JP2013215487A - Laser processing method with skewered tube and stent - Google Patents

Laser processing method with skewered tube and stent Download PDF

Info

Publication number
JP2013215487A
JP2013215487A JP2012090539A JP2012090539A JP2013215487A JP 2013215487 A JP2013215487 A JP 2013215487A JP 2012090539 A JP2012090539 A JP 2012090539A JP 2012090539 A JP2012090539 A JP 2012090539A JP 2013215487 A JP2013215487 A JP 2013215487A
Authority
JP
Japan
Prior art keywords
tube
laser processing
stent
processing method
skewered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012090539A
Other languages
Japanese (ja)
Other versions
JP6349588B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Masao Suzuki
正夫 鈴木
Yukihiro Uegaki
幸宏 植垣
Shuzo Yamashita
修蔵 山下
Masa Miyake
雅 三宅
Fumiaki Manabe
文朗 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLINO CORP
Japan Stent Technology Co Ltd
Original Assignee
CLINO CORP
Japan Stent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLINO CORP, Japan Stent Technology Co Ltd filed Critical CLINO CORP
Priority to JP2012090539A priority Critical patent/JP6349588B2/en
Publication of JP2013215487A publication Critical patent/JP2013215487A/en
Application granted granted Critical
Publication of JP6349588B2 publication Critical patent/JP6349588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser processing method which improves the yield of metal tubes for laser processing and maintains a deformation texture of a metal material, and also to provide a stent.SOLUTION: A core metal is inserted into the bores of a plurality of short tubes, and the tubes are subjected to dry laser processing and a laser processing method with a skewered tube in which a water column formed through a tube to be processed is used as a waveguide of a laser beam to form a stent. Because a tube shorter than in conventional methods is used in the method, industrial observation means can be used and credibility of observation of the inner and outer surfaces is secured.

Description

本発明は、人体、動物の内腔に取り付けるステント及びその製造方法に関するものである。 The present invention relates to a stent attached to the lumen of a human body or an animal, and a method for manufacturing the stent.

ステント治療は、近年急速に進展している医療技術である。ステントとは、血管などの狭窄部拡張後の再狭窄を防ぐ為に、体内に留置されるメッシュ状の金属パイプのことである。カテーテルの先端部に縮径収納されたステントは、狭窄部へ導入されたのち、カテーテルからの解放・拡張操作によって、血管などの腔内壁に取り付けられる。心筋梗塞などの原因となる冠動脈の狭窄はステント収納内壁にセットされている風船の膨張による血管拡張操作に伴って拡げられる。これはバルーン(風船)拡張型(balloon-expandable)と呼ばれ、金属はステンレスやコバルトクロム合金が用いられている。 Stent treatment is a medical technology that is rapidly progressing in recent years. A stent is a mesh-like metal pipe placed in the body in order to prevent restenosis after expansion of a stenosis part such as a blood vessel. The stent accommodated in the reduced diameter at the distal end portion of the catheter is introduced into the stenosis portion and then attached to the inner wall of a blood vessel or the like by a release / expansion operation from the catheter. The stenosis of the coronary artery that causes myocardial infarction or the like is expanded along with the vasodilation operation by the expansion of the balloon set on the stent housing inner wall. This is called a balloon-expandable, and the metal is stainless steel or cobalt chrome alloy.

一方、脳へとつながる血管でとくに動脈硬化や狭窄が起こりやすいのは頸動脈であり、その狭窄部に溜まった血栓やプラークは脳へと流れ脳梗塞を引き起こす。この場合ステントはカテーテルから解放されると同時に自己復元で拡張する自己拡張型(Self-expandable)が用いられ、金属はバネ特性に優れるTi-Ni超弾性合金である。 On the other hand, arteriosclerosis and stenosis are particularly prone to occur in blood vessels connected to the brain, and thrombus and plaque accumulated in the stenosis flow to the brain and cause cerebral infarction. In this case, the stent is self-expandable that is released from the catheter and expands by self-restoration, and the metal is a Ti-Ni superelastic alloy having excellent spring characteristics.

また、最近の動向として、生体吸収材料をステントコアとする研究もなされている。即ち、ステント留置・その再狭窄防止機能期間経過後、コアは生体に吸収され消失されるものである。候補の有力はポリ乳酸樹脂系であるが、肝心のステント保持力に弱い難点を持ち、拡張力に勝る金属材料、Mg合金の適用検討が進んでいる。 Also, as a recent trend, studies have been made on bioabsorbable materials as stent cores. That is, after the stent placement / restenosis prevention function period elapses, the core is absorbed by the living body and disappears. Candidates are likely to be polylactic acid resin-based, but the application of a metal material, Mg alloy, which has weak weakness in the essential stent retention force and is superior in expansion force, is advancing.

ステント用途の金属材料として多くの研究・用途例を持つものにTi-Ni合金がある。
Ti-Ni合金をはじめとした形状記憶合金は、マルテンサイト変態の逆変態に付随して顕著な形状記憶を示すことがよく知られている。また、逆変態後の母相領域での強変形によって引き起こされる応力誘起マルテンサイト変態に伴い、良好な超弾性を示すこともよく知られている。その超弾性は数多くの形状記憶合金の中でも特にTi-Ni合金およびTi-Ni-X合金(X=V,Cr,Co,Nb等)に顕著に現れる。
Ti-Ni alloy is one of the metal materials for stents that have many research and application examples.
It is well known that shape memory alloys such as Ti-Ni alloys exhibit remarkable shape memory accompanying the reverse transformation of the martensitic transformation. It is also well known that it exhibits good superelasticity with the stress-induced martensitic transformation caused by strong deformation in the matrix region after reverse transformation. The superelasticity is particularly apparent in Ti-Ni alloys and Ti-Ni-X alloys (X = V, Cr, Co, Nb, etc.) among many shape memory alloys.

Ti-Ni合金の形状記憶効果は例えば特許文献1に示されている。Ti-Ni合金超弾性の特徴は、合金の逆変態温度開始温度(As温度)に始まり逆変態終了温度(Af温度)以上では、外部から変形を受けても、その外部拘束の解除と同時に元の形に復元し、その回復量は伸びひずみで約7%に達することである。As温度は形状回復開始温度、Af温度は形状回復終了温度(形状回復温度)を意味する。また、工業的な変態温度計測手段として示差走査熱量計(DSC)がよく用いられる。DSCによれば変態前後で明確な発熱および吸熱ピークが見られる。 The shape memory effect of the Ti—Ni alloy is disclosed in Patent Document 1, for example. Ti-Ni alloy superelasticity is characterized by the fact that it starts at the reverse transformation temperature start temperature (As temperature) of the alloy and is higher than the reverse transformation end temperature (Af temperature). The amount of recovery is about 7% in elongation strain. As temperature means shape recovery start temperature, and Af temperature means shape recovery end temperature (shape recovery temperature). A differential scanning calorimeter (DSC) is often used as an industrial transformation temperature measurement means. According to DSC, clear exothermic and endothermic peaks are seen before and after transformation.

自己拡張型ステントにTi-Ni超弾性合金を用いる提案は、特許文献2、3、4などに示されている。特許文献2によれば、形状記憶合金はAf温度以上の母相での引っ張りにおいて、当初は歪みとともに応力は直線的に増加する。その後更なる応力の付加に伴い応力誘起マルテンサイト変態を生じ、歪が増加しても応力の平坦域(Loading-Plato)を歪7%程度まで持続させ、また荷重除荷時においても同様な平坦域(Unload-Plato)を持つことが常であるとしている。すなわち、明確な変態に伴う超弾性の適用である。また特許文献2では更なる高弾性ステントを得るために第三元素添加合金Ti-Ni-X(X=Nb、Hf、Ta、W)を提案している。 Proposals for using a Ti—Ni superelastic alloy for a self-expanding stent are shown in Patent Documents 2, 3, 4 and the like. According to Patent Document 2, when a shape memory alloy is pulled in a matrix phase at an Af temperature or higher, stress initially increases linearly with strain. After that, stress-induced martensitic transformation occurs along with the addition of stress, and even if the strain increases, the stress flat region (Loading-Plato) is maintained up to about 7% strain. It is said that it is usual to have an area (Unload-Plato). That is, the application of superelasticity with a clear transformation. Patent Document 2 proposes a third element-added alloy Ti—Ni—X (X = Nb, Hf, Ta, W) in order to obtain a further highly elastic stent.

Ti-Ni合金の特性は冷間加工度、熱処理条件によって大きく変化し、DSCによる明確な変態ピークは示さず、変態を抑制した加工処理によって歪の増加と共に応力も増加する平坦領域のないNon-Plato超弾性を具備させることができる。これら素子はガイドワイヤーにおいては特許文献5、6などに平坦領域を持たない高強度Ti-Ni合金コア材として提案されている。 The characteristics of Ti-Ni alloys vary greatly depending on the cold work degree and heat treatment conditions, and do not show a clear transformation peak due to DSC, and there is no flat region where stress increases with increasing strain due to processing that suppresses transformation. Plato superelasticity can be provided. These elements are proposed as a high-strength Ti—Ni alloy core material that does not have a flat region in Patent Documents 5 and 6 in a guide wire.

米国特許第.3,174,851号明細書U.S. Pat.No. 3,174,851 特開平07-112028号公報JP 07-112028 A 特開平08-000738号公報Japanese Patent Laid-Open No. 08-000738 特開平08-196642号公報Japanese Unexamined Patent Publication No. 08-196642 特開平5-293175号公報JP-A-5-293175 特開2001-164348号公報Japanese Patent Laid-Open No. 2001-164348

(1)材料歩留り:
ステントは金属チューブのレーザー加工によって得られ、被加工チューブはステントスロットの均等性を良くするために直進状とし、レーザー加工装置の被チューブつかみ部とレーザー光部には100mm程度の距離があり、その領域のチューブはステント加工には使用されない。
(1) Material yield:
The stent is obtained by laser processing of a metal tube, and the tube to be processed is straight to improve the uniformity of the stent slot, and there is a distance of about 100 mm between the tube gripping portion of the laser processing apparatus and the laser beam portion, The tube in that area is not used for stent processing.

(2)加工集合組織の維持:
金属材料は最終寸法に至る加工技術(塑性加工、熱処理)によって最適特性を得られることが多い。Ti-Ni合金の場合、冷間強加工による集合組織によって材料の高強度化が可能である。しかし、レーザー加工のステント用チューブの直線化は熱処理矯正が一般的であり、機械矯正は難しい。このために折角の加工組織は熱処理によって失われる。
また、材料の最適特性に組織方位依存性、微結晶化がポイントの場合、ブロック状鋳塊での多軸鍛造・圧延加工での特性付与と、その後の削り切り出しによる組織保存が求められる。
(2) Maintenance of processing texture:
In many cases, the metal material can obtain optimum characteristics by processing techniques (plastic processing, heat treatment) up to final dimensions. In the case of Ti-Ni alloy, it is possible to increase the strength of the material by the texture by cold strong working. However, straightening a laser-processed stent tube is generally performed by heat treatment and mechanical correction is difficult. For this reason, the folded texture is lost by heat treatment.
In addition, in the case where the optimum orientation of the material is dependent on the structure orientation and microcrystallization, it is necessary to impart characteristics in multi-axis forging / rolling with a block-shaped ingot and to preserve the structure by subsequent cutting.

(3)長尺チューブの内面観察:
ステントは0.1mm肉厚、0.1mmスロット加工品が主である。このため、最終加工チューブのキズ、欠陥は体内留置時折損の原因となり、内外表面観察は信頼性確保に重要である。しかし、長尺チューブでの有効な工業的観察手段はなく、ステント加工後の観察に頼らざる得ない。
(3) Inner surface observation of long tube:
Stents are mainly 0.1mm thick and 0.1mm slot processed products. For this reason, scratches and defects in the final processed tube cause breakage during indwelling, and observation of the inner and outer surfaces is important for ensuring reliability. However, there is no effective industrial observation means with long tubes, and it is necessary to rely on observation after stent processing.

本発明はステントのレーザー加工方法を徹底的に検討した結果、チューブ内径に芯金を通し、被加工チューブまで形成した水柱をレーザー光の導波路とする串刺しチューブレーザー加工方法が有効であることを見出し、本発明に到達したものである。 As a result of a thorough examination of the laser processing method of the stent, the skewer tube laser processing method in which a water column formed by passing a cored bar through the tube inner diameter and forming the tube to be processed is a laser beam waveguide is effective. The headline, the present invention has been reached.

本発明のレーザー加工方法によりチューブの歩留まりの向上を実現するとともに加工集合組織を維持したステントを提供することができる。また従来と比較して短いチューブを用いるので、工業的観察手段が可能となり、内外表面観察の信頼性を確保できる。 According to the laser processing method of the present invention, it is possible to provide a stent that can improve the yield of the tube and maintain the processed texture. In addition, since a short tube is used as compared with the conventional case, an industrial observation means is possible, and the reliability of the inner and outer surface observation can be ensured.

ステント加工展開イメージ図Stent processing development image ラッドチューブのステント加工結果例Example of lad tube stent processing results 加工毎におけるDSC曲線DSC curve for each process

以下に本発明の実施例を説明する。本発明に係る短尺チューブを芯材に複数挿入し串刺し状とするパイプ連結図と実際のステント加工展開例を図1に示した。   Examples of the present invention will be described below. A pipe connection diagram in which a plurality of short tubes according to the present invention are inserted into a core material to form a skewered shape and an actual stent processing development example are shown in FIG.

φ2.0mm、t0.2mmチューブに鋼合金芯材挿入のクラッドチューブのステント加工結果をドライレーザ加工および被加工チューブまで形成した水柱をレーザー光の導波路とする水レーザー加工のそれぞれの結果を図2に示したが、本発明には水レーザーは有効であると云えるが、必須の条件ではない。 Figure shows the results of stent processing of a clad tube with a steel alloy core inserted into a φ2.0mm, t0.2mm tube, dry laser processing, and water laser processing using a water column formed up to the tube to be processed as a laser beam waveguide. As shown in FIG. 2, although it can be said that a water laser is effective in the present invention, it is not an essential condition.

Ti-51at%Ni合金鋳塊を熱間鍛造→冷間鍛造加工で断面7mm□とした。材料に加えられた冷間加工率は約50%である。その後、切削加工によりステント用細径チューブφ1.8×φ1.4mm×L50mmとし複数個を鋼芯金に取り付け串刺し状とした。次に、それらを図2に示す水レーザーによりステント加工した。 A Ti-51at% Ni alloy ingot was made into a 7 mm square section by hot forging → cold forging. The cold work rate applied to the material is about 50%. Thereafter, a thin tube for stent φ1.8 × φ1.4 mm × L50 mm was formed by cutting, and a plurality of them were attached to a steel core bar to form a skewered shape. Next, they were stented by the water laser shown in FIG.

各工程における材料のDSC測定によって各加工での歪み導入の是非を判断した。DSCでは、冷却過程、加熱過程でそれぞれ変態に伴う明確な発熱ピーク、吸熱ピークが観測されないTypeと極めてよく観測されるTypeに分けられる。前者は加工集合組織によって変態が抑制され、後者は加工での歪みが熱影響で解放され変態が発現するこが良く知られている。図3は各工程のDSC曲線例と測定変態温度の結果である。図3より本発明は鍛造時に導入された歪みを固定した状態でステント加工可能であることが判る。 Whether to introduce strain in each process was judged by DSC measurement of the material in each process. DSC can be divided into a type in which no clear exothermic peak and endothermic peak are observed in the cooling process and heating process, and a type in which the endothermic peak is not observed. It is well known that in the former, transformation is suppressed by the machining texture, and in the latter, transformation in the machining is released by the heat effect and the transformation appears. FIG. 3 shows the results of DSC curves and measured transformation temperatures for each process. It can be seen from FIG. 3 that the present invention can be processed into a stent with the strain introduced during forging fixed.

Claims (7)

ステントのレーザー加工方法であって、該加工チューブ内径に芯金を通したことを特徴とする串刺しチューブレーザー加工方法およびそのステント Laser processing method for stents, characterized in that a cored bar is passed through the inner diameter of the processing tube, and a skewer tube laser processing method and its stent レーザー加工有効範囲内に該チューブを1個或いは複数個配置したことを特徴とする請求項1記載のチューブレーザー加工方法およびそのステント 2. The tube laser processing method according to claim 1, wherein one or a plurality of the tubes are arranged within a laser processing effective range. 素材成形(ロッド、管)時の金属組織がその後の細径加工・スリット加工によっても破壊されないことを特徴とする請求項1記載のチューブレーザー加工方法およびそのステント 2. The tube laser processing method according to claim 1, wherein the metal structure at the time of forming the material (rod, tube) is not destroyed by subsequent small diameter processing and slit processing. 該加工チューブは内表面処理、寸法測定上がりであることを特徴とする請求項1記載のチューブレーザー加工方法およびそのステント 2. The tube laser processing method according to claim 1, wherein the processed tube is subjected to inner surface treatment and dimension measurement. 芯金は外皮チューブがステント加工によって部分的或いは全面的に剥離しない程度の密着性を接着剤或いは表面凹凸で確保することを特徴とする請求項1から4記載の串刺しチューブレーザー加工方法およびそのステント 5. The skewered tube laser processing method according to claim 1, wherein the core metal is secured with an adhesive or surface irregularities so that the outer tube is not partially or completely peeled off by stent processing. ステント加工装置は被加工チューブまで形成した水柱をレーザー光の導波路とされたことを特徴とする請求項1から5記載のチューブレーザー加工方法およびそのステント 6. The tube laser processing method according to claim 1, wherein the stent processing apparatus uses a water column formed up to a tube to be processed as a waveguide of laser light. ステント用チューブの外径が0.1mm以上5mm以下であって、チューブの厚みが0.001mm以上1mm以下であることを特徴とする請求項1から6記載のチューブレーザー加工方法およびそのステント 7. The tube laser processing method according to claim 1, wherein the outer diameter of the stent tube is 0.1 mm or more and 5 mm or less and the thickness of the tube is 0.001 mm or more and 1 mm or less.
JP2012090539A 2012-04-11 2012-04-11 Stent manufacturing method Expired - Fee Related JP6349588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090539A JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090539A JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Publications (2)

Publication Number Publication Date
JP2013215487A true JP2013215487A (en) 2013-10-24
JP6349588B2 JP6349588B2 (en) 2018-07-04

Family

ID=49588361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090539A Expired - Fee Related JP6349588B2 (en) 2012-04-11 2012-04-11 Stent manufacturing method

Country Status (1)

Country Link
JP (1) JP6349588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143115A1 (en) 2017-02-01 2018-08-09 学校法人加計学園岡山理科大学 Bioabsorbable stent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299486A (en) * 1996-03-10 1997-11-25 Terumo Corp Stent for retention in vivo
JP2003290361A (en) * 2002-03-29 2003-10-14 Advanced Laser Applications Holding Sa Radially expandable perforated intraluminar medication prosthesis
JP2005080881A (en) * 2003-09-09 2005-03-31 Nec Tokin Corp Metal mesh tube and production method thereof
JP2007521966A (en) * 2004-01-28 2007-08-09 ボストン サイエンティフィック リミテッド Method for cutting material with a liquid jet / laser hybrid system
WO2011029044A1 (en) * 2009-09-04 2011-03-10 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
WO2012008579A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299486A (en) * 1996-03-10 1997-11-25 Terumo Corp Stent for retention in vivo
JP2003290361A (en) * 2002-03-29 2003-10-14 Advanced Laser Applications Holding Sa Radially expandable perforated intraluminar medication prosthesis
JP2005080881A (en) * 2003-09-09 2005-03-31 Nec Tokin Corp Metal mesh tube and production method thereof
JP2007521966A (en) * 2004-01-28 2007-08-09 ボストン サイエンティフィック リミテッド Method for cutting material with a liquid jet / laser hybrid system
WO2011029044A1 (en) * 2009-09-04 2011-03-10 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
WO2012008579A1 (en) * 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143115A1 (en) 2017-02-01 2018-08-09 学校法人加計学園岡山理科大学 Bioabsorbable stent

Also Published As

Publication number Publication date
JP6349588B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
Kapoor Nitinol for medical applications: a brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents
JP5972789B2 (en) Stent manufacturing method
US20070293939A1 (en) Fatigue resistant endoprostheses
JPH04292174A (en) Superelastic guidance component
Amani et al. Processing and properties of biodegradable magnesium microtubes for using as vascular stents: a brief review
JP4351560B2 (en) Balloon expandable superelastic stent
JP2006501926A (en) Radiopaque Nitinol alloy for medical devices
Maffia et al. Selective laser melting of NiTi stents with open-cell and variable diameter
JP6842125B2 (en) Manufacturing method of superelastic seamless tube
JP5089803B2 (en) Core wire for guide wire and manufacturing method thereof
JP3725900B2 (en) Guide wire with superelastic distal portion
JP6349588B2 (en) Stent manufacturing method
JP7039583B2 (en) Ni-free beta Ti alloy with shape memory and superelastic properties
JP2006006926A (en) Biocompatible metal bearing structure made of solid solution alloy
WO2015022969A1 (en) MEDICAL Ti-Ni ALLOY
US8100837B1 (en) Superelastic guidewire with locally altered properties
CN108300952B (en) preparation method of medical magnesium alloy stent
WO2020039658A1 (en) Superelastic seamless tube manufacturing method
Catalano et al. Laser microcutting of sheet metal for prototyping expandable stent-like structures in permanent and biodegradable alloys
JP2010068935A (en) Method of manufacturing stent
JP2008036076A (en) Balloon-expandable stent and its production method
JP2016073589A (en) Multi-function stent
US20230399725A1 (en) Processing of cobalt-tungsten alloys
JP2024024632A (en) Superelastic stent, manufacturing method of superelastic stent, alloy tube and manufacturing method of alloy tube
WO2023239573A1 (en) Processing of cobalt-tungsten alloys

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6349588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees