JP6349531B2 - Arsenic removal method - Google Patents
Arsenic removal method Download PDFInfo
- Publication number
- JP6349531B2 JP6349531B2 JP2014043823A JP2014043823A JP6349531B2 JP 6349531 B2 JP6349531 B2 JP 6349531B2 JP 2014043823 A JP2014043823 A JP 2014043823A JP 2014043823 A JP2014043823 A JP 2014043823A JP 6349531 B2 JP6349531 B2 JP 6349531B2
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- silica gel
- iron ions
- iron
- removing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- General Preparation And Processing Of Foods (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
Description
本発明は、ヒ素除去剤及びヒ素除去方法に関する。 The present invention relates to an arsenic removing agent and an arsenic removing method.
鉄系化合物又はアルミニウム系化合物による凝集沈澱や、アルミナによる化学吸着を利用したヒ素除去方法が排水処理に利用されている(特許文献1参照)。 Arsenic removal methods using coagulation precipitation with iron-based compounds or aluminum-based compounds and chemical adsorption with alumina are used for wastewater treatment (see Patent Document 1).
従来のヒ素除去方法は、食品の製造等において使用することが好ましくない成分(鉄系化合物、アルミニウム系化合物、アルミナ等)を多量に使用する必要があった。本発明は以上の点に鑑みなされたものであり、上述した課題を解決できるヒ素除去剤及びヒ素除去方法を提供することを目的とする。 Conventional arsenic removal methods require the use of a large amount of components (iron-based compounds, aluminum-based compounds, alumina, etc.) that are not preferred for use in food production. This invention is made | formed in view of the above point, and it aims at providing the arsenic removal agent and arsenic removal method which can solve the subject mentioned above.
本発明のヒ素除去剤は、平均細孔径が10〜1000nmであるシリカゲルと、前記シリカゲルに担持された鉄イオンと、を含むことを特徴とする。本発明のヒ素除去剤は、鉄イオンの担持量が必ずしも多くなくても、ヒ素を除去する効果が高い。 The arsenic removing agent of the present invention includes silica gel having an average pore diameter of 10 to 1000 nm and iron ions supported on the silica gel. The arsenic removing agent of the present invention is highly effective in removing arsenic even if the amount of iron ions supported is not necessarily large.
本発明のヒ素除去方法は、上記のヒ素除去剤と、ヒ素を含む被処理物とを接触させることを特徴とする。本発明のヒ素除去方法は、ヒ素除去剤における鉄イオンの担持量が必ずしも多くなくても、被処理物からヒ素を除去する効果が高い。 The arsenic removing method of the present invention is characterized in that the arsenic removing agent is brought into contact with an object to be treated containing arsenic. The arsenic removing method of the present invention has a high effect of removing arsenic from the object to be treated even if the amount of iron ions supported in the arsenic removing agent is not necessarily large.
本発明の実施形態を説明する。本発明のヒ素除去剤は、平均細孔径が10〜1000nmであるシリカゲルを含む。平均細孔径は、20〜100nmの範囲が一層好ましい。この範囲内であることにより、ヒ素を除去する効果が一層高い。平均細孔径は、以下の方法で測定できる。シリカゲルにおける全ての細孔を円筒形細孔と仮定する。このときシリカゲルの比表面積をS、細孔容積をVとすると、平均細孔径Xは以下の式(1)で表される。 An embodiment of the present invention will be described. The arsenic removing agent of the present invention contains silica gel having an average pore diameter of 10 to 1000 nm. The average pore diameter is more preferably in the range of 20 to 100 nm. By being in this range, the effect of removing arsenic is even higher. The average pore diameter can be measured by the following method. All pores in the silica gel are assumed to be cylindrical pores. At this time, when the specific surface area of the silica gel is S and the pore volume is V, the average pore diameter X is expressed by the following formula (1).
式(1):X=(4V/S)×1000
ここで、式(1)における比表面積Sは、S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 60(1), 309 (1938)に記載された理論に基づく、一点法と呼ばれる簡便測定法にて測定できる。比表面積Sの測定装置としては、柴田科学器械工業社製の迅速表面積測定装置SA-1100型を使用する。
Formula (1): X = (4V / S) × 1000
Here, the specific surface area S in the formula (1) is one point based on the theory described in S. Brunauer, PH Emmett, E. Teller, J. Am. Chem. Soc. 60 (1), 309 (1938). It can be measured by a simple measurement method called a method. As a measuring device for the specific surface area S, a rapid surface area measuring device SA-1100 manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd. is used.
また、式(1)における細孔容積Vは、以下の方法で測定できる。まず、水分を蒸発・除去した試料(シリカゲル)をバイアル瓶に入れ、ビュレットを用いてイオン交換水を滴下する。滴下しながら瓶をゴム板にて数回軽くたたき、瓶底より試料が落下しなくなる滴下量を終点とする。終点までの水の量、および初期の試料重量から試料中の細孔容積Vを算出する。 Moreover, the pore volume V in Formula (1) can be measured with the following method. First, a sample (silica gel) from which water has been evaporated and removed is placed in a vial, and ion exchange water is dropped using a burette. While dripping, tap the bottle with a rubber plate several times, and let the amount of dripping stop the sample from dropping from the bottom of the bottle. The pore volume V in the sample is calculated from the amount of water up to the end point and the initial sample weight.
また、本発明のヒ素除去剤は、シリカゲルに担持された鉄イオンを含む。鉄イオンの単位面積(シリカゲルの表面の単位面積)当りの担持量は、0.1〜1個/nm2であることが好ましい。この範囲内であることにより、ヒ素を除去する効果が一層高い。 The arsenic removing agent of the present invention contains iron ions supported on silica gel. The supported amount per unit area of iron ions (the unit area of the surface of the silica gel) is preferably 0.1 to 1 piece / nm 2 . By being in this range, the effect of removing arsenic is even higher.
鉄イオンの単位面積当りの担持量は、以下の方法で算出できる。まず、水分を蒸発・除去した試料(鉄を担持したシリカゲル)をフッ酸で処理し、ケイ素を揮発させる。次に、残渣を焼成して酸化鉄とし、その重量および初めの試料重量から試料1g中の鉄個数を算出する。この鉄個数及び一点法で求めたシリカゲルの比表面積から鉄イオンの単位面積当りの担持量を算出する。 The amount of iron ions supported per unit area can be calculated by the following method. First, a sample (silica gel supporting iron) from which water has been evaporated and removed is treated with hydrofluoric acid to volatilize silicon. Next, the residue is calcined to obtain iron oxide, and the number of iron in 1 g of the sample is calculated from the weight and the initial sample weight. The amount of iron ions supported per unit area is calculated from the number of irons and the specific surface area of silica gel determined by the one-point method.
本発明のヒ素除去剤は、例えば、食品(例えば液状の食品)に含まれるヒ素の除去を用途とすることができる。食品としては、例えば、魚介類、藻類、海藻類、及びそれらの抽出液等が挙げられる。 The arsenic removing agent of the present invention can be used for removing arsenic contained in food (for example, liquid food), for example. Examples of food include fish and shellfish, algae, seaweeds, and extracts thereof.
本発明のヒ素除去剤は、例えば、以下の浸漬法、又は中和法により製造できる。
(浸漬法)
調製した鉄溶液(鉄の塩の水溶液)にシリカゲルを含浸させ、シリカゲルに鉄イオンを吸着(担持)させる。その後、鉄イオンを担持したシリカゲルを、鉄イオンの溶出がなくなるまで水洗する。最後に、鉄イオンを担持したシリカゲルを、水分がなくなるまで乾燥させる。
(中和法)
調製した鉄溶液(鉄の塩の水溶液)にシリカゲルを含浸させ、シリカゲルに鉄イオンを吸着(担持)させる。次に、重炭酸アンモニウム水溶液を加えてシリカゲルごと溶液を中和する。次に、鉄イオンを担持したシリカゲルを、鉄イオンの溶出がなくなるまで水洗する。最後に、鉄イオンを担持したシリカゲルを、水分がなくなるまで乾燥させる。
The arsenic removing agent of the present invention can be produced, for example, by the following immersion method or neutralization method.
(Immersion method)
Silica gel is impregnated into the prepared iron solution (iron salt aqueous solution), and iron ions are adsorbed (supported) on the silica gel. Thereafter, the silica gel carrying iron ions is washed with water until no elution of iron ions occurs. Finally, the silica gel carrying iron ions is dried until there is no moisture.
(Neutralization method)
Silica gel is impregnated into the prepared iron solution (iron salt aqueous solution), and iron ions are adsorbed (supported) on the silica gel. Next, an aqueous solution of ammonium bicarbonate is added to neutralize the solution together with the silica gel. Next, the silica gel carrying iron ions is washed with water until no elution of iron ions occurs. Finally, the silica gel carrying iron ions is dried until there is no moisture.
本発明のヒ素除去方法は、上述したヒ素除去剤と、ヒ素を含む被処理物とを接触させることを特徴とする。本発明のヒ素除去方法によれば、被処理物に含まれていたヒ素がヒ素除去剤に吸着され、結果として、被処理物からヒ素が除去される。 The arsenic removing method of the present invention is characterized in that the arsenic removing agent mentioned above is brought into contact with an object to be treated containing arsenic. According to the arsenic removal method of the present invention, arsenic contained in the workpiece is adsorbed by the arsenic removing agent, and as a result, arsenic is removed from the workpiece.
本発明のヒ素除去方法において、例えば、ヒ素除去剤を含む固定床(例えばカラムに充填されたヒ素除去剤)に対し被処理物を含む液体を通液することができる。この場合、被処理物を含む液体からヒ素除去剤を除く工程が必須ではなくなるので、被処理物からのヒ素の除去が一層容易になる。 In the arsenic removing method of the present invention, for example, a liquid containing a workpiece can be passed through a fixed bed containing an arsenic removing agent (for example, an arsenic removing agent packed in a column). In this case, since the process of removing the arsenic removing agent from the liquid containing the object to be processed is not essential, it is easier to remove arsenic from the object to be processed.
本発明のヒ素除去方法において、例えば、ヒ素除去剤と、被処理物を含む液体とを混合し、被処理物に含まれていたヒ素をヒ素除去剤に吸着させた後、フィルター等を用いて被処理物をヒ素除去剤から分離することができる。 In the arsenic removing method of the present invention, for example, an arsenic removing agent and a liquid containing an object to be treated are mixed, and after arsenic contained in the object to be treated is adsorbed to the arsenic removing agent, a filter or the like is used. The workpiece can be separated from the arsenic removal agent.
前記被処理物としては、例えば、食品(例えば液状の食品)が挙げられる。食品としては、例えば、魚介類、藻類、海藻類、及びそれらの抽出液等が挙げられる。
被処理物に含まれるヒ素は、無機物であってもよいし、有機ヒ素(例えばジメチルアルシン酸等)であってもよい。
(実施例1)
1.ヒ素除去剤の製造
基本的なヒ素除去剤の製造方法は以下のとおりである。まず、塩化第ニ鉄六水和物水溶液170gに、100gのシリカゲルを含浸し、2時間攪拌する。次に、シリカゲルを塩化第ニ鉄六水和物水溶液から取り出し、鉄イオンの溶出がなくなるまで水洗する。最後に、150℃で2時間乾燥させ、ヒ素除去剤を得る。このヒ素除去剤は、シリカゲルと、そのシリカゲルに担持された鉄イオンとから成る。
As said processed material, a foodstuff (for example, liquid foodstuff) is mentioned, for example. Examples of food include fish and shellfish, algae, seaweeds, and extracts thereof.
The arsenic contained in the object to be processed may be inorganic or organic arsenic (for example, dimethylarsinic acid).
Example 1
1. Production of Arsenic Remover The basic method for producing an arsenic remover is as follows. First, 100 g of silica gel is impregnated into 170 g of ferric chloride hexahydrate aqueous solution and stirred for 2 hours. Next, the silica gel is taken out from the aqueous ferric chloride hexahydrate solution and washed with water until there is no elution of iron ions. Finally, it is dried at 150 ° C. for 2 hours to obtain an arsenic removing agent. This arsenic removing agent is composed of silica gel and iron ions supported on the silica gel.
上記の基本的な製造方法において、シリカゲルの種類と、塩化第ニ鉄六水和物水溶液の濃度とを、表1に示すとおり種々に変えて、ヒ素除去剤1A、1B、1C、1D、1E、1Fをそれぞれ製造した。用いたシリカゲルは、それぞれ、表1に示す比表面積、細孔容積、及び平均細孔径を有する。
In the above basic production method, the
また、表1において「鉄イオン担持量」は、シリカゲルの表面における単位面積当りに担持された鉄イオンの量を表し、単位は個/nm2である。
2.ヒ素除去方法
ヒ素除去剤1A、1B、1C、1D、1E、1Fを用いて、以下に示すようにヒ素除去方法を実施した。まず、ヒ素の濃度が50ppbであるヒ素水溶液50mlに、ヒ素除去剤(ヒ素除去剤1A、1B、1C、1D、1E、1Fのうちのいずれか一つ)を0.50g添加し、6時間攪拌した。次に、ICPを用いてヒ素水溶液における上澄みのヒ素濃度(残留濃度C)を測定した。そして、以下の式(2)により、ヒ素除去率Yを算出した。
In Table 1, “iron ion loading” represents the amount of iron ions carried per unit area on the surface of the silica gel, and the unit is the number of particles / nm 2 .
2. Arsenic removal method The arsenic removal method was implemented as follows using the
式(2):Y=((Ci−C)/Ci)×100
ここで、式(2)におけるCiは、ヒ素水溶液におけるヒ素の初期濃度(ヒ素除去剤を添加する前の濃度)であって、その値は50ppbである。また、残留濃度Cの単位もppbである。
Formula (2): Y = ((Ci−C) / Ci) × 100
Here, Ci in Equation (2) is the initial concentration of arsenic in the arsenic aqueous solution (concentration before adding the arsenic removing agent), and its value is 50 ppb. The unit of residual concentration C is also ppb.
ヒ素除去率を上記表1に示す。シリカゲルの平均細孔径が10nm以上であるヒ素除去剤1C〜1Fを使用した場合、鉄イオンの担持量が少なくても、特にヒ素除去率が高かった。シリカゲルの平均細孔径が10nm以上であるヒ素除去剤を用いた場合にヒ素除去率が高い理由は、ヒ素化合物がシリカゲル粒子細孔内に迅速に拡散するためであると推測できる。
The arsenic removal rate is shown in Table 1 above. When
また、鉄イオンの単位面積当りの担持量と、ヒ素除去率との関係を図1に示す。図1から明らかなように、鉄イオンの単位面積当りの担持量が0.1個/nm2である場合、特にヒ素除去率が高かった。
(実施例2)
1.ヒ素除去剤の製造
基本的なヒ素除去剤の製造方法は以下のとおりである。まず、塩化第ニ鉄六水和物水溶液170gに、100gのシリカゲルを含浸し、2時間攪拌する。次に、塩化第ニ鉄六水和物水溶液に、炭酸水素アンモニウム水溶液(炭酸水素アンモニウム10gをイオン交換水で溶解し、全量を400mlとした水溶液)400mlを加える。このとき、シリカゲルの細孔内の鉄が不溶化する。次に、シリカゲルを塩化第ニ鉄六水和物水溶液から取り出し、150℃で2時間乾燥させ、ヒ素除去剤を得る。このヒ素除去剤は、シリカゲルと、そのシリカゲルに担持された鉄イオンとから成る。
FIG. 1 shows the relationship between the amount of iron ions supported per unit area and the arsenic removal rate. As is apparent from FIG. 1, the arsenic removal rate was particularly high when the loading amount of iron ions per unit area was 0.1 / nm 2 .
(Example 2)
1. Production of Arsenic Remover The basic method for producing an arsenic remover is as follows. First, 100 g of silica gel is impregnated into 170 g of ferric chloride hexahydrate aqueous solution and stirred for 2 hours. Next, 400 ml of an aqueous ammonium hydrogen carbonate solution (an aqueous solution in which 10 g of ammonium hydrogen carbonate is dissolved in ion-exchanged water to a total volume of 400 ml) is added to the ferric chloride hexahydrate aqueous solution. At this time, iron in the pores of the silica gel is insolubilized. Next, the silica gel is taken out from the aqueous ferric chloride hexahydrate solution and dried at 150 ° C. for 2 hours to obtain an arsenic removing agent. This arsenic removing agent is composed of silica gel and iron ions supported on the silica gel.
上記の基本的な製造方法において、シリカゲルの種類と、塩化第ニ鉄六水和物水溶液の濃度とを、表2に示すとおり種々に変えて、ヒ素除去剤2A、2D、2E、2F、2Gをそれぞれ製造した。用いたシリカゲルは、それぞれ、表2に示す比表面積、細孔容積、及び平均細孔径を有する。 In the above basic production method, the arsenic removal agents 2A, 2D, 2E, 2F, and 2G are obtained by changing the type of silica gel and the concentration of the aqueous ferric chloride hexahydrate solution as shown in Table 2. Were manufactured respectively. The used silica gel has the specific surface area, pore volume, and average pore diameter shown in Table 2, respectively.
ヒ素除去剤2A、2D、2E、2F、2Gを用いて、以下に示すようにヒ素除去方法を実施した。まず、ヒ素の濃度が0.80ppbである井戸水50mlに、ヒ素除去剤(ヒ素除去剤2A、2D、2E、2F、2Gのうちのいずれか一つ)を0.50g添加し、攪拌した。次に、ICPを用いてヒ素水溶液における上澄みのヒ素濃度(残留濃度C)を測定した。そして、上記式(2)により、ヒ素除去率Yを算出した。ヒ素除去率は、攪拌時間が10分間の場合、30分間の場合、60分間の場合のそれぞれにおいて算出した。
Using the arsenic removing agents 2A, 2D, 2E, 2F and 2G, the arsenic removing method was carried out as shown below. First, 0.50 g of an arsenic removing agent (any one of arsenic removing agents 2A, 2D, 2E, 2F, and 2G) was added to 50 ml of well water having an arsenic concentration of 0.80 ppb and stirred. Next, the arsenic concentration (residual concentration C) of the supernatant in the arsenic aqueous solution was measured using ICP. And the arsenic removal rate Y was computed by the said Formula (2). The arsenic removal rate was calculated when the stirring time was 10 minutes, 30 minutes, and 60 minutes.
ヒ素除去率を図2に示す。シリカゲルの平均細孔径が10nm以上であるヒ素除去剤2D、2E、2F、2Gを使用した場合、鉄イオンの担持量が少なくても、特に、短時間の攪拌時間でヒ素除去率が高くなった。 The arsenic removal rate is shown in FIG. When the arsenic removing agents 2D, 2E, 2F and 2G having an average pore diameter of silica gel of 10 nm or more were used, the arsenic removal rate was increased particularly in a short stirring time even when the amount of iron ions supported was small. .
3.ヒ素除去方法(その2)
濃度が100ppbであるジメチルアルシン酸溶液50mlに、ヒ素除去剤2Eを0.50g添加し、1時間攪拌した。そして、ヒ素除去率を測定したところ、27%であった。
3. Arsenic removal method (2)
To 50 ml of a dimethylarsinic acid solution having a concentration of 100 ppb, 0.50 g of arsenic removing agent 2E was added and stirred for 1 hour. And when the arsenic removal rate was measured, it was 27%.
4.ヒ素除去方法(その3)
韓国産ひじきの煮汁を用意した。この煮汁におけるヒ素濃度は440ppbであった。煮汁50mlに、ヒ素除去剤2Eを0.50g添加し、1時間攪拌した。そして、ヒ素除去率を測定したところ、25%であった。
4). Arsenic removal method (3)
Korean broth broth was prepared. The arsenic concentration in this broth was 440 ppb. 0.50 g of arsenic removing agent 2E was added to 50 ml of boiling broth and stirred for 1 hour. And when the arsenic removal rate was measured, it was 25%.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043823A JP6349531B2 (en) | 2014-03-06 | 2014-03-06 | Arsenic removal method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043823A JP6349531B2 (en) | 2014-03-06 | 2014-03-06 | Arsenic removal method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015167900A JP2015167900A (en) | 2015-09-28 |
JP6349531B2 true JP6349531B2 (en) | 2018-07-04 |
Family
ID=54201168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014043823A Active JP6349531B2 (en) | 2014-03-06 | 2014-03-06 | Arsenic removal method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6349531B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102309085B1 (en) * | 2019-12-13 | 2021-10-08 | 한국프라임제약주식회사 | Seaweeds extracts reducted As and Manufaring method thereof |
CN112891811B (en) * | 2021-01-18 | 2022-03-25 | 昆明理工大学 | Method for removing arsenic in contaminated acid by using silica gel reinforced zinc slag |
CN113854473B (en) * | 2021-09-30 | 2024-06-04 | 无锡定象改性硅胶材料有限公司 | Method for preparing low-arsenic oyster protein peptide by targeted nano silica gel material adsorption |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0975723A (en) * | 1995-07-20 | 1997-03-25 | Koki Bussan Kk | Harmful matter adsorbing and removing agent |
JP2003225559A (en) * | 2001-06-21 | 2003-08-12 | Japan Science & Technology Corp | Adsorbent made from plant biomass |
JP2004267805A (en) * | 2003-01-06 | 2004-09-30 | Japan Science & Technology Agency | Adsorbent made of residue of squeezed fruit as raw material and method for removing toxic substance by using the same |
JP5001202B2 (en) * | 2008-03-17 | 2012-08-15 | 株式会社アムロン | Manufacturing method of environmental cleaner |
CN102397775B (en) * | 2011-11-21 | 2013-06-26 | 中国科学院化学研究所 | Arsenic-removal adsorbent as well as preparation method and application thereof |
JP5807651B2 (en) * | 2013-03-05 | 2015-11-10 | 株式会社大林組 | Arsenic contaminated water treatment method and treatment apparatus |
-
2014
- 2014-03-06 JP JP2014043823A patent/JP6349531B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015167900A (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
dos Anjos et al. | Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn | |
Chen et al. | Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability | |
Awual et al. | Mesoporous silica based novel conjugate adsorbent for efficient selenium (IV) detection and removal from water | |
Eom et al. | Biosorption of mercury (II) ions from aqueous solution by garlic (Allium sativum L.) powder | |
JP4963984B2 (en) | Arsenic removal method in contaminated water and treatment agent used therefor | |
JP6349531B2 (en) | Arsenic removal method | |
Rajan et al. | Study of fluoride affinity by zirconium impregnated walnut shell carbon in aqueous phase: kinetic and isotherm evaluation | |
Elsherif et al. | Biosorption studies of Fe (III), Cu (II), and Co (II) from aqueous solutions by olive leaves powder | |
Shi et al. | Adsorption equilibrium and kinetics of lead ion onto synthetic ferrihydrites | |
Hao et al. | Insights into the removal of Cr (VI) from aqueous solution using plant-mediated biosynthesis of iron nanoparticles | |
CN104549124A (en) | Cerium-ferrum fluoride removing composite material and preparation method thereof | |
Duan et al. | Fluoride adsorption properties of three modified forms of activated alumina in drinking water | |
Filatova et al. | Adsorption of nickel (II) and copper (II) ions by modified aluminosilicates | |
Mehrizad et al. | Kinetic and thermodynamic studies of adsorption of 4-chloro-2-nitrophenol on nano-TiO2 | |
Al-Faze et al. | Eosin removal properties of organo-local clay from aqueous solution | |
Yang et al. | Enhanced removal of perfluorooctanoic acid (PFOA) from water using ZnO-Ag-ZnAl2O4 composites: Performance and mechanistic insights | |
Jahangiri-rad et al. | Counterion effects on nitrate adsorption from aqueous solution onto functionalized polyacrylonitrile coated with iron oxide nanoparticles | |
El Arfaoui et al. | Terbumeton and isoproturon adsorption by soils: influence of Ca2+ and K+ cations | |
Areco et al. | Zinc biosorption by seaweed illustrated by the zincon colorimetric method and the Langmuir isotherm | |
Jayalakshmi et al. | Adsorption Efficiency of Natural Clay towards the Removal of Naphthol Green Dye from the Aqueous Solution: Equilibrium and Kinetic Studies | |
RU2567650C1 (en) | Method of purifying water from heavy metal ions | |
JP2007237169A (en) | Adsorbent for treating liquid phase and its manufacturing method | |
Tang et al. | Defluorination from aqueous solution by Ti (IV)-modified granular activated carbon | |
Modrogan et al. | Nitrate removal from water using exchange resins | |
Devanand et al. | Adsorption of fluoride from water using Spirulina platensis and its measurement using fluoride ion selective electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6349531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |