JP6341512B2 - Method for producing electrode material for lithium ion secondary battery - Google Patents
Method for producing electrode material for lithium ion secondary battery Download PDFInfo
- Publication number
- JP6341512B2 JP6341512B2 JP2014253129A JP2014253129A JP6341512B2 JP 6341512 B2 JP6341512 B2 JP 6341512B2 JP 2014253129 A JP2014253129 A JP 2014253129A JP 2014253129 A JP2014253129 A JP 2014253129A JP 6341512 B2 JP6341512 B2 JP 6341512B2
- Authority
- JP
- Japan
- Prior art keywords
- ion secondary
- electrode material
- lithium ion
- secondary battery
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池用電極材料の製造方法に関するものである。 The present invention relates to a method for producing an electrode material for a lithium ion secondary battery.
リチウムイオン二次電池の電極材料としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)等の一般式LiMO2(M=Co,Ni)で表わされるリチウム遷移金属酸化物、リン酸鉄リチウム(LiFePO4)、リン酸マンガンリチウム(LiMnPO4)、リン酸コバルトリチウム(LiCoPO4)、リン酸ニッケルリチウム(LiNiPO4)等の一般式LiMPO4(M=Fe,Mn,Co,Ni)で表わされるリン酸遷移金属リチウム化合物が挙げられる。 Examples of electrode materials for lithium ion secondary batteries include lithium transition metal oxides represented by a general formula LiMO 2 (M = Co, Ni) such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), and phosphoric acid the lithium iron (LiFePO 4), lithium manganese phosphate (LiMnPO 4), lithium cobalt phosphate (LiCoPO 4), the general formula LiMPO 4, such as nickel phosphate lithium (LiNiPO 4) (M = Fe , Mn, Co, Ni) The lithium transition metal lithium compound represented by these is mentioned.
LiMPO4は、一般的に、Li源となる原料とM源となる原料とPO4源となる原料の三つの原料を混合して製造されている。
例えば特許文献1には、Li源としての水酸化リチウム一水和物(LiOH・H2O)、M(=Fe)源としてのシュウ酸鉄(II)・二水和物(FeC2O4・2H2O)、PO4源としてのリン酸二水素アンモニウム(NH4H2PO4)を用いるリン酸鉄リチウム(LiFePO4)の製造方法が開示されている。
LiMPO 4 is generally manufactured by mixing three raw materials, a raw material to be a Li source, a raw material to be an M source, and a raw material to be a PO 4 source.
For example, Patent Document 1 discloses lithium hydroxide monohydrate (LiOH · H 2 O) as a Li source, and iron (II) oxalate · dihydrate (FeC 2 O 4 ) as a M (= Fe) source. A method for producing lithium iron phosphate (LiFePO 4 ) using 2H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) as a PO 4 source is disclosed.
ところで、Li源及びPO4源の両方を含むリン酸二水素リチウム(LiH2PO4)と、M源としての二価の金属元素Mの金属化合物との二つの原料を用いるリチウムイオン二次電池用電極材料の製造方法を考えることができる。
リン酸二水素リチウムは水への溶解度が高く、両者を混ぜると直ぐにリン酸二水素リチウムの水溶液になるので、例えば、金属元素Mが鉄であるリン酸鉄リチウム(LiFePO4)を製造する場合には、リン酸二水素リチウム水溶液とシュウ酸鉄(II)二水和物(FeC2O4・2H2O:固体)とを混合し、その混合物を焼成して製造される。
By the way, a lithium ion secondary battery using two raw materials of lithium dihydrogen phosphate (LiH 2 PO 4 ) containing both a Li source and a PO 4 source and a metal compound of a divalent metal element M as an M source. A method for manufacturing the electrode material can be considered.
Lithium dihydrogen phosphate has a high solubility in water, and when both are mixed, an aqueous solution of lithium dihydrogen phosphate is formed immediately. For example, when producing lithium iron phosphate (LiFePO 4 ) in which the metal element M is iron Is prepared by mixing a lithium dihydrogen phosphate aqueous solution and iron (II) oxalate dihydrate (FeC 2 O 4 .2H 2 O: solid), and firing the mixture.
前記二つの原料を用いる製造方法は、前記三つの原料を用いる製造方法に比して、以下の利点がある。
(1)リン酸二水素リチウムは水に対する溶解度が高く、容易に微粒子が製造可能である。(2)三つの原料を用いる場合に発生するアンモニア排ガス(前記PO4源としてのリン酸二水素アンモニウム由来)が生じない。(3)三つの原料を用いる場合よりも回収率(生成物/原料)が高いため、生産性が高くなる。
The manufacturing method using the two raw materials has the following advantages over the manufacturing method using the three raw materials.
(1) Lithium dihydrogen phosphate has high solubility in water and can easily produce fine particles. (2) Ammonia exhaust gas (derived from the ammonium dihydrogen phosphate as the PO 4 source) generated when three raw materials are used does not occur. (3) Since the recovery rate (product / raw material) is higher than when three raw materials are used, the productivity is increased.
ここで、リン酸二水素リチウムと水と二価の金属元素Mの金属化合物を混合し、粉砕してスラリーの状態にすると、成分Mの原料である金属化合物の粒子と、成分Liと成分PO4の両成分を含む原料が水に溶解している原料水溶液とが一様に混ざった固液混合物となる。即ち、成分Mの原料粒子の周囲に、成分Liと成分PO4の原料水溶液が一様に存在する状態になる。
粒子状態の原料と溶液状態の原料との固液混合物を焼成によって反応させて目的の生成物を得る場合、該固液混合物の一様な混合状態が維持されて焼成されることで、生成反応が円滑に進んで均質な生成物が得られる。
Here, when lithium dihydrogen phosphate, water, and a metal compound of the divalent metal element M are mixed and pulverized to form a slurry, particles of the metal compound that is the raw material of the component M, the component Li, and the component PO 4 is a solid-liquid mixture in which a raw material solution containing both components is uniformly mixed with a raw material aqueous solution in which water is dissolved. That is, the raw material aqueous solution of the component Li and the component PO 4 is uniformly present around the raw material particles of the component M.
When a target product is obtained by reacting a solid-liquid mixture of a raw material in a particle state and a raw material in a solution state by firing, a uniform reaction state of the solid-liquid mixture is maintained and fired to generate a reaction. Smoothly proceeds to obtain a homogeneous product.
しかし、スラリー化して固液が一様に混ざった状態を作っても、混合処理を停止すると徐々に固液の分離が起こる。その分離の進行と共に前記混合状態の一様性が低下していく。その一様性の低下が大きくなると、成分Mの周囲に成分Liと成分PO4が適切な量で存在しないバラツキ部分が多くなる。焼成前駆体を作った段階において前記バラツキ部分が多い状態になっていると、次の焼成工程において、前記バラツキ部分が原因となって目的生成物の生成反応が円滑でなくなり、得られる生成物の品質に影響が出てくる。 However, even if the slurry is made into a state where the solid and liquid are uniformly mixed, the solid and liquid are gradually separated when the mixing process is stopped. As the separation progresses, the uniformity of the mixed state decreases. When the decrease in the uniformity becomes large, there will be many variations around the component M where the component Li and the component PO 4 are not present in appropriate amounts. If the variation part is in a state where there are many variations at the stage of making the firing precursor, the production reaction of the target product will not be smooth due to the variation part in the next firing step, and the resulting product The quality will be affected.
そこで本発明の目的は、成分Liと成分PO4の両成分を含む原料(リン酸二水素リチウム)と成分Mの原料との二つを原料としてリチウムイオン二次電池用電極材料を製造する場合に、前記二つの原料を混合したスラリーにおける固液分離を抑制または回避し、均質な生成物を得ることにある。 Therefore, an object of the present invention is to produce an electrode material for a lithium ion secondary battery using two materials, a raw material (lithium dihydrogen phosphate) containing both components Li and PO 4 and a raw material of component M as raw materials. In addition, solid-liquid separation in the slurry in which the two raw materials are mixed is suppressed or avoided, and a homogeneous product is obtained.
上記課題に鑑み、本発明の第1の態様に係るリチウムイオン二次電池用電極材料の製造方法は、一般式LiMPO4(MはFe、Mn、Co又はNi)で表されるリチウムイオン二次電池用電極材料の製造方法であって、リン酸二水素リチウムと水と二価の金属元素Mの金属化合物を混合し、粉砕してスラリーの状態にするスラリー化工程と、前記スラリーから水を蒸発させて除いて焼成前駆体を得る蒸発工程と、前記焼成前駆体を焼成して前記一般式LiMPO4(MはFe、Mn、Co又はNi)の化合物を生成する焼成工程と、を有し、前記蒸発工程は、前記焼成前駆体を得るに際して、前記スラリーに対する蒸発処理を1分以下の時間で行うことを特徴とするものである。 In view of the above problems, a method for producing an electrode material for a lithium ion secondary battery according to the first aspect of the present invention is a lithium ion secondary represented by the general formula LiMPO 4 (M is Fe, Mn, Co or Ni). A method for producing an electrode material for a battery, comprising: a slurrying step in which lithium dihydrogen phosphate, water, and a metal compound of a divalent metal element M are mixed and pulverized to form a slurry; An evaporation step of obtaining a firing precursor by removing by evaporation, and a firing step of firing the firing precursor to produce a compound of the general formula LiMPO 4 (M is Fe, Mn, Co or Ni). The evaporation step is characterized in that, when obtaining the calcined precursor, the slurry is evaporated in a time of 1 minute or less.
前記蒸発工程に供されるスラリー量(水量)が多くなると、一般的に蒸発処理時間は長くかかるが、スラリー量が増えたとしても、例えばスラリーを薄く広げる等、表面積を増やして乾燥させたり、少量ずつ乾燥させることにより、前記蒸発工程における蒸発処理の時間を1分以下にする。
本態様によれば、焼成前駆体を得るための前記蒸発工程は、前記スラリーに対する乾燥処理の時間を1分以下で行うので、前記混合処理が停止して前記スラリーの固液分離が始まっても、焼成後の前記生成物の品質に影響が出る前の状態でその分離を止めることができる。
このように、前記蒸発工程において、前記スラリーが固液分離する前に水分を乾燥させて焼成前駆体を得るので、前記スラリーの一様な混合状態が維持された状態の焼成前駆体に対して焼成を行うことが可能となり、以って均質な生成物を得ることができる。
When the amount of slurry (water amount) provided for the evaporation step increases, the evaporation process time generally takes longer, but even if the amount of slurry increases, for example, the slurry is spread thinly, and the surface area is increased and dried, By drying little by little, the time of the evaporation process in the evaporation step is set to 1 minute or less.
According to this aspect, since the evaporating step for obtaining the calcined precursor is performed with a drying process time of 1 minute or less for the slurry, even if the mixing process is stopped and solid-liquid separation of the slurry is started. The separation can be stopped in a state before the quality of the product after firing is affected.
Thus, in the evaporation step, moisture is dried before the slurry is subjected to solid-liquid separation to obtain a firing precursor. Therefore, with respect to the firing precursor in a state where a uniform mixed state of the slurry is maintained. Firing can be performed, and thus a homogeneous product can be obtained.
尚、本明細書において一般式LiMPO4とは、リチウムと金属Mとリン酸が化学量論比においてほぼ1:1:1の割合で含有されていることを意味し、厳密に各成分が1:1:1で含まれている場合に限られない。また、他の成分や不純物を全く含まないことを要求しない。 In this specification, the general formula LiMPO 4 means that lithium, metal M, and phosphoric acid are contained in a stoichiometric ratio of approximately 1: 1: 1. It is not limited to the case of being included at 1: 1. Moreover, it does not require that no other components or impurities are contained.
本発明の第2の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第1の態様において、前記蒸発工程は、蒸発のための熱が前記スラリー全体に一様に伝わる均一伝熱処理(撹拌等)も行うことを特徴とするものである。 In the method for producing an electrode material for a lithium ion secondary battery according to a second aspect of the present invention, in the first aspect, the evaporation step includes a uniform heat transfer heat treatment in which heat for evaporation is uniformly transmitted to the entire slurry. (Stirring or the like) is also performed.
本態様によれば、前記スラリー全体に均一に熱がかかるので、より効率的に前記スラリーの一様な混合状態が維持された状態の焼成前駆体を得ることができる。この焼成前駆体に対して焼成を行うことにより、より均質な生成物を得ることができる。 According to this aspect, since heat is uniformly applied to the entire slurry, it is possible to obtain a firing precursor in a state where the uniform mixed state of the slurry is more efficiently maintained. By firing the fired precursor, a more homogeneous product can be obtained.
本発明の第3の態様に係るリチウムイオン二次電池用電極材料の製造方法は、1の態様または第2の態様において、前記スラリー化工程は、有機酸を加えて行うことを特徴とするものである。 The method for producing an electrode material for a lithium ion secondary battery according to a third aspect of the present invention is characterized in that, in the first aspect or the second aspect, the slurrying step is performed by adding an organic acid. It is.
有機酸は、一般的に150℃〜250℃程度で融解する。本態様によれば、スラリーに有機酸を加えておくことにより、蒸発工程において前記スラリーに熱を加えたときに前記有機酸が融解して当該スラリーの粘性が増すので、前記スラリーの固液分離を起こりにくくする効果を奏する。このことにより、前記スラリーの一様な混合状態を維持した状態の焼成前駆体を安定して得ることができる。 The organic acid generally melts at about 150 ° C to 250 ° C. According to this aspect, by adding an organic acid to the slurry, when the heat is applied to the slurry in the evaporation step, the organic acid melts and the viscosity of the slurry increases. Has the effect of making it difficult to occur. Thereby, the baking precursor of the state which maintained the uniform mixed state of the said slurry can be obtained stably.
本発明の第4の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第3の態様において、前記有機酸はクエン酸であり、該クエン酸の添加量は、リン酸二水素リチウムと二価の金属元素Mの金属化合物の混合物を100として、1wt%〜30wt%であることを特徴とするものである。 The method for producing an electrode material for a lithium ion secondary battery according to a fourth aspect of the present invention is the third aspect, wherein the organic acid is citric acid, and the amount of the citric acid added is lithium dihydrogen phosphate. arm and a mixture of metal compounds divalent metal elements M as 100, is characterized in that a 1 wt% 30 wt%.
本態様によれば、第3の態様の作用を効果的に得ることができる。 According to this aspect, the effect of the third aspect can be obtained effectively.
本発明の第5の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第1の態様から第4の態様のいずれかにおいて、前記スラリー化工程は、粉砕到達粒度がDmax≦1μmであることを特徴とするものである。 The method for producing an electrode material for a lithium ion secondary battery according to the fifth aspect of the present invention is the slurry forming step according to any one of the first to fourth aspects, wherein the pulverization attainment particle size is Dmax ≦ 1 μm. It is characterized by being.
本態様によれば、前記スラリー化工程において粉砕到達粒度Dmax≦1μmの細粒に原料を粉砕することにより、より組成の安定した焼成前駆体を得ることができる。以って、本方法により製造した電極材料を用いてリチウムイオン二次電池を作成した場合に、より良好な電池特性が得られるリチウムイオン二次電池用電極材料とすることができる。 According to this aspect, a firing precursor having a more stable composition can be obtained by grinding the raw material into fine particles having a pulverization attainment particle size Dmax ≦ 1 μm in the slurrying step. Therefore, when a lithium ion secondary battery is produced using the electrode material manufactured by this method, it can be set as the electrode material for lithium ion secondary batteries from which a more favorable battery characteristic is acquired.
本発明の第6の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第1の態様から第5の態様のいずれかにおいて、前記水の添加量は、リン酸二水素リチウムと二価の金属元素Mの金属化合物の混合物を100として、5wt%〜50wt%であることを特徴とするものである。 Method for producing a sixth electrode for a lithium ion secondary battery materials according to the aspect of the present invention, in any one of the fifth aspect of the first embodiment, the addition amount of the water, the dihydrogen phosphate lithium A mixture of metal compounds of the divalent metal element M is defined as 100, and the content is 5 wt% to 50 wt%.
本態様によれば、スラリーの状態のときに原料を一様な混合状態とすることができるとともに、前記蒸発工程時に1分以下の乾燥処理時間で確実に水分を乾燥させることができる。 According to this aspect, the raw materials can be in a uniform mixed state in the slurry state, and moisture can be reliably dried in a drying process time of 1 minute or less during the evaporation step.
本発明の第7の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第1の態様から第6の態様のいずれかにおいて、前記焼成工程は、室温から380℃以上500℃以下までの一段目焼成工程と、前記一段目焼成工程の後の焼成物解砕工程と、前記焼成物解砕工程の後の炭素前駆体添加工程と、前記炭素前駆体添加工程の後の室温から650℃以上800℃以下までの二段目焼成工程と、を有することを特徴とするものである。 In the method for producing an electrode material for a lithium ion secondary battery according to a seventh aspect of the present invention, in any one of the first aspect to the sixth aspect, the firing step is performed from room temperature to 380 ° C. to 500 ° C. 650 from the room temperature after the carbon precursor addition step, the carbon precursor addition step after the calcined product crushing step, the carbon precursor addition step after the calcined product crushing step And a second-stage firing step from 800C to 800C.
本態様によれば、原料が一様に混合された焼成前駆体に対して焼成工程を行うので、均質な生成物(リチウムイオン二次電池用電極材料)を得ることができる。
また、焼成工程を二段階で行うことにより、二段目焼成工程時に発生する反応ガス(原料の分解ガス、水蒸気等)を少なくすることができるので、前記炭素前駆体が前記反応ガスにより発泡する虞を低減することができる。以って、より均一に熱分解炭素を析出させることができ、得られる電極材料の表面導電性が良好となる。
According to this aspect, since the firing step is performed on the firing precursor in which the raw materials are uniformly mixed, a homogeneous product (electrode material for a lithium ion secondary battery) can be obtained.
Moreover, since the reaction gas (decomposition gas of raw materials, water vapor, etc.) generated during the second-stage baking process can be reduced by performing the baking process in two stages, the carbon precursor is foamed by the reaction gas. The fear can be reduced. Therefore, pyrolytic carbon can be deposited more uniformly, and the surface conductivity of the obtained electrode material becomes good.
本発明の第8の態様に係るリチウムイオン二次電池用電極材料の製造方法は、第7の態様において、前記焼成物解砕工程は、粉砕到達粒度がDmax≦15μmであることを特徴とするものである。 The method for producing an electrode material for a lithium ion secondary battery according to an eighth aspect of the present invention is characterized in that, in the seventh aspect, the fired product crushing step has a pulverization attainment particle size of Dmax ≦ 15 μm. Is.
本態様によれば、前記一段目焼成工程の後の焼成物を粉砕到達粒度Dmax≦15μmに解砕することにより、より均質で安定した生成物を得ることができる。以って、より良好な電池特性が得られるリチウムイオン二次電池用電極材料とすることができる。 According to this aspect, a more homogeneous and stable product can be obtained by crushing the fired product after the first-stage firing step to a pulverized particle size Dmax ≦ 15 μm. Therefore, it can be set as the electrode material for lithium ion secondary batteries from which a more favorable battery characteristic is acquired.
以下、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれる。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples, and various modifications are possible within the scope of the invention described in the claims, They are also included within the scope of the present invention.
[リチウムイオン二次電池用電極材料の製造方法の概要]
以下において、本発明に係るリチウムイオン二次電池用電極材料の製造方法の概要について説明する。本発明に係るリチウムイオン二次電池用電極材料は、一般式LiMPO4(MはFe、Mn、Co又はNi)で表される物質である。
[Outline of manufacturing method of electrode material for lithium ion secondary battery]
Below, the outline | summary of the manufacturing method of the electrode material for lithium ion secondary batteries which concerns on this invention is demonstrated. The electrode material for a lithium ion secondary battery according to the present invention is a substance represented by a general formula LiMPO 4 (M is Fe, Mn, Co or Ni).
成分Li及び成分PO4導入用原料としては、リン酸二水素リチウム(LiH2PO4)が用いられる。
成分M(Fe、Mn、Co又はNi)導入用原料としては、二価の金属元素Mの金属化合物が用いられる。例えば、水酸化物、炭酸塩や炭酸水素塩、塩化物等のハロゲン化物、硝酸塩、その他、金属元素Mのみが目的の正極材料中に残留するような分解揮発性化合物(例えば、シュウ酸塩や酢酸塩等の有機酸塩、アセチルアセトン錯体類や、メタロセン錯体等の有機錯体など)を用いることができる。
As a raw material for introducing the component Li and the component PO 4 , lithium dihydrogen phosphate (LiH 2 PO 4 ) is used.
As a raw material for introducing the component M (Fe, Mn, Co or Ni), a metal compound of a divalent metal element M is used. For example, hydroxides, carbonates and bicarbonates, halides such as chlorides, nitrates, and other decomposition volatile compounds in which only the metal element M remains in the target positive electrode material (for example, oxalate and Organic acid salts such as acetate, acetylacetone complexes, and organic complexes such as metallocene complexes) can be used.
本説明では、一般式LiMPO4で表されるリチウムイオン二次電池用電極材料として、MがFe(鉄)であるLiFePO4(リン酸鉄リチウム)を例に挙げて説明する。
成分M(Fe)導入用原料としては、シュウ酸鉄(II)・二水和物(FeC2O4・2H2O)を用いるものとする。
In this description, LiFePO 4 (lithium iron phosphate) in which M is Fe (iron) will be described as an example of an electrode material for a lithium ion secondary battery represented by the general formula LiMPO 4 .
As the raw material for introducing component M (Fe), iron (II) oxalate dihydrate (FeC 2 O 4 .2H 2 O) is used.
(1)スラリー化工程
原料のリン酸二水素リチウムと水とシュウ酸鉄(II)・二水和物(以下、単にシュウ酸鉄と称する場合がある)を混合し、粉砕してスラリーの状態にする。リン酸二水素リチウムと水とシュウ酸鉄は、リチウム、鉄、リンの化学量論比が1:1:1となるように混合される。前記原料の混合は、例えばプラネタリーミキサー等の公知の混合装置を用いて行うことができる。また粉砕は、ボールミル等の公知の粉砕機を用いて行うことができる。
前記水の添加量は、前記スラリー中の5wt%〜50wt%であることが好ましい。このことにより、リン酸二水素リチウムを十分に溶解させるとともに、スラリーの状態における原料の一様な混合状態を実現することができる。また、水は少ない方が後段の蒸発工程時における水の乾燥処理時間が短くて済む。
(1) Slurry process The raw material lithium dihydrogen phosphate, water, and iron (II) oxalate dihydrate (hereinafter sometimes simply referred to as iron oxalate) are mixed and ground to form a slurry. To. Lithium dihydrogen phosphate, water, and iron oxalate are mixed so that the stoichiometric ratio of lithium, iron, and phosphorus is 1: 1: 1. The mixing of the raw materials can be performed using a known mixing apparatus such as a planetary mixer. The pulverization can be performed using a known pulverizer such as a ball mill.
The amount of water added is preferably 5 wt% to 50 wt% in the slurry. As a result, lithium dihydrogen phosphate can be sufficiently dissolved, and a uniform mixed state of raw materials in a slurry state can be realized. In addition, the less water, the shorter the drying time of the water in the subsequent evaporation step.
また、スラリー化工程は、原料のリン酸二水素リチウムと水とシュウ酸鉄に加え、クエン酸等の有機酸を添加して行うことが好ましい。
例えば有機酸としてクエン酸を加える場合、その添加量は、リン酸二水素リチウムと水と二価の金属元素Mの金属化合物の混合物を100として、1wt%〜30wt%とするとよい。
The slurrying step is preferably performed by adding an organic acid such as citric acid in addition to the raw material lithium dihydrogen phosphate, water and iron oxalate.
For example, when citric acid is added as the organic acid, the addition amount is preferably 1 wt% to 30 wt%, where 100 is a mixture of lithium dihydrogen phosphate, water, and a metal compound of the divalent metal element M.
また、スラリー化工程における原料の粉砕は、粉砕到達粒度Dmax≦1μmであることが好ましい。粉砕到達粒度Dmax≦1μmの細粒に原料を粉砕することにより、後述する蒸発工程後により組成の安定した焼成前駆体を得ることができる。 Further, the raw material is preferably pulverized in the slurrying step so that the pulverized particle size Dmax ≦ 1 μm. By pulverizing the raw material into fine particles having a pulverization reaching particle size Dmax ≦ 1 μm, a calcined precursor having a stable composition can be obtained after the evaporation step described later.
(2)蒸発工程
蒸発工程は、前記スラリー化工程で調整した前記スラリーから水を蒸発させて除いて焼成前駆体を得る工程である。
前記スラリーの水の蒸発処理は乾燥装置を用いて1分以下の時間で行われる。水の蒸発のためにかける温度は100℃〜300℃であることが好ましい。前記乾燥装置としては、例えば100℃〜300℃の温度で水を短時間で乾燥できる急速乾燥装置が用いられる。
(2) Evaporation process An evaporation process is a process of obtaining a baking precursor by evaporating and removing water from the slurry prepared in the slurrying process.
The slurry is evaporated using a drying apparatus in a time of 1 minute or less. The temperature applied for water evaporation is preferably 100 ° C to 300 ° C. As the drying device, for example, a rapid drying device capable of drying water in a short time at a temperature of 100 ° C. to 300 ° C. is used.
尚、前記蒸発工程は、蒸発のための熱が前記スラリー全体に一様に伝わる均一伝熱処理を行いつつ水を蒸発させることが望ましい。前記均一伝熱処理は、例えば、前記急速乾燥装置内においてスラリーを薄く広げる、液滴化する等により表面積を増やしたり、スラリーを撹拌する等の処理が挙げられる。 In the evaporation step, it is preferable to evaporate the water while performing a uniform heat transfer process in which heat for evaporation is uniformly transmitted to the entire slurry. Examples of the uniform heat transfer heat treatment include a treatment in which the surface area is increased by spreading the slurry thinly, making it into droplets, or stirring the slurry in the rapid drying apparatus.
(3)焼成工程
焼成工程は、前記蒸発工程によって得た焼成前駆体を焼成してLiFePO4を生成する工程である。本説明では、以下の(3-1)〜(3-4)の工程によって行う焼成工程について説明する。
(3) Firing step The firing step is a step in which the firing precursor obtained by the evaporation step is fired to produce LiFePO 4 . In this description, the firing process performed by the following processes (3-1) to (3-4) will be described.
(3-1)一段目焼成工程
前記蒸発工程によって得た焼成前駆体を、焼成炉等により室温から380℃以上500℃以下までの温度に昇温して焼成を行う。炉内を380℃以上500℃以下の温度に昇温後、数時間(例えば1時間〜8時間程度)焼成する。
(3-1) First stage firing process
The firing precursor obtained by the evaporation step is fired by raising the temperature from room temperature to 380 ° C. to 500 ° C. in a firing furnace or the like. After raising the temperature in the furnace to a temperature of 380 ° C. or higher and 500 ° C. or lower, firing is performed for several hours (for example, about 1 to 8 hours).
(3-2)焼成物解砕工程
焼成物解砕工程では、前記一段目焼成工程の後の焼成物を解砕する。
リン酸二水素リチウムは水に対する溶解度が高く、スラリー化工程においてリン酸二水素リチウム水溶液と金属化合物(シュウ酸鉄)の二つの原料を混合、粉砕して蒸発工程を行うことにより、焼成前駆体の状態において微粒子化されているため、ここでの解砕には、例えば簡易的な解砕機(ターボミル等、焼成物を簡単にほぐせる程度のもの)を用いることができる。
焼成物解砕工程における前記焼成物の粉砕到達粒度は、Dmax≦15μmであることが好ましい。このことにより、後述する二段目焼成工程後により均質で安定した生成物を得ることができる。
(3-2) Firing product crushing process
In the fired product crushing step, the fired product after the first stage firing step is crushed.
Lithium dihydrogen phosphate has high solubility in water, and in the slurrying process, two raw materials, lithium dihydrogen phosphate aqueous solution and metal compound (iron oxalate) are mixed, pulverized, and evaporated to perform the firing precursor. Therefore, for example, a simple crusher (such as a turbo mill or the like that can easily loosen the fired product) can be used for crushing.
The pulverized particle size of the fired product in the fired product crushing step is preferably Dmax ≦ 15 μm. As a result, a more homogeneous and stable product can be obtained after the second-stage firing step described later.
(3-3)炭素前駆体添加工程
炭素前駆体添加工程では、前記焼成物解砕工程の焼成物に対して炭素前駆体を添加する。炭素前駆体を添加して後述する二段目焼成工程を行うことにより、リン酸鉄リチウムの表面に、導電性炭素を析出させることができる。表面に導電性炭素を析出させた電極材料は、炭素析出のない場合よりもさらに高い充放電特性を示すことが可能となる。
前記炭素前駆体としては、クエン酸等の有機酸の他、石炭ピッチ等のビチューメン類や糖類を添加することができる。前記炭素前駆体の添加量は、例えばクエン酸の場合、リン酸二水素リチウムと金属化合物(シュウ酸鉄)の混合物を100として、10wt%〜60wt%とするとよい。
(3-3) Carbon precursor addition process
In the carbon precursor addition step, a carbon precursor is added to the fired product in the fired product crushing step. Conductive carbon can be deposited on the surface of lithium iron phosphate by adding a carbon precursor and performing the second-stage firing step described later. An electrode material having conductive carbon deposited on the surface can exhibit even higher charge / discharge characteristics than when no carbon is deposited.
As the carbon precursor, in addition to organic acids such as citric acid, bitumens such as coal pitch and saccharides can be added. For example, in the case of citric acid, the carbon precursor may be added in an amount of 10 wt% to 60 wt%, where 100 is a mixture of lithium dihydrogen phosphate and a metal compound (iron oxalate).
(3-4)二段目焼成工程
前記炭素前駆体添加工程後に、焼成炉等により室温から650℃以上800℃以下までの温度に昇温して焼成を行う。尚、このときの「室温」とは、前記炭素前駆体添加工程の後の室温である。炉内を650℃以上800℃以下の温度に昇温後、数時間(例えば1時間〜8時間程度)焼成する。
二段目焼成工程を行うことによりリチウムイオン二次電池用電極材料としての生成物が得られる。
(3-4) Second stage firing process
After the carbon precursor addition step, firing is performed by raising the temperature from room temperature to 650 ° C. to 800 ° C. in a firing furnace or the like. The “room temperature” at this time is the room temperature after the carbon precursor addition step. After raising the temperature in the furnace to a temperature of 650 ° C. or higher and 800 ° C. or lower, firing is performed for several hours (for example, about 1 to 8 hours).
A product as an electrode material for a lithium ion secondary battery is obtained by performing the second stage baking step.
以上説明した方法によりリチウムイオン二次電池用電極材料を製造することにより、以下の作用効果が得られる。
本発明が解決しようとする課題の説明において詳述したように、スラリー化工程においては、固体のシュウ酸鉄の粒子と、水に溶解したリン酸二水素リチウム水溶液とが一様に混ざった固液混合物となるが、スラリーの混合を停止すると徐々に固液の分離が起こる。固液分離の進行は、前記混合状態の一様性を低下する。その一様性が低下したスラリーを焼成前駆体とすると、次の焼成工程によって行われる目的生成物の生成反応にもバラツキが生じ、得られる生成物の品質に影響が出る。
By producing the electrode material for a lithium ion secondary battery by the method described above, the following effects can be obtained.
As described in detail in the description of the problem to be solved by the present invention, in the slurrying process, solid iron oxalate particles and a solid solution of lithium dihydrogen phosphate dissolved in water are uniformly mixed. Although it becomes a liquid mixture, solid-liquid separation gradually occurs when mixing of the slurry is stopped. The progress of the solid-liquid separation reduces the uniformity of the mixed state. When a slurry with reduced uniformity is used as a firing precursor, the production reaction of the target product performed in the next firing step also varies, which affects the quality of the resulting product.
ここで本発明では、蒸発工程における前記スラリーに対する乾燥処理の時間を1分以下で行うので、前記スラリーの一様な混合状態が維持された状態の焼成前駆体を得ることができ、この状態の焼成前駆体に対して焼成工程を行うことにより、均質な生成物を得ることができる。
本方法により得られた生成物をリチウムイオン二次電池用電極材料としてリチウムイオン二次電池を作成することにより、良好な電池特性が得られる。
Here, in the present invention, since the drying process time for the slurry in the evaporation step is 1 minute or less, it is possible to obtain a firing precursor in a state where the uniform mixing state of the slurry is maintained. A homogeneous product can be obtained by performing a firing step on the firing precursor.
By producing a lithium ion secondary battery using the product obtained by this method as an electrode material for a lithium ion secondary battery, good battery characteristics can be obtained.
また、蒸発工程においてスラリー全体に均一に熱がかかるようにする均一伝熱処理を行うことにより、より効率的に前記スラリーの一様な混合状態が維持された状態の焼成前駆体を得ることができる。この焼成前駆体に対して焼成を行うことにより、より均質な生成物を得ることができる。 Further, by performing a uniform heat transfer treatment so that heat is uniformly applied to the entire slurry in the evaporation step, it is possible to obtain a firing precursor in a state where the uniform mixed state of the slurry is more efficiently maintained. . By firing the fired precursor, a more homogeneous product can be obtained.
また、原料スラリーにクエン酸(有機酸)を加えることにより、蒸発工程において前記スラリーに熱を加えたときに前記有機酸が融解して当該スラリーの粘性が増すので、前記スラリーの固液分離を起こりにくくする効果が得られる。このことにより、前記スラリーの一様な混合状態を維持した状態の焼成前駆体を安定して得ることができる。 In addition, by adding citric acid (organic acid) to the raw slurry, when the heat is applied to the slurry in the evaporation step, the organic acid melts and the viscosity of the slurry increases. The effect of making it difficult to occur is obtained. Thereby, the baking precursor of the state which maintained the uniform mixed state of the said slurry can be obtained stably.
尚、上記説明では一段目焼成工程と二段目焼成工程の二段階の焼成を行う場合について説明したが、焼成工程を二段階に分けず、一段階の焼成によって行うことも可能である。また、二段階の焼成を行う場合に、焼成物解砕工程、炭素前駆体添加工程の少なくとも一方を行わない場合も本発明の範囲に含むものとする。 In the above description, the case of performing the two-stage firing of the first-stage firing process and the second-stage firing process has been described. However, the firing process may be performed by one-stage firing without dividing the firing process into two stages. Moreover, when performing a two-stage baking, the case where at least one of a baked material crushing process and a carbon precursor addition process is not performed is also included in the scope of the present invention.
[具体例]
リン酸鉄リチウム電極材料を以下の手順で製造し、製造した電極材料を用いてリチウムイオン二次電池を作成し、その物性および電池特性を調べた(実施例1および実施例2)。比較例として、蒸発工程を行わずにリン酸鉄リチウム電極材料を製造した(比較例1)。尚、製造した電極材料に対しては粒度調整のための粉砕を行い、リチウムイオン二次電池を作成した。
[Concrete example]
A lithium iron phosphate electrode material was produced by the following procedure, a lithium ion secondary battery was prepared using the produced electrode material, and its physical properties and battery characteristics were examined (Example 1 and Example 2). As a comparative example, a lithium iron phosphate electrode material was manufactured without performing an evaporation step (Comparative Example 1). The manufactured electrode material was pulverized for particle size adjustment to prepare a lithium ion secondary battery.
(実施例1)
リン酸二水素リチウム,103.93gとシュウ酸鉄(II)・二水和物,179.89gを原料として、前記原料の混合物の量を100として20wt%の水を添加し、ビーカー内において攪拌機で撹拌することにより混合、粉砕し、スラリー化工程を行った。続いて、前記スラリー化工程で調整した前記スラリーに対して蒸発工程を行った。蒸発工程におけるスラリーからの水の蒸発はホットプレートを用いて行った。前記スラリーを50gずつホットプレート(設定温度250℃)上で加熱し、該スラリーの水を蒸発処理時間30秒で乾燥させて焼成前駆体を得た。
焼成前駆体に対し、一段目焼成工程(焼成温度:400℃、保持時間:4時間)を行った後、一段目焼成物に炭素源としての石炭ピッチを3.5wt%添加し、その混合物を解砕機により解砕し、二段目焼成工程(焼成温度:760℃、保持時間:6時間)を行い、リチウムイオン二次電池用電極材料としての生成物を得た。
Example 1
Lithium dihydrogen phosphate, 103.93 g and iron (II) oxalate dihydrate, 179.89 g were used as raw materials, 20 wt% water was added with the amount of the raw material mixture set to 100, and the mixture was stirred in a beaker. The mixture was mixed and pulverized by stirring with a slurry process. Subsequently, an evaporation step was performed on the slurry prepared in the slurrying step. Evaporation of water from the slurry in the evaporation process was performed using a hot plate. The slurry was heated 50 g at a time on a hot plate (set temperature 250 ° C.), and water of the slurry was dried for 30 seconds to obtain a calcined precursor.
After performing the first stage firing process (firing temperature: 400 ° C., holding time: 4 hours) on the firing precursor, 3.5 wt% coal pitch as a carbon source is added to the first stage fired product, and the mixture is added. The product was pulverized by a pulverizer and subjected to a second-stage baking step (calcination temperature: 760 ° C., holding time: 6 hours) to obtain a product as an electrode material for a lithium ion secondary battery.
(実施例2)
リン酸二水素リチウム,103.93gとシュウ酸鉄(II)・二水和物,179.89gを原料として、前記原料の混合物の量を100として20wt%の水と10wt%のクエン酸を添加し、スラリー化工程を行った。蒸発工程および焼成工程は実施例1と同様の条件で行った。
(Example 2)
Using lithium dihydrogen phosphate, 103.93g and iron (II) oxalate dihydrate, 179.89g as raw materials, and adding 20wt% water and 10wt% citric acid with the amount of the raw material mixture as 100 Then, a slurrying process was performed. The evaporation step and the firing step were performed under the same conditions as in Example 1.
(比較例1)
リン酸二水素リチウム,103.93gとシュウ酸鉄(II)・二水和物,179.89gを原料として、前記原料の混合物の量を100として30wt%の水を添加し、スラリー化工程を行った。比較例1では蒸発工程を行わず、スラリー化工程後のスラリーをそのまま実施例1と同様の焼成工程に供した。
(Comparative Example 1)
Using 30.93 g of lithium dihydrogen phosphate, 103.93 g and iron (II) oxalate dihydrate, 179.89 g as raw materials, adding 30 wt% water with the amount of the raw material mixture being 100, went. In Comparative Example 1, the evaporation step was not performed, and the slurry after the slurrying step was subjected to the same firing step as in Example 1.
実施例1、実施例2、および比較例1の電極材料を用い、以下の条件でリチウムイオン二次電池を作成し、充放電試験を行った。
セルタイプ:CR2032
正極電極組成:LFP:AB:PVdF=89:7:4
負極:Li−Metal
電解液:1M LiPF6 in EC/EMC=3/7
温度:25℃
充電条件:0.1C(CC−CV):4.5V
1C(CC−CV):4V
放電条件:0.1, 1C(CC), 2.0V
Using the electrode materials of Example 1, Example 2, and Comparative Example 1, lithium ion secondary batteries were prepared under the following conditions, and a charge / discharge test was performed.
Cell type: CR2032
Positive electrode composition: LFP: AB: PVdF = 89: 7: 4
Negative electrode: Li-Metal
Electrolyte: 1M LiPF 6 in EC / EMC = 3/7
Temperature: 25 ° C
Charging conditions: 0.1C (CC-CV): 4.5V
1C (CC-CV): 4V
Discharge conditions: 0.1, 1C (CC), 2.0V
表1は、実施例1、実施例2、および比較例1の物性[BET比表面積及び炭素(C)量]と作成したリチウムイオン二次電池の電池容量の試験結果である。
図1は、実施例1の電極材料を用いて作成したリチウムイオン二次電池の充放電特性を示す図である。図2は、実施例2の電極材料を用いて作成したリチウムイオン二次電池の充放電特性を示す図である。図3は、比較例1の電極材料を用いて作成したリチウムイオン二次電池の充放電特性を示す図である。
Table 1 shows the physical properties [BET specific surface area and carbon (C) amount] of Example 1, Example 2, and Comparative Example 1 and the battery capacity test results of the prepared lithium ion secondary batteries.
FIG. 1 is a graph showing charge / discharge characteristics of a lithium ion secondary battery produced using the electrode material of Example 1. FIG. 2 is a graph showing charge / discharge characteristics of a lithium ion secondary battery prepared using the electrode material of Example 2. FIG. 3 is a diagram showing charge / discharge characteristics of a lithium ion secondary battery created using the electrode material of Comparative Example 1.
表1に示すように、実施例1、実施例2ともに、比較例1に比して大きな電池容量の二次電池を作成することができた。
また、比較例1は実施例1と実施例2よりも放電後半の放電曲線の電位降下が早い。したがって、実施例1と実施例2は比較例1よりも良好な放電特性を示すと言える。更に、実施例1と実施例2を比べると、スラリー化工程においてクエン酸を添加した実施例2の方が、実施例1よりも放電後半の放電曲線の電位降下が少なく、より良好な放電特性を示すことが分かる。
As shown in Table 1, in both Example 1 and Example 2, a secondary battery having a larger battery capacity than that in Comparative Example 1 could be produced.
Further, in Comparative Example 1, the potential drop of the discharge curve in the latter half of the discharge is faster than that in Example 1 and Example 2. Therefore, it can be said that Example 1 and Example 2 show better discharge characteristics than Comparative Example 1. Further, comparing Example 1 and Example 2, Example 2 in which citric acid was added in the slurrying process had less potential drop in the discharge curve in the latter half of discharge than Example 1, and better discharge characteristics. It can be seen that
Claims (8)
リン酸二水素リチウムと水と二価の金属元素Mの金属化合物を混合し、粉砕してスラリーの状態にするスラリー化工程と、
前記スラリーから水を蒸発させて除いて焼成前駆体を得る蒸発工程と、
前記焼成前駆体を焼成して前記一般式LiMPO4(MはFe、Mn、Co又はNi)の化合物を生成する焼成工程と、を有し、
前記蒸発工程は、前記焼成前駆体を得るに際して、前記スラリーに対する蒸発処理を1分以下の時間で行うことを特徴とするリチウムイオン二次電池用電極材料の製造方法。 A method for producing an electrode material for a lithium ion secondary battery represented by a general formula LiMPO4 (M is Fe, Mn, Co or Ni),
A slurrying step in which lithium dihydrogen phosphate, water, and a metal compound of the divalent metal element M are mixed and pulverized to form a slurry;
An evaporation step of evaporating and removing water from the slurry to obtain a calcined precursor;
Firing the firing precursor to produce a compound of the general formula LiMPO4 (M is Fe, Mn, Co or Ni),
The method for producing an electrode material for a lithium ion secondary battery, wherein the evaporating step performs the evaporating process on the slurry in a time of 1 minute or less when obtaining the calcined precursor.
前記蒸発工程は、蒸発のための熱が前記スラリー全体に一様に伝わる均一伝熱処理も行うことを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries of Claim 1,
The method for producing an electrode material for a lithium ion secondary battery, wherein the evaporating step also performs a uniform heat transfer heat in which heat for evaporation is uniformly transmitted to the entire slurry.
前記スラリー化工程は、有機酸を加えて行うことを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries of Claim 1 or Claim 2,
The method for producing an electrode material for a lithium ion secondary battery, wherein the slurrying step is performed by adding an organic acid.
前記有機酸はクエン酸であり、
該クエン酸の添加量は、リン酸二水素リチウムと二価の金属元素Mの金属化合物の混合物を100として、1wt%〜30wt%であることを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries of Claim 3,
The organic acid is citric acid;
The addition amount of the citric acid, a mixture of dihydrogen phosphate lithium and a divalent metal compound of a metal element M as 100, the lithium ion secondary battery electrode material which is a 1 wt% 30 wt% Manufacturing method.
前記スラリー化工程は、粉砕到達粒度がDmax≦1μmであることを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries as described in any one of Claims 1-4,
The method for producing an electrode material for a lithium ion secondary battery, wherein the slurrying step has a pulverized particle size of Dmax ≦ 1 μm.
前記水の添加量は、リン酸二水素リチウムと二価の金属元素Mの金属化合物の混合物を100として、5wt%〜50wt%であることを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries as described in any one of Claims 1-5,
The amount of the water, a mixture of dihydrogen phosphate lithium and a divalent metal compound of a metal element M as 100, the lithium ion secondary battery electrode material which is a 5 wt% 50 wt% Production method.
前記焼成工程は、
室温から380℃以上500℃以下までの一段目焼成工程と、
前記一段目焼成工程の後の焼成物解砕工程と、
前記焼成物解砕工程の後の炭素前駆体添加工程と、
前記炭素前駆体添加工程の後の室温から650℃以上800℃以下までの二段目焼成工程と、
を有することを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries as described in any one of Claims 1-6,
The firing step includes
A first stage baking step from room temperature to 380 ° C. to 500 ° C .;
A fired material crushing step after the first stage firing step;
A carbon precursor addition step after the fired product crushing step;
A second stage baking step from room temperature to 650 ° C. to 800 ° C. after the carbon precursor addition step;
The manufacturing method of the electrode material for lithium ion secondary batteries characterized by having.
前記焼成物解砕工程は、粉砕到達粒度がDmax≦15μmであることを特徴とするリチウムイオン二次電池用電極材料の製造方法。 In the manufacturing method of the electrode material for lithium ion secondary batteries of Claim 7,
The method for producing an electrode material for a lithium ion secondary battery, wherein the fired product crushing step has a pulverized particle size of Dmax ≦ 15 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014253129A JP6341512B2 (en) | 2014-12-15 | 2014-12-15 | Method for producing electrode material for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014253129A JP6341512B2 (en) | 2014-12-15 | 2014-12-15 | Method for producing electrode material for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016115524A JP2016115524A (en) | 2016-06-23 |
JP6341512B2 true JP6341512B2 (en) | 2018-06-13 |
Family
ID=56140107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014253129A Expired - Fee Related JP6341512B2 (en) | 2014-12-15 | 2014-12-15 | Method for producing electrode material for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6341512B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2320661A1 (en) * | 2000-09-26 | 2002-03-26 | Hydro-Quebec | New process for synthesizing limpo4 materials with olivine structure |
JP5004413B2 (en) * | 2004-08-20 | 2012-08-22 | 日本コークス工業株式会社 | Method for producing positive electrode material for ammonium iron phosphate and lithium ion secondary battery, and lithium ion secondary battery |
JP2010503606A (en) * | 2006-09-13 | 2010-02-04 | ヴァレンス テクノロジー インコーポレーテッド | Method for treating active materials for use in secondary electrochemical cells |
JP5162945B2 (en) * | 2006-10-13 | 2013-03-13 | 株式会社Gsユアサ | Mixture of lithium phosphate transition metal compound and carbon, electrode provided with the same, battery provided with the electrode, method for producing the mixture, and method for producing the battery |
JP2011233340A (en) * | 2010-04-27 | 2011-11-17 | Asahi Glass Co Ltd | Method for manufacturing electrode active material for storage element |
JP5569258B2 (en) * | 2010-08-26 | 2014-08-13 | 宇部興産株式会社 | Continuous production method of electrode material |
JPWO2012098960A1 (en) * | 2011-01-19 | 2014-06-09 | 株式会社村田製作所 | Positive electrode active material, method for producing the same, and secondary battery |
JP5736965B2 (en) * | 2011-05-27 | 2015-06-17 | 日立金属株式会社 | Positive electrode active material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery |
CN104584282A (en) * | 2012-07-25 | 2015-04-29 | 日立金属株式会社 | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries using same, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries |
WO2014098937A1 (en) * | 2012-12-21 | 2014-06-26 | Dow Global Technologies Llc | Lmfp cathode materials with improved electrochemical performance |
-
2014
- 2014-12-15 JP JP2014253129A patent/JP6341512B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016115524A (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5851707B2 (en) | Lithium iron phosphate positive electrode material and method for producing the same | |
WO2010109869A1 (en) | Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery | |
JP2009532323A5 (en) | ||
JP5245084B2 (en) | Olivine-type compound ultrafine particles and method for producing the same | |
KR20110005809A (en) | Method for production of cathode active material for lithium ion battery, cathode active material for lithium ion battery produced by the method, electrode for lithium ion battery, and lithium ion battery | |
JP2012513097A (en) | Method for producing fluorinated lithium vanadium polyanion powder for battery | |
CN105742629B (en) | A kind of in-situ preparation method of lithium ion battery anode material lithium iron phosphate/graphene complex | |
JP2011042553A (en) | Method for producing iron lithium phosphate | |
KR102062705B1 (en) | Method for Preparation of Lithium Metal Phosphate | |
JP2019033016A (en) | Cathode active material for lithium ion secondary battery or cathode active material for sodium ion secondary battery, and manufacturing method thereof | |
JP2004259471A (en) | Manufacturing method of positive electrode active material for lithium ion battery | |
JP6388340B2 (en) | Method for producing lithium iron phosphate positive electrode active material | |
TW201803803A (en) | Method for manufacturing vanadium lithium phosphate | |
JP6389775B2 (en) | Method for producing carbon-coated lithium iron phosphate for lithium secondary battery | |
JP6341512B2 (en) | Method for producing electrode material for lithium ion secondary battery | |
JP2018041683A (en) | Method for manufacturing olivine type lithium phosphate-based positive electrode material | |
KR20150120910A (en) | Method for Preparation of Olivine Type Lithium Manganese Iron Phosphate and Product Obtained from the Same | |
JP2012054077A (en) | Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery | |
JP6388343B2 (en) | Lithium iron phosphate positive electrode material and lithium ion secondary battery | |
US10312506B2 (en) | Process for the preparation of carbon-coated lithium transition metal phosphate and its use | |
JP7144785B2 (en) | Method for producing lithium vanadium phosphate | |
KR20130069022A (en) | Method for preparation of lithium metal phosphate | |
TWI670892B (en) | Positive electrode active material for secondary battery and method for producing same | |
JP6126318B2 (en) | Method for producing positive electrode active material for olivine type lithium ion secondary battery | |
JP6126033B2 (en) | Method for producing olivine-type silicate compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6341512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |