JP6349946B2 - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
JP6349946B2
JP6349946B2 JP2014100653A JP2014100653A JP6349946B2 JP 6349946 B2 JP6349946 B2 JP 6349946B2 JP 2014100653 A JP2014100653 A JP 2014100653A JP 2014100653 A JP2014100653 A JP 2014100653A JP 6349946 B2 JP6349946 B2 JP 6349946B2
Authority
JP
Japan
Prior art keywords
water
amount
water supply
boiler
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014100653A
Other languages
Japanese (ja)
Other versions
JP2015218915A (en
Inventor
森 直樹
直樹 森
井上 貴雄
貴雄 井上
英浩 因幡
英浩 因幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014100653A priority Critical patent/JP6349946B2/en
Publication of JP2015218915A publication Critical patent/JP2015218915A/en
Application granted granted Critical
Publication of JP6349946B2 publication Critical patent/JP6349946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、ボイラシステムに関するものである。   The present invention relates to a boiler system.

従来、ボイラシステムとして、給水用モータバルブの開度を制御して、ドレンタンクに回収したドレンを、エコノマイザへ連続的に給水することにより、エコノマイザ内でドレンが沸騰しないようにしたものが公知である(例えば、特許文献1参照)。   Conventionally, as a boiler system, by controlling the opening of a water supply motor valve and continuously supplying water collected in a drain tank to an economizer, the drain is prevented from boiling in the economizer. Yes (see, for example, Patent Document 1).

前記従来のボイラシステムでは、ボイラ内の水位を低下させる場合、目標流量となるように給水用モータバルブの開度を調整しているだけである。目標流量はバーナの燃焼状態に応じて設定されているものの、冷態起動時等、給水温度の変化が生じた際には適切な量とすることは難しい。   In the conventional boiler system, when the water level in the boiler is lowered, the opening degree of the water supply motor valve is merely adjusted so that the target flow rate is obtained. Although the target flow rate is set according to the combustion state of the burner, it is difficult to make it an appropriate amount when a change in the feed water temperature occurs, such as during cold start.

通常、ドレンの給水温度は高温(例えば、130℃)であるが、冷態起動時等で低温(例えば、20℃)となる場合がある。このとき、高温の給水温度を基準に決定した目標給水量によりボイラに給水すると、給水量がボイラでの蒸発量を超え、逆に水位が上昇するという問題が発生する(図3中、2点鎖線の丸を結ぶ線で示す。これは、体積流量が一定で、130℃を基準とした場合の目標流量を示す線である。)。特に、小型ボイラの場合、この問題は顕著なものとなる。   Usually, the water supply temperature of the drain is high (for example, 130 ° C.), but may be low (for example, 20 ° C.) at the time of cold start. At this time, if water is supplied to the boiler with the target water supply determined based on the high temperature of the water supply, there is a problem that the water supply exceeds the amount of evaporation in the boiler, and conversely the water level rises (2 points in FIG. 3). This is indicated by a line connecting chain circles, which is a line indicating a target flow rate when the volume flow rate is constant and 130 ° C. as a reference). This problem is particularly noticeable in the case of small boilers.

特開2012−2385号公報JP 2012-2385 A

本発明は、給水温度の違いに拘わらず、ドレンがエコノマイザ等の熱交換器内で沸騰することを防止しつつ、ボイラ内の水位を確実に低下させることを課題とする。   This invention makes it a subject to reduce the water level in a boiler reliably, preventing drain boiling in heat exchangers, such as an economizer, irrespective of the difference in feed water temperature.

本発明は、前記課題を解決するための手段として、
ボイラと、
前記ボイラへの給水を、前記ボイラからの排気ガスにより予熱する熱交換器と、
前記熱交換器への給水量を調整する流量調整手段と、
前記ボイラ内の水位を検出する水位センサと、
前記水位センサでの検出水位が上限水位に到達した後、下限水位を超えている間、前記熱交換器への給水温度に応じて実際蒸発量と沸騰限界量の間で目標給水量を変更し、前記目標給水量に基づいて前記流量調整手段を制御する制御手段と、
を備えたことを特徴とするボイラシステムを提供する。
As a means for solving the above problems, the present invention provides:
With a boiler,
A heat exchanger for preheating water supplied to the boiler with exhaust gas from the boiler;
A flow rate adjusting means for adjusting the amount of water supplied to the heat exchanger;
A water level sensor for detecting the water level in the boiler;
After the water level detected by the water level sensor reaches the upper limit water level, the target water supply amount is changed between the actual evaporation amount and the boiling limit amount according to the water supply temperature to the heat exchanger while the lower limit water level is exceeded. Control means for controlling the flow rate adjusting means based on the target water supply amount ;
A boiler system characterized by comprising:

この構成により、実際蒸発量を超えない範囲で流量を調整するので、ボイラ内の水位を低下させることができる。また、沸騰限界量を超える範囲で流量を調整するので、熱交換器で沸騰することを確実に防止することができる。特に、熱交換器への給水温度の違いに応じて、その給水量を調整するようにしているので、ボイラ内での水位を低下させつつ、熱交換器内での沸騰をより一層適切に防止することができる。   With this configuration, the flow rate is adjusted within a range that does not exceed the actual evaporation amount, so the water level in the boiler can be lowered. Moreover, since the flow rate is adjusted in a range exceeding the boiling limit amount, boiling in the heat exchanger can be surely prevented. In particular, because the amount of water supply is adjusted according to the difference in the temperature of the water supply to the heat exchanger, the water level in the boiler is lowered, and boiling in the heat exchanger is more appropriately prevented. can do.

この場合、前記制御手段は、前記熱交換器への給水温度が低いほど、前記熱交換器への給水量が少なくなるように前記流量調整手段を制御するのが好ましい。   In this case, it is preferable that the control means controls the flow rate adjusting means so that the amount of water supplied to the heat exchanger decreases as the temperature of the water supplied to the heat exchanger decreases.

この構成により、冷態起動時等の水温が低い状態での過給水をより一層確実に防止することができる。   With this configuration, it is possible to more reliably prevent supercharging water in a state where the water temperature is low, such as during cold start.

前記制御手段は、前記熱交換器への給水量が、前記沸騰限界量よりも大きい給水下限値を超え、前記実際蒸発量よりも小さくて前記給水下限値よりも大きい給水上限値を超えない範囲となるように前記流量調整手段を制御するのが好ましい。   The control means is a range in which the amount of water supplied to the heat exchanger exceeds a lower limit value of water supply that is larger than the boiling limit amount, does not exceed the upper limit value of water supply that is smaller than the actual evaporation amount and larger than the lower limit value of water supply. It is preferable to control the flow rate adjusting means so that

この構成により、ボイラ内での水位の低下と熱交換器での沸騰の防止とを確実に行わせることができ、誤動作が発生することがない。   With this configuration, it is possible to reliably reduce the water level in the boiler and prevent boiling in the heat exchanger, and no malfunction occurs.

前記ボイラへの給水はクローズド方式で回収されたドレンであれば、前記構成による効果はより有効なものとなる。   If the water supply to the boiler is drain collected in a closed manner, the effect of the above configuration becomes more effective.

本発明によれば、実際蒸発量と沸騰限界量の範囲内で、熱交換器への給水温度の違いに応じて熱交換器への給水量を調整するようにしたので、給水温度の違いに拘わらず、熱交換器での沸騰を防止しつつ、ボイラへの給水量を抑制して確実に水位を低下させることができる。   According to the present invention, the amount of water supplied to the heat exchanger is adjusted according to the difference in the water supply temperature to the heat exchanger within the range of the actual evaporation amount and the boiling limit amount. Regardless, it is possible to reliably reduce the water level by suppressing the amount of water supplied to the boiler while preventing boiling in the heat exchanger.

本実施形態に係るボイラシステムの概略説明図である。It is a schematic explanatory drawing of the boiler system which concerns on this embodiment. 図1の制御装置で実行する処理内容を示すフローチャートである。It is a flowchart which shows the processing content performed with the control apparatus of FIG. 給水温度と給水量との関係を示すグラフである。It is a graph which shows the relationship between feed water temperature and the amount of feed water.

以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。また、図面は模式的なものであり、各寸法の比率等は現実のものとは相違している。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In addition, the following description is only illustrations essentially and does not intend restrict | limiting this invention, its application thing, or its use. Further, the drawings are schematic, and the ratio of each dimension is different from the actual one.

図1は本実施形態に係るボイラシステムを示す。このボイラシステムでは、ボイラ1で発生させた蒸気をスチームヘッダ2を介して熱交換器等の負荷機器3に供給し、負荷機器3で発生したドレンを、スチームトラップ3aを介してドレンタンク4に回収してボイラ1に還流させるように構成されている。   FIG. 1 shows a boiler system according to this embodiment. In this boiler system, steam generated in the boiler 1 is supplied to a load device 3 such as a heat exchanger via a steam header 2, and the drain generated in the load device 3 is supplied to a drain tank 4 via a steam trap 3a. It is configured to collect and return to the boiler 1.

ボイラ1には、例えば、多管貫流ボイラ等が使用され、そこには内部の圧力を検出する圧力センサ5及び内部の水位を検出する水位センサ6が設けられている。各センサの出力は、後述する制御装置14(例えば、マイコン)に入力される。また、ボイラ1にはエコノマイザ7が取り付けられている。エコノマイザ7は、ボイラ1への給水をボイラ1からの排ガスによって予備加熱(予熱)するための熱交換器の一例である。なお、ボイラ1には、流量調整弁1aを有する燃料供給ライン1bを介して燃料が供給されるようになっている。   As the boiler 1, for example, a multi-tube once-through boiler is used, and a pressure sensor 5 for detecting the internal pressure and a water level sensor 6 for detecting the internal water level are provided therein. The output of each sensor is input to a control device 14 (for example, a microcomputer) described later. An economizer 7 is attached to the boiler 1. The economizer 7 is an example of a heat exchanger for preheating (preheating) the water supplied to the boiler 1 with the exhaust gas from the boiler 1. The boiler 1 is supplied with fuel via a fuel supply line 1b having a flow rate adjusting valve 1a.

スチームヘッダ2は、ボイラ1で発生した蒸気を一時的に貯留して負荷機器3に供給するために設けられている。   The steam header 2 is provided for temporarily storing steam generated in the boiler 1 and supplying the steam to the load device 3.

負荷機器3は、例えば、ボイラ1から供給された蒸気の熱を利用して他の機器でその熱を利用可能とする熱交換器等で構成されている。   The load device 3 includes, for example, a heat exchanger that uses the heat of steam supplied from the boiler 1 to make the heat available to other devices.

ドレンタンク4はクローズド方式の密閉型であり、その底部とエコノマイザ7の底部とは給水配管8で接続されている。給水配管8の途中には、ドレンタンク4側から順に、給水ポンプ9、流量センサ10、給水用モータバルブ11、及び、逆止弁12が設けられている。また、エコノマイザ7の入口温度は温度センサ13によって検出されるようになっている。ドレンタンク4の上部は、圧力調整弁15を介して、後述する補給水タンク16の上部に接続されており、発生したフラッシュ蒸気が排出される。なお、フラッシュ蒸気とは、高温高圧の凝縮水(復水またはドレン水ともいう)が低圧の雰囲気に晒されたときに、凝縮水の一部が蒸気になったものをいい、再蒸発蒸気とも呼ばれる。   The drain tank 4 is a closed type sealed type, and the bottom thereof and the bottom of the economizer 7 are connected by a water supply pipe 8. In the middle of the water supply pipe 8, a water supply pump 9, a flow sensor 10, a water supply motor valve 11, and a check valve 12 are provided in this order from the drain tank 4 side. The inlet temperature of the economizer 7 is detected by the temperature sensor 13. The upper part of the drain tank 4 is connected to the upper part of a makeup water tank 16 to be described later via a pressure regulating valve 15, and the generated flash steam is discharged. Note that flash steam refers to a part of condensed water that becomes steam when high-temperature and high-pressure condensed water (also called condensate or drain water) is exposed to a low-pressure atmosphere. be called.

制御装置14は、水位センサ6、流量センサ10、温度センサ13等から各種検出信号の入力を受け、給水ポンプ9、給水用モータバルブ11等を駆動制御する。   The control device 14 receives input of various detection signals from the water level sensor 6, the flow rate sensor 10, the temperature sensor 13, and the like, and drives and controls the water supply pump 9, the water supply motor valve 11 and the like.

なお、16は補給水タンクであり、送水ポンプ17、逆止弁18を介してドレンタンク4に接続されている。ドレンの使用量が多く、ドレンタンク4内の水位が下限水位より低下すれば、送水ポンプ17を駆動して補給水タンク16からドレンタンク4に補給水を給水できるようになっている。また補給水タンク16は、送水ポンプ19、逆止弁20を介してボイラ1に接続されている。ドレンタンク4の水位が低下し、ボイラ1への給水が間に合わない場合等に、直接、補給水タンク16からボイラ1へと給水できるようになっている。   Reference numeral 16 denotes a makeup water tank, which is connected to the drain tank 4 via a water pump 17 and a check valve 18. When the amount of drain used is large and the water level in the drain tank 4 falls below the lower limit water level, the water supply pump 17 is driven to supply the makeup water from the makeup water tank 16 to the drain tank 4. The makeup water tank 16 is connected to the boiler 1 via a water pump 19 and a check valve 20. When the water level of the drain tank 4 is lowered and water supply to the boiler 1 is not in time, water can be directly supplied from the makeup water tank 16 to the boiler 1.

次に、前記構成からなるボイラシステムの動作について、図2のフローチャートを参照しつつ説明する。   Next, the operation of the boiler system configured as described above will be described with reference to the flowchart of FIG.

ボイラ1内でバーナを燃焼させていない待機状態であれば、エコノマイザ7内でドレンが沸騰する恐れがないので、後述する給水信号「無」に対応する信号を出力し、給水用モータバルブ11を全閉とする。   In the standby state where the burner is not burned in the boiler 1, there is no fear that the drain boils in the economizer 7. Fully closed.

また、ボイラ1内のバーナを、例えば、燃焼(例えば、高又は低の2段階、高、中又は低の3段階等)させた状態であれば、次のようにして給水用モータバルブ11の開度を調整する。   Further, if the burner in the boiler 1 is in a state of being burned (for example, two stages of high or low, three stages of high, medium or low, etc.), the water supply motor valve 11 is operated as follows. Adjust the opening.

すなわちまず、ボイラ1内の水位を検出する水位センサ6からの検出信号を読み込み(ステップS1)、読み込んだ検出水位に基づいて給水要求の有無を判断する(ステップS2)。給水要求の有無は、水位センサでの検出水位が予め設定した下限水位以下であるか否かを判断することにより行う。   That is, first, a detection signal from the water level sensor 6 that detects the water level in the boiler 1 is read (step S1), and the presence or absence of a water supply request is determined based on the read detection water level (step S2). Whether or not there is a water supply request is determined by determining whether or not the water level detected by the water level sensor is equal to or lower than a preset lower limit water level.

検出水位が下限水位以下であれば(ステップS2:YES)、給水要求有りであると判断し、給水用モータバルブ11に給水信号「有」を送信し、給水配管8を全開とする(ステップS3)。これにより、ボイラ1内の水位が上昇する。ここで、検出水位が上限水位に到達したか否かを判断する(ステップS4)。そして、ボイラ1内の水位が上限水位に到達するまで、給水配管8を全開とした状態での給水が続行される。   If the detected water level is equal to or lower than the lower limit water level (step S2: YES), it is determined that there is a water supply request, a water supply signal “present” is transmitted to the water supply motor valve 11, and the water supply pipe 8 is fully opened (step S3). ). Thereby, the water level in the boiler 1 rises. Here, it is determined whether or not the detected water level has reached the upper limit water level (step S4). And the water supply in the state which fully opened the water supply piping 8 is continued until the water level in the boiler 1 reaches an upper limit water level.

検出水位が上限水位を超えれば(ステップS4:YES)、給水要求無しであると判断し、給水用モータバルブ11に給水信号「無」を送信し、次のようにして給水配管8の開度を調整する。すなわち、給水量が給水温度の違いに応じて実際蒸発量と沸騰限界量の間で変化するように目標給水量を決定し、この目標給水量に基づいて給水配管8の開度を調整する給水量調整処理を実行する(ステップS5)。なお、この給水量調整処理は、検出水位が下限水位を超えている間(ステップS2:NO)、続行される。   If the detected water level exceeds the upper limit water level (step S4: YES), it is determined that there is no water supply request, a water supply signal “None” is transmitted to the water supply motor valve 11, and the opening of the water supply pipe 8 is as follows. Adjust. That is, the target water supply amount is determined so that the water supply amount changes between the actual evaporation amount and the boiling limit amount according to the difference in the water supply temperature, and the water supply amount for adjusting the opening of the water supply pipe 8 based on the target water supply amount A quantity adjustment process is executed (step S5). This water supply amount adjustment process is continued while the detected water level exceeds the lower limit water level (step S2: NO).

具体的には、図3のグラフに示すように、予め実験等により実際蒸発量(図3中、黒塗り四角(◆)を結ぶ線で示す)と沸騰限界量(図3中、黒塗り三角(▲)を結ぶ線で示す)とを決定し、両グラフの間で変化する1次関数(図3中、実線で示す)を、ある給水温度に対する目標給水量に決定する。実際蒸発量は、給水温度を変化させた場合、その給水温度で蒸発量に到達する給水量を予め実験等により求めておく。沸騰限界量は、給水温度を変化させた場合、その給水温度でエコノマイザ7の出口で飽和温度に到達する給水量を予め実験等により求めておく。1次関数は、例えば、最高給水温度での給水量の中間値と、最低給水温度での給水量の中間値を結んだ直線とすればよい。但し、1次関数の決定方法はこれに限らず、実際蒸発量及び沸騰限界量のグラフに交差しなければ、いずれの直線としてもよい。また1次関数に限らず、例えば、ある給水温度での実際蒸発量と沸騰限界量の差分の何%というように決定してもよい。   Specifically, as shown in the graph of FIG. 3, the actual evaporation amount (shown by a line connecting the black squares (♦) in FIG. 3) and the boiling limit amount (black triangles in FIG. And a linear function (indicated by a solid line in FIG. 3) that changes between the two graphs is determined as a target water supply amount for a certain water supply temperature. When the feed water temperature is changed, the actual evaporation amount is obtained in advance through experiments or the like to determine the feed water amount that reaches the evaporation amount at the feed water temperature. When the feed water temperature is changed, the boiling limit amount is obtained in advance through experiments or the like to obtain the feed water amount that reaches the saturation temperature at the outlet of the economizer 7 at the feed water temperature. The linear function may be, for example, a straight line connecting an intermediate value of the water supply amount at the maximum water supply temperature and an intermediate value of the water supply amount at the minimum water supply temperature. However, the method of determining the linear function is not limited to this, and any straight line may be used as long as it does not intersect the graph of the actual evaporation amount and the boiling limit amount. Further, not limited to the linear function, for example, it may be determined as what percentage of the difference between the actual evaporation amount at a certain feed water temperature and the boiling limit amount.

このように、ボイラ1内で燃焼させているときに、給水要求が無く、ボイラ1内の水位を低下させる必要がある場合には、給水量が実際蒸発量を超えないように調整することによりこの要求に応えることができる。すなわち、給水温度が変化したとしても、その変化に応じた適切な値に目標給水量を変更するようにしている。したがって、給水温度が高くなったとしても実際蒸発量を超えることのない給水量とすることができる。しかも、たとえ給水温度が低くなったとしてもその温度低下に応じた給水量とすることができる。この結果、給水温度の違いに拘わらず、ボイラ1への過給水を確実に防止することが可能となる。また、目標給水量が沸騰限界量を超えるように調整することにより、エコノマイザ7内での沸騰を防止することができる。この場合も、給水温度の変化に応じた給水量とできるので、給水温度が高くて沸騰限界量が実際蒸発量に接近している場合であってもエコノマイザ7での沸騰を確実に防止することが可能となる。   As described above, when there is no water supply request and it is necessary to lower the water level in the boiler 1 when burning in the boiler 1, the water supply amount is adjusted so as not to exceed the actual evaporation amount. This requirement can be met. That is, even if the water supply temperature changes, the target water supply amount is changed to an appropriate value according to the change. Therefore, even if the feed water temperature becomes high, the feed water amount can be set so as not to exceed the actual evaporation amount. Moreover, even if the water supply temperature is lowered, the amount of water supply can be made according to the temperature drop. As a result, it is possible to reliably prevent the supercharging water to the boiler 1 regardless of the difference in the feed water temperature. Moreover, the boiling in the economizer 7 can be prevented by adjusting the target water supply amount to exceed the boiling limit amount. Also in this case, since the water supply amount can be adjusted according to the change in the water supply temperature, it is possible to reliably prevent boiling in the economizer 7 even when the water supply temperature is high and the boiling limit amount is close to the actual evaporation amount. Is possible.

特に、小型クローズドのドレンタンク4(例えば、貯留可能なドレンの重量が10kg程度のもの)では、給水温度と、使用圧力範囲での飽和温度とが接近しているが、前述の方法によりエコノマイザ7内での沸騰を防止しつつ、給水温度の違いに拘わらず、確実に過給水を防止することができる。   In particular, in the small closed drain tank 4 (for example, the weight of the drainable storable water is about 10 kg), the water supply temperature is close to the saturation temperature in the operating pressure range. It is possible to reliably prevent supercharging water regardless of the difference in water supply temperature, while preventing boiling inside.

なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。   In addition, this invention is not limited to the structure described in the said embodiment, A various change is possible.

例えば、前記実施形態では、実際蒸発量と沸騰限界量を実験等により決定するようにしたが、給水温度を変数とする数式を利用して決定するようにしてもよい。要するに、給水温度に違いにより変化する実際蒸発量と沸騰限界量を把握可能となっていればよい。   For example, in the above embodiment, the actual evaporation amount and the boiling limit amount are determined by experiments or the like. However, the actual evaporation amount and the boiling limit amount may be determined using a mathematical formula with the feed water temperature as a variable. In short, it is only necessary to be able to grasp the actual evaporation amount and the boiling limit amount that change depending on the difference in the feed water temperature.

また、前記実施形態では、目標給水量を、実際蒸発量と沸騰限界量のほぼ中央値を狙って決定するようにしたが、給水温度が低いほど、目標給水量を小さい値とするのが好ましい。そして、この目標給水量に基づいて給水用モータバルブ11を駆動制御することにより、ボイラ1への給水量を給水温度が低いほど抑制することができる。これによれば、冷態起動時等の水温が低い状態で、エコノマイザ7を介してボイラ1に給水される量が過剰となってその水位が上昇してしまうといった不具合の発生をより一層確実に防止することができる。   In the above embodiment, the target water supply amount is determined by aiming at the approximate median of the actual evaporation amount and the boiling limit amount. However, it is preferable to set the target water supply amount to a smaller value as the water supply temperature is lower. . And by controlling the drive of the water supply motor valve 11 based on this target water supply amount, the water supply amount to the boiler 1 can be suppressed as the water supply temperature is lower. According to this, in the state where the water temperature is low, such as at the time of cold start, the amount of water supplied to the boiler 1 through the economizer 7 becomes excessive and the occurrence of a problem that the water level rises more reliably. Can be prevented.

また、前記実施形態では、目標給水量を、給水温度の違いに応じて実際蒸発量と沸騰限界量の間で変化させるようにしたが、給水上限値と給水下限値を決めて、その間で変化させるようにしてもよい。給水上限値は、実際蒸発量よりも所定値(例えば、50kg/h)だけ小さい値を使用すればよい。また、給水下限値は、給水上限値よりも小さくて沸騰限界量よりも所定値(例えば、50kg/h)だけ大きい値を使用すればよい。   In the above embodiment, the target water supply amount is changed between the actual evaporation amount and the boiling limit amount according to the difference in the water supply temperature, but the water supply upper limit value and the water supply lower limit value are determined and changed between them. You may make it make it. The supply water upper limit value may be a value smaller than the actual evaporation amount by a predetermined value (for example, 50 kg / h). The water supply lower limit value may be a value smaller than the water supply upper limit value and larger than the boiling limit amount by a predetermined value (for example, 50 kg / h).

これによれば、目標給水量を給水上限値と給水下限値の間で変化させるのであれば、給水上限値又は給水下限値となるような変化であっても、一時的にでもボイラ1への実際給水量が実際蒸発量を上回ったり、沸騰限界量を下回ったりすることを確実に防止することができる。すなわち、ボイラ1内での水位が上昇する過給水の状態や、エコノマイザ7でドレンが沸騰してしまう状態を確実に阻止することが可能となる。   According to this, if the target water supply amount is changed between the water supply upper limit value and the water supply lower limit value, even if it is a change that becomes the water supply upper limit value or the water supply lower limit value, the change to the boiler 1 even temporarily. It is possible to reliably prevent the actual water supply amount from exceeding the actual evaporation amount or from falling below the boiling limit amount. That is, it is possible to reliably prevent the state of supercharged water in which the water level in the boiler 1 rises and the state in which the drain is boiled by the economizer 7.

また、前記実施形態では、熱交換器の例としてエコノマイザ7の説明を行ったが、内部での沸騰を防止しつつボイラ1への給水量を抑制できるのであれば、他のタイプの熱交換器であっても採用することが可能である。   Moreover, in the said embodiment, although the economizer 7 was demonstrated as an example of a heat exchanger, if the amount of water supply to the boiler 1 can be suppressed, preventing the boiling inside, other types of heat exchangers However, it can be adopted.

1…ボイラ
2…スチームヘッダ
3…負荷機器
4…ドレンタンク
5…圧力センサ
6…水位センサ
7…エコノマイザ(熱交換器)
8…給水配管
9…給水ポンプ
10…流量センサ
11…給水用モータバルブ(流量調整手段)
12…逆止弁
13…温度センサ
14…制御装置(制御手段)
15…圧力調整弁
16…補給水タンク
17…送水ポンプ
18…逆止弁
19…送水ポンプ
20…逆止弁
DESCRIPTION OF SYMBOLS 1 ... Boiler 2 ... Steam header 3 ... Load equipment 4 ... Drain tank 5 ... Pressure sensor 6 ... Water level sensor 7 ... Economizer (heat exchanger)
8 ... Water supply piping 9 ... Water supply pump 10 ... Flow sensor 11 ... Water supply motor valve (flow rate adjusting means)
12 ... Check valve 13 ... Temperature sensor 14 ... Control device (control means)
DESCRIPTION OF SYMBOLS 15 ... Pressure regulating valve 16 ... Supply water tank 17 ... Water pump 18 ... Check valve 19 ... Water pump 20 ... Check valve

Claims (4)

ボイラと、
前記ボイラへの給水を、前記ボイラからの排気ガスにより予熱する熱交換器と、
前記熱交換器への給水量を調整する流量調整手段と、
前記ボイラ内の水位を検出する水位センサと、
前記水位センサでの検出水位が上限水位に到達した後、下限水位を超えている間、前記熱交換器への給水温度に応じて実際蒸発量と沸騰限界量の間で目標給水量を変更し、前記目標給水量に基づいて前記流量調整手段を制御する制御手段と、
を備えたことを特徴とするボイラシステム。
With a boiler,
A heat exchanger for preheating water supplied to the boiler with exhaust gas from the boiler;
A flow rate adjusting means for adjusting the amount of water supplied to the heat exchanger;
A water level sensor for detecting the water level in the boiler;
After the water level detected by the water level sensor reaches the upper limit water level, the target water supply amount is changed between the actual evaporation amount and the boiling limit amount according to the water supply temperature to the heat exchanger while the lower limit water level is exceeded. Control means for controlling the flow rate adjusting means based on the target water supply amount ;
A boiler system characterized by comprising
前記制御手段は、前記熱交換器への給水温度が低いほど、前記熱交換器への給水量が少なくなるように前記流量調整手段を制御することを特徴とする請求項1に記載のボイラシステム。   2. The boiler system according to claim 1, wherein the control unit controls the flow rate adjusting unit so that the amount of water supplied to the heat exchanger decreases as the temperature of the water supplied to the heat exchanger decreases. . 前記制御手段は、前記熱交換器への給水量が、前記沸騰限界量よりも大きい給水下限値を超え、前記実際蒸発量よりも小さくて前記給水下限値よりも大きい給水上限値を超えない範囲となるように前記流量調整手段を制御することを特徴とする請求項1又は2に記載のボイラシステム。   The control means is a range in which the amount of water supplied to the heat exchanger exceeds a lower limit value of water supply that is larger than the boiling limit amount, does not exceed the upper limit value of water supply that is smaller than the actual evaporation amount and larger than the lower limit value of water supply. The boiler system according to claim 1 or 2, wherein the flow rate adjusting means is controlled so that 前記ボイラへの給水はクローズド方式で回収されたドレンであることを特徴とする請求項1から3のいずれか1項に記載のボイラシステム。   The boiler system according to any one of claims 1 to 3, wherein water supplied to the boiler is drain collected by a closed system.
JP2014100653A 2014-05-14 2014-05-14 Boiler system Active JP6349946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100653A JP6349946B2 (en) 2014-05-14 2014-05-14 Boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100653A JP6349946B2 (en) 2014-05-14 2014-05-14 Boiler system

Publications (2)

Publication Number Publication Date
JP2015218915A JP2015218915A (en) 2015-12-07
JP6349946B2 true JP6349946B2 (en) 2018-07-04

Family

ID=54778446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100653A Active JP6349946B2 (en) 2014-05-14 2014-05-14 Boiler system

Country Status (1)

Country Link
JP (1) JP6349946B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323269B2 (en) * 2014-09-10 2018-05-16 三浦工業株式会社 Boiler equipment
JP6419888B1 (en) * 2017-04-28 2018-11-07 三菱日立パワーシステムズ株式会社 Power plant and operation method thereof
JP7124591B2 (en) * 2018-09-20 2022-08-24 三浦工業株式会社 steam generator
KR102151468B1 (en) * 2019-11-19 2020-09-03 대림로얄이앤피(주) Water supply temperature maintenance system of industrial condensing boiler
CN114680566A (en) * 2020-12-29 2022-07-01 珠海优特智厨科技有限公司 Cooking method, device, storage medium and cooking equipment

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241869A (en) * 1979-01-11 1980-12-30 Standard Oil Company (Indiana) Furnace fuel optimizer
US4318366A (en) * 1980-04-01 1982-03-09 Aqua-Chem, Inc. Economizer
JPS57204704A (en) * 1981-06-13 1982-12-15 Babcock Hitachi Kk Method of operating waste heat recovery boiler
JPS6029501A (en) * 1983-07-28 1985-02-14 株式会社日立製作所 Steam generator for recovering waste heat
JPS6158511U (en) * 1984-09-20 1986-04-19
JPS6291703A (en) * 1985-10-16 1987-04-27 株式会社日立製作所 Steaming preventive device for fuel economizer
JPH07122485B2 (en) * 1986-01-13 1995-12-25 株式会社日立製作所 Steamer steam prevention device for once-through thermal power generation boiler system
JPH01193506A (en) * 1988-01-29 1989-08-03 Ebara Corp Device to prevent overheating of boiler economizer
JPH0462306A (en) * 1990-06-29 1992-02-27 Kawasaki Steel Corp Feed water control method for drum type boiler when its pressure is raised
JPH05126301A (en) * 1990-12-01 1993-05-21 Toshiba Corp Mixed pressure type waste heat recovery boiler protective device
JPH04362207A (en) * 1991-06-10 1992-12-15 Toshiba Corp Repowering system of steam power generating equipment
JPH07217802A (en) * 1994-02-03 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd Waste heat recovery boiler
JPH09303113A (en) * 1996-05-10 1997-11-25 Toshiba Corp Combined cycle generating plant
JP5008134B2 (en) * 2007-05-29 2012-08-22 株式会社サムソン Water supply preheating boiler
JP5630083B2 (en) * 2010-06-14 2014-11-26 三浦工業株式会社 Drain collection system
JP5630084B2 (en) * 2010-06-14 2014-11-26 三浦工業株式会社 Boiler water supply system
JP2012072991A (en) * 2010-09-29 2012-04-12 Miura Co Ltd Economizer control device, economizer, and boiler
JP5339219B2 (en) * 2011-02-03 2013-11-13 三浦工業株式会社 Boiler system
JP6552833B2 (en) * 2015-02-10 2019-07-31 三菱重工業株式会社 Boiler water supply system, boiler equipped with the same, and boiler water supply method

Also Published As

Publication number Publication date
JP2015218915A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6349946B2 (en) Boiler system
JP5630084B2 (en) Boiler water supply system
TWI510744B (en) Method for operating a heat recovery steam generator,heat recovery steam generator and gas and steam turbine system
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
KR101959154B1 (en) Boiler feed-water system, boiler provided with said system, and boiler feed-water method
JP2007248018A (en) Control system for supply water preheater of reheat boiler
JP6330423B2 (en) Flash steam generator and boiler system
JP6277683B2 (en) Boiler system
CN107631286B (en) A kind of method for regulating temperature and system improving ultra-supercritical boiler unit efficiency
JP6146270B2 (en) Boiler system
JP2007278610A (en) Control method for gas water heater, and gas water heater for carrying out the control method
JP6812770B2 (en) Boiler system
JP5406138B2 (en) Boiler protection control method
JP2018077033A (en) boiler
US11333348B2 (en) Exhaust gas cooler
CN114132983B (en) Deoxidizing device capable of providing high-temperature condensed water
US3364903A (en) Steam generator with reheat temperature regulation
JP2021116942A (en) Water supply device for boiler
CN110094240B (en) Heat energy recovery device
JP7371533B2 (en) Boiler efficiency calculation device
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPS599834B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
JP2020051686A (en) Water heater and control method of water heater
JP2625422B2 (en) Boiler control device
US3261332A (en) Vapor generator vapor temperature control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6349946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250