末が電池の負極活物質として使用された場合、例えば、電池の反応抵抗を低減できる、高速の充放電でも十分な容量を示すことができるなどの効果が期待される。 In addition, when the lithium metal composite oxide powder of the present invention composed of the fine particles of the present invention is used as a negative electrode active material of a battery, for example, high-speed charging and discharging is sufficient to reduce the reaction resistance of the battery. It is expected to have effects such as being able to show capacity.

本発明のリチウム金属複合酸化物粉末は、上述したように二次電池用の負極活物質として使用可能である。以下、本発明のリチウム金属複合酸化物粉末を具備する負極を本発明の負極と呼び、本発明の負極を具備する二次電池を本発明の二次電池と呼ぶ。 The lithium metal composite oxide powder of the present invention can be used as a negative electrode active material for secondary batteries as described above. Hereinafter, the negative electrode comprising the lithium metal composite oxide powder of the present invention will be referred to as the negative electrode of the present invention, and the secondary battery comprising the negative electrode of the present invention will be referred to as the secondary battery of the present invention.

(二次電池)
〔負極〕
本発明の二次電池は、負極、正極、並びに、電解液又は固体電解質、及び必要に応じてセパレータを具備する。このうち負極は、集電体と、集電体の表面に形成されている負極活物質層とを有する。
(Secondary battery)
[Negative electrode]
The secondary battery of the present invention includes a negative electrode, a positive electrode, an electrolytic solution or a solid electrolyte, and, if necessary, a separator. Among these, the negative electrode includes a current collector and a negative electrode active material layer formed on the surface of the current collector.

負極活物質としては、既述したとおり、本発明のリチウム金属複合酸化物粉末を用いる。本発明の二次電池における負極活物質層は、本発明のリチウム金属複合酸化物粉末以外にも、他の公知の負極活物質、結着剤、導電助剤、その他の添加剤を含有し得る。 As described above, the lithium metal composite oxide powder of the present invention is used as the negative electrode active material. The negative electrode active material layer in the secondary battery of the present invention may contain other known negative electrode active materials, binders, conductive aids, and other additives in addition to the lithium metal composite oxide powder of the present invention. .

他の公知の負極活物質としては、電荷担体(例えば充放電に寄与するリチウムイオン)を吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを例示することができる。 Other known negative electrode active materials include carbon-based materials that can insert and release charge carriers (for example, lithium ions that contribute to charging and discharging), elements that can be alloyed with lithium, and compounds that have elements that can be alloyed with lithium. , or a polymer material.

具体的には、炭素系材料としては、難黒鉛化性炭素、黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。
リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、Si又はSnが好ましい。
リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOを例示でき、特に、SiO(0.3≦x≦1.6、又は0.5≦x≦1.5)が好ましい。
Specifically, examples of carbon-based materials include non-graphitizable carbon, graphite, cokes, graphites, glassy carbons, fired organic polymer compounds, carbon fibers, activated carbon, and carbon blacks. Here, the term "fired organic polymer compound" refers to a material obtained by carbonizing a polymer material such as phenols or furans by firing it at an appropriate temperature.
Specific examples of elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, and Si. , Ge, Sn, Pb, Sb, and Bi, with Si or Sn being particularly preferred.
Specific examples of compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi2 , CrSi2 , Cu5Si , FeSi2 , MnSi2, NbSi2 , TaSi2 , VSi2 , WSi2 , ZnSi2 , SiC, Si3N4 , Si2N2O , SiOv (0 < v ≦2), SnO w (0<w≦2), SnSiO 3 , LiSiO or LiSnO, particularly SiO x (0.3≦x≦1.6, or 0.5≦x≦1.5). is preferred.

本発明のリチウム金属複合酸化物粉末に対する上記した他の公知の負極活物質の量は特に問わないが、負極活物質全体に対して50質量%以下とするのが好ましく、30質量%以下とするのがより好ましく、20質量%以下とするのが更に好ましく、10質量%以下とするのが特に好ましい。
また、負極活物質層全体を100質量%としたときの負極活物質全体の量の好ましい範囲として、30~100質量%、40~90質量%、50~80質量%を例示できる。その他、50~99質量%、60~98質量%、70~97質量%を例示することもできる。
The amount of the above-mentioned other known negative electrode active materials in the lithium metal composite oxide powder of the present invention is not particularly limited, but it is preferably 50% by mass or less, and 30% by mass or less based on the entire negative electrode active material. The content is more preferably 20% by mass or less, even more preferably 10% by mass or less.
Further, when the entire negative electrode active material layer is taken as 100% by mass, the preferable range of the amount of the entire negative electrode active material is 30 to 100% by mass, 40 to 90% by mass, and 50 to 80% by mass. Other examples include 50 to 99% by mass, 60 to 98% by mass, and 70 to 97% by mass.

結着剤は、負極活物質や導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。 The binder plays a role of binding the negative electrode active material and the conductive additive to the surface of the current collector. As a binder, fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, poly( Examples include acrylic resins such as meth)acrylic acid, styrene-butadiene rubber, and carboxymethyl cellulose. These binders may be used alone or in combination.

結着剤の配合量は特に限定されないが、あえて負極活物質層における結着剤の配合量を挙げると、0.5~10質量%の範囲内が好ましく、1~7質量%の範囲内がより好ましく、2~5質量%の範囲内が特に好ましい。結着剤の配合量が少なすぎると負極活物質層の成形性が低下するおそれがある。また、結着剤の配合量が多すぎると、負極活物質層における負極活物質の量が相対的に減少するため、好ましくない。 The amount of the binder is not particularly limited, but the amount of the binder in the negative electrode active material layer is preferably in the range of 0.5 to 10% by mass, and preferably in the range of 1 to 7% by mass. More preferably, the amount is in the range of 2 to 5% by mass. If the blending amount of the binder is too small, the moldability of the negative electrode active material layer may deteriorate. Furthermore, if the amount of the binder is too large, the amount of the negative electrode active material in the negative electrode active material layer will be relatively reduced, which is not preferable.

導電助剤は化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、及び各種金属粒子等が例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック等が例示される。これらの導電助剤を単独または二種以上組み合わせて負極活物質層に添加することができる。 The conductive agent may be any chemically inert electronic high conductor, and examples thereof include carbonaceous fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles. . Examples of carbon black include acetylene black, Ketjen black (registered trademark), furnace black, and channel black. These conductive aids can be added to the negative electrode active material layer singly or in combination of two or more.

導電助剤の形状は特に制限されないが、その役割からみて、導電助剤の平均粒子径は小さいほうが好ましい。導電助剤の好ましい平均粒子径として10μm以下が例示され、より好ましい平均粒子径として0.01~1μmの範囲が例示される。 Although the shape of the conductive aid is not particularly limited, in view of its role, it is preferable that the average particle diameter of the conductive aid is small. A preferable average particle size of the conductive additive is 10 μm or less, and a more preferable average particle size is from 0.01 to 1 μm.

導電助剤の配合量は特に限定されないが、あえて負極活物質層における導電助剤の配合量を挙げると、0.5~10質量%の範囲内がよく、1~7質量%の範囲内が好ましく、2~5質量%の範囲内が特に好ましい。 Although the amount of the conductive additive is not particularly limited, the amount of the conductive agent in the negative electrode active material layer is preferably within the range of 0.5 to 10% by mass, and preferably within the range of 1 to 7% by mass. It is preferably in the range of 2 to 5% by weight, particularly preferably.

導電助剤及び結着剤以外の分散剤などの添加剤は、公知のものを採用することができる。 Known additives such as a dispersant other than the conductive aid and the binder can be used.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 The current collector is a chemically inert electronic high conductor that allows current to continue flowing through the electrodes during discharging or charging of the lithium ion secondary battery. The current collector may be at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel. An example is a metal material. The current collector may be coated with a known protective layer. A current collector whose surface has been treated by a known method may be used as the current collector.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, sheet, film, wire, rod, mesh, or the like. Therefore, as the current collector, for example, metal foil such as copper foil, nickel foil, aluminum foil, or stainless steel foil can be suitably used. When the current collector is in the form of a foil, sheet, or film, the thickness is preferably within the range of 1 μm to 100 μm.

負極を製造するためには、上記のリチウム金属複合酸化物粉末を必要に応じてその他の材料及び溶剤と混合し、得られた負極活物質層用組成物を上記の集電体に塗布すれば良い。
溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。溶剤の使用量は、負極活物質層用組成物がスラリー状になる程度の量であるのが好ましい。
In order to manufacture a negative electrode, the above lithium metal composite oxide powder is mixed with other materials and solvents as necessary, and the obtained negative electrode active material layer composition is applied to the above current collector. good.
Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. The amount of solvent used is preferably such that the negative electrode active material layer composition becomes a slurry.

負極活物質層用組成物を集電体に塗布するには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。 In order to apply the negative electrode active material layer composition to the current collector, conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, curtain coating, etc. may be used. .

〔その他の電池構成要素〕
正極は、集電体と、集電体の表面に形成されている正極活物質層を有する。集電体については、負極の欄で説明したものを適宜適切に採用すれば良い。正極活物質層は正極活物質、並びに必要に応じて導電助剤、結着剤、添加剤等を含む。
[Other battery components]
The positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector. As for the current collector, those described in the negative electrode section may be appropriately employed. The positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive aid, a binder, an additive, and the like.

正極活物質としては、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、リチウムイオン等の電荷担体を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。 The positive electrode active material has a general formula of a layered rock salt structure: Li a Ni b Co c Mn d De Of (0.2≦a≦2, b+c+d+e=1, 0≦e<1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, Lithium composite metal oxide represented by at least one element selected from Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V (1.7≦f≦3), Li 2 MnO 3 can be mentioned. In addition, as a positive electrode active material, a metal oxide with a spinel structure such as LiMn 2 O 4 , a solid solution composed of a mixture of a metal oxide with a spinel structure and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (in the formula M is selected from at least one of Co, Ni, Mn, and Fe). Furthermore, examples of positive electrode active materials include taborite compounds represented by LiMPO 4 F ( M is a transition metal) such as LiFePO 4 F, and borate compounds represented by LiMBO 3 (M is a transition metal) such as LiFeBO 3. be able to. Any metal oxide used as a positive electrode active material may have the above compositional formula as its basic composition, and those in which the metal elements included in the basic composition are replaced with other metal elements can also be used. Further, as the positive electrode active material, a material that does not contain a charge carrier such as lithium ions may be used. For example, simple sulfur, compounds of sulfur and carbon, metal sulfides such as TiS 2 , oxides such as V 2 O 5 and MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in their chemical structures, and conjugated Conjugated materials such as acetic acid organic materials and other known materials can also be used. Furthermore, compounds having stable radicals such as nitroxide, nitronyl nitroxide, galvinoxyl, and phenoxyl may be employed as the positive electrode active material. When using a positive electrode active material that does not contain a charge carrier such as lithium, it is necessary to add the charge carrier to the positive electrode and/or the negative electrode in advance by a known method. The charge carrier may be added in an ionic state or in a nonionic state such as a metal. For example, when the charge carrier is lithium, a lithium foil may be attached to the positive electrode and/or the negative electrode to integrate them.

高容量及び耐久性などに優れる点から、正極活物質として、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物を採用することが好ましい。 Due to its high capacity and excellent durability, the general formula of the layered rock salt structure is used as a positive electrode active material: Li a Ni b Co c Mn d De Of (0.2≦a≦2, b+c+d+e=1, 0≦ e<1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, At least one element selected from Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, V (1.7≦f≦3) It is preferable to employ a lithium composite metal oxide.

上記一般式において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100の範囲であることが好ましく、20/100<b<80/100、12/100<c<70/100、10/100<d<60/100の範囲であることがより好ましく、30/100<b<70/100、15/100<c<50/100、12/100<d<50/100の範囲であることがさらに好ましい。 In the above general formula, the values of b, c, and d are not particularly limited as long as they satisfy the above conditions, but 0<b<1, 0<c<1, and 0<d<1. In addition, at least one of b, c, and d is in the range of 10/100<b<90/100, 10/100<c<90/100, and 5/100<d<70/100. Preferably, the range is 20/100<b<80/100, 12/100<c<70/100, 10/100<d<60/100, and 30/100<b<70/100. More preferably, the range is 15/100<c<50/100 and 12/100<d<50/100.

a、e、fについては、上記一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1をそれぞれ例示することができる。 For a, e, and f, any numerical value within the range specified by the above general formula may be used, preferably 0.5≦a≦1.5, 0≦e<0.2, 1.8≦f≦2 .5, more preferably 0.8≦a≦1.3, 0≦e<0.1, and 1.9≦f≦2.1.

高容量及び耐久性などに優れる点から、正極活物質として、スピネル構造のLiMn2―y(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び、Niなどの遷移金属元素から選ばれる少なくとも1種の金属元素から選択される。0<x≦2.2、0≦y≦1)を例示できる。xの値の範囲としては、0.5≦x≦1.8、0.7≦x≦1.5、0.9≦x≦1.2を例示でき、yの値の範囲としては、0≦y≦0.8、0≦y≦0.6を例示できる。具体的なスピネル構造の化合物として、LiMn、LiMn1.5Ni0.5を例示できる。 Li x Mn 2-y A y O 4 (A is Ca, Mg, S, Si, Na, K, Al, P, Ga , Ge, and at least one metal element selected from transition metal elements such as Ni (0<x≦2.2, 0≦y≦1). Examples of the range of the value of x include 0.5≦x≦1.8, 0.7≦x≦1.5, and 0.9≦x≦1.2, and the range of the value of y is 0. Examples include ≦y≦0.8 and 0≦y≦0.6. Specific examples of compounds having a spinel structure include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .

具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。他の具体的な正極活物質として、LiMnO-LiCoOを例示できる。 Specific examples of positive electrode active materials include LiFePO 4 , Li 2 FeSiO 4 , LiCoPO 4 , Li 2 CoPO 4 , Li 2 MnPO 4 , Li 2 MnSiO 4 , and Li 2 CoPO 4 F. Li 2 MnO 3 --LiCoO 2 can be exemplified as another specific positive electrode active material.

正極活物質としては、以上のものの一種以上を使用することができる。
正極に用いる導電助剤、結着剤、その他の添加剤については、負極の欄で説明したものを同様の配合割合で適宜適切に採用すれば良い。
As the positive electrode active material, one or more of the above materials can be used.
As for the conductive additive, binder, and other additives used in the positive electrode, those explained in the negative electrode section may be suitably employed in the same proportions.

電解液は、非水溶媒と当該非水溶媒に溶解されたリチウム塩とを含む。
非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。
電解液には、これらの非水溶媒を単独で用いてもよいし、又は、複数を併用してもよい。
The electrolytic solution includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
As the non-aqueous solvent, cyclic carbonates, cyclic esters, chain carbonates, chain esters, ethers, etc. can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethylmethyl carbonate, and examples of chain esters include propionic acid alkyl esters, malonic acid dialkyl esters, acetic acid alkyl esters, and the like. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of the hydrogens in the chemical structure of the above-mentioned specific solvents are replaced with fluorine may be used.
The electrolytic solution may use one of these nonaqueous solvents, or a plurality of them may be used in combination.

電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。
電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。
Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN(CF 3 SO 2 ) 2 .
As the electrolyte, 0.5 mol/L to 1.7 mol of lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added to a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, or diethyl carbonate. An example is a solution in which the compound is dissolved at a concentration of about /L.

本発明の二次電池は、必要に応じて、セパレータを備え得る。
セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。
The secondary battery of the present invention may include a separator, if necessary.
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to contact between the two electrodes. Separators include synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile, polysaccharides such as cellulose and amylose, natural materials such as fibroin, keratin, lignin, and suberin. Examples include porous bodies, nonwoven fabrics, woven fabrics, etc. using one or more electrically insulating materials such as polymers and ceramics. Further, the separator may have a multilayer structure.

本発明の二次電池は、固体電解質を有する全固体電池であっても良い。固体電解質としては、有機固体電解質及び無機固体電解質の何れを用いても良い。 The secondary battery of the present invention may be an all-solid battery having a solid electrolyte. As the solid electrolyte, either an organic solid electrolyte or an inorganic solid electrolyte may be used.

有機固体電解質としては公知のものを用いることができる。また、有機固体電解質のポリマーは特に限定されず、例えば、ポリエーテル、ポリエステル、ポリアミン又はポリスルフィド等のポリマーを一種又は複数種有するものを使用することができる。複数種のポリマーを併用する場合、ポリマー同士の少なくとも一部は共重合体であっても良い。
無機固体電解質もまた特に限定されず、各種の酸化物、硫化物、窒化物、ハロゲン化物等、例えば、LiS-P、LiS-SiS、LiS-B、LiS-GeS、LiS-Al、LiS-SiS-LiPO、LiTi(PO、LiLaZr12、Li6.75LaZr1.75Nb0.2512、(LaLi)TiO、Li14ZnGe16、LiSiO、LiGeO、LiInBr、LiInCl、LiFeCl等の通常のものを用い得る。
As the organic solid electrolyte, known ones can be used. Further, the polymer of the organic solid electrolyte is not particularly limited, and for example, one having one or more types of polymers such as polyether, polyester, polyamine, or polysulfide can be used. When multiple types of polymers are used together, at least a portion of the polymers may be a copolymer.
The inorganic solid electrolyte is also not particularly limited, and may include various oxides, sulfides, nitrides, halides, etc., for example, Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 2 S-Al 2 S 3 , Li 2 S-SiS 2 -Li 3 PO 4 , LiTi 2 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 6. 75 La 3 Zr 1.75 Nb 0.25 O 12 , (LaLi)TiO 3 , Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 , Li 3 InBr 6 , Li 3 InCl 6 , Li 2 FeCl 4th prize A normal one can be used.

本発明の二次電池は、上記した負極及び正極を用い、定法によって製造すれば良い。例えば、本発明の二次電池がリチウムイオン二次電池であれば、上記した正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とする。
また、本発明の二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電可能であれば良い。
本発明の二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
The secondary battery of the present invention may be manufactured by a conventional method using the above-described negative electrode and positive electrode. For example, if the secondary battery of the present invention is a lithium ion secondary battery, a separator is sandwiched between the above-described positive electrode and negative electrode as necessary to form an electrode body. The electrode body may be of either a laminated type in which a positive electrode, a separator, and a negative electrode are stacked, or a wound type in which a laminated body of a positive electrode, a separator, and a negative electrode is wound. After connecting the positive electrode current collector and negative electrode current collector to the positive electrode terminal and negative electrode terminal leading to the outside using current collecting leads, etc., add electrolyte to the electrode body to form a lithium ion secondary battery. .
Further, the secondary battery of the present invention may be capable of being charged and discharged in a voltage range suitable for the type of active material contained in the electrode.
The shape of the secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, a laminate shape, etc. can be adopted.

本発明の二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両に二次電池を搭載する場合には、二次電池を複数直列に接続して組電池とするとよい。二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The secondary battery of the present invention may be mounted on a vehicle. The vehicle may be any vehicle that uses electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like. When a secondary battery is mounted on a vehicle, a plurality of secondary batteries may be connected in series to form a battery pack. Devices equipped with secondary batteries include, in addition to vehicles, various home appliances, office equipment, and industrial equipment that are powered by batteries, such as personal computers and mobile communication devices. Further, the secondary battery of the present invention can be used for power storage devices and power smoothing devices for wind power generation, solar power generation, hydroelectric power generation, and other power systems, power supply sources for power and/or auxiliary equipment of ships, etc., aircraft, spacecraft, etc. Power supply sources for motive power and/or auxiliary equipment, auxiliary power sources for vehicles that do not use electricity as a power source, power sources for mobile household robots, system backup power sources, power sources for uninterruptible power supplies, electric vehicles It may also be used in a power storage device that temporarily stores the power necessary for charging at a charging station or the like.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。なお、本発明のリチウム金属複合酸化物粉末には、不純物が含まれるものもある。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. Without departing from the gist of the present invention, the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art. Note that some of the lithium metal composite oxide powders of the present invention contain impurities.

以下に、実施例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 EXAMPLES Below, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to these Examples.

(実施例1)
図1に示すプラズマ発生装置を用いて、実施例1のリチウム金属複合酸化物粉末を製造した。図1に示すプラズマ発生装置において黒塗り矢印は冷却水を表す。
(Example 1)
The lithium metal composite oxide powder of Example 1 was manufactured using the plasma generator shown in FIG. In the plasma generator shown in FIG. 1, black arrows represent cooling water.

Li源及びO源としてLiCOを、Ti源としてTi(金属Ti)を各々準備した。LiCOとTiとを1:2のモル比で混合して混合粉体として、当該混合粉体を粉体供給器に配置した。なお、当該混合粉体におけるリチウム元素とチタン元素とのモル比、すなわち、リチウム金属複合酸化物原料におけるリチウム元素とチタン元素とのモル比は1:1であった。 Li 2 CO 3 was prepared as a Li source and an O source, and Ti (metallic Ti) was prepared as a Ti source. Li 2 CO 3 and Ti were mixed at a molar ratio of 1:2 to obtain a mixed powder, and the mixed powder was placed in a powder feeder. Note that the molar ratio of lithium element to titanium element in the mixed powder, that is, the molar ratio of lithium element to titanium element in the lithium metal composite oxide raw material was 1:1.

プラズマ発生装置内に、プロセスガスとしてアルゴンと酸素を体積比57.5:2.5で混合した混合ガスを60L/分で供給した。
その他、インナーガスとしてアルゴンを5L/分で供給し、キャリヤーガスとしてアルゴンを3L/分で供給した。電力供給装置から電力を供給し、周波数4MHzの磁場をコイルに印加して、出力20kWのプラズマを発生させた。なお、プラズマ発生装置内の圧力は大気圧とした。
このときのプラズマ発生装置における導入流の流量は、プロセスガスとインナーガスとキャリヤーガスとの和、すなわち、68L/分であった。
A mixed gas of argon and oxygen mixed at a volume ratio of 57.5:2.5 was supplied as a process gas into the plasma generator at a rate of 60 L/min.
In addition, argon was supplied as an inner gas at a rate of 5 L/min, and argon was supplied as a carrier gas at a rate of 3 L/min. Electric power was supplied from the power supply device, and a magnetic field with a frequency of 4 MHz was applied to the coil to generate plasma with an output of 20 kW. Note that the pressure inside the plasma generator was atmospheric pressure.
The flow rate of the flow introduced into the plasma generator at this time was the sum of the process gas, inner gas, and carrier gas, that is, 68 L/min.

プラズマの安定後、粉体供給器を作動させ、混合粉体を300mg/分の供給量で、キャリヤーガスとともに、プラズマ内へ導入した。プラズマ内を通過した後の通過流とともに放出された粉末を収集し、実施例1のリチウム金属複合酸化物粉末とした。 After stabilizing the plasma, the powder feeder was activated, and the mixed powder was introduced into the plasma together with the carrier gas at a feed rate of 300 mg/min. The powder released together with the flow that passed through the plasma was collected and used as the lithium metal composite oxide powder of Example 1.

なお、実施例1においては冷却ガスを使用しなかったが、既述したアルゴン等の冷却ガスを用い、導入流がプラズマ内を通過した後の通過流を当該通過流に対向する冷却ガス流で冷却する工程を実施しても良い。この場合には、粉末の冷却速度が高まり、より微細な粒子からなる粉末が得られると考えられる。 Although a cooling gas was not used in Example 1, a cooling gas such as argon as described above was used, and the passing flow after the introduced flow passed through the plasma was replaced by a cooling gas flow opposite to the passing flow. A cooling step may also be performed. In this case, it is thought that the cooling rate of the powder increases and a powder consisting of finer particles is obtained.

上記の実施例1のリチウム金属複合酸化物粉末を用いて、以下のとおり、実施例1の負極及びリチウムイオン二次電池を製造した。
負極活物質として実施例1のリチウム金属複合酸化物粉末5質量部、導電助剤としてアセチレンブラック4質量部、結着剤としてポリテトラフルオロエチレン1質量部を秤量して、メノウ乳鉢で混合し、粘土状に加工して負極活物質層用組成物を得た。集電体としてメッシュ状の銅を準備し、これに負極活物質層用組成物を圧着することで、実施例1の負極を得た。作業はすべてアルゴンガス置換された水分濃度1ppm以下のグローブボックス内で行った。
Using the lithium metal composite oxide powder of Example 1 above, a negative electrode and a lithium ion secondary battery of Example 1 were manufactured as follows.
5 parts by mass of the lithium metal composite oxide powder of Example 1 as a negative electrode active material, 4 parts by mass of acetylene black as a conductive aid, and 1 part by mass of polytetrafluoroethylene as a binder were weighed and mixed in an agate mortar, A composition for a negative electrode active material layer was obtained by processing it into a clay-like form. The negative electrode of Example 1 was obtained by preparing mesh-shaped copper as a current collector and press-bonding the negative electrode active material layer composition to this. All work was carried out in a glove box with a moisture concentration of 1 ppm or less, which was purged with argon gas.

上記の手順で作製した実施例1の負極を作用極として用い、リチウムイオン二次電池(ハーフセル)を作製した。対極は金属リチウム箔とした。
作用極及び対極、並びに両極の間に介装させるセパレータ(ヘキストセラニーズ社製ガラスフィルター及びCelgard社製「Celgard2400」)を配設して電極体とした。この電極体を電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースに、エチレンカーボネートとジエチルカーボネートとを体積比3:7で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解液を注入し、電池ケースを密閉して、実施例1のリチウムイオン二次電池を得た。
A lithium ion secondary battery (half cell) was produced using the negative electrode of Example 1 produced by the above procedure as a working electrode. The counter electrode was a metallic lithium foil.
A working electrode, a counter electrode, and a separator (a glass filter manufactured by Hoechst Celanese and "Celgard 2400" manufactured by Celgard) interposed between the two electrodes were provided to form an electrode body. This electrode body was housed in a battery case (CR2032 type coin battery member, manufactured by Hosen Co., Ltd.). A non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 3:7 was injected into the battery case, and the battery case was sealed. A lithium ion secondary battery was obtained.

(実施例2)
LiCOとTiとを1:4のモル比で混合して混合粉体としたこと以外は、実施例1と同様にして、実施例2のリチウム金属複合酸化物粉末、実施例2の負極及び実施例2のリチウムイオン二次電池を製造した。なお、実施例2のリチウム金属複合酸化物粉末の製造方法において、混合粉体におけるリチウム元素とチタン元素とのモル比、すなわち、リチウム金属複合酸化物原料におけるリチウム元素とチタン元素とのモル比は1:2であった。
(Example 2)
The lithium metal composite oxide powder of Example 2 and the lithium metal composite oxide powder of Example 2 were prepared in the same manner as in Example 1, except that Li 2 CO 3 and Ti were mixed at a molar ratio of 1:4 to obtain a mixed powder. A negative electrode and a lithium ion secondary battery of Example 2 were manufactured. In addition, in the manufacturing method of lithium metal composite oxide powder of Example 2, the molar ratio of lithium element and titanium element in the mixed powder, that is, the molar ratio of lithium element and titanium element in the lithium metal composite oxide raw material is The ratio was 1:2.

(比較例1)
比較例1は、固相法によってリチウム金属複合酸化物粉末を製造する方法である。
比較例1では、LiCOとTiとを1:2のモル比で秤量し、これらの粉末をボールミルに投入した。そして、ボールミルによる混合を約100rpmで24時間行い、混合物とした。混合物を成形した上で、アルゴンガス雰囲気下、1000℃で12時間加熱して焼成することで、焼成物である比較例1のリチウム金属複合酸化物粉末を得た。
当該比較例1のリチウム金属複合酸化物粉末と導電助剤としてのアセチレンブラックとを、質量比5:2となるように秤量して、ボールミルに投入した。そして、ボールミルによる混合を600rpmで0.5時間行い、比較例1のリチウム金属複合酸化物及びアセチレンブラックを含む比較例1の混合物を得た。
(Comparative example 1)
Comparative Example 1 is a method for producing lithium metal composite oxide powder by a solid phase method.
In Comparative Example 1, Li 2 CO 3 and Ti were weighed at a molar ratio of 1:2, and these powders were charged into a ball mill. Then, mixing was performed using a ball mill at about 100 rpm for 24 hours to obtain a mixture. The mixture was molded and then heated and fired at 1000° C. for 12 hours in an argon gas atmosphere to obtain a lithium metal composite oxide powder of Comparative Example 1, which is a fired product.
The lithium metal composite oxide powder of Comparative Example 1 and acetylene black as a conductive additive were weighed so as to have a mass ratio of 5:2, and placed in a ball mill. Then, mixing using a ball mill was performed at 600 rpm for 0.5 hours to obtain a mixture of Comparative Example 1 containing the lithium metal composite oxide of Comparative Example 1 and acetylene black.

上記した比較例1の混合物、アセチレンブラック、結着剤としてのポリテトラフルオロエチレンを乳鉢で混合して、粘土状の負極活物質層用組成物とした。当該負極活物質層用組成物において、比較例1のリチウム金属複合酸化物とアセチレンブラックとポリテトラフルオロエチレンとの質量比は5:4:1であった。
集電体としてメッシュ状の銅を準備し、これに負極活物質層用組成物を圧着して、比較例1の負極を得た。当該比較例1の負極を用い、実施例1と同様に、比較例1のリチウムイオン二次電池を製造した。
The mixture of Comparative Example 1, acetylene black, and polytetrafluoroethylene as a binder were mixed in a mortar to obtain a clay-like composition for a negative electrode active material layer. In the negative electrode active material layer composition, the mass ratio of the lithium metal composite oxide, acetylene black, and polytetrafluoroethylene of Comparative Example 1 was 5:4:1.
A mesh-shaped copper was prepared as a current collector, and the composition for a negative electrode active material layer was pressure-bonded to this to obtain a negative electrode of Comparative Example 1. A lithium ion secondary battery of Comparative Example 1 was manufactured in the same manner as Example 1 using the negative electrode of Comparative Example 1.

(評価試験1)
実施例1のリチウム金属複合酸化物粉末及び実施例2のリチウム金属複合酸化物粉末を、透過型電子顕微鏡(TEM)で観察した。実施例1のリチウム金属複合酸化物粉末のTEM像を図2に示し、実施例2のリチウム金属複合酸化物粉末のTEM像を図3に示す。
(Evaluation test 1)
The lithium metal composite oxide powder of Example 1 and the lithium metal composite oxide powder of Example 2 were observed using a transmission electron microscope (TEM). A TEM image of the lithium metal composite oxide powder of Example 1 is shown in FIG. 2, and a TEM image of the lithium metal composite oxide powder of Example 2 is shown in FIG.

図2及び図3を基に、実施例1のリチウム金属複合酸化物粉末の平均粒子径及び実施例2のリチウム金属複合酸化物粉末の平均粒子径を測定した。その結果、実施例1のリチウム金属複合酸化物粉末の平均粒子径は59nmであり、実施例2のリチウム金属複合酸化物粉末の平均粒子径は52nmであることがわかった。 Based on FIGS. 2 and 3, the average particle diameter of the lithium metal composite oxide powder of Example 1 and the average particle diameter of the lithium metal composite oxide powder of Example 2 were measured. As a result, it was found that the average particle size of the lithium metal composite oxide powder of Example 1 was 59 nm, and the average particle size of the lithium metal composite oxide powder of Example 2 was 52 nm.

なお、例えば特許文献1には、スピネル型のリチウム金属複合酸化物につき、その一次粒径は0.1μm以上0.5μm以下であるのが好ましく、二次粒径は5μm以上50μm以下であるのが好ましい旨が紹介されている。特許文献1の実施例において、スピネル型のリチウム金属複合酸化物の一次粒径は0.2~0.4μm、二次粒径は15.5~18μmであり、ラムスデライト型のリチウム金属複合酸化物の二次粒径は10.5~17μmである。
また、特許文献2には、スピネル型のLiTi12とラムスデライト型のLiTiとが混晶状態にあるリチウム金属複合酸化物につき、平均一次粒子径が1~7μmの範囲にある旨が紹介されている。
For example, Patent Document 1 states that for a spinel-type lithium metal composite oxide, the primary particle size is preferably 0.1 μm or more and 0.5 μm or less, and the secondary particle size is 5 μm or more and 50 μm or less. It is introduced that it is preferable. In the example of Patent Document 1, the primary particle size of the spinel-type lithium metal composite oxide is 0.2 to 0.4 μm, the secondary particle size is 15.5 to 18 μm, and the ramsdellite-type lithium metal composite oxide The secondary particle size of the product is 10.5-17 μm.
Further, Patent Document 2 describes a lithium metal composite oxide in which spinel-type Li 4 Ti 5 O 12 and ramsdellite-type LiTi 2 O 4 are in a mixed crystal state, and the average primary particle size is in the range of 1 to 7 μm. It is introduced that.

実施例1及び実施例2のリチウム金属複合酸化物粉末の平均粒子径は、これら従来のリチウム金属複合酸化物粉末の平均粒子径に比べて、非常に小さいといい得る。これは、特許文献1や特許文献2に紹介されているような従来のリチウム金属複合酸化物粉末の製造方法と、本発明の製造方法との違いに因るものと考えられる。 It can be said that the average particle diameters of the lithium metal composite oxide powders of Examples 1 and 2 are much smaller than the average particle diameters of these conventional lithium metal composite oxide powders. This is considered to be due to the difference between the conventional manufacturing method of lithium metal composite oxide powder as introduced in Patent Document 1 and Patent Document 2 and the manufacturing method of the present invention.

つまり、実施例1や実施例2で用いた本発明の製造方法は、熱プラズマ法を用いた製造方法である。これに対して、特許文献1及び特許文献2に紹介されているリチウム金属複合酸化物粉末の製造方法は、何れも、リチウム金属複合酸化物原料の粉末を比較的低い温度で加熱してリチウム金属複合酸化物を合成する、所謂固相法を用いたものである。 That is, the manufacturing method of the present invention used in Example 1 and Example 2 is a manufacturing method using a thermal plasma method. On the other hand, the methods for producing lithium metal composite oxide powder introduced in Patent Document 1 and Patent Document 2 both involve heating powder of lithium metal composite oxide raw material at a relatively low temperature to produce lithium metal composite oxide powder. This method uses the so-called solid-phase method to synthesize complex oxides.

固相法によると、熱プラズマ法とは異なり、リチウム金属複合酸化物原料が気化又は分解状態となる過程はない。つまり、固相法は微細なリチウム金属複合酸化物粒子が生成する端緒となる工程を備えず、その結果、当該固相法で得られるリチウム金属複合酸化物粒子は、熱プラズマ法により得られる本発明の粒子に比べて、粗大なものにしかなり得ないと推測される。実際に、上記したように、特許文献1及び特許文献2に紹介されているリチウム金属複合酸化物粉末の平均粒子径は、実施例1及び実施例2のリチウム金属複合酸化物粉末の平均粒子径に比べて格段に大きい。 According to the solid phase method, unlike the thermal plasma method, there is no process in which the lithium metal composite oxide raw material becomes vaporized or decomposed. In other words, the solid phase method does not include a step that is the beginning of producing fine lithium metal composite oxide particles, and as a result, the lithium metal composite oxide particles obtained by the solid phase method are similar to those obtained by the thermal plasma method. It is assumed that the particles can only be coarse compared to the particles of the invention. In fact, as mentioned above, the average particle diameter of the lithium metal composite oxide powder introduced in Patent Document 1 and Patent Document 2 is the average particle diameter of the lithium metal composite oxide powder of Example 1 and Example 2. significantly larger than.

この結果から、本発明の製造方法により製造された本発明のリチウム金属複合酸化物粉末が、従来のリチウム金属複合酸化物とは異なる、新規なリチウム金属複合酸化物粉末であることが裏付けられる。 This result supports that the lithium metal composite oxide powder of the present invention produced by the production method of the present invention is a novel lithium metal composite oxide powder different from conventional lithium metal composite oxides.

(評価試験2)
粉末X線回折装置にて、実施例1及び実施例2のリチウム金属複合酸化物粉末を分析した。実施例1及び実施例2のリチウム金属複合酸化物粉末のX線回折チャートを図4に示す。
(Evaluation test 2)
The lithium metal composite oxide powders of Examples 1 and 2 were analyzed using a powder X-ray diffractometer. FIG. 4 shows X-ray diffraction charts of the lithium metal composite oxide powders of Examples 1 and 2.

図4に示すように、実施例1のリチウム金属複合酸化物粉末及び実施例2のリチウム金属複合酸化物粉末は、何れも、スピネル型のLiTi12及びラムスデライト型のLiTiを含んでいた。
また、実施例2のリチウム金属複合酸化物粉末のX線回折チャートには、実施例1のリチウム金属複合酸化物粉末のX線回折チャートに比べて、ラムスデライト型のLiTiに由来するピークが多く観察された。
更に、実施例2のリチウム金属複合酸化物粉末のX線回折チャートには、実施例1のリチウム金属複合酸化物粉末のX線回折チャートではあまりみられなかった、ルチル型のTiOに由来するピークやアナターゼ型のTiOに由来するピークが多く観察された。
As shown in FIG. 4, the lithium metal composite oxide powder of Example 1 and the lithium metal composite oxide powder of Example 2 both contain spinel-type Li 4 Ti 5 O 12 and ramsdellite-type Li 2 Ti. It contained 3O7 .
Furthermore, compared to the X-ray diffraction chart of the lithium metal composite oxide powder of Example 2, the X-ray diffraction chart of the lithium metal composite oxide powder of Example 2 shows that ramsdellite-type Li 2 Ti 3 O 7 Many derived peaks were observed.
Furthermore, in the X-ray diffraction chart of the lithium metal composite oxide powder of Example 2, there was a trace of rutile-type TiO 2 derived from TiO2, which was not seen much in the X-ray diffraction chart of the lithium metal composite oxide powder of Example 1. Many peaks and peaks derived from anatase-type TiO 2 were observed.

当該X線回折チャートのピーク高さを基に、実施例1のリチウム金属複合酸化物粉末及び実施例2のリチウム金属複合酸化物粉末における各リチウム金属複合酸化物の比率を算出した。その結果、実施例1のリチウム金属複合酸化物粉末においては、スピネル型のLiTi12の含有率は90%、ラムスデライト型のLiTiの含有率は5%、及び、TiOの含有率は5%であった。また、実施例2のリチウム金属複合酸化物粉末においては、スピネル型のLiTi12の含有率は45%、ラムスデライト型のLiTiの含有率は45%、及び、TiOの含有率は10%であった。 Based on the peak heights of the X-ray diffraction chart, the ratio of each lithium metal composite oxide in the lithium metal composite oxide powder of Example 1 and the lithium metal composite oxide powder of Example 2 was calculated. As a result, in the lithium metal composite oxide powder of Example 1, the content of spinel-type Li 4 Ti 5 O 12 was 90%, the content of ramsdellite-type Li 2 Ti 3 O 7 was 5%, and , the content of TiO2 was 5%. In addition, in the lithium metal composite oxide powder of Example 2, the content of spinel-type Li 4 Ti 5 O 12 was 45%, the content of ramsdellite-type Li 2 Ti 3 O 7 was 45%, and The content of TiO2 was 10%.

これらの結果から、熱プラズマ法を用いた本発明の製造方法によると、スピネル型のリチウム金属複合酸化物だけでなくラムスデライト型のリチウム金属複合酸化物も得られることがわかる。また、リチウム金属複合酸化物源として、リチウム元素よりも多くのチタン元素を含むものを用いることで、リチウム金属複合酸化物粉末におけるラムスデライト型のリチウム金属複合酸化物の含有率を高め得ることもわかる。 These results show that not only a spinel-type lithium metal composite oxide but also a ramsdellite-type lithium metal composite oxide can be obtained by the production method of the present invention using a thermal plasma method. Furthermore, by using a lithium metal composite oxide source that contains more titanium than lithium, it is possible to increase the content of ramsdellite-type lithium metal composite oxide in the lithium metal composite oxide powder. Recognize.

ところで、スピネル型のリチウム金属複合酸化物とラムスデライト型のリチウム金属複合酸化物とは互いに相転移可能であると考えられる。例えば特許文献2には、スピネル型のLiTi12からラムスデライト型のLiTiに相転移する境界温度は925℃である旨が紹介されている。
また、ラムスデライト型のリチウム金属複合酸化物は、高温かつ上記の境界温度を下回る温度で保持されることで、ラムスデライト型からスピネル型に相転移する可能性がある。つまり、高温下でラムスデライト型に相転移したリチウム金属複合酸化物は、緩やかに冷却されると、再度ラムスデライト型からスピネル型に相転移する可能性がある。
Incidentally, it is thought that a spinel-type lithium metal composite oxide and a ramsdellite-type lithium metal composite oxide can undergo phase transition with each other. For example, Patent Document 2 introduces that the boundary temperature at which the phase transition from spinel-type Li 4 Ti 5 O 12 to ramsdellite-type LiTi 2 O 4 is 925°C.
Further, the ramsdellite type lithium metal composite oxide may undergo a phase transition from the ramsdellite type to the spinel type by being maintained at a high temperature and at a temperature lower than the above-mentioned boundary temperature. In other words, a lithium metal composite oxide that undergoes a phase transition to a ramsdellite type at high temperatures may undergo a phase transition from a ramsdellite type to a spinel type again when slowly cooled.

これに対して本発明の製造方法では、既述したように、リチウム金属複合酸化物粉末の製造時において、プラズマ内で高温に加熱されたリチウム金属複合酸化物源が急激に冷却される。このため、ラムスデライト型からスピネル型へのリチウム金属複合酸化物の相転移は生じ難く、その分だけ、リチウム金属複合酸化物の組成をコントロールし易いと考えられる。
つまり、本発明の製造方法によると、リチウム金属複合酸化物源におけるリチウム元素とチタン元素との比を適宜適切にコントロールすることで、リチウム金属複合酸化物の組成を容易にコントロールし得ると考えられる。
On the other hand, in the production method of the present invention, as described above, during production of the lithium metal composite oxide powder, the lithium metal composite oxide source heated to a high temperature in the plasma is rapidly cooled. Therefore, the phase transition of the lithium metal composite oxide from ramsdellite type to spinel type is difficult to occur, and it is considered that the composition of the lithium metal composite oxide can be easily controlled to that extent.
In other words, according to the production method of the present invention, it is considered that the composition of the lithium metal composite oxide can be easily controlled by appropriately controlling the ratio of lithium element to titanium element in the lithium metal composite oxide source. .

具体的には、本発明の製造方法によると、実施例1のようにリチウム金属複合酸化物源におけるチタンの元素比とリチウムの元素比とを同程度にすることで、その大部分がスピネル型のリチウム金属複合酸化物で構成されるリチウム金属複合酸化物粉末を得ることができる。また、実施例2のようにリチウム金属複合酸化物源におけるチタンの元素比をリチウムの元素比よりも多くすることで、ラムスデライト型のリチウム金属複合酸化物を多く含むリチウム金属複合酸化物粉末を得ることができる。 Specifically, according to the manufacturing method of the present invention, by making the elemental ratio of titanium and the elemental ratio of lithium in the lithium metal composite oxide source similar to each other as in Example 1, the majority of the lithium metal composite oxide source is spinel-type. A lithium metal composite oxide powder composed of lithium metal composite oxide can be obtained. In addition, as in Example 2, by increasing the elemental ratio of titanium in the lithium metal composite oxide source than the elemental ratio of lithium, a lithium metal composite oxide powder containing a large amount of ramsdellite type lithium metal composite oxide can be obtained. Obtainable.

また、上記した評価試験1の図2及び図3に示すように、実施例1のリチウム金属複合酸化物粉末及び実施例2のリチウム金属複合酸化物粉末は、何れも、ナノ水準の球状の粒子、及び、ナノ水準であり四角形にみえる粒子を多く含む。このうち小径かつ四角形にみえる粒子は、八面体のスピネル型のリチウム金属複合酸化物粒子であると推測され、小径かつ球状の粒子は、ラムスデライト型のリチウム金属複合酸化物粒子であると推測される。 Moreover, as shown in FIGS. 2 and 3 of the above evaluation test 1, the lithium metal composite oxide powder of Example 1 and the lithium metal composite oxide powder of Example 2 both had nano-level spherical particles. , and contains many nano-level particles that appear to be rectangular. Among these, the small diameter and square-looking particles are presumed to be octahedral spinel-type lithium metal composite oxide particles, and the small diameter and spherical particles are presumed to be ramsdellite-type lithium metal composite oxide particles. Ru.

図2及び図3に示すように、実施例1及び実施例2の製造方法により得られるリチウム金属複合酸化物粉末は、ナノ水準であり互いに独立した非常に微細な粒子で構成されている。
ここで、特許文献1及び特許文献2に紹介されている走査型電子顕微鏡像によると、固相法で得られたリチウム金属複合酸化物粉末は、粗大なリチウム金属複合酸化物粒子が多数凝集したマイクロ水準の二次粒子で構成されていると考えられる。
したがって、実施例1及び実施例2の製造方法により得られる本発明のリチウム金属複合酸化物粉末は、その平均粒子径及び外観において、従来の固相法で得られたリチウム金属複合酸化物と大きく相違するということができる。
As shown in FIGS. 2 and 3, the lithium metal composite oxide powder obtained by the manufacturing methods of Examples 1 and 2 is on the nano level and is composed of very fine particles that are independent of each other.
According to the scanning electron microscope images introduced in Patent Document 1 and Patent Document 2, the lithium metal composite oxide powder obtained by the solid phase method has a large number of coarse lithium metal composite oxide particles agglomerated. It is thought to be composed of micro-level secondary particles.
Therefore, the lithium metal composite oxide powder of the present invention obtained by the production methods of Examples 1 and 2 is significantly larger in average particle size and appearance than the lithium metal composite oxide obtained by the conventional solid phase method. It can be said that they are different.

(評価試験3)
実施例1のリチウムイオン二次電池及び比較例1のリチウムイオン二次電池に対し、室温で、1.0V-2.0V間の充放電を、電流値0.05mA、0.1mA、1mA、2mA及び5mAの順序で行う充放電サイクル試験を行った。また、実施例2のリチウムイオン二次電池については、上記の電圧での充放電を0.05mAで行う充放電試験を行った。評価試験3の結果を表1に示す。
なお、ここでの記述は、対極を正極、作用極を負極とみなしている。
(Evaluation test 3)
The lithium ion secondary battery of Example 1 and the lithium ion secondary battery of Comparative Example 1 were charged and discharged at room temperature between 1.0V and 2.0V at current values of 0.05mA, 0.1mA, 1mA, A charge/discharge cycle test was conducted in the order of 2 mA and 5 mA. Further, regarding the lithium ion secondary battery of Example 2, a charging/discharging test was conducted in which charging/discharging was performed at the above voltage at 0.05 mA. The results of evaluation test 3 are shown in Table 1.
Note that the description here assumes that the counter electrode is a positive electrode and the working electrode is a negative electrode.

Figure 0007446596000001
Figure 0007446596000001

表1に示すように、実施例1のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池に比べて大きな容量を示した。また、実施例1のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池に比べて、高い電流値でも容量の低下が少なかった。
実施例1のリチウムイオン二次電池と実施例2のリチウムイオン二次電池とを比較すると、実施例2のリチウムイオン二次電池は、電流値0.05mAにおいて、実施例1のリチウムイオン二次電池と同程度に大きな容量を示した。
これらの結果は、実施例1及び実施例2のリチウムイオン二次電池では、比較例1のリチウムイオン二次電池に比べて、負極における電池反応が効率良く行われていることを意味すると考えられる。
As shown in Table 1, the lithium ion secondary battery of Example 1 exhibited a larger capacity than the lithium ion secondary battery of Comparative Example 1. Furthermore, the lithium ion secondary battery of Example 1 showed less decrease in capacity than the lithium ion secondary battery of Comparative Example 1 even at high current values.
Comparing the lithium ion secondary battery of Example 1 and the lithium ion secondary battery of Example 2, the lithium ion secondary battery of Example 2 was found to be as good as the lithium ion secondary battery of Example 1 at a current value of 0.05 mA. It showed a capacity as large as that of a battery.
These results are considered to mean that in the lithium ion secondary batteries of Examples 1 and 2, the battery reaction at the negative electrode was performed more efficiently than in the lithium ion secondary battery of Comparative Example 1. .

実施例1及び実施例2のリチウムイオン二次電池において電池反応が効率良く行われた理由の1つとして、実施例1及び実施例2のリチウム金属複合酸化物粒子の形状を挙げることができる。上記したように、実施例1及び実施例2のリチウム金属複合酸化物粉末は、平均粒子径がナノ水準であるために、その比表面積は非常に大きい。このようなリチウム金属複合酸化物粉末を負極活物質として用いることで、負極における電池反応の反応場が非常に大きくなり、その結果、負極における電池反応が効率良く行われたと推測される。 One of the reasons why the battery reactions were carried out efficiently in the lithium ion secondary batteries of Examples 1 and 2 is the shape of the lithium metal composite oxide particles of Examples 1 and 2. As described above, since the lithium metal composite oxide powders of Examples 1 and 2 have an average particle size on the nano level, their specific surface areas are very large. It is presumed that by using such a lithium metal composite oxide powder as a negative electrode active material, the reaction field for the battery reaction at the negative electrode became very large, and as a result, the battery reaction at the negative electrode was performed efficiently.

Claims (6)

リチウム元素、チタン元素、及び、酸素元素を含むリチウム金属複合酸化物源を導入流にて、プラズマ内に導入する工程を有し、
前記リチウム金属複合酸化物源におけるリチウム元素とチタン元素のモル比が、1:1.2~1:3の範囲内である、平均粒子径がナノ水準でありリチウム元素、チタン元素及び酸素元素の関係がLi2+yTi(但し、0≦y≦3)を満足する粒子を有するリチウム金属複合酸化物粉末の製造方法。
A step of introducing a lithium metal composite oxide source containing a lithium element, a titanium element, and an oxygen element into the plasma in an introduction flow,
The molar ratio of lithium element to titanium element in the lithium metal composite oxide source is within the range of 1:1.2 to 1:3, the average particle size is on the nano level, and the lithium element, titanium element and oxygen element are contained in the lithium metal composite oxide source. A method for producing a lithium metal composite oxide powder having particles satisfying the relationship Li 2+y Ti 3 O 7 (0≦y≦3).
前記導入流が酸素ガスを含有する、請求項1に記載の製造方法。 2. The method of claim 1, wherein the inlet stream contains oxygen gas. 前記リチウム金属複合酸化物源は、リチウム化合物と金属チタンとを含む、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the lithium metal composite oxide source contains a lithium compound and titanium metal. 前記導入流の流量は20L/分以上200L/分以下の範囲内である、請求項1~3の何れか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the flow rate of the introduced flow is within a range of 20 L/min or more and 200 L/min or less. 請求項1~請求項4の何れか一項に記載のリチウム金属複合酸化物粉末の製造方法により、平均粒子径がナノ水準であるリチウム金属複合酸化物粉末を製造する工程、及び、
前記リチウム金属複合酸化物粉末を用いて負極を製造する工程を含む、負極の製造方法。
A step of producing a lithium metal composite oxide powder having an average particle size on the nano level by the method for producing a lithium metal composite oxide powder according to any one of claims 1 to 4, and
A method for producing a negative electrode, comprising the step of producing a negative electrode using the lithium metal composite oxide powder.
請求項に記載の製造方法で得られた負極を用いて二次電池を製造する工程を含む、二次電池の製造方法。 A method for manufacturing a secondary battery, comprising the step of manufacturing a secondary battery using the negative electrode obtained by the method according to claim 5 .
JP2019058988A 2019-03-26 2019-03-26 Method for producing lithium metal composite oxide powder Active JP7446596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058988A JP7446596B2 (en) 2019-03-26 2019-03-26 Method for producing lithium metal composite oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058988A JP7446596B2 (en) 2019-03-26 2019-03-26 Method for producing lithium metal composite oxide powder

Publications (2)

Publication Number Publication Date
JP2020158339A JP2020158339A (en) 2020-10-01
JP7446596B2 true JP7446596B2 (en) 2024-03-11

Family

ID=72641733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058988A Active JP7446596B2 (en) 2019-03-26 2019-03-26 Method for producing lithium metal composite oxide powder

Country Status (1)

Country Link
JP (1) JP7446596B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210328A (en) 2000-01-27 2001-08-03 Toyota Motor Corp Lithium ion secondary battery
JP2013105646A (en) 2011-11-15 2013-05-30 Seiko Epson Corp Composition for forming solid electrolyte layer, method for forming solid electrolyte layer, solid electrolyte layer, and lithium ion secondary battery
JP2016160157A (en) 2015-03-04 2016-09-05 株式会社豊田自動織機 LiaMxMnyO4 POWDER OF SPINEL CRYSTAL STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP2018035057A (en) 2016-08-29 2018-03-08 株式会社豊田自動織機 Manufacturing method of lithium metal complex oxide powder and lithium metal complex oxide powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139429A (en) * 1996-11-13 1998-05-26 Murata Mfg Co Ltd Production of lithium-titanium complex oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210328A (en) 2000-01-27 2001-08-03 Toyota Motor Corp Lithium ion secondary battery
JP2013105646A (en) 2011-11-15 2013-05-30 Seiko Epson Corp Composition for forming solid electrolyte layer, method for forming solid electrolyte layer, solid electrolyte layer, and lithium ion secondary battery
JP2016160157A (en) 2015-03-04 2016-09-05 株式会社豊田自動織機 LiaMxMnyO4 POWDER OF SPINEL CRYSTAL STRUCTURE AND METHOD FOR PRODUCING THE SAME
JP2018035057A (en) 2016-08-29 2018-03-08 株式会社豊田自動織機 Manufacturing method of lithium metal complex oxide powder and lithium metal complex oxide powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
荻原隆 他,ラムスデライト型チタン酸リチウム負極活物質の合成及び電気化学的特性,粉末および粉末冶金,60巻,1号,日本,2013年,pp.19-23

Also Published As

Publication number Publication date
JP2020158339A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6803028B2 (en) Method for manufacturing lithium metal composite oxide powder and lithium metal composite oxide powder
JP7213427B2 (en) Positive electrode active material in which aluminum is uniformly dispersed
JP6288285B2 (en) MSix (M is at least one element selected from Group 3 to 9 elements, where 1/3 ≦ x ≦ 3) containing silicon material and manufacturing method thereof
JP7215260B2 (en) Cathode active material showing layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum, zirconium and oxygen, and method for producing the same
WO2020003848A1 (en) Lithium nickel cobalt tungsten oxide having layered rock salt structure
US10135061B2 (en) Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite
JP7446595B2 (en) Method for producing lithium metal composite oxide powder
JP2020007210A (en) Lithium nickel cobalt tungsten oxide having layered rock salt structure
WO2021010321A1 (en) Positive electrode active material in which aluminum is dispersed uniformly
JP7404886B2 (en) A positive electrode active material exhibiting a layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum and oxygen, and a method for producing the same
JP7215259B2 (en) Positive electrode active material showing layered rock salt structure and containing lithium, nickel, aluminum, tungsten and oxygen, and method for producing the same
JP7172896B2 (en) Method for producing positive electrode active material exhibiting layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum and oxygen
JP7218687B2 (en) Method for producing positive electrode active material exhibiting layered rock salt structure and containing lithium, nickel, tungsten and oxygen
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP7446596B2 (en) Method for producing lithium metal composite oxide powder
JP7074006B2 (en) Composite particles
JP7131258B2 (en) Composite particle manufacturing method
JP2020158343A (en) Method for producing lithium metal complex oxide powder
JP2021077596A (en) Charging method of lithium ion secondary battery
JP6635292B2 (en) M-containing silicon material (M is at least one element selected from Sn, Pb, Sb, Bi, In, Zn or Au) and method for producing the same
JP6443675B2 (en) Positive electrode and Li-ion secondary battery containing LiaMxMnyO4 powder having a spinel crystal structure, and methods for producing the same
JP7215261B2 (en) Positive electrode active material showing layered rock salt structure and containing lithium, nickel, cobalt, tungsten, zirconium and oxygen, and method for producing the same
JP2020053314A (en) Method of manufacturing composite particles
JP7099286B2 (en) Lithium Nickel Cobalt Molybdenum Oxide
JP2018032602A (en) Method of producing negative electrode material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7446596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150