JP6351437B2 - Proximity switch - Google Patents

Proximity switch Download PDF

Info

Publication number
JP6351437B2
JP6351437B2 JP2014169829A JP2014169829A JP6351437B2 JP 6351437 B2 JP6351437 B2 JP 6351437B2 JP 2014169829 A JP2014169829 A JP 2014169829A JP 2014169829 A JP2014169829 A JP 2014169829A JP 6351437 B2 JP6351437 B2 JP 6351437B2
Authority
JP
Japan
Prior art keywords
detection unit
frequency
detection
impedance component
proximity switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014169829A
Other languages
Japanese (ja)
Other versions
JP2016046683A (en
Inventor
克己 片倉
克己 片倉
大雅 松下
大雅 松下
龍三 野田
龍三 野田
和顕 松尾
和顕 松尾
一則 長友
一則 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
CDN Corp
Original Assignee
Lintec Corp
CDN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp, CDN Corp filed Critical Lintec Corp
Priority to JP2014169829A priority Critical patent/JP6351437B2/en
Publication of JP2016046683A publication Critical patent/JP2016046683A/en
Application granted granted Critical
Publication of JP6351437B2 publication Critical patent/JP6351437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、近接スイッチに関する。   The present invention relates to a proximity switch.

特許文献1には、ホール素子を使用した磁気近接スイッチが記載されている。   Patent Document 1 describes a magnetic proximity switch using a Hall element.

特開昭60−162313号公報JP-A-60-162313

しかしながら、ホール素子は半導体であるので高温雰囲気下では使用できなかった。このため、100℃を超える環境温度であっても、安定して対象となる近接状態の検知が可能な近接スイッチが望まれている。   However, since the Hall element is a semiconductor, it cannot be used in a high temperature atmosphere. For this reason, a proximity switch capable of stably detecting a target proximity state even at an environmental temperature exceeding 100 ° C. is desired.

本発明は、上記に鑑みてなされたものであって、広い環境温度下で動作する近接スイッチを提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a proximity switch that operates under a wide range of environmental temperatures.

上述した課題を解決し、目的を達成するために、本発明の近接スイッチは、導電性を有する磁性材料からなる検出部と、前記検出部に対する相対距離が変化し、当該相対距離に応じた磁界を前記検出部に加える被検出部と、前記検出部に加わる磁界の変化に応じた前記検出部のインピーダンス成分に基づいて、前記被検出部の近接状態を検出する検出回路と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the proximity switch of the present invention includes a detection unit made of a magnetic material having conductivity, and a magnetic field corresponding to the relative distance, with a relative distance to the detection unit changing. And a detection circuit for detecting a proximity state of the detection unit based on an impedance component of the detection unit according to a change in a magnetic field applied to the detection unit. Features.

また、本発明において、前記磁性材料は軟磁性材料であることが好ましい。   In the present invention, the magnetic material is preferably a soft magnetic material.

また、本発明において、前記軟磁性材料は、少なくとも鉄を含む合金であることが好ましい。   In the present invention, the soft magnetic material is preferably an alloy containing at least iron.

また、本発明において、前記軟磁性材料は、さらにニッケルを含むFeNi合金であることが好ましい。   In the present invention, the soft magnetic material is preferably an FeNi alloy further containing nickel.

また、本発明において、前記FeNi合金は、70質量%以上のNiを含むことが好ましい。   Moreover, in this invention, it is preferable that the said FeNi alloy contains 70 mass% or more of Ni.

また、本発明において、前記検出部と、前記被検出部とが前記近接状態にある場合、前記検出部の磁性材料は、前記被検出部の磁界により磁気飽和していることが好ましい。   Moreover, in this invention, when the said detection part and the said to-be-detected part exist in the said proximity | contact state, it is preferable that the magnetic material of the said detection part is magnetically saturated with the magnetic field of the said to-be-detected part.

また、本発明において、前記検出回路は、前記検出部に第1周波数で印加される電流での前記検出部のインピーダンス成分と、第1周波数よりも高い周波数である第2周波数で前記検出部に印加される電流での前記検出部のインピーダンス成分との比率の変化に応じて前記被検出部材の近接状態を検出していることが好ましい。   Further, in the present invention, the detection circuit supplies the detection unit with an impedance component of the detection unit at a current applied to the detection unit at a first frequency and a second frequency that is higher than the first frequency. It is preferable that the proximity state of the detected member is detected in accordance with a change in the ratio of the applied current to the impedance component of the detection unit.

本発明によれば、環境温度の影響を受けない近接スイッチを提供することができる。   According to the present invention, it is possible to provide a proximity switch that is not affected by the environmental temperature.

図1は、実施形態1に係る近接スイッチを模式的に説明する説明図である。FIG. 1 is an explanatory diagram schematically illustrating the proximity switch according to the first embodiment. 図2は、実施形態1に係る近接スイッチが適用される適用例を模式的に説明する説明図である。FIG. 2 is an explanatory diagram schematically illustrating an application example to which the proximity switch according to the first embodiment is applied. 図3は、実施形態2に係る近接スイッチを模式的に説明する説明図である。FIG. 3 is an explanatory diagram schematically illustrating the proximity switch according to the second embodiment. 図4は、実施形態3に係る近接スイッチを模式的に説明する説明図である。FIG. 4 is an explanatory diagram schematically illustrating the proximity switch according to the third embodiment. 図5は、実施形態4に係る近接スイッチを模式的に説明する説明図である。FIG. 5 is an explanatory diagram schematically illustrating the proximity switch according to the fourth embodiment. 図6は、実施形態5に係る近接スイッチを模式的に説明する説明図である。FIG. 6 is an explanatory diagram schematically illustrating the proximity switch according to the fifth embodiment.

以下、本発明に係る近接スイッチを実施するための形態(以下、実施形態という)を図面に基づいて詳細に説明する。なお、下記実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a form for implementing a proximity switch according to the present invention (hereinafter referred to as an embodiment) will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the following embodiments can be appropriately combined.

(実施形態1)
図1は、実施形態1に係る近接スイッチを模式的に説明する説明図である。図2は、実施形態1に係る近接スイッチが適用される適用例を模式的に説明する説明図である。図1に示すように、近接スイッチは、検出部1と、被検出部2と、検出回路3と、発振回路4とを備える。
(Embodiment 1)
FIG. 1 is an explanatory diagram schematically illustrating the proximity switch according to the first embodiment. FIG. 2 is an explanatory diagram schematically illustrating an application example to which the proximity switch according to the first embodiment is applied. As shown in FIG. 1, the proximity switch includes a detection unit 1, a detected unit 2, a detection circuit 3, and an oscillation circuit 4.

例えば、図2に示すように検出部1と被検出部2とは、近接した場合に、対向するように、支持部材11と支持部材12とに取り付けられる。そして、支持部材11と支持部材12とは、回動部13を中心に相対回転可能なように、接続されている。図1及び図2において、支持部材11と共に被検出部2が支持部材12の検出部1に相対的に近づく方向を接近方向S−on、支持部材11と共に被検出部2が支持部材12の検出部1に相対的に離反する方向を離反方向S−offとする。支持部材11が支持部材12に近づいてもよく、支持部材12が支持部材11に近づいてもよい。   For example, as shown in FIG. 2, the detection unit 1 and the detected unit 2 are attached to the support member 11 and the support member 12 so as to face each other when they are close to each other. The support member 11 and the support member 12 are connected so as to be relatively rotatable around the rotating portion 13. 1 and FIG. 2, the direction in which the detected portion 2 together with the support member 11 relatively approaches the detection portion 1 of the support member 12 is the approach direction S-on, and the detected portion 2 together with the support member 11 detects the support member 12 A direction that is relatively separated from the portion 1 is defined as a separation direction S-off. The support member 11 may approach the support member 12, and the support member 12 may approach the support member 11.

検出部1は、軟磁性材料の棒状、線状、板状、らせん状又は不定形状の部材である。   The detection unit 1 is a rod-shaped, linear, plate-shaped, spiral-shaped or indefinite-shaped member of a soft magnetic material.

本実施形態の検出部1の材料は、軟磁性材料であり、鉄(Fe)とニッケル(Ni)とを含むFeNi合金である。検出部1の材料は、70質量%以上85質量%以下のNiを含み、残部がFeであることが好ましい。検出部1の材料は、78質量%のNiを含み、残部がFeであることがより好ましい。Niを70質量%以上85質量%以下含むことで、検出部1は、高透磁率及び磁化特性に優れるようになる。FeNi合金は、銅(Cu)を0質量%以上6質量%以下、モリブテン(Mo)を0質量%以上6質量%以下含んでいてもよい。また、FeNi合金は、不可避の不純物を含んでもよく、軟磁性を示せば、他の元素を含んでいてもよい。軟磁性材料は、硬磁性材料よりも、外部から磁場を印加したときに磁場の方向に物質中の磁気双極子が容易に向く性質を有している。逆に、硬磁性材料、つまり永久磁石は、外部から磁場を印加したときに磁場の方向に物質中の磁気双極子が向きにくく、特定の方向に磁気双極子が揃ったままとなっているため、実施形態1の検出部1の材料は、軟磁性材料が好ましい。   The material of the detection unit 1 of the present embodiment is a soft magnetic material, and is an FeNi alloy containing iron (Fe) and nickel (Ni). It is preferable that the material of the detection part 1 contains 70 mass% or more and 85 mass% or less of Ni, and the remainder is Fe. More preferably, the material of the detection unit 1 contains 78% by mass of Ni, and the balance is Fe. By including 70 mass% or more and 85 mass% or less of Ni, the detection unit 1 becomes excellent in high magnetic permeability and magnetization characteristics. The FeNi alloy may contain 0% by mass to 6% by mass of copper (Cu) and 0% by mass to 6% by mass of molybdenum (Mo). Moreover, the FeNi alloy may contain inevitable impurities, and may contain other elements as long as it exhibits soft magnetism. A soft magnetic material has a property that a magnetic dipole in a substance is more easily oriented in the direction of the magnetic field when a magnetic field is applied from the outside than a hard magnetic material. On the other hand, hard magnetic materials, that is, permanent magnets, are difficult to direct magnetic dipoles in a substance in the direction of the magnetic field when a magnetic field is applied from the outside, and the magnetic dipoles remain aligned in a specific direction. The material of the detection unit 1 of Embodiment 1 is preferably a soft magnetic material.

本実施形態の検出部1の材料は、これに限られず、42質量%以上49質量%以下のNiを含み、残部がFeであるFeNi合金であってもよい。また、本実施形態の検出部1の材料は、FeBSi合金、FeCoBSi合金、FeSiAl合金であってもよい。   The material of the detection part 1 of this embodiment is not restricted to this, The FeNi alloy which contains 42 mass% or more and 49 mass% or less of Ni, and the remainder is Fe may be sufficient. Further, the material of the detection unit 1 of the present embodiment may be a FeBSi alloy, a FeCoBSi alloy, or a FeSiAl alloy.

被検出部2は、硬磁性材料、つまり永久磁石であって、ネオジム磁石、サマリウムコバルト磁石、フェライト磁石、アルニコ磁石を用いることができる。被検出部2と検出部1との相対距離が後述する動作距離となった場合、被検出部2が検出部1の軟磁性材料を磁気飽和させる磁界を与えることができる。   The detected portion 2 is a hard magnetic material, that is, a permanent magnet, and a neodymium magnet, a samarium cobalt magnet, a ferrite magnet, or an alnico magnet can be used. When the relative distance between the detection unit 2 and the detection unit 1 becomes an operation distance described later, the detection unit 2 can apply a magnetic field that magnetically saturates the soft magnetic material of the detection unit 1.

支持部材11及び支持部材12は、例えばプラスチックで形成されている。回動部13は、例えば、支持部材11及び支持部材12に回転シャフトを挿入して、回転自在に連結するヒンジ機構である。なお、実施形態1の説明として、回動部13により、支持部材11及び支持部材12が近接又は離隔可能な構造を例示したが、これに限られず、スライド機構、バネ機構などどのような支持構造であってもよい。   The support member 11 and the support member 12 are made of plastic, for example. The rotating unit 13 is, for example, a hinge mechanism in which a rotation shaft is inserted into the support member 11 and the support member 12 so as to be rotatably connected. As an explanation of the first embodiment, the structure in which the support member 11 and the support member 12 can be brought close to or separated from each other by the rotating unit 13 is illustrated. However, the present invention is not limited to this, and any support structure such as a slide mechanism or a spring mechanism can be used. It may be.

発振回路4は、周波数fの交流電流を検出部1に印加する。例えば発振回路4は交流電源などが例示でき、前記交流電源はトランスを含み、このトランスを介して電流を供給する。   The oscillation circuit 4 applies an alternating current having a frequency f to the detection unit 1. For example, the oscillation circuit 4 can be exemplified by an AC power source, and the AC power source includes a transformer, and supplies current through the transformer.

検出回路3は、検出部1のインピーダンスの変化を検出できればよい。報知回路5は、検出回路3の出力や検出されたインピーダンスの変化に基づいて、光、音、電波の送信、表示媒体の表示、振動、およびこれらの組み合わせなどで、被検出部2が検出部1に相対的に近づき、所定以上の距離の近接状態になったことを知らせることができる回路である。検出回路3は、RFインピーダンスアナライザが例示できる。   The detection circuit 3 only needs to detect a change in impedance of the detection unit 1. The notification circuit 5 is configured such that, based on the output of the detection circuit 3 or the detected impedance change, the detected unit 2 detects the detection unit 2 by transmitting light, sound, radio waves, displaying a display medium, vibration, and combinations thereof. 1 is a circuit that can be relatively close to 1, and can be informed that a proximity state of a predetermined distance or more has been reached. The detection circuit 3 can be exemplified by an RF impedance analyzer.

ここで、発振回路4が検出部1に流す電流は、表皮効果の影響を受ける。検出部1の軟磁性材料の電気抵抗は、表皮深さdが大きいほど、小さくなる。検出部1の軟磁性材料の電気抵抗率をρ、発振回路4が検出部1に印加する電流の角周波数をω(=2πf)、検出部1の絶対透磁率をμとすると、表皮深さdは下記式(1)で求めることができる。   Here, the current that the oscillation circuit 4 passes through the detection unit 1 is affected by the skin effect. The electrical resistance of the soft magnetic material of the detection unit 1 decreases as the skin depth d increases. The skin depth when the electrical resistivity of the soft magnetic material of the detection unit 1 is ρ, the angular frequency of the current applied to the detection unit 1 by the oscillation circuit 4 is ω (= 2πf), and the absolute permeability of the detection unit 1 is μ. d can be calculated | required by following formula (1).

d=(2ρ/(ωμ))1/2・・・(1) d = (2ρ / (ωμ)) 1/2 (1)

被検出部2が検出部1に相対的に離反する離反方向S−offに所定の距離(以下、動作距離という。)を超えて離れている、非近接状態の場合、検出部1の軟磁性材料は、磁気飽和していない。検出部1の軟磁性材料は、絶対透磁率μが大きいので、上述した表皮深さdは浅くなる。このため、検出部1に流れる交流電流の電流が小さく、検出部1のインピーダンス成分が大きくなる。この場合、検出回路3は、検出部1のインピーダンス成分が所定の閾値を超えているので、報知回路5へは出力しない。   In a non-proximity state in which the detected portion 2 is separated beyond a predetermined distance (hereinafter referred to as an operating distance) in a separation direction S-off that is relatively away from the detecting portion 1, the soft magnetism of the detecting portion 1. The material is not magnetically saturated. Since the soft magnetic material of the detection unit 1 has a large absolute permeability μ, the above-described skin depth d becomes shallow. For this reason, the electric current of the alternating current which flows into the detection part 1 is small, and the impedance component of the detection part 1 becomes large. In this case, the detection circuit 3 does not output to the notification circuit 5 because the impedance component of the detection unit 1 exceeds a predetermined threshold value.

被検出部2と検出部1とが接近方向S−onに動作距離以下に相対的に接近する、近接状態の場合、検出部1の軟磁性材料は、磁気飽和しており、検出部1の絶対透磁率μが空気の透磁率(透磁率=1)に近くなる。このため、被検出部2と検出部1とが離反方向S−offに動作距離を超えて相対的に離れている場合に比較して、被検出部2と検出部1との距離が動作距離以下の場合、上述した表皮深さdは深くなる。このため、検出部1に流れる交流電流の電流が増加し、検出部1のインピーダンス成分が小さくなる。この場合、検出回路3は、検出部1のインピーダンス成分が所定の閾値以下となり、報知回路5へ出力する。報知回路5は、検出回路3の出力に基づいて、光、音、電波の送信などで、被検出部2が検出部1に相対的に近づいて動作距離以下の近接状態になったことを知らせる。   In the proximity state where the detected unit 2 and the detection unit 1 are relatively close to each other in the approach direction S-on within the operating distance, the soft magnetic material of the detection unit 1 is magnetically saturated, and the detection unit 1 The absolute permeability μ is close to the air permeability (permeability = 1). For this reason, compared with the case where the to-be-detected part 2 and the detecting part 1 are relatively separated beyond the operating distance in the separation direction S-off, the distance between the to-be-detected part 2 and the detecting part 1 is the operating distance. In the following cases, the above-mentioned skin depth d becomes deep. For this reason, the electric current of the alternating current which flows into the detection part 1 increases, and the impedance component of the detection part 1 becomes small. In this case, the detection circuit 3 outputs the impedance component of the detection unit 1 to the notification circuit 5 because the impedance component is equal to or less than a predetermined threshold value. Based on the output of the detection circuit 3, the notification circuit 5 notifies that the detected unit 2 has approached the detection unit 1 relatively close to the operating distance by light, sound, radio wave transmission, or the like. .

以上説明したように、実施形態1の近接スイッチは、軟磁性材料の部材である検出部1と、検出部1に対する相対距離が変化し、当該相対距離に応じた磁界を検出部1に加える永久磁石の被検出部2と、検出部1に加わる磁界の変化に応じた検出部1のインピーダンス成分に基づいて、被検出部2の近接状態を検出する検出回路と、を備える。例えば、通常NiFe合金のキュリー点は350℃付近であり、100℃を大きく超える環境温度で、所定の磁気特性を維持することができる。このため、実施形態1の近接スイッチは、100℃を超える環境温度であっても、安定して、検出部1と被検出部2との近接状態の有無を検出することができる。   As described above, the proximity switch according to the first embodiment is a permanent switch that applies a magnetic field in accordance with the relative distance to the detection unit 1 and the detection unit 1 that is a member of a soft magnetic material. And a detection circuit that detects the proximity state of the detected portion 2 based on the impedance component of the detecting portion 1 according to a change in the magnetic field applied to the detecting portion 1. For example, the Curie point of a NiFe alloy is usually around 350 ° C., and a predetermined magnetic property can be maintained at an environmental temperature greatly exceeding 100 ° C. For this reason, the proximity switch according to the first embodiment can stably detect the presence or absence of the proximity state between the detection unit 1 and the detected unit 2 even at an environmental temperature exceeding 100 ° C.

検出部1の軟磁性材料は、鉄とニッケルとを含むFeNi合金であるため、磁化特性が高く、周波数fに対する周波数応答性を高くすることができる。   Since the soft magnetic material of the detection unit 1 is an FeNi alloy containing iron and nickel, the magnetization characteristics are high and the frequency response to the frequency f can be increased.

検出部1の軟磁性材料は、FeNi合金であって、70質量%以上のNiを含む。これにより、絶対透磁率が高く、非近接状態と近接状態との表皮深さdの変化の差分を大きくすることができる。   The soft magnetic material of the detection unit 1 is an FeNi alloy and contains 70% by mass or more of Ni. As a result, the absolute permeability is high, and the difference in the change in the skin depth d between the non-proximity state and the proximity state can be increased.

検出部1と、被検出部2とが上述した近接状態にある場合、検出部1の軟磁性材料は、被検出部2の磁界により磁気飽和している。このため、実施形態1の近接スイッチは、機械的な近接スイッチと比べ、故障確率が小さく、信頼性が高い。   When the detection unit 1 and the detection unit 2 are in the above-described proximity state, the soft magnetic material of the detection unit 1 is magnetically saturated by the magnetic field of the detection unit 2. For this reason, the proximity switch of the first embodiment has a lower failure probability and higher reliability than the mechanical proximity switch.

なお、発振回路4は、表皮効果の小さい周波数fよりも周波数の低い周波数と、上述した周波数fとを交互に検出部1へ印加し、検出回路3は、近接状態でのインピーダンス成分の比を検出してもよい。これにより、例えば、高温環境下で、検出部1が性能劣化する場合、インピーダンス成分の比率が変化するので、早期に交換するよう、検出回路3は、報知回路5へ出力することができる。また、インピーダンス成分の比率で検知を行えば、検出部1が劣化の影響を受けず、長期に安定して使用することができる。   The oscillation circuit 4 alternately applies a frequency lower than the frequency f having a small skin effect and the frequency f described above to the detection unit 1, and the detection circuit 3 sets the ratio of impedance components in the proximity state. It may be detected. Thereby, for example, when the performance of the detection unit 1 deteriorates in a high temperature environment, the ratio of the impedance component changes, so that the detection circuit 3 can output to the notification circuit 5 so as to be replaced early. Moreover, if it detects by the ratio of an impedance component, the detection part 1 will not be influenced by deterioration, but can be used stably for a long period of time.

(実施形態2)
図3は、実施形態2に係る近接スイッチを模式的に説明する説明図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Embodiment 2)
FIG. 3 is an explanatory diagram schematically illustrating the proximity switch according to the second embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態2の近接スイッチは、発振回路4の代わりに、発信回路7と、アンテナ6とを備える。発信回路7は、発信周波数fの信号RWをアンテナ6を介して、距離Lにある検出部1Aへ送信する。検出部1Aは、上述した検出部1と同じ材料である。検出部1Aは、コイル状であって、アンテナ6の信号RWを受信可能な形状となっている。   The proximity switch according to the second embodiment includes a transmission circuit 7 and an antenna 6 instead of the oscillation circuit 4. The transmission circuit 7 transmits the signal RW having the transmission frequency f to the detection unit 1A located at the distance L via the antenna 6. The detection unit 1A is made of the same material as the detection unit 1 described above. The detection unit 1 </ b> A has a coil shape and can receive the signal RW from the antenna 6.

被検出部2と検出部1Aとが離反方向S−off方向に動作距離を超えて離れている、非近接状態の場合、検出部1Aの軟磁性材料は、磁気飽和していない。検出部1Aの軟磁性材料は、絶対透磁率μが大きいので、上述した表皮深さdは浅くなる。このため、検出部1のインピーダンス成分が大きく、検出部1Aにおける信号RWを受けた誘導電流の電流が小さくなる。この場合、検出回路3は、検出部1Aのインピーダンス成分に基づく電流が閾値より小さいので、報知回路5へは出力しない。   When the detected portion 2 and the detecting portion 1A are separated from each other in the separation direction S-off direction beyond the operating distance, the soft magnetic material of the detecting portion 1A is not magnetically saturated. Since the soft magnetic material of the detection unit 1A has a large absolute permeability μ, the above-described skin depth d becomes shallow. For this reason, the impedance component of the detection unit 1 is large, and the induced current that has received the signal RW in the detection unit 1A is small. In this case, the detection circuit 3 does not output to the notification circuit 5 because the current based on the impedance component of the detection unit 1A is smaller than the threshold value.

被検出部2と検出部1Aとが接近方向S−onに動作距離以下の距離にある、近接状態の場合、検出部1の軟磁性材料は、磁気飽和しており、検出部1Aの絶対透磁率μが空気の透磁率1に近くなる。このため、動作距離を超えて被検出部2が検出部1Aに相対的に離れている場合に比較して、被検出部2と検出部1Aとの距離が動作距離以下の場合、上述した表皮深さdは深くなる。このため、検出部1Aのインピーダンス成分が小さく、検出部1Aにおける信号RWを受けた誘導電流の電流が増加する。この場合、検出回路3は、検出部1Aのインピーダンス成分に基づく電流が閾値以上となり、報知回路5へ出力する。報知回路5は、検出回路3の出力に基づいて、光、音、電波の送信などで、被検出部2が検出部1Aに相対的に近づいて動作距離以下の近接状態になったことを知らせる。   When the detected portion 2 and the detecting portion 1A are close to each other in the approaching direction S-on and not more than the operating distance, the soft magnetic material of the detecting portion 1 is magnetically saturated, and the absolute transparency of the detecting portion 1A is not detected. The magnetic permeability μ is close to the air permeability 1 of air. For this reason, when the distance between the detected part 2 and the detecting part 1A is equal to or smaller than the operating distance as compared with the case where the detected part 2 exceeds the operating distance relative to the detecting part 1A, the above-described skin The depth d becomes deeper. For this reason, the impedance component of the detector 1A is small, and the induced current that has received the signal RW in the detector 1A increases. In this case, the detection circuit 3 outputs the current based on the impedance component of the detection unit 1 </ b> A to the notification circuit 5 because the current is equal to or greater than the threshold. Based on the output of the detection circuit 3, the notification circuit 5 notifies that the detected unit 2 is relatively close to the detection unit 1 </ b> A and is close to the operating distance by transmission of light, sound, radio waves, or the like. .

以上説明したように、実施形態2の近接スイッチは、軟磁性材料の部材である検出部1Aと、検出部1Aに対する相対距離が変化し、当該相対距離に応じた磁界を検出部1Aに加える永久磁石の被検出部2と、検出部1Aに加わる磁界の変化に応じた検出部1Aのインピーダンス成分に基づいて、被検出部2の近接状態を検出する検出回路3Aと、を備える。例えば、NiFe合金のキュリー点は460℃であり、100℃を大きく超える環境温度で、所定の磁気特性を維持することができる。このため、実施形態2の近接スイッチは、100℃を超える環境温度であっても、安定して、検出部1Aと被検出部2との近接状態の有無を検出することができる。   As described above, the proximity switch according to the second embodiment is a permanent switch that applies a magnetic field according to the relative distance to the detection unit 1A and the detection unit 1A that is a member of a soft magnetic material. And a detection circuit 3A that detects the proximity state of the detection unit 2 based on the impedance component of the detection unit 1A corresponding to a change in the magnetic field applied to the detection unit 1A. For example, the Curie point of a NiFe alloy is 460 ° C., and a predetermined magnetic property can be maintained at an environmental temperature greatly exceeding 100 ° C. For this reason, the proximity switch according to the second embodiment can stably detect the presence / absence of the proximity state between the detection unit 1A and the detection target unit 2 even at an environmental temperature exceeding 100 ° C.

(実施形態3)
図4は、実施形態3に係る近接スイッチを模式的に説明する説明図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Embodiment 3)
FIG. 4 is an explanatory diagram schematically illustrating the proximity switch according to the third embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態3の被検出部2Aは、いわゆる電磁石であり、導電体のコイル21と、軟磁性材料のコア22とを備える。被検出部2Aは、検出部1との相対距離が所定の距離となった場合、検出部1の軟磁性材料を磁気飽和させる磁界を与えることができる。   The detected part 2A of the third embodiment is a so-called electromagnet, and includes a coil 21 made of a conductor and a core 22 made of a soft magnetic material. The detected unit 2A can apply a magnetic field that magnetically saturates the soft magnetic material of the detecting unit 1 when the relative distance from the detecting unit 1 becomes a predetermined distance.

(実施形態4)
図5は、実施形態4に係る近接スイッチを模式的に説明する説明図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Embodiment 4)
FIG. 5 is an explanatory diagram schematically illustrating the proximity switch according to the fourth embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態4の近接スイッチは、レファレンス部材8と、検出部1とを並列配置しており、検出部1側に接続する接点1aと、レファレンス部材8側に接続する接点8aを選択して検出回路3へ接続する選択スイッチSW1とを備えている。   In the proximity switch of the fourth embodiment, the reference member 8 and the detection unit 1 are arranged in parallel, and a detection circuit is selected by selecting the contact 1a connected to the detection unit 1 side and the contact 8a connected to the reference member 8 side. 3 and a selection switch SW1 connected to 3.

レファレンス部材8は、磁界の影響を受けない、所定のインピーダンス成分を有する材料であり、例えばMnSbである。選択スイッチSW1は、検出部1側に接続する接点1aと、レファレンス部材8側に接続する接点8aとを交互に選択することで、検出回路3が近接状態でのインピーダンス成分の比率を求めることができる。これにより、例えば、高温環境下で、検出部1が性能劣化する場合、インピーダンス成分の比率が変化するので、早期に交換するよう、検出回路3は、報知回路5へ出力することができる。 The reference member 8 is a material having a predetermined impedance component that is not affected by a magnetic field, and is, for example, Mn 2 Sb. The selection switch SW1 alternately obtains the contact point 1a connected to the detection unit 1 side and the contact point 8a connected to the reference member 8 side, whereby the detection circuit 3 obtains the ratio of impedance components in the proximity state. it can. Thereby, for example, when the performance of the detection unit 1 deteriorates in a high temperature environment, the ratio of the impedance component changes, so that the detection circuit 3 can output to the notification circuit 5 so as to be replaced early.

(実施形態5)
図6は、実施形態5に係る近接スイッチを模式的に説明する説明図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Embodiment 5)
FIG. 6 is an explanatory diagram schematically illustrating the proximity switch according to the fifth embodiment. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態5の近接スイッチは、発振回路4に代わり、発振回路4と発振回路4’を並列配置しており、検出回路3側に接続する接点3aと、発振回路4側に接続する接点4aおよび発振回路4’側に接続する接点4’aとを切り替え可能に接続する選択スイッチSW2とを備えている。   In the proximity switch of the fifth embodiment, the oscillation circuit 4 and the oscillation circuit 4 ′ are arranged in parallel instead of the oscillation circuit 4, and the contact 3a connected to the detection circuit 3 side, the contact 4a connected to the oscillation circuit 4 side, and There is provided a selection switch SW2 that is switchably connected to a contact 4′a that is connected to the oscillation circuit 4 ′ side.

発振回路4は、第1周波数f1で発振している。発振回路4’は、第2周波数f2で発振している。周波数f2は、周波数f1よりも周波数が高い。上述したように、近接状態の場合、検出部1の軟磁性材料は、磁気飽和しており、検出部1の絶対透磁率μが空気の透磁率(透磁率=1)に近くなる。ここで、発振回路4が検出部1に流す電流は、表皮効果の影響を受けづらい。被検出部2と検出部1とが離反方向S−offに動作距離を超えて相対的に離れている場合に比較して、被検出部2と検出部1との距離が動作距離以下の場合、第1周波数f1及び第2周波数f2における表皮深さは深くなる。   The oscillation circuit 4 oscillates at the first frequency f1. The oscillation circuit 4 'oscillates at the second frequency f2. The frequency f2 is higher than the frequency f1. As described above, in the proximity state, the soft magnetic material of the detector 1 is magnetically saturated, and the absolute permeability μ of the detector 1 is close to the air permeability (permeability = 1). Here, the current that the oscillation circuit 4 passes through the detection unit 1 is not easily affected by the skin effect. Compared to the case where the detected portion 2 and the detecting portion 1 are relatively separated from each other in the separation direction S-off beyond the operating distance, the distance between the detected portion 2 and the detecting portion 1 is equal to or less than the operating distance. The skin depth at the first frequency f1 and the second frequency f2 becomes deep.

第1周波数f1における表皮深さと第2周波数f2における表皮深さとは、上述した式(1)で示したように検出部1に印加する電流の角周波数ωが異なるので、異なる表皮深さになる。発振回路4が印加した第1周波数f1の電流では、検出部1の表皮効果が小さく(表皮深さが深い状態)、検出部1で電流が流れやすい。   The skin depth at the first frequency f1 and the skin depth at the second frequency f2 have different skin depths because the angular frequency ω of the current applied to the detection unit 1 is different as shown in the above-described equation (1). . In the current of the first frequency f1 applied by the oscillation circuit 4, the skin effect of the detection unit 1 is small (in a state where the skin depth is deep), and the current easily flows through the detection unit 1.

発振回路4’が印加した第2周波数f2の電流では、検出部1の表皮効果が大きく(表皮深さが浅い状態)、つまり第1周波数f1の電流と比較して検出部1で電流が流れにくい。   In the current of the second frequency f2 applied by the oscillation circuit 4 ′, the skin effect of the detection unit 1 is large (in a state where the skin depth is shallow), that is, the current flows in the detection unit 1 as compared with the current of the first frequency f1. Hateful.

選択スイッチSW2は、図6に示す接点4aおよび接点4’aとを交互に選択することで、検出部1に与える周波数を第1周波数f1又は第2周波数f2に切り替えることができる。よって、検出回路3は、発振回路4および発振回路4’をそれぞれを接続した場合の検出部1のインピーダンス成分を求めることができる。これにより、検出回路3は、近接状態において、第1周波数f1に対する第2周波数f2のインピーダンス成分の比を検出してもよい。   The selection switch SW2 can switch the frequency applied to the detection unit 1 to the first frequency f1 or the second frequency f2 by alternately selecting the contact 4a and the contact 4'a shown in FIG. Therefore, the detection circuit 3 can obtain the impedance component of the detection unit 1 when the oscillation circuit 4 and the oscillation circuit 4 ′ are connected. Thereby, the detection circuit 3 may detect the ratio of the impedance component of the second frequency f2 to the first frequency f1 in the proximity state.

被検出部2が検出部1に相対的に離反する離反方向S−offに動作距離を超えて離れている非近接状態の場合、検出部1の軟磁性材料は、磁気飽和していない。検出部1の軟磁性材料は、絶対透磁率μが大きいので、上述した表皮深さdは浅くなる。このため、第1周波数f1及び第2周波数f2における検出部1に流れる交流電流の電流は異なる。検出回路は、検出部1に第1周波数f1で印加される電流での検出部1のインピーダンス成分と、第2周波数f2で検出部1に印加される電流での検出部1のインピーダンス成分との比率が1:1とは異なる比率として検出する。この場合、検出回路3は、第1周波数f1に対する第2周波数f2の検出部1のインピーダンス成分の比率が所定の範囲を超えているので、報知回路5へは出力しない。   In the non-proximity state in which the detected portion 2 is separated beyond the operating distance in the separation direction S-off that is relatively separated from the detecting portion 1, the soft magnetic material of the detecting portion 1 is not magnetically saturated. Since the soft magnetic material of the detection unit 1 has a large absolute permeability μ, the above-described skin depth d becomes shallow. For this reason, the currents of the alternating currents flowing through the detection unit 1 at the first frequency f1 and the second frequency f2 are different. The detection circuit includes an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the first frequency f1, and an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the second frequency f2. The ratio is detected as a ratio different from 1: 1. In this case, the detection circuit 3 does not output to the notification circuit 5 because the ratio of the impedance component of the detection unit 1 of the second frequency f2 to the first frequency f1 exceeds a predetermined range.

被検出部2と検出部1とが接近方向S−onに動作距離以下の距離にある、近接状態の場合、検出部1の軟磁性材料は、磁気飽和しており、検出部1の絶対透磁率μが空気の透磁率1に近くなる。このため、非近接状態の場合に比べ、近接状態の場合、第1周波数f1及び第2周波数f2における検出部1に流れる交流電流の表皮深さdは共に深くなる。その結果、検出回路は、検出部1に第1周波数f1で印加される電流での検出部1のインピーダンス成分と、第2周波数f2で検出部1に印加される電流での検出部1のインピーダンス成分との比率が1:1に近い比率として検出する。この場合、検出回路3は、第1周波数f1に対する第2周波数f2の検出部1のインピーダンス成分の比率が所定の範囲の場合、報知回路5へ出力する。なお、検出回路3は、第2周波数f2に対する第1周波数f1の検出部1のインピーダンス成分の比率が所定の範囲の場合、報知回路5へ出力するようにしてもよい。報知回路5は、検出回路3の出力に基づいて、光、音、電波の送信などで、被検出部2が検出部1に相対的に近づいて動作距離以下の近接状態になったことを知らせる。以上説明したように、また、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率で検知を行えば、検出部1の劣化の影響を低減させ、実施形態5に係る近接スイッチは、長期に安定して使用することができる。   When the detected portion 2 and the detecting portion 1 are close to each other in the approaching direction S-on and not more than the operating distance, the soft magnetic material of the detecting portion 1 is magnetically saturated and The magnetic permeability μ is close to the air permeability 1 of air. For this reason, in the proximity state, the skin depth d of the alternating current flowing through the detection unit 1 at the first frequency f1 and the second frequency f2 is deeper than in the non-proximity state. As a result, the detection circuit has an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the first frequency f1, and an impedance of the detection unit 1 at a current applied to the detection unit 1 at the second frequency f2. The ratio with the component is detected as a ratio close to 1: 1. In this case, the detection circuit 3 outputs to the notification circuit 5 when the ratio of the impedance component of the detection unit 1 of the second frequency f2 to the first frequency f1 is within a predetermined range. The detection circuit 3 may output the notification circuit 5 when the ratio of the impedance component of the detection unit 1 of the first frequency f1 to the second frequency f2 is within a predetermined range. Based on the output of the detection circuit 3, the notification circuit 5 notifies that the detected unit 2 has approached the detection unit 1 relatively close to the operating distance by light, sound, radio wave transmission, or the like. . As described above, if the detection is performed with the ratio of the impedance component of the second frequency f2 to the first frequency f1, the influence of deterioration of the detection unit 1 is reduced, and the proximity switch according to the fifth embodiment It can be used stably.

また、検出回路3は、近接状態において、第1周波数f1に対する第2周波数f2のインピーダンス成分の比を検出することで、実施形態5に係る近接スイッチのメンテナンス時期を認知することができる。例えば、高温環境下で、検出部1が性能劣化する場合、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率が変化する。このため、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率が所定の閾値を超えた場合、検出部1を早期に交換するよう、検出回路3は、報知回路5へ出力することができる。   Further, the detection circuit 3 can recognize the maintenance time of the proximity switch according to the fifth embodiment by detecting the ratio of the impedance component of the second frequency f2 to the first frequency f1 in the proximity state. For example, when the performance of the detection unit 1 deteriorates in a high temperature environment, the ratio of the impedance component of the second frequency f2 to the first frequency f1 changes. Therefore, when the ratio of the impedance component of the second frequency f2 to the first frequency f1 exceeds a predetermined threshold, the detection circuit 3 can output to the notification circuit 5 so as to replace the detection unit 1 at an early stage. .

(実施形態6)
実施形態6に係る近接スイッチは、図1で示す実施形態1と同様に、検出部1と、被検出部2と、検出回路3と、発振回路4とを備える。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Embodiment 6)
The proximity switch according to the sixth embodiment includes a detection unit 1, a detected unit 2, a detection circuit 3, and an oscillation circuit 4, as in the first embodiment shown in FIG. Note that the same components as those described in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態6に係る近接スイッチは、発振回路4が複数の周波数を選択的に発振することができる。例えば、発振回路4は、第1周波数f1及び第2周波数f2を交互に発振することができる。周波数f1は、表皮効果が小さく検出部1のインピーダンスが低く電流が流れる周波数である。周波数f2は、表皮効果が周波数f1と比較して大きく、検出部1でのインピーダンスが高く電流が流れない周波数である。周波数f2は、周波数f1よりも周波数が高い。   In the proximity switch according to the sixth embodiment, the oscillation circuit 4 can selectively oscillate a plurality of frequencies. For example, the oscillation circuit 4 can alternately oscillate the first frequency f1 and the second frequency f2. The frequency f1 is a frequency at which the skin effect is small and the impedance of the detection unit 1 is low and current flows. The frequency f2 is a frequency at which the skin effect is larger than the frequency f1, the impedance at the detection unit 1 is high, and no current flows. The frequency f2 is higher than the frequency f1.

以上説明したように、実施形態6に係る近接スイッチは、上述した実施形態5の発振回路4’を省略しても検出部1のインピーダンス成分を検出回路3により求めることができる。   As described above, the proximity switch according to the sixth embodiment can obtain the impedance component of the detection unit 1 by the detection circuit 3 even if the oscillation circuit 4 ′ of the fifth embodiment described above is omitted.

実施形態6に係る近接スイッチは、被検出部2と検出部1とが非近接状態の場合、検出部1の軟磁性材料は、磁気飽和していない。検出部1の軟磁性材料は、絶対透磁率μが大きいので、上述した表皮深さdは浅くなる。このため、第1周波数f1及び第2周波数f2における検出部1に流れる交流電流の電流は異なる。検出回路3は、検出部1に第1周波数f1で印加される電流での検出部1のインピーダンス成分と、第2周波数f2で検出部1に印加される電流での検出部1のインピーダンス成分との比率が1:1とは異なる比率として検出する。この場合、検出回路3は、第1周波数f1に対する第2周波数f2の検出部1のインピーダンス成分の比率が所定の範囲を超えているので、報知回路5へは出力しない。   In the proximity switch according to the sixth embodiment, the soft magnetic material of the detection unit 1 is not magnetically saturated when the detected unit 2 and the detection unit 1 are not in proximity. Since the soft magnetic material of the detection unit 1 has a large absolute permeability μ, the above-described skin depth d becomes shallow. For this reason, the currents of the alternating currents flowing through the detection unit 1 at the first frequency f1 and the second frequency f2 are different. The detection circuit 3 includes an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the first frequency f1, and an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the second frequency f2. Is detected as a ratio different from 1: 1. In this case, the detection circuit 3 does not output to the notification circuit 5 because the ratio of the impedance component of the detection unit 1 of the second frequency f2 to the first frequency f1 exceeds a predetermined range.

被検出部2と検出部1とが近接状態の場合、検出部1の軟磁性材料は、磁気飽和しており、検出部1の絶対透磁率μが空気の透磁率1に近くなる。このため、非近接状態の場合に比べ、近接状態の場合、第1周波数f1及び第2周波数f2における検出部1に流れる交流電流の表皮深さdは共に深くなる。その結果、検出回路は、検出部1に第1周波数f1で印加される電流での検出部1のインピーダンス成分と、第2周波数f2で検出部1に印加される電流での検出部1のインピーダンス成分との比率が1:1に近い比率として検出する。この場合、検出回路3は、第1周波数f1に対する第2周波数f2の検出部1のインピーダンス成分の比率が所定の範囲の場合、報知回路5へ出力する。なお、検出回路3は、第2周波数f2に対する第1周波数f1の検出部1のインピーダンス成分の比率が所定の範囲の場合、報知回路5へ出力するようにしてもよい。報知回路5は、検出回路3の出力に基づいて、光、音、電波の送信などで、被検出部2が検出部1に相対的に近づいて動作距離以下の近接状態になったことを知らせる。以上説明したように、また、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率で検知を行えば、検出部1の劣化の影響を低減させ、実施形態6に係る近接スイッチは、長期に安定して使用することができる。   When the detected portion 2 and the detecting portion 1 are in the proximity state, the soft magnetic material of the detecting portion 1 is magnetically saturated, and the absolute permeability μ of the detecting portion 1 is close to the air permeability 1 of air. For this reason, in the proximity state, the skin depth d of the alternating current flowing through the detection unit 1 at the first frequency f1 and the second frequency f2 is deeper than in the non-proximity state. As a result, the detection circuit has an impedance component of the detection unit 1 at a current applied to the detection unit 1 at the first frequency f1, and an impedance of the detection unit 1 at a current applied to the detection unit 1 at the second frequency f2. The ratio with the component is detected as a ratio close to 1: 1. In this case, the detection circuit 3 outputs to the notification circuit 5 when the ratio of the impedance component of the detection unit 1 of the second frequency f2 to the first frequency f1 is within a predetermined range. The detection circuit 3 may output the notification circuit 5 when the ratio of the impedance component of the detection unit 1 of the first frequency f1 to the second frequency f2 is within a predetermined range. Based on the output of the detection circuit 3, the notification circuit 5 notifies that the detected unit 2 has approached the detection unit 1 relatively close to the operating distance by light, sound, radio wave transmission, or the like. . As described above, if the detection is performed with the ratio of the impedance component of the second frequency f2 to the first frequency f1, the influence of deterioration of the detection unit 1 is reduced, and the proximity switch according to the sixth embodiment It can be used stably.

また、検出回路3は、近接状態において、第1周波数f1に対する第2周波数f2のインピーダンス成分の比を検出することで、実施形態6に係る近接スイッチのメンテナンス時期を認知することができる。例えば、高温環境下で、検出部1が性能劣化する場合、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率が変化する。このため、第1周波数f1に対する第2周波数f2のインピーダンス成分の比率が所定の閾値を超えた場合、検出部1を早期に交換するよう、検出回路3は、報知回路5へ出力することができる。   Further, the detection circuit 3 can recognize the maintenance time of the proximity switch according to the sixth embodiment by detecting the ratio of the impedance component of the second frequency f2 to the first frequency f1 in the proximity state. For example, when the performance of the detection unit 1 deteriorates in a high temperature environment, the ratio of the impedance component of the second frequency f2 to the first frequency f1 changes. Therefore, when the ratio of the impedance component of the second frequency f2 to the first frequency f1 exceeds a predetermined threshold, the detection circuit 3 can output to the notification circuit 5 so as to replace the detection unit 1 at an early stage. .

(評価例)
次に、上述した実施形態1の評価例を実施例1から実施例5により具体的に説明する。ただし、本発明は、これらの実施例によって、何ら限定されるものではない。絶対透磁率は、比透磁率と真空の透磁率(4π×10−7H/m)との積で求めることができる。
(Evaluation example)
Next, the evaluation example of Embodiment 1 described above will be specifically described with reference to Examples 1 to 5. However, the present invention is not limited to these examples. The absolute magnetic permeability can be obtained by the product of the relative magnetic permeability and the vacuum magnetic permeability (4π × 10 −7 H / m).

実施例1の検出部の材料として、直径90μmのワイヤー状のFe7916Siをコイル状に巻回したものを用意して、被検出部としての磁石を近づけた。磁石を近づける前の非近接状態(表1では磁石無と表記)では、周波数13.54MHzの交流電流に対するインピーダンス成分Zは、3.96Ωであった。磁石を近づけた近接状態(表1では磁石有と表記)では、13.54MHzでの交流に対するインピーダンス成分Zは、3.16Ωであった。非近接状態(表1では磁石無と表記)と近接状態(表1では磁石有と表記)では、インピーダンス成分の変化率が20%であった。 As a material for the detection part of Example 1, a wire-like Fe 79 B 16 Si 5 having a diameter of 90 μm wound in a coil shape was prepared, and a magnet as a detection part was brought closer. In a non-proximity state (noted as “no magnet” in Table 1) before bringing the magnet closer, the impedance component Z for an alternating current with a frequency of 13.54 MHz was 3.96Ω. In the proximity state in which the magnets were brought close to each other (indicated as having a magnet in Table 1), the impedance component Z for alternating current at 13.54 MHz was 3.16Ω. The change rate of the impedance component was 20% in the non-proximity state (indicated as “no magnet” in Table 1) and the proximity state (indicated in Table 1 as having a magnet).

実施例2の検出部の材料として、直径90μmのワイヤー状のFe67Co1814Siをコイル状に巻回したものを用意して、磁石を近づけた。磁石を近づける前の非近接状態(表1では磁石無と表記)では、周波数13.54MHzの交流電流に対するインピーダンス成分Zは、3.46Ωであった。磁石を近づけた近接状態(表1では磁石有と表記)では、周波数13.54MHzの交流電流に対するインピーダンス成分Zは、2.88Ωであった。非近接状態(表1では磁石無と表記)と近接状態(表1では磁石有と表記)では、インピーダンス成分の変化率が17%であった。 As a material for the detection unit of Example 2, a wire-shaped Fe 67 Co 18 B 14 Si 1 having a diameter of 90 μm wound in a coil shape was prepared, and a magnet was brought close thereto. In a non-proximity state before the magnet was brought close (indicated as “no magnet” in Table 1), the impedance component Z for an alternating current having a frequency of 13.54 MHz was 3.46Ω. In the proximity state in which the magnets were brought close to each other (indicated as having a magnet in Table 1), the impedance component Z with respect to the alternating current having a frequency of 13.54 MHz was 2.88Ω. In the non-proximity state (indicated as “no magnet” in Table 1) and the proximity state (indicated as “with magnet” in Table 1), the change rate of the impedance component was 17%.

実施例3の検出部の材料として、直径90μmのワイヤー状のFe22Ni78をコイル状に巻回したものを用意して、磁石を近づけた。磁石を近づける前の非近接状態(表1では磁石無と表記)では、周波数13.54MHzの交流電流に対するインピーダンス成分Zは、100Ωであった。磁石を近づけた近接状態(表1では磁石有と表記)では、周波数13.54MHzの交流電流に対するインピーダンス成分Zは、72Ωであった。非近接状態(表1では磁石無と表記)と近接状態(表1では磁石有と表記)では、インピーダンス成分の変化率が28%であった。以上の実施例1から実施例3を表1として記載する。 As a material for the detection unit of Example 3, a wire-like Fe 22 Ni 78 having a diameter of 90 μm wound in a coil shape was prepared, and a magnet was brought close thereto. In a non-proximity state (noted as “no magnet” in Table 1) before bringing the magnet closer, the impedance component Z for an alternating current with a frequency of 13.54 MHz was 100Ω. In the proximity state in which magnets were brought close to each other (shown as having a magnet in Table 1), the impedance component Z with respect to an alternating current having a frequency of 13.54 MHz was 72Ω. In the non-proximity state (indicated as “no magnet” in Table 1) and the proximity state (indicated as “with magnet” in Table 1), the change rate of the impedance component was 28%. The above Example 1 to Example 3 are shown in Table 1.

Figure 0006351437
Figure 0006351437

実施例4の検出部の材料として、直径90μmのワイヤー状のFe7916Siをコイル状に巻回したものを用意して、磁石を近づけた。磁石を近づける前の非近接状態(表2では磁石無と表記)では、208kHzでの交流に対するインピーダンス成分Zは、1.5Ωであった。磁石を近づけた近接状態(表2では磁石有と表記)では、208kHzでの交流に対するインピーダンス成分Zは、1.4Ωであった。非近接状態(表1では磁石無と表記)と近接状態(表2では磁石有と表記)では、変化率が7%あった。なお、実施例5は、Fe22Ni78を用意して、磁石を近づけ磁石が無い状態(表1では磁石無と表記)と磁石を近づけた状態(表1では磁石有と表記)では、インピーダンス成分の変化率が0%であった。 As a material for the detection unit of Example 4, a wire-shaped Fe 79 B 16 Si 5 having a diameter of 90 μm wound in a coil shape was prepared, and a magnet was brought close thereto. In a non-proximity state (noted as “no magnet” in Table 2) before bringing the magnet closer, the impedance component Z for AC at 208 kHz was 1.5Ω. In the proximity state in which the magnets are close (indicated in Table 2 as having magnets), the impedance component Z for AC at 208 kHz was 1.4Ω. The change rate was 7% in the non-proximity state (indicated as “no magnet” in Table 1) and in the close state (indicated as “with magnet” in Table 2). In Example 5, Fe 22 Ni 78 was prepared, and impedance was reduced between a state where no magnet was brought close to the magnet (indicated as “no magnet” in Table 1) and a state where the magnet was brought close (indicated in Table 1 as having a magnet). The rate of change of components was 0%.

実施例5の検出部の材料として、直径90μmのワイヤー状のFe22Ni78をコイル状に巻回したものを用意して、磁石を近づけた。磁石を近づける前の非近接状態(表2では磁石無と表記)では、208kHzでの交流に対するインピーダンス成分Zは、27Ωであった。磁石を近づけた近接状態(表2では磁石有と表記)では、208kHzでの交流に対するインピーダンス成分Zは、13Ωであった。非近接状態(表2では磁石無と表記)と近接状態(表2では磁石有と表記)では、インピーダンス成分の変化率が52%であった。以上の実施例4から実施例5を表2として記載する。 As a material for the detection unit of Example 5, a wire-shaped Fe 22 Ni 78 having a diameter of 90 μm wound in a coil shape was prepared, and a magnet was brought close thereto. In a non-proximity state (noted as “no magnet” in Table 2) before bringing the magnet closer, the impedance component Z for AC at 208 kHz was 27Ω. In the proximity state in which the magnets were brought close to each other (shown as having a magnet in Table 2), the impedance component Z for AC at 208 kHz was 13Ω. In the non-proximity state (indicated as “no magnet” in Table 2) and the proximity state (indicated as “with magnet” in Table 2), the change rate of the impedance component was 52%. The above Examples 4 to 5 are shown in Table 2.

Figure 0006351437
Figure 0006351437

以上説明したように、FeNi合金は、検出部1として好適であることが分かった。   As described above, it has been found that the FeNi alloy is suitable as the detection unit 1.

1、1A 検出部
2、2A 被検出部
3、3A 検出回路
4、4’ 発振回路
5 報知回路
6 アンテナ
7 発信回路
8 レファレンス部材
11 支持部材
12 支持部材
13 回動部
21 コイル
22 コア
S−off 離反方向
S−on 接近方向
SW1、SW2 選択スイッチ
DESCRIPTION OF SYMBOLS 1, 1A Detection part 2, 2A Detected part 3, 3A Detection circuit 4, 4 'Oscillation circuit 5 Notification circuit 6 Antenna 7 Transmission circuit 8 Reference member 11 Support member 12 Support member 13 Turning part 21 Coil 22 Core S-off Separation direction S-on Approaching direction SW1, SW2 selection switch

Claims (6)

導電性を有する磁性材料からなる検出部と、
前記検出部に対する相対距離が変化し、当該相対距離に応じた磁界を前記検出部に加える被検出部と、
前記検出部に加わる磁界の変化に応じた前記検出部のインピーダンス成分に基づいて、前記被検出部の近接状態を検出する検出回路と、
を含み、
前記検出回路は、前記検出部に第1周波数で印加される電流での前記検出部のインピーダンス成分と、第1周波数よりも高い周波数である第2周波数で前記検出部に印加される電流での前記検出部のインピーダンス成分との比率の変化に応じて被検出部材の近接状態を検出していることを特徴とする近接スイッチ。
A detection unit made of a magnetic material having conductivity;
A relative distance to the detection unit changes, and a detected unit that applies a magnetic field according to the relative distance to the detection unit;
A detection circuit for detecting a proximity state of the detected portion based on an impedance component of the detection portion according to a change in a magnetic field applied to the detection portion;
Only including,
The detection circuit includes an impedance component of the detection unit at a current applied to the detection unit at a first frequency, and a current applied to the detection unit at a second frequency that is higher than the first frequency. A proximity switch that detects a proximity state of a member to be detected according to a change in a ratio with an impedance component of the detection unit .
前記磁性材料は、軟磁性材料であることを特徴とする請求項1に記載の近接スイッチ。   The proximity switch according to claim 1, wherein the magnetic material is a soft magnetic material. 前記軟磁性材料は、少なくとも鉄を含む合金であることを特徴とする請求項2に記載の近接スイッチ。   The proximity switch according to claim 2, wherein the soft magnetic material is an alloy containing at least iron. 前記軟磁性材料は、さらにニッケルを含むFeNi合金であることを特徴とする請求項3に記載の近接スイッチ。   4. The proximity switch according to claim 3, wherein the soft magnetic material is an FeNi alloy further containing nickel. 前記FeNi合金は、70質量%以上のNiを含むことを特徴とする請求項4に記載の近接スイッチ。   The proximity switch according to claim 4, wherein the FeNi alloy contains 70 mass% or more of Ni. 前記検出部と、前記被検出部とが前記近接状態にある場合、前記検出部の磁性材料は、前記被検出部の磁界により磁気飽和していることを特徴とする請求項1から5のいずれか1項に記載の近接スイッチ。   The magnetic material of the detection unit is magnetically saturated by the magnetic field of the detection unit when the detection unit and the detection unit are in the proximity state. The proximity switch according to claim 1.
JP2014169829A 2014-08-22 2014-08-22 Proximity switch Active JP6351437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169829A JP6351437B2 (en) 2014-08-22 2014-08-22 Proximity switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169829A JP6351437B2 (en) 2014-08-22 2014-08-22 Proximity switch

Publications (2)

Publication Number Publication Date
JP2016046683A JP2016046683A (en) 2016-04-04
JP6351437B2 true JP6351437B2 (en) 2018-07-04

Family

ID=55636853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169829A Active JP6351437B2 (en) 2014-08-22 2014-08-22 Proximity switch

Country Status (1)

Country Link
JP (1) JP6351437B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922385B1 (en) * 1970-02-23 1974-06-07
JPS4968663U (en) * 1972-09-28 1974-06-14
JPS60162313A (en) * 1984-02-02 1985-08-24 Nippon Autom:Kk Magnetic proximity switch circuit using hall device
JPH02300681A (en) * 1989-05-16 1990-12-12 Matsushita Electric Ind Co Ltd Ferromagnetic resistance element and magnetic sensor using same
JP3297933B2 (en) * 1992-07-13 2002-07-02 オムロン株式会社 Proximity switch
US6472868B1 (en) * 1998-08-05 2002-10-29 Minebea Co., Ltd. Magnetic impedance element having at least two thin film-magnetic cores
US6391024B1 (en) * 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
JP2001296127A (en) * 2000-04-13 2001-10-26 Aichi Steel Works Ltd Magnetic field detector
JP3523834B2 (en) * 2000-09-11 2004-04-26 秋田県 Magnetic field sensor and magnetic field sensing system
JP2002090432A (en) * 2000-09-12 2002-03-27 Aichi Steel Works Ltd Magnetic field detecting device
JP3972116B2 (en) * 2001-12-28 2007-09-05 アイチ・マイクロ・インテリジェント株式会社 Magnetic attractive force measuring device for magnet body
JP4596471B2 (en) * 2005-09-08 2010-12-08 株式会社山武 High-frequency oscillation type proximity sensor
JP5523149B2 (en) * 2010-03-05 2014-06-18 アルプス電気株式会社 Magnetic switch
JP2012112751A (en) * 2010-11-24 2012-06-14 Mitsubishi Electric Corp Sensor and method for detecting constituent metal of object and distance to object

Also Published As

Publication number Publication date
JP2016046683A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2013128803A1 (en) Current detection device
JP2017516439A5 (en)
JP2011203918A5 (en)
JP5895578B2 (en) Non-contact temperature sensor
JP6123275B2 (en) Current detector
WO2011044100A2 (en) Ferromagnetic resonance and memory effect in magnetic composite materials
JP2010283948A (en) Generation device
EP2762902A2 (en) Current mutual inductor and current detection circuit of same
JP6351437B2 (en) Proximity switch
JP2007132710A (en) Position detector
JP6339450B2 (en) Current sensor
JP6451362B2 (en) Magnetoresistive device
JP6188046B1 (en) Speaker device and method for improving sound quality of speaker device
JP2015224922A (en) Position detecting device
JP2006073711A (en) Non-contact variable resistor
US2523775A (en) Electromagnetic transducer
US544365A (en) Synchronism-indicator
JP2017096829A (en) Magnetic field detection sensor
US758468A (en) Alternating-current signal-receiving apparatus.
RU168777U1 (en) ELECTRIC POWER AMPLIFIER
US717772A (en) Signaling system.
US479168A (en) Arthur e
JP2015224923A (en) Position detecting device
Hu et al. Integrated magnetoelectric devices based on interfacial magnetoelectric coupling effects
Zacharias The Magnetostatic Field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250