JP6349588B2 - Stent manufacturing method - Google Patents

Stent manufacturing method Download PDF

Info

Publication number
JP6349588B2
JP6349588B2 JP2012090539A JP2012090539A JP6349588B2 JP 6349588 B2 JP6349588 B2 JP 6349588B2 JP 2012090539 A JP2012090539 A JP 2012090539A JP 2012090539 A JP2012090539 A JP 2012090539A JP 6349588 B2 JP6349588 B2 JP 6349588B2
Authority
JP
Japan
Prior art keywords
stent
tube
alloy
processing
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012090539A
Other languages
Japanese (ja)
Other versions
JP2013215487A (en
Inventor
清 山内
清 山内
鈴木 正夫
正夫 鈴木
幸宏 植垣
幸宏 植垣
修蔵 山下
修蔵 山下
雅 三宅
雅 三宅
文朗 真鍋
文朗 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLINO Ltd
Original Assignee
CLINO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLINO Ltd filed Critical CLINO Ltd
Priority to JP2012090539A priority Critical patent/JP6349588B2/en
Publication of JP2013215487A publication Critical patent/JP2013215487A/en
Application granted granted Critical
Publication of JP6349588B2 publication Critical patent/JP6349588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、人体、動物の内腔に取り付けるステント及びその製造方法に関するものである。 The present invention relates to a stent attached to the lumen of a human body or an animal, and a method for manufacturing the stent.

ステント治療は、近年急速に進展している医療技術である。ステントとは、血管などの狭窄部拡張後の再狭窄を防ぐ為に、体内に留置されるメッシュ状の金属パイプのことである。カテーテルの先端部に縮径収納されたステントは、狭窄部へ導入されたのち、カテーテルからの解放・拡張操作によって、血管などの腔内壁に取り付けられる。心筋梗塞などの原因となる冠動脈の狭窄はステント収納内壁にセットされている風船の膨張による血管拡張操作に伴って拡げられる。これはバルーン(風船)拡張型(balloon-expandable)と呼ばれ、金属はステンレスやコバルトクロム合金が用いられている。 Stent treatment is a medical technology that is rapidly progressing in recent years. A stent is a mesh-like metal pipe placed in the body in order to prevent restenosis after expansion of a stenosis part such as a blood vessel. The stent accommodated in the reduced diameter at the distal end portion of the catheter is introduced into the stenosis portion and then attached to the inner wall of a blood vessel or the like by a release / expansion operation from the catheter. The stenosis of the coronary artery that causes myocardial infarction or the like is expanded along with the vasodilation operation by the expansion of the balloon set on the inner wall of the stent housing. This is called a balloon-expandable, and the metal is stainless steel or cobalt chrome alloy.

一方、脳へとつながる血管でとくに動脈硬化や狭窄が起こりやすいのは頸動脈であり、その狭窄部に溜まった血栓やプラークは脳へと流れ脳梗塞を引き起こす。この場合ステントはカテーテルから解放されると同時に自己復元で拡張する自己拡張型(Self-expandable)が用いられ、金属はバネ特性に優れるTi-Ni超弾性合金である。 On the other hand, arteriosclerosis and stenosis are particularly prone to occur in blood vessels connected to the brain, and thrombus and plaque accumulated in the stenosis flow to the brain and cause cerebral infarction. In this case, the stent is self-expandable that is released from the catheter and expands by self-restoration, and the metal is a Ti-Ni superelastic alloy having excellent spring characteristics.

また、最近の動向として、生体吸収材料をステントコアとする研究もなされている。即ち、ステント留置・その再狭窄防止機能期間経過後、コアは生体に吸収され消失されるものである。候補の有力はポリ乳酸樹脂系であるが、肝心のステント保持力に弱い難点を持ち、拡張力に勝る金属材料、Mg合金の適用検討が進んでいる。 Also, as a recent trend, studies have been made on bioabsorbable materials as stent cores. That is, after the stent placement / restenosis prevention function period elapses, the core is absorbed by the living body and disappears. Candidates are likely to be polylactic acid resin-based, but the application of a metal material, Mg alloy, which has weak weakness in the essential stent retention force and is superior in expansion force, is advancing.

ステント用途の金属材料として多くの研究・用途例を持つものにTi-Ni合金がある。
Ti-Ni合金をはじめとした形状記憶合金は、マルテンサイト変態の逆変態に付随して顕著な形状記憶を示すことがよく知られている。また、逆変態後の母相領域での強変形によって引き起こされる応力誘起マルテンサイト変態に伴い、良好な超弾性を示すこともよく知られている。その超弾性は数多くの形状記憶合金の中でも特にTi-Ni合金およびTi-Ni-X合金(X=V,Cr,Co,Nb等)に顕著に現れる。
Ti-Ni alloy is one of the metal materials for stents that have many research and application examples.
It is well known that shape memory alloys such as Ti-Ni alloys exhibit remarkable shape memory accompanying the reverse transformation of the martensitic transformation. It is also well known that it exhibits good superelasticity with the stress-induced martensitic transformation caused by strong deformation in the matrix region after reverse transformation. The superelasticity is particularly apparent in Ti-Ni alloys and Ti-Ni-X alloys (X = V, Cr, Co, Nb, etc.) among many shape memory alloys.

Ti-Ni合金の形状記憶効果は例えば特許文献1に示されている。Ti-Ni合金超弾性の特徴は、合金の逆変態温度開始温度(As温度)に始まり逆変態終了温度(Af温度)以上では、外部から変形を受けても、その外部拘束の解除と同時に元の形に復元し、その回復量は伸びひずみで約7%に達することである。As温度は形状回復開始温度、Af温度は形状回復終了温度(形状回復温度)を意味する。また、工業的な変態温度計測手段として示差走査熱量計(DSC)がよく用いられる。DSCによれば変態前後で明確な発熱および吸熱ピークが見られる。 The shape memory effect of the Ti—Ni alloy is disclosed in Patent Document 1, for example. Ti-Ni alloy superelasticity is characterized by the fact that it starts at the reverse transformation temperature start temperature (As temperature) of the alloy and is higher than the reverse transformation end temperature (Af temperature). The amount of recovery is about 7% in elongation strain. As temperature means shape recovery start temperature, and Af temperature means shape recovery end temperature (shape recovery temperature). A differential scanning calorimeter (DSC) is often used as an industrial transformation temperature measurement means. According to DSC, clear exothermic and endothermic peaks are seen before and after transformation.

自己拡張型ステントにTi-Ni超弾性合金を用いる提案は、特許文献2、3、4などに示されている。特許文献2によれば、形状記憶合金はAf温度以上の母相での引っ張りにおいて、当初は歪みとともに応力は直線的に増加する。その後更なる応力の付加に伴い応力誘起マルテンサイト変態を生じ、歪が増加しても応力の平坦域(Loading-Plato)を歪7%程度まで持続させ、また荷重除荷時においても同様な平坦域(Unload-Plato)を持つことが常であるとしている。すなわち、明確な変態に伴う超弾性の適用である。また特許文献2では更なる高弾性ステントを得るために第三元素添加合金Ti-Ni-X(X=Nb、Hf、Ta、W)を提案している。 Proposals for using a Ti—Ni superelastic alloy for a self-expanding stent are shown in Patent Documents 2, 3, 4 and the like. According to Patent Document 2, when a shape memory alloy is pulled in a matrix phase at an Af temperature or higher, stress initially increases linearly with strain. After that, stress-induced martensitic transformation occurs along with the addition of stress, and even if the strain increases, the stress flat region (Loading-Plato) is maintained up to about 7% strain. It is said that it is usual to have an area (Unload-Plato). That is, the application of superelasticity with a clear transformation. Patent Document 2 proposes a third element-added alloy Ti—Ni—X (X = Nb, Hf, Ta, W) in order to obtain a further highly elastic stent.

Ti-Ni合金の特性は冷間加工度、熱処理条件によって大きく変化し、DSCによる明確な変態ピークは示さず、変態を抑制した加工処理によって歪の増加と共に応力も増加する平坦領域のないNon-Plato超弾性を具備させることができる。これら素子はガイドワイヤーにおいては特許文献5、6などに平坦領域を持たない高強度Ti-Ni合金コア材として提案されている。 The characteristics of Ti-Ni alloys vary greatly depending on the cold work degree and heat treatment conditions, and do not show a clear transformation peak due to DSC, and there is no flat region where stress increases with increasing strain due to processing that suppresses transformation. Plato superelasticity can be provided. These elements are proposed as a high-strength Ti—Ni alloy core material that does not have a flat region in Patent Documents 5 and 6 in a guide wire.

米国特許第.3,174,851号明細書U.S. Pat.No. 3,174,851 特開平07-112028号公報JP 07-112028 A 特開平08-000738号公報Japanese Patent Laid-Open No. 08-000738 特開平08-196642号公報Japanese Unexamined Patent Publication No. 08-196642 特開平5-293175号公報JP-A-5-293175 特開2001-164348号公報Japanese Patent Laid-Open No. 2001-164348

(1)材料歩留り:
ステントは金属チューブのレーザー加工によって得られ、被加工チューブはステントスロットの均等性を良くするために直進状とし、レーザー加工装置の被チューブつかみ部とレーザー光部には100mm程度の距離があり、その領域のチューブはステント加工には使用されない。
(1) Material yield:
The stent is obtained by laser processing of a metal tube, and the tube to be processed is straight to improve the uniformity of the stent slot, and there is a distance of about 100 mm between the tube gripping portion of the laser processing apparatus and the laser beam portion, The tube in that area is not used for stent processing.

(2)加工集合組織の維持:
金属材料は最終寸法に至る加工技術(塑性加工、熱処理)によって最適特性を得られることが多い。Ti-Ni合金の場合、冷間強加工による集合組織によって材料の高強度化が可能である。しかし、レーザー加工のステント用チューブの直線化は熱処理矯正が一般的であり、機械矯正は難しい。このために折角の加工組織は熱処理によって失われる。
また、材料の最適特性に組織方位依存性、微結晶化がポイントの場合、ブロック状鋳塊での多軸鍛造・圧延加工での特性付与と、その後の削り切り出しによる組織保存が求められる。
(2) Maintenance of processing texture:
In many cases, the metal material can obtain optimum characteristics by processing techniques (plastic processing, heat treatment) up to final dimensions. In the case of Ti-Ni alloy, it is possible to increase the strength of the material by the texture by cold strong working. However, straightening a laser-processed stent tube is generally performed by heat treatment and mechanical correction is difficult. For this reason, the folded texture is lost by heat treatment.
In addition, in the case where the optimum orientation of the material is dependent on the structure orientation and microcrystallization, it is necessary to impart characteristics in multi-axis forging / rolling with a block-shaped ingot and to preserve the structure by subsequent cutting.

(3)長尺チューブの内面観察:
ステントは0.1mm肉厚、0.1mmスロット加工品が主である。このため、最終加工チューブのキズ、欠陥は体内留置時折損の原因となり、内外表面観察は信頼性確保に重要である。しかし、長尺チューブでの有効な工業的観察手段はなく、ステント加工後の観察に頼らざる得ない。
(3) Inner surface observation of long tube:
Stents are mainly 0.1mm thick and 0.1mm slot processed products. For this reason, scratches and defects in the final processed tube cause breakage during indwelling, and observation of the inner and outer surfaces is important for ensuring reliability. However, there is no effective industrial observation means with long tubes, and it is necessary to rely on observation after stent processing.

本発明者らは、ステントのレーザー加工方法を徹底的に検討した結果、国際公開WO12/08579に記載された、加工チューブまで形成した水柱をレーザー光の導波路とする串刺しチューブレーザー加工方法が有効であることを見出し、該加工方法を利用して複数のチューブを一度に効率よく加工する方法について徹底的に検討した結果本発明に到達したものである。
すなわち本発明は、ステントを製造する方法であって、ステント用の複数の短尺チューブの中空部に鋼芯金を挿入して複数の短尺チューブを鋼芯金に密着固定した後、該短尺チューブまでに形成した水柱をレーザー光の導岐路とする水レーザーによってステント加工し、しかる後、該短尺チューブから芯金を除去することを特徴とするステントの製造方法である。
該短尺チューブは、内表面処理が施され、寸法測定上がりのため短尺チューブの中空部の内径と芯金の外径差を芯金が挿入できる程度にわずかである。芯金と短尺チューブの隙間は、ステント加工によって部分的或いは全面的に剥離しない程度の密着性が確保されているため短尺チューブは芯金に密着固定される。レーザー加工が終了すると、例えば国際公開WO12/008579に記載された方法などでチューブを芯金から除去することができる。
As a result of thorough examination of the laser processing method for stents, the present inventors have found that the skewer tube laser processing method described in International Publication WO12 / 08579, in which a water column formed up to the processing tube is used as a laser beam waveguide, is effective. As a result of thorough examination on a method for efficiently processing a plurality of tubes at once using the processing method, the present invention has been achieved.
That is, the present invention is a method for manufacturing a stent, in which a steel core is inserted into the hollow portions of a plurality of short tubes for stents, and the plurality of short tubes are closely fixed to the steel core. A stent manufacturing method is characterized in that a stent is processed by a water laser using a water column formed as a laser beam branch, and then a cored bar is removed from the short tube.
The short tube is subjected to an inner surface treatment, and the difference in inner diameter between the hollow portion of the short tube and the outer diameter of the core metal is so small that the core metal can be inserted due to the increase in dimension measurement. The gap between the cored bar and the short tube is secured to the cored bar in close contact with the core metal because the adhesiveness is secured to the extent that the stent is not partially or wholly peeled off by the stent processing. When the laser processing is completed, the tube can be removed from the cored bar by, for example, a method described in International Publication WO12 / 008579.

本発明のレーザー加工方法によりチューブの歩留まりの向上を実現するとともに加工集合組織を維持したステントを提供することができる。また従来と比較して短いチューブを用いるので、工業的観察手段が可能となり、内外表面観察の信頼性を確保できる。 According to the laser processing method of the present invention, it is possible to provide a stent that can improve the yield of the tube and maintain the processed texture. In addition, since a short tube is used as compared with the conventional case, an industrial observation means is possible, and the reliability of the inner and outer surface observation can be ensured.

ステント加工展開イメージ図Stent processing development image ラッドチューブのステント加工結果例Example of lad tube stent processing results 加工毎におけるDSC曲線DSC curve for each process

以下に本発明のステントの製造方法の一実施例を図面により説明する。本発明でいう短尺チューブとは製品ステントの長さのチューブであり、芯金に複数のチューブを挿入して串刺し状としたチューブ連結図と実際のステント加工展開例を図1に示した。An embodiment of the stent manufacturing method of the present invention will be described below with reference to the drawings. The short tube referred to in the present invention is a tube having a length of a product stent. FIG. 1 shows a tube connection diagram in which a plurality of tubes are inserted into a metal core and skewered, and an actual stent processing development example.

φ2.0mm、t0.2mmチューブに鋼合金芯材挿入のクラッドチューブのステント加工結果をドライレーザ加工および被加工チューブまで形成した水柱をレーザー光の導波路とする水レーザー加工のそれぞれの結果を図2に示したが、本発明には水レーザーは有効であると云えるが、必須の条件ではない。 Figure shows the results of stent processing of a clad tube with a steel alloy core inserted into a φ2.0mm, t0.2mm tube, dry laser processing, and water laser processing using a water column formed up to the tube to be processed as a laser beam waveguide. As shown in FIG. 2, although it can be said that a water laser is effective in the present invention, it is not an essential condition.

Ti-51at%Ni合金鋳塊を熱間鍛造→冷間鍛造加工で断面7mm□とした。材料に加えられた冷間加工率は約50%である。その後、切削加工によりステント用細径チューブφ1.8×φ1.4mm×L50mmとし複数個を鋼芯金に取り付け串刺し状とした。次に、それらを図2に示す水レーザーによりステント加工した。 A Ti-51at% Ni alloy ingot was made into a 7 mm square section by hot forging → cold forging. The cold work rate applied to the material is about 50%. Thereafter, a thin tube for stent φ1.8 × φ1.4 mm × L50 mm was formed by cutting, and a plurality of them were attached to a steel core bar to form a skewered shape. Next, they were stented by the water laser shown in FIG.

各工程における材料のDSC測定によって各加工での歪み導入の是非を判断した。DSCでは、冷却過程、加熱過程でそれぞれ変態に伴う明確な発熱ピーク、吸熱ピークが観測されないTypeと極めてよく観測されるTypeに分けられる。前者は加工集合組織によって変態が抑制され、後者は加工での歪みが熱影響で解放され変態が発現するこが良く知られている。図3は各工程のDSC曲線例と測定変態温度の結果である。図3より本発明は鍛造時に導入された歪みを固定した状態でステント加工可能であることが判る。 Whether to introduce strain in each process was judged by DSC measurement of the material in each process. DSC can be divided into a type in which no clear exothermic peak and endothermic peak are observed in the cooling process and heating process, and a type in which the endothermic peak is not observed. It is well known that in the former, transformation is suppressed by the machining texture, and in the latter, transformation in the machining is released by the heat effect and the transformation appears. FIG. 3 shows the results of DSC curves and measured transformation temperatures for each process. It can be seen from FIG. 3 that the present invention can be processed into a stent with the strain introduced during forging fixed.

Claims (2)

ステントを製造する方法であって、A method of manufacturing a stent, comprising:
ステント用の複数の短尺チューブの中空部に鋼芯金を挿入して短尺チューブを鋼芯金に密着固定した後、該短尺チューブまでに形成した水柱をレーザー光の導岐路とする水レーザーによってステント加工し、しかる後、該短尺チューブから芯金を除去することを特徴とするステントの製造方法。After inserting a steel core into the hollow part of a plurality of short tubes for stents and fixing the short tube to the steel core, the stent is formed by a water laser using a water column formed up to the short tube as a laser beam branch. A method for manufacturing a stent, characterized by processing and then removing the metal core from the short tube.
該短尺チューブが、Ti−Ni合金、Mg合金のいずれかであることを特徴とする請求項1記載のステントの製造方法。The stent manufacturing method according to claim 1, wherein the short tube is one of a Ti-Ni alloy and an Mg alloy.
JP2012090539A 2012-04-11 2012-04-11 Stent manufacturing method Expired - Fee Related JP6349588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090539A JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090539A JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Publications (2)

Publication Number Publication Date
JP2013215487A JP2013215487A (en) 2013-10-24
JP6349588B2 true JP6349588B2 (en) 2018-07-04

Family

ID=49588361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090539A Expired - Fee Related JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Country Status (1)

Country Link
JP (1) JP6349588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234300B (en) 2017-02-01 2021-04-06 学校法人加计学园冈山理科大学 Bioabsorbable stent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475039B2 (en) * 1996-03-10 2003-12-08 テルモ株式会社 Indwelling stent
EP1348402A1 (en) * 2002-03-29 2003-10-01 Advanced Laser Applications Holding S.A. Intraluminal endoprosthesis, radially expandable, perforated for drug delivery
JP2005080881A (en) * 2003-09-09 2005-03-31 Nec Tokin Corp Metal mesh tube and production method thereof
US7265317B2 (en) * 2004-01-28 2007-09-04 Boston Scientific Scimed, Inc. Method of cutting material with hybrid liquid-jet/laser system
US8435437B2 (en) * 2009-09-04 2013-05-07 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
US20130204391A1 (en) * 2010-07-15 2013-08-08 Tohoku Univresity Highly elastic stent and production method for highly elastic stent

Also Published As

Publication number Publication date
JP2013215487A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5972789B2 (en) Stent manufacturing method
US5695111A (en) Method of soldering TI containing alloys
EP0824931A2 (en) Superelastic guiding member
US20070293939A1 (en) Fatigue resistant endoprostheses
US20070249965A1 (en) Superelastic guiding member
JP2004532696A (en) Endovascular stent
EP1791589A1 (en) Apparatus and method for joining stainless steel guide wire portion to nitinol portion, without a hypotube
WO2001072349A1 (en) Radiopaque intraluminal stent
JP4351560B2 (en) Balloon expandable superelastic stent
JP2006501926A (en) Radiopaque Nitinol alloy for medical devices
JP6842125B2 (en) Manufacturing method of superelastic seamless tube
JP2009523050A (en) Endovascular prosthesis and related manufacturing method
JP6349588B2 (en) Stent manufacturing method
JP7039583B2 (en) Ni-free beta Ti alloy with shape memory and superelastic properties
JP5089803B2 (en) Core wire for guide wire and manufacturing method thereof
JP3725900B2 (en) Guide wire with superelastic distal portion
WO2015022969A1 (en) MEDICAL Ti-Ni ALLOY
WO2006126513A1 (en) Stent with autonomic functions
US8100837B1 (en) Superelastic guidewire with locally altered properties
JP5008181B2 (en) Stent
EP1426071A2 (en) Guidewire with superelastic distal portion
JP2010068935A (en) Method of manufacturing stent
JP2016073589A (en) Multi-function stent
JP5610863B2 (en) Stent and stent delivery catheter
JP2024024632A (en) Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6349588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees