JP6341098B2 - Manufacturing method of parallel flow type heat exchanger - Google Patents

Manufacturing method of parallel flow type heat exchanger Download PDF

Info

Publication number
JP6341098B2
JP6341098B2 JP2015004691A JP2015004691A JP6341098B2 JP 6341098 B2 JP6341098 B2 JP 6341098B2 JP 2015004691 A JP2015004691 A JP 2015004691A JP 2015004691 A JP2015004691 A JP 2015004691A JP 6341098 B2 JP6341098 B2 JP 6341098B2
Authority
JP
Japan
Prior art keywords
heat exchanger
adhesive
exchanger core
parallel flow
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015004691A
Other languages
Japanese (ja)
Other versions
JP2016130603A (en
Inventor
智将 平山
智将 平山
山崎 和彦
和彦 山崎
崇雄 大瀧
崇雄 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2015004691A priority Critical patent/JP6341098B2/en
Publication of JP2016130603A publication Critical patent/JP2016130603A/en
Application granted granted Critical
Publication of JP6341098B2 publication Critical patent/JP6341098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Automatic Assembly (AREA)

Description

この発明は、パラレルフロー型熱交換器の製造方法に関するもので、更に詳細には、一対のアルミニウム製のヘッダーパイプ間に配置される、互いに平行な複数のアルミニウム製の扁平状熱交換管と、上記扁平状熱交換管の間に介在される複数のアルミニウム製のコルゲートフィンと、を具備するパラレルフロー型熱交換器の製造方法に関するものである。ここで、アルミニウムとはアルミニウム合金を含む意味である。   The present invention relates to a method for manufacturing a parallel flow type heat exchanger, and more specifically, a plurality of aluminum flat heat exchange tubes arranged between a pair of aluminum header pipes and parallel to each other, The present invention relates to a method for manufacturing a parallel flow heat exchanger comprising a plurality of aluminum corrugated fins interposed between the flat heat exchange tubes. Here, aluminum is meant to include an aluminum alloy.

一般的に、コルゲートフィンタイプのパラレルフロー型熱交換器は、ろう付け工法によりコルゲートフィンと扁平状熱交換管(以下に扁平管という)とを接合してなる。このような熱交換器は、アルミニウム製のコルゲートフィンと扁平管を交互に積層配置して熱交換器コアを作製し、その他必要な構成部材を熱交換器コアに仮組みし、炉中ろう付けにて一度で数千の接合部が一体化される。   Generally, a corrugated fin type parallel flow heat exchanger is formed by joining a corrugated fin and a flat heat exchange pipe (hereinafter referred to as a flat pipe) by a brazing method. In such a heat exchanger, aluminum corrugated fins and flat tubes are alternately stacked to produce a heat exchanger core, and other necessary components are temporarily assembled to the heat exchanger core and brazed in the furnace. Thousands of joints are integrated at once.

上記炉中ろう付けを行うために、アルミニウム母材の全面にろう材をクラッドしたブレージングシートからなるコルゲートフィンと、外側に亜鉛を溶射したアルミニウム製の扁平管が用いられる。   In order to perform brazing in the furnace, a corrugated fin made of a brazing sheet in which the entire surface of an aluminum base material is clad with a brazing material and a flat tube made of aluminum whose outer surface is sprayed with zinc are used.

上記のブレージングシートからなるコルゲートフィンは、複雑形状であっても炉中ろう付けによって一度で接合できる利点があるが、全面にろう材を貼り合わせたクラッド工程を必要とするため、ベア材に比べ製造コストが嵩む。また、炉中ろう付け時にろう材によって母材が浸食されるため、薄肉化が困難となる。   The corrugated fin made of the above brazing sheet has the advantage that it can be joined at once by brazing in the furnace even if it has a complicated shape, but it requires a cladding process in which the brazing material is bonded to the entire surface, so compared to the bare material Manufacturing cost increases. Further, since the base material is eroded by the brazing material during brazing in the furnace, it is difficult to reduce the thickness.

また、アルミニウム製扁平管においても、亜鉛溶射による犠牲防食層を形成する際に、扁平管表面に粗大な亜鉛粒子が付着した場合には、炉中ろう付け時や溶射時に扁平管母材が浸食され、貫通孔が生じる懸念がある。   In addition, when forming a sacrificial anti-corrosion layer by spraying zinc in aluminum flat tubes, if coarse zinc particles adhere to the flat tube surface, the flat tube base material will be eroded during brazing or spraying in the furnace. There is a concern that a through hole may be formed.

そこで、上記問題を解決するために、熱量の大きなろう付け接合を、熱量の小さな接着接合に代替させる接着剤を用いた特許文献1,2,3に記載の熱交換器の製造方法が提案されている。   Therefore, in order to solve the above problems, a method of manufacturing a heat exchanger described in Patent Documents 1, 2, and 3 using an adhesive that replaces brazing joining with a large amount of heat with adhesive joining with a small amount of heat has been proposed. ing.

特許文献1には、扁平管の表面に接着剤樹脂を塗布した後、乾燥させる工程と、フィンに設けられた組付け孔に扁平管を嵌め込んで組付け体を作製する工程と、組付け体を溶融/反応温度(100〜200℃)以下の温度に保持して扁平管とフィンとを一体化する工程と、を有する製造方法が開示されている。   Patent Document 1 discloses a process of applying an adhesive resin to the surface of a flat tube and then drying, a step of fitting the flat tube into an assembly hole provided in the fin, and a process of manufacturing an assembly. The manufacturing method which has the process of hold | maintaining a body to the temperature below melting / reaction temperature (100-200 degreeC) and integrating a flat tube and a fin is disclosed.

特許文献2には、扁平管とコルゲートフィンから構成される熱交換器コアの組み付け前又は組み付け後に溶剤脱脂する工程、扁平管とコルゲートフィンとの接触部分を除いてマスキングし、扁平管とコルゲートフィンの接触部分にスプレー法を用いて接着剤を塗布した後に高圧エアを吹き付けて、接着部分周辺の過剰な接着剤を除去する工程、熱交換器コアを硬化炉に入れ接着剤を硬化させる工程、を施す製造方法が開示されている。   Patent Document 2 discloses a process of solvent degreasing before or after assembly of a heat exchanger core composed of a flat tube and a corrugated fin, masking except for a contact portion between the flat tube and the corrugated fin, and the flat tube and the corrugated fin. A step of spraying high pressure air after applying an adhesive to the contact portion of the substrate by using a spray method to remove excess adhesive around the adhesive portion, a step of putting a heat exchanger core in a curing furnace and curing the adhesive, Is disclosed.

また、特許文献3には、フィンの嵌挿部に扁平管を挿入した後、扁平管を拡管する第1の工程と、嵌挿部の内周面と扁平管の外周面との間の微小空隙に、液状の接着剤をディスペンサノズルによって扁平管の径方向から充填する第2の工程と、を有する製造方法が開示されている。   Patent Document 3 discloses a first step of expanding a flat tube after inserting a flat tube into a fin insertion portion, and a minute amount between an inner peripheral surface of the insertion portion and an outer peripheral surface of the flat tube. And a second step of filling the gap with a liquid adhesive from the radial direction of the flat tube by a dispenser nozzle.

特開2012−73014号公報JP 2012-73014 A 特公平6−12218号公報Japanese Examined Patent Publication No. 6-12218 特開2009−36428号公報JP 2009-36428 A

しかしながら、特許文献1に記載のものにおいては、扁平管とフィンの間に断熱層(接着剤)を有するため、熱ロスが大きく伝熱性能が低下する懸念がある。   However, in the thing of patent document 1, since it has a heat insulation layer (adhesive) between a flat tube and a fin, there exists a possibility that heat loss may be large and heat transfer performance may fall.

一方、特許文献2に記載のパラレルフロー型熱交換器の製造方法においては、扁平管とコルゲートフィンとの接触部分を除いてマスキングし、扁平管とコルゲートフィンの接触部分にスプレー法を用いて接着剤を塗布するため、大量の塗布液(接着剤)が必要であり、フィン間に接着剤が詰まりやすい懸念があると共に、熱ロスが大きく伝熱性能が低下する懸念がある。更には、扁平管とコルゲートフィンとの接触部間には、不可避的に微細な隙間が生じ、該隙間に空気層が存在するため、これが起因して熱ロスが生じて伝熱性能が低下する懸念がある。   On the other hand, in the manufacturing method of the parallel flow type heat exchanger described in Patent Document 2, masking is performed except for the contact portion between the flat tube and the corrugated fin, and the contact portion between the flat tube and the corrugated fin is bonded using the spray method. In order to apply the agent, a large amount of coating liquid (adhesive) is required, and there is a concern that the adhesive is likely to be clogged between the fins, and there is a concern that heat loss is large and heat transfer performance is reduced. Furthermore, since a fine gap is inevitably generated between the contact portions between the flat tube and the corrugated fin, and an air layer exists in the gap, this causes heat loss, resulting in reduced heat transfer performance. There are concerns.

また、特許文献3に記載のものにおいては、塗布精度の高い装置が必要となり、生産効率が悪い懸念がある。   Moreover, in the thing of patent document 3, an apparatus with a high application | coating precision is required, and there exists a concern that production efficiency is bad.

この発明は、上記事情に鑑みてなされたもので、生産効率の向上が図れると共に、伝熱性能の向上が図れるパラレルフロー型熱交換器の製造方法を提供することを課題とする。   This invention is made in view of the said situation, and makes it a subject to provide the manufacturing method of the parallel flow type heat exchanger which can aim at the improvement of a production efficiency, and can aim at the improvement of heat-transfer performance.

上記課題を達成するために、この発明のパラレルフロー型熱交換器の製造方法は、一対のアルミニウム製のヘッダーパイプ間に配置される、互いに平行な複数のアルミニウム製の扁平状熱交換管(以下に扁平管という)と、上記扁平管の間に介在される複数のアルミニウム製のコルゲートフィンと、を具備するパラレルフロー型熱交換器の製造方法であって、 上記一対のヘッダーパイプ間に上記扁平管とコルゲートフィンとを交互に積層配置して、熱交換器コアを作製する工程と、 上記扁平管の幅方向が上下方向となるように上記熱交換器コアを配置した状態で、上記熱交換器コアの上端面に液状の熱可塑性及び熱硬化性の接着剤の塗布用ロールを接触させて上記扁平管とコルゲートフィンの接触部に上記接着剤を充填する工程と、を含むことを特徴とする(請求項1)。   In order to achieve the above object, a method of manufacturing a parallel flow heat exchanger according to the present invention includes a plurality of flat aluminum heat exchange tubes (hereinafter referred to as “parallel aluminum heat pipes”) disposed between a pair of aluminum header pipes. And a plurality of aluminum corrugated fins interposed between the flat tubes, and a parallel flow type heat exchanger manufacturing method comprising: The step of producing a heat exchanger core by alternately stacking and arranging tubes and corrugated fins, and the heat exchange in a state where the heat exchanger core is arranged so that the width direction of the flat tube is the vertical direction. A liquid thermoplastic and thermosetting adhesive application roll is brought into contact with the upper end surface of the vessel core, and the adhesive is filled in the contact portion between the flat tube and the corrugated fin. (Claim 1).

このように構成することにより、扁平管の幅方向が上下方向となるように配置された熱交換器コアの上端面における扁平管とコルゲートフィンの接触部に塗布(供給)された後、塗布(供給)された接着剤は、自重作用と毛細管現象によって下方の扁平管とコルゲートフィンの接触部に塗布(供給)される。これにより、積層された状態の扁平管とコルゲートフィンの接触部に不可避的に生じる微細な隙間内の空気層を接着剤層に置換することができる。   By comprising in this way, after apply | coating (supply) to the contact part of the flat tube and corrugated fin in the upper end surface of the heat exchanger core arrange | positioned so that the width direction of a flat tube may become an up-down direction, application | coating (supply) The supplied adhesive is applied (supplied) to the contact portion between the lower flat tube and the corrugated fin by its own weight action and capillary action. Thereby, the air layer in the minute gap inevitably generated in the contact portion between the flat tube and the corrugated fin in the stacked state can be replaced with the adhesive layer.

この発明において、上記接着剤に熱伝導性フィラーを含有させ、上記接着剤と熱導電性フィラー量の合計値を100%としたときの上記熱導電性フィラー量が5%〜60%含有しているのが好ましい(請求項2)。   In this invention, the heat conductive filler is contained in the adhesive, and the amount of the heat conductive filler is 5% to 60% when the total value of the adhesive and the heat conductive filler is 100%. (Claim 2).

接着剤と熱伝導性フィラー量の合計値を100%としたときの熱伝導性フィラー量が5%〜60%含有する理由は、熱伝導性フィラーが5%未満であると、伝熱性能の向上に寄与できず、また、伝導性フィラーが60%を超えると、接着強度が不十分となるからである。   The reason why the heat conductive filler content is 5% to 60% when the total value of the adhesive and the heat conductive filler amount is 100% is that the heat conductive filler content is less than 5%. This is because it cannot contribute to improvement, and if the conductive filler exceeds 60%, the adhesive strength becomes insufficient.

このように構成することにより、扁平管とコルゲートフィンとを接着剤を介して接合する部分の伝熱性能を高めることができる。   By comprising in this way, the heat-transfer performance of the part which joins a flat tube and a corrugated fin via an adhesive agent can be improved.

また、この発明において、上記接着剤を充填する工程は、上記扁平管の幅方向が上下方向となるように上記熱交換器コアを配置した状態で、上記塗布用ロールを接触させて上記熱交換器コアの上端面における上記扁平管とコルゲートフィンの接触部に接着剤を塗布(供給)することができれば、任意の方法でよい。例えば、上記接着剤を充填する工程は、表面に上記接着剤を保有する可撓性を有する上記塗布用ロールを、搬送手段によって搬送される上記熱交換器コアの上端面の一端部に接触させ、上記搬送手段によって上記熱交換器コアを搬送させて、上記熱交換器コアの一端部から他端部に向かって上記扁平管とコルゲートフィンの積層部の全域に転動可能に接触させて行うのが好ましい(請求項3)。   Further, in the present invention, the step of filling the adhesive may be performed by bringing the coating roll into contact with the heat exchanger core in a state where the heat exchanger core is arranged so that the width direction of the flat tube is the vertical direction. Any method may be used as long as the adhesive can be applied (supplied) to the contact portion between the flat tube and the corrugated fin on the upper end surface of the vessel core. For example, in the step of filling the adhesive, the flexible application roll having the adhesive on the surface is brought into contact with one end of the upper end surface of the heat exchanger core conveyed by the conveying means. The heat exchanger core is conveyed by the conveying means, and is brought into contact with the entire area of the laminated portion of the flat tube and the corrugated fin from one end portion to the other end portion of the heat exchanger core. (Claim 3).

このように構成することにより、接着剤の塗布(供給)を効率良く行うことができると共に、扁平管とコルゲートフィンの接触部に均等に接着剤を塗布(供給)することができる。   By comprising in this way, while being able to apply | coat (supply) an adhesive agent efficiently, an adhesive agent can be apply | coated (supplied) equally to the contact part of a flat tube and a corrugated fin.

また、この発明において、上記接着剤を充填する工程の後に、上記熱交換器コアを加熱して上記接着剤を固化する工程を更に含むのが好ましい(請求項4)。   Moreover, in this invention, it is preferable to further include the process of heating the said heat exchanger core and solidifying the said adhesive agent after the process of filling the said adhesive agent (Claim 4).

このように構成することにより、扁平管とコルゲートフィンの接触部に充填された接着剤を固化して扁平管とコルゲートフィンの接合を確実にすることができる。   By comprising in this way, the adhesive agent with which the contact part of the flat tube and the corrugated fin was solidified can be solidified, and joining of a flat tube and a corrugated fin can be ensured.

この発明によれば、上記のように構成されているので、以下のような効果が得られる。   According to this invention, since it is configured as described above, the following effects can be obtained.

(1)請求項1に記載の発明によれば、扁平状熱交換管の幅方向が上下方向となるように配置された熱交換器コアの上端面に液状の熱可塑性及び熱硬化性の接着剤の塗布用ロールを接触させて、扁平状熱交換管とコルゲートフィンの接触部に接着剤を塗布(供給)することで、塗布(供給)された接着剤は、自重作用と毛細管現象によって下方の、扁平状熱交換管とコルゲートフィンの接触部に塗布(供給)される。したがって、積層された状態の、扁平状熱交換管とコルゲートフィンの接触部に不可避的に生じる微細な隙間内の空気層を接着剤層に置換することができるので、生産効率の向上が図れると共に、伝熱性能の向上が図れる。   (1) According to the invention described in claim 1, liquid thermoplastic and thermosetting adhesive is attached to the upper end surface of the heat exchanger core disposed so that the width direction of the flat heat exchange tube is the vertical direction. Applying (supplying) the adhesive to the contact portion between the flat heat exchange tube and the corrugated fin by bringing the adhesive application roll into contact with the adhesive, the applied (supplied) adhesive is lowered by its own weight and capillary action. Is applied (supplied) to the contact portion between the flat heat exchange tube and the corrugated fin. Therefore, the air layer in the minute gap inevitably generated at the contact portion between the flat heat exchange tube and the corrugated fin in the stacked state can be replaced with the adhesive layer, so that the production efficiency can be improved. The heat transfer performance can be improved.

(2)請求項2に記載の発明によれば、上記(1)に加えて、扁平状熱交換管とコルゲートフィンとを接着剤を介して接合する部分の伝熱性能を高めることができる。   (2) According to invention of Claim 2, in addition to said (1), the heat-transfer performance of the part which joins a flat heat exchange pipe and a corrugated fin through an adhesive agent can be improved.

(3)請求項3に記載の発明によれば、扁平状熱交換管とコルゲートフィンの接触部に均等に接着剤を塗布(供給)することができるので、上記(1),(2)に加えて、更に生産効率の向上が図れると共に、扁平状熱交換管とコルゲートフィンの接触部に均等に接着剤を塗布(供給)することができる。   (3) According to the invention described in claim 3, since the adhesive can be evenly applied (supplied) to the contact portion between the flat heat exchange tube and the corrugated fin, the above (1) and (2) In addition, the production efficiency can be further improved, and the adhesive can be evenly applied (supplied) to the contact portion between the flat heat exchange tube and the corrugated fin.

(4)請求項4に記載の発明によれば、上記(1)〜(3)に加えて、更に扁平状熱交換管とコルゲートフィンの接触部に充填された接着剤を固化して扁平状熱交換管とコルゲートフィンの接合を確実にすることができる。   (4) According to the invention described in claim 4, in addition to the above (1) to (3), the adhesive filled in the contact portion between the flat heat exchange tube and the corrugated fin is further solidified to be flat. The joining of the heat exchange tube and the corrugated fin can be ensured.

この発明に係るパラレルフロー型熱交換器の製造方法を具現化する製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus which embodies the manufacturing method of the parallel flow type heat exchanger which concerns on this invention. この発明における熱交換器コアに塗布用ロールを接触させて接着剤を塗布(供給)する状態を示す要部側面図である。It is a principal part side view which shows the state which makes an application roll contact the heat exchanger core in this invention, and apply | coats (supplies) an adhesive agent. 上記熱交換器コアに塗布用ロールを接触させて接着剤を塗布(供給)する異なる状態を示す要部平面図である。It is a principal part top view which shows the different state which makes an application roll contact the said heat exchanger core, and apply | coats (supplies) an adhesive agent. この発明における扁平状熱交換管とコルゲートフィンの接触部に塗布(供給)された接着剤の状態を示す要部拡大斜視図(a)及び扁平状熱交換管とコルゲートフィンの接触部に接着剤が充填された接合状態を示す要部拡大平面図(b)である。The principal part expansion perspective view (a) which shows the state of the adhesive agent apply | coated (supplied) to the contact part of the flat heat exchange tube and corrugated fin in this invention, and an adhesive agent in the contact part of a flat heat exchange tube and a corrugated fin It is a principal part enlarged plan view (b) which shows the joining state with which it filled. 上記扁平状熱交換管とコルゲートフィンの接触状態を示す側面図(a)、(a)のI部拡大図(b)及び扁平状熱交換管とコルゲートフィンの接触部に生じる隙間に接着剤が充填された状態を示す拡大図(c)である。The side view (a) showing the contact state between the flat heat exchange tube and the corrugated fin (a), an enlarged view of the I part in (a), and the gap formed at the contact portion between the flat heat exchange tube and the corrugated fin. It is an enlarged view (c) which shows the state filled. 接着剤の塗布の有無の放熱性能比を示すグラフである。It is a graph which shows the heat dissipation performance ratio with the presence or absence of application | coating of an adhesive agent. コルゲートフィンと扁平状熱交換管の隙間量を変化させた状態の放熱量を示すグラフである。It is a graph which shows the thermal radiation amount of the state which changed the clearance gap amount of a corrugated fin and a flat heat exchange tube. コルゲートフィンと扁平状熱交換管の隙間量と熱抵抗の関係を示すグラフである。It is a graph which shows the relationship between the clearance gap amount of a corrugated fin and a flat heat exchange pipe, and thermal resistance.

以下に、この発明を実施するための形態について、添付図面に基づいて詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail based on an accompanying drawing.

この発明におけるパラレルフロー型熱交換器(以下に熱交換器という)は、図1に示すように、一対のアルミニウム(アルミニウム合金を含む)製のヘッダーパイプ1a,1b間に配置される、互いに平行な複数のアルミニウム(アルミニウム合金を含む)製の扁平状熱交換管2(以下に扁平管2という)と、扁平管2の間に介在される複数のアルミニウム(アルミニウム合金を含む)製のコルゲートフィン3とからなる熱交換器コア4を具備し、後述するこの発明に係る製造法によって接着剤5を介して接合される。   A parallel flow type heat exchanger (hereinafter referred to as a heat exchanger) in the present invention is disposed between a pair of header pipes 1a and 1b made of aluminum (including an aluminum alloy) as shown in FIG. Flat heat exchange tubes 2 (hereinafter referred to as flat tubes 2) made of a plurality of aluminum (including aluminum alloy), and corrugated fins made of a plurality of aluminum (including aluminum alloys) interposed between the flat tubes 2 3 and is joined via an adhesive 5 by a manufacturing method according to the present invention described later.

なお、両ヘッダーパイプ1a,1bの上下開口端は、アルミニウム製のエンドキャップ(図示せず)によって閉塞され、一方のヘッダーパイプ1aの上端側の側面と、他方のヘッダーパイプ1bの下端側の側面には、それぞれ図示しない冷媒流入管と冷媒流出管が接続される。また、扁平管2には、互いに平行な複数の冷媒流路2aが区画形成され(図4参照)、コルゲートフィン32には、扁平管2の幅方向に沿って互いに平行な複数のルーバー3aが起立されている(図5(a)参照)。   The upper and lower opening ends of both header pipes 1a and 1b are closed by an aluminum end cap (not shown), the side surface on the upper end side of one header pipe 1a and the side surface on the lower end side of the other header pipe 1b. A refrigerant inflow pipe and a refrigerant outflow pipe (not shown) are connected to each. In addition, a plurality of refrigerant flow paths 2a parallel to each other are defined in the flat tube 2 (see FIG. 4), and a plurality of louvers 3a parallel to each other along the width direction of the flat tube 2 are formed in the corrugated fins 32. It stands up (see FIG. 5A).

上記接着剤5は、例えば、エポキシ樹脂を主成分とする液状の熱可塑性及び熱硬化性を有する材質のものが使用される。   The adhesive 5 is made of, for example, a liquid thermoplastic and thermosetting material mainly composed of an epoxy resin.

なお、扁平管2とコルゲートフィン3の接合部分に伝熱性能の向上を図れるようにするために、接着剤5中に熱伝導性フィラーを混入するのがよい。   In order to improve the heat transfer performance at the joint between the flat tube 2 and the corrugated fin 3, it is preferable to mix a heat conductive filler in the adhesive 5.

この場合、熱伝導性フィラーには、例えばシリカ,アルミナ,アルミニウム,窒化アルミ,窒化ホウ素,ダイアモンド等の粉末を使用することができる。   In this case, powder such as silica, alumina, aluminum, aluminum nitride, boron nitride, diamond or the like can be used as the thermally conductive filler.

接着剤5中の熱伝導性フィラーの含有量は、接着剤5と熱伝導性フィラー量の合計値を100%としたときの熱伝導性フィラー量が5%〜60%含有しているのが好ましい。その理由は、熱伝導性フィラーが5%未満であると、伝熱性能の向上に寄与できず、また、伝導性フィラーが60%を超えると、接着強度が不十分となるからである。   The content of the heat conductive filler in the adhesive 5 is that the amount of the heat conductive filler is 5% to 60% when the total value of the adhesive 5 and the heat conductive filler is 100%. preferable. The reason is that if the thermally conductive filler is less than 5%, it cannot contribute to the improvement of the heat transfer performance, and if the conductive filler exceeds 60%, the adhesive strength becomes insufficient.

このように接着剤5中に熱伝導性フィラーを混入することにより、扁平管2とコルゲートフィン3とを接着剤5を介して接合する部分の伝熱性能を高めることができる。   Thus, by mixing a heat conductive filler in the adhesive 5, the heat transfer performance of the part which joins the flat tube 2 and the corrugated fin 3 through the adhesive 5 can be improved.

次に、この発明に係る製造法を具現化する製造装置の一例について説明する。製造装置は、図1に示すように、扁平管2の幅方向が上下方向となるように熱交換器コア4を配置した状態で熱交換器コア4を搬送する搬送手段である搬送コンベア10と、搬送コンベア10によって搬送される熱交換器コア4の上端面に接着剤5を塗布(供給)する塗布用ロール21を具備する接着剤供給手段20と、熱交換器コア4に塗布された接着剤5を加熱固化する加熱手段である加熱炉30とを具備している。   Next, an example of a manufacturing apparatus that embodies the manufacturing method according to the present invention will be described. As shown in FIG. 1, the manufacturing apparatus includes a transport conveyor 10 that is a transport means for transporting the heat exchanger core 4 in a state where the heat exchanger core 4 is arranged so that the width direction of the flat tube 2 is the vertical direction. Adhesive supply means 20 having an application roll 21 for applying (supplying) the adhesive 5 to the upper end surface of the heat exchanger core 4 conveyed by the conveyor 10 and the adhesive applied to the heat exchanger core 4 And a heating furnace 30 which is a heating means for heating and solidifying the agent 5.

上記接着剤供給手段20は、液状の熱可塑性及び熱硬化性の接着剤5を貯留するタンク24と、タンク24の下部の一端に設けられた取り出し口25に接してタンク24内の接着剤5を表面に保有する転動可能なバックロール23と、バックロール23に接してバックロール23に保有された接着剤5を受け取って表面に保有する転動可能な塗布用ロール21とを具備している。   The adhesive supply means 20 is in contact with a tank 24 for storing a liquid thermoplastic and thermosetting adhesive 5 and an outlet 25 provided at one end of the lower portion of the tank 24. And a rollable coating roll 21 that receives the adhesive 5 held in the back roll 23 in contact with the back roll 23 and holds it on the surface. Yes.

この場合、バックロール23と塗布用ロール21は、それぞれの回転軸(図示せず)に装着されたギア同士の噛合、又は、上記回転軸に装着されたプーリに掛け渡されたタイミングベルトと、駆動モータとからなる伝達機構(図示せず)によって互いに反対方向に回転(転動)するように構成されている。なお、塗布用ロール21の回転方向は搬送コンベア10によって搬送される熱交換器コア4の搬送方向と同じ方向に設定されている。   In this case, the back roll 23 and the application roll 21 are meshed between gears mounted on respective rotary shafts (not shown), or a timing belt that is stretched over a pulley mounted on the rotary shaft, It is configured to rotate (roll) in opposite directions by a transmission mechanism (not shown) including a drive motor. The rotation direction of the coating roll 21 is set to the same direction as the transport direction of the heat exchanger core 4 transported by the transport conveyor 10.

塗布用ロール21の長手方向の寸法は、少なくとも積層される扁平管2とコルゲートフィン3の最側端を含む長さに形成されている。また、塗布用ロール21の表面には、図2に示すように、例えば化学繊維,フェルト,スポンジ等からなる可撓性を有する材質の表面層22が形成されている。なお、この表面層22の厚みT1は、熱交換器コア4におけるヘッダーパイプ1a,1bと扁平管2との段差T2より大きく形成されている。   The dimension in the longitudinal direction of the coating roll 21 is formed to a length including at least the flattened tube 2 and the outermost end of the corrugated fin 3 to be laminated. Further, as shown in FIG. 2, a surface layer 22 made of a flexible material made of, for example, chemical fiber, felt, sponge or the like is formed on the surface of the coating roll 21. The thickness T1 of the surface layer 22 is formed to be larger than the step T2 between the header pipes 1a and 1b and the flat tube 2 in the heat exchanger core 4.

塗布用ロール21の表面層22を上記のように形成することにより、搬送コンベア10によって搬送される熱交換器コア4の上端面に塗布用ロール21が接触した状態で、塗布用ロール21が転動しつつ熱交換器コア4の一端部から他端部に向かって扁平管2とコルゲートフィン3の積層部の全域に接着剤5を塗布(供給)する際に、熱交換器コア4におけるヘッダーパイプ1a,1bと扁平管2の段差T2や熱交換器コア4の上端面(塗布面)の凹凸に追従することができる。   By forming the surface layer 22 of the coating roll 21 as described above, the coating roll 21 is rolled while the coating roll 21 is in contact with the upper end surface of the heat exchanger core 4 transported by the transport conveyor 10. The header in the heat exchanger core 4 when the adhesive 5 is applied (supplied) to the entire area of the laminated portion of the flat tube 2 and the corrugated fin 3 from one end portion to the other end portion of the heat exchanger core 4 while moving. It is possible to follow the unevenness of the step T2 between the pipes 1a, 1b and the flat tube 2 and the upper end surface (application surface) of the heat exchanger core 4.

また、塗布用ロール21の表面層22を上記のように形成することにより、熱交換器コア4の搬送時に振動が生じても、熱交換器コア4を構成する扁平管2やコルゲートフィン3に傷や凹み等を生じるのを防止することができる。   In addition, by forming the surface layer 22 of the coating roll 21 as described above, the flat tube 2 and the corrugated fin 3 constituting the heat exchanger core 4 can be formed even if vibration occurs during the transportation of the heat exchanger core 4. Scratches, dents and the like can be prevented.

上記塗布用ロール21によって熱交換器コア4の上端面に塗布(供給)された接着剤5は、自重作用と毛細管現象によって下方の扁平管2とコルゲートフィン3の接触部に塗布(供給)される(図4参照)。また、図5に示すように、積層された状態の扁平管2とコルゲートフィン3の接触部に不可避的に生じる微細な隙間6内の空気層7を接着剤層に置換することができる。   The adhesive 5 applied (supplied) to the upper end surface of the heat exchanger core 4 by the application roll 21 is applied (supplied) to the contact portion between the flat tube 2 and the corrugated fin 3 below by its own weight and capillary action. (See FIG. 4). Moreover, as shown in FIG. 5, the air layer 7 in the minute gap 6 inevitably generated at the contact portion between the flat tube 2 and the corrugated fin 3 in the stacked state can be replaced with an adhesive layer.

上記加熱炉30は、熱交換器コア4を収容する炉本体31内にヒータ(図示せず)を具備しており、搬送コンベア10によって搬送された接着剤5が塗布(供給)された熱交換器コア4が炉本体31内に搬送されて収容された状態で、接着剤5が固化する温度例えば100℃以上で5分以上加熱して扁平管2とコルゲートフィン3との接触部及び隙間6に充填された接着剤5を固化することができる。   The heating furnace 30 includes a heater (not shown) in a furnace body 31 that houses the heat exchanger core 4, and heat exchange in which the adhesive 5 transported by the transport conveyor 10 is applied (supplied). In a state where the vessel core 4 is conveyed and accommodated in the furnace body 31, the contact portion between the flat tube 2 and the corrugated fin 3 and the gap 6 are heated at a temperature at which the adhesive 5 is solidified, for example, 100 ° C. or more for 5 minutes or more. The adhesive 5 filled in can be solidified.

なお、上記のように構成される製造装置において、搬送コンベア10の駆動、接着剤供給手段20における塗布用ロール21の駆動、及び加熱炉30の駆動を制御するのがよい。例えば、搬送コンベア10によって搬送される熱交換器コア4が接着剤供給手段20の塗布用ロール21の直下又は近傍手前位置に達した際に、センサ(図示せず)によって検知し、その検知信号をバックロール23と塗布用ロール21の伝達機構に伝達して、駆動を開始して塗布用ロール21の表面層22に保有された接着剤5を熱交換器コア4の上端面(塗布面)に塗布(供給)する。また、接着剤5が塗布された熱交換器コア4が加熱炉30に搬送された際に、センサ(図示せず)によって検知し、その検知信号を加熱炉30の駆動部に伝達して、加熱炉30内に搬送されて収容された熱交換器コア4を、接着剤5が固化する温度例えば100℃以上で5分以上加熱して扁平管2とコルゲートフィン3との接触部及び隙間6に充填された接着剤5を固化し、その後、搬送コンベア10を駆動して熱交換器コア4を加熱炉30から搬出するようにしてもよい。   In the manufacturing apparatus configured as described above, it is preferable to control the driving of the conveyor 10, the driving of the coating roll 21 in the adhesive supply means 20, and the driving of the heating furnace 30. For example, when the heat exchanger core 4 transported by the transport conveyor 10 reaches a position immediately below or near the application roll 21 of the adhesive supply means 20, it is detected by a sensor (not shown), and the detection signal Is transmitted to the transmission mechanism of the back roll 23 and the application roll 21 to start driving, and the adhesive 5 held in the surface layer 22 of the application roll 21 is transferred to the upper end surface (application surface) of the heat exchanger core 4. Apply (supplied). Further, when the heat exchanger core 4 coated with the adhesive 5 is conveyed to the heating furnace 30, it is detected by a sensor (not shown), and the detection signal is transmitted to the drive unit of the heating furnace 30, The heat exchanger core 4 conveyed and accommodated in the heating furnace 30 is heated at a temperature at which the adhesive 5 solidifies, for example, at 100 ° C. or more for 5 minutes or more, and the contact portion and the gap 6 between the flat tube 2 and the corrugated fin 3. Then, the adhesive 5 filled in is solidified, and then the conveyor 10 is driven to carry out the heat exchanger core 4 from the heating furnace 30.

次に、この発明に係るパラレルフロー型熱交換器の製造方法について、図1を参照して説明する。   Next, a method for manufacturing a parallel flow heat exchanger according to the present invention will be described with reference to FIG.

まず、一対のヘッダーパイプ1a,1b間に扁平管2とコルゲートフィン3とを交互に積層配置して、熱交換器コア4を作製する(熱交換器コア作製工程)。   First, the flat tubes 2 and the corrugated fins 3 are alternately stacked between the pair of header pipes 1a and 1b to produce the heat exchanger core 4 (heat exchanger core production step).

次に、搬送コンベア10上に、扁平管2の幅方向が上下方向となるように熱交換器コア4を配置(載置)した後、搬送コンベア10を駆動して、熱交換器コア4を接着剤供給手段20側に搬送する(熱交換器コア配置・搬送工程)。この際、熱交換器コア4は搬送方向に一方のヘッダーパイプ1a,1bが位置するように配置される(図1,図3(a)参照)。なお、熱交換器コア4の配置を、図3(b)に示すように、搬送方向に沿って両ヘッダーパイプ1a,1bを平行に位置させてもよい。   Next, the heat exchanger core 4 is arranged (placed) on the conveyor 10 so that the width direction of the flat tube 2 is the vertical direction, and then the conveyor 10 is driven so that the heat exchanger core 4 is It conveys to the adhesive agent supply means 20 side (heat exchanger core arrangement | positioning / conveyance process). At this time, the heat exchanger core 4 is arranged so that one of the header pipes 1a and 1b is positioned in the transport direction (see FIGS. 1 and 3A). In addition, as shown in FIG.3 (b), as for the arrangement | positioning of the heat exchanger core 4, you may position both header pipes 1a and 1b in parallel along a conveyance direction.

搬送コンベア10によって熱交換器コア4が接着剤供給手段20に搬送されると、接着剤供給手段20のバックロール23と塗布用ロール21の伝達機構が駆動して塗布用ロール21が熱交換器コア4の搬送方向と同方向に回転(転動)する。これにより、表面層22に接着剤5を保有する塗布用ロール21が搬送コンベア10によって搬送される熱交換器コア4の上端面の一端部から他端部に向かって扁平管2とコルゲートフィン3の積層部の全域に転動可能に接触して、扁平管2とコルゲートフィン3の接触部に接着剤5を塗布(供給)する(接着剤充填工程)。   When the heat exchanger core 4 is transported to the adhesive supply means 20 by the transport conveyor 10, the transmission mechanism of the back roll 23 and the application roll 21 of the adhesive supply means 20 is driven, so that the application roll 21 is the heat exchanger. It rotates (rolls) in the same direction as the conveying direction of the core 4. Thereby, the flat tube 2 and the corrugated fin 3 from the one end of the upper end surface of the heat exchanger core 4 to which the coating roll 21 having the adhesive 5 on the surface layer 22 is conveyed by the conveyor 10 to the other end. The adhesive 5 is applied (supplied) to the contact portion between the flat tube 2 and the corrugated fin 3 (adhesive filling step).

接着剤充填工程では、熱交換器コア4の上端面に塗布(供給)された接着剤5は、自重作用と毛細管現象によって下方の扁平管2とコルゲートフィン3の接触部に塗布(供給)される(図4参照)。また、図5(b),(c)に示すように、積層された状態の扁平管2とコルゲートフィン3の接触部に不可避的に生じる微細な隙間6内の空気層7を接着剤層に置換する。   In the adhesive filling process, the adhesive 5 applied (supplied) to the upper end surface of the heat exchanger core 4 is applied (supplied) to the contact portion between the flat tube 2 and the corrugated fin 3 below by its own weight action and capillary action. (See FIG. 4). Further, as shown in FIGS. 5B and 5C, the air layer 7 in the minute gap 6 inevitably generated at the contact portion between the flat tube 2 and the corrugated fin 3 in the stacked state is used as an adhesive layer. Replace.

上述のようにして接着剤5が塗布(供給)された熱交換器コア4は搬送コンベア10によって搬送されて加熱炉30内に収容された状態で、接着剤5が固化する温度例えば100℃以上で5分以上加熱されて扁平管2とコルゲートフィン3との接触部及び隙間6に充填された接着剤5が固化される(接着剤固化工程)。接着剤5が固化された後、搬送コンベア10が駆動して熱交換器コア4を加熱炉30から搬出して作業が完了する。   The heat exchanger core 4 to which the adhesive 5 has been applied (supplied) as described above is transported by the transport conveyor 10 and accommodated in the heating furnace 30, and the temperature at which the adhesive 5 is solidified, for example, 100 ° C. or higher. And the adhesive 5 filled in the contact portion and the gap 6 between the flat tube 2 and the corrugated fin 3 is solidified (adhesive solidification step). After the adhesive 5 is solidified, the conveyor 10 is driven to carry out the heat exchanger core 4 from the heating furnace 30 and the operation is completed.

上記実施形態の製造方法によれば、扁平管2の幅方向が上下方向となるように配置された熱交換器コア4の上端面に液状の熱可塑性及び熱硬化性の接着剤5の塗布用ロール21を接触させて扁平管2とコルゲートフィン3の接触部に接着剤5を塗布(供給)することで、塗布(供給)された接着剤5は、自重作用と毛細管現象によって下方の扁平管2とコルゲートフィン3の接触部に塗布(供給)される。したがって、図5(b),(c)に示すように、積層された状態の扁平管2とコルゲートフィン3の接触部に不可避的に生じる微細な隙間6内の空気層7を接着剤層に置換することができるので、生産効率の向上が図れると共に、伝熱性能の向上が図れる。なお、図5(b),(c)において、矢印は伝熱状態を示すものである。   According to the manufacturing method of the above embodiment, the liquid thermoplastic and thermosetting adhesive 5 is applied to the upper end surface of the heat exchanger core 4 arranged so that the width direction of the flat tube 2 is the vertical direction. By applying (supplying) the adhesive 5 to the contact portion between the flat tube 2 and the corrugated fin 3 by bringing the roll 21 into contact, the applied (supplied) adhesive 5 can be applied to the lower flat tube by its own weight action and capillary action. 2 is applied (supplied) to the contact portion between the corrugated fin 3 and the corrugated fin 3. Therefore, as shown in FIGS. 5B and 5C, the air layer 7 in the minute gap 6 inevitably generated in the contact portion between the flat tube 2 and the corrugated fin 3 in the stacked state is used as an adhesive layer. Since it can be replaced, the production efficiency can be improved and the heat transfer performance can be improved. In addition, in FIG.5 (b), (c), the arrow shows a heat-transfer state.

また、接着剤5に熱伝導性フィラーを含有させ、接着剤5と熱導電性フィラー量の合計値を100%としたときの熱導電性フィラー量が5%〜60%含有の状態にすることにより、扁平管2とコルゲートフィン3とを接着剤5を介して接合する部分の伝熱性能を高めることができる。   Moreover, the heat conductive filler is contained in the adhesive 5 so that the heat conductive filler amount is 5% to 60% when the total value of the adhesive 5 and the heat conductive filler amount is 100%. Thereby, the heat transfer performance of the part which joins the flat tube 2 and the corrugated fin 3 through the adhesive agent 5 can be improved.

また、塗布用ロール21が搬送コンベア10によって搬送される熱交換器コア4の上端面の一端部から他端部に向かって扁平管2とコルゲートフィン3の積層部の全域に転動可能に接触して、扁平管2とコルゲートフィン3の接触部に接着剤5を塗布(供給)することにより、扁平管2とコルゲートフィン3の接触部に均等に接着剤を塗布(供給)することができるので、生産効率の向上が図れると共に、扁平管2とコルゲートフィン3の接触部に均等に接着剤を塗布(供給)することができる。   Further, the application roll 21 contacts the entire area of the laminated portion of the flat tube 2 and the corrugated fin 3 from one end of the upper end surface of the heat exchanger core 4 conveyed by the conveyor 10 to the other end so as to be able to roll. Then, by applying (supplying) the adhesive 5 to the contact portion between the flat tube 2 and the corrugated fin 3, the adhesive can be evenly applied (supplied) to the contact portion between the flat tube 2 and the corrugated fin 3. Therefore, the production efficiency can be improved, and the adhesive can be evenly applied (supplied) to the contact portion between the flat tube 2 and the corrugated fin 3.

次に、この発明に係る製造方法によって製造されたパラレルフロー型熱交換器の放熱性能の評価試験について説明する。   Next, an evaluation test of the heat radiation performance of the parallel flow type heat exchanger manufactured by the manufacturing method according to the present invention will be described.

<評価試験用パラレルフロー型熱交換器>
サイズ:幅120mm×高さ116mm×奥行13.85mm
扁平管:厚さ1.93mm×幅13.85mm×13本
フィン:板厚0.1mm×高さ7.9mm×12本
フィンピッチ:1.3mm
<Parallel flow heat exchanger for evaluation test>
Size: Width 120mm x Height 116mm x Depth 13.85mm
Flat tube: thickness 1.93 mm x width 13.85 mm x 13 fins: plate thickness 0.1 mm x height 7.9 mm x 12 fins pitch: 1.3 mm

<試験条件>
循環液:温水(純水)
温水と空気の温度差:30℃
<Test conditions>
Circulating fluid: Warm water (pure water)
Temperature difference between hot water and air: 30 ° C

<放熱量算出式>
Qw=Cpw×yw×Fw×(θwi−θwo)
ここで、Qw:温水放熱量(W)、Cpw:温水の定圧比熱{kJ/(kg・℃)}
yw:温水の比重量(kg/m)、Fw:流量(m/h)
θwi:温水の入側温度(℃)、θwo:温水の出側温度(℃)である。
<Heat dissipation calculation formula>
Qw = Cpw × yw × Fw × (θwi−θwo)
Where, Qw: Warm water heat dissipation (W), Cpw: Constant pressure specific heat of hot water {kJ / (kg · ° C)}
yw: specific weight of warm water (kg / m 3 ), Fw: flow rate (m 3 / h)
θwi: hot water inlet side temperature (° C.), θwo: hot water outlet side temperature (° C.).

上記熱交換器においてはコルゲートフィン全体に接着剤5が塗布されるため、放熱性能への影響が懸念される。そこで、上記条件が同じで、隙間6の影響が無いろう付け品(膜厚は5μm以下){塗布なし}を用いて、塗布の有無による放熱性能への評価を行ったところ、図6に示すような結果が得られた。   In the said heat exchanger, since the adhesive agent 5 is apply | coated to the whole corrugated fin, there exists a concern about the influence on heat dissipation performance. Then, when the above conditions were the same and a brazed product (thickness of 5 μm or less) {no coating} having no effect of the gap 6 was used to evaluate the heat dissipation performance with and without coating, it is shown in FIG. The result was obtained.

上記評価の結果、コルゲートフィン全体に接着剤5を塗布しても、放熱量には影響しないことが判った。これは、コルゲートフィン全体に塗布されるのは、塗布用ロール21に接する面(熱交換器コア4の配置上端面)のみのため、裏面側(熱交換器コア4の配置下端側)には、接合に必要分しか接着剤5が流れないことによる。   As a result of the evaluation, it was found that even if the adhesive 5 was applied to the entire corrugated fin, the amount of heat release was not affected. This is because only the surface in contact with the coating roll 21 (the upper end surface of the heat exchanger core 4) is applied to the entire corrugated fin, and therefore on the back side (the lower end side of the heat exchanger core 4). This is because the adhesive 5 flows only as much as necessary for joining.

また、コルゲートフィン3と扁平管2の隙間6が及ぼす熱性能への影響を調べると、コルゲートフィン3と扁平管2の隙間量を変化させたときの放熱量(%)の関係は、図7に示すような結果となり、また、コルゲートフィン3と扁平管2の隙間量と熱抵抗(%)の関係は、図8に示すような結果となる。   Further, when the influence on the thermal performance exerted by the gap 6 between the corrugated fin 3 and the flat tube 2 is examined, the relationship between the heat radiation amount (%) when the gap amount between the corrugated fin 3 and the flat tube 2 is changed is shown in FIG. The relationship between the corrugated fin 3 and the flat tube 2 and the thermal resistance (%) is as shown in FIG.

図7に示すように、コルゲートフィン3と扁平管2の隙間6を大きくすると、放熱量は低下する。これは、隙間6に存在する空気層7(図5(b)参照)の影響により熱抵抗が増加するためである。   As shown in FIG. 7, when the gap 6 between the corrugated fin 3 and the flat tube 2 is increased, the heat dissipation amount is reduced. This is because the thermal resistance increases due to the influence of the air layer 7 (see FIG. 5B) existing in the gap 6.

上記より、扁平管2とコルゲートフィン3との接触部に生じる隙間6内に接着剤5を充填することにより十分な放熱性能比が得られる。   From the above, a sufficient heat dissipation performance ratio can be obtained by filling the adhesive 6 in the gap 6 generated in the contact portion between the flat tube 2 and the corrugated fin 3.

1a,1b ヘッダーパイプ
2 扁平管(扁平状熱交換管)
3 コルゲートフィン
4 熱交換器コア
5 接着剤
6 隙間
7 空気層
10 搬送コンベア(搬送手段)
20 接着剤供給手段
21 塗布用ロール
22 表面層
30 加熱炉
T1 表面層22の厚み
T2 ヘッダーパイプ1a,1bと扁平管2の段差
1a, 1b Header pipe 2 Flat tube (flat heat exchange tube)
3 Corrugated fin 4 Heat exchanger core 5 Adhesive 6 Gap 7 Air layer 10 Conveyor (conveying means)
20 Adhesive supply means 21 Application roll 22 Surface layer 30 Heating furnace T1 Surface layer 22 thickness T2 Step difference between header pipes 1a, 1b and flat tube 2

Claims (4)

一対のアルミニウム製のヘッダーパイプ間に配置される、互いに平行な複数のアルミニウム製の扁平状熱交換管と、上記扁平状熱交換管の間に介在される複数のアルミニウム製のコルゲートフィンと、を具備するパラレルフロー型熱交換器の製造方法であって、
上記一対のヘッダーパイプ間に上記扁平状熱交換管とコルゲートフィンとを交互に積層配置して、熱交換器コアを作製する工程と、
上記扁平状熱交換管の幅方向が上下方向となるように上記熱交換器コアを配置した状態で、上記熱交換器コアの上端面に液状の熱可塑性及び熱硬化性の接着剤の塗布用ロールを接触させて上記扁平状熱交換管とコルゲートフィンの接触部に上記接着剤を充填する工程と、
を含むことを特徴とするパラレルフロー型熱交換器の製造方法。
A plurality of parallel aluminum flat heat exchange tubes disposed between a pair of aluminum header pipes, and a plurality of aluminum corrugated fins interposed between the flat heat exchange tubes. A method for producing a parallel flow heat exchanger comprising:
A step of alternately laminating and arranging the flat heat exchange tubes and corrugated fins between the pair of header pipes to produce a heat exchanger core;
For application of liquid thermoplastic and thermosetting adhesive to the upper end surface of the heat exchanger core in a state where the heat exchanger core is arranged so that the width direction of the flat heat exchange tube is the vertical direction. Filling the adhesive into the contact portion between the flat heat exchange tube and the corrugated fin by bringing a roll into contact;
The manufacturing method of the parallel flow type heat exchanger characterized by including.
請求項1に記載のパラレルフロー型熱交換器の製造方法において、
上記接着剤に熱伝導性フィラーを含有させ、上記接着剤と熱導電性フィラー量の合計値を100%としたときの上記熱導電性フィラー量が5%〜60%含有している、ことを特長とするパラレルフロー型熱交換器の製造方法。
In the manufacturing method of the parallel flow type heat exchanger according to claim 1,
That the heat conductive filler content is contained in the adhesive, and the amount of the heat conductive filler is 5% to 60% when the total value of the adhesive and the amount of the heat conductive filler is 100%. A manufacturing method of the featured parallel flow heat exchanger.
請求項1又は2に記載のパラレルフロー型熱交換器の製造方法において、
上記接着剤を充填する工程は、表面に上記接着剤を保有する可撓性を有する上記塗布用ロールを、搬送手段によって搬送される上記熱交換器コアの上端面の一端部に接触させ、上記搬送手段によって上記熱交換器コアを搬送させて、上記熱交換器コアの一端部から他端部に向かって上記扁平状熱交換管とコルゲートフィンの積層部の全域に転動可能に接触させて行う、ことを特徴とするパラレルフロー型熱交換器の製造方法。
In the manufacturing method of the parallel flow type heat exchanger according to claim 1 or 2,
In the step of filling the adhesive, the flexible application roll having the adhesive on the surface is brought into contact with one end of the upper end surface of the heat exchanger core conveyed by a conveying means, The heat exchanger core is conveyed by a conveying means, and is brought into rolling contact with the entire area of the laminated portion of the flat heat exchange tube and the corrugated fin from one end portion to the other end portion of the heat exchanger core. A method for producing a parallel flow type heat exchanger.
請求項1ないし3のいずれかに記載のパラレルフロー型熱交換器の製造方法において、
上記接着剤を充填する工程の後に、上記熱交換器コアを加熱して上記接着剤を固化する工程を更に含む、ことを特徴とするパラレルフロー型熱交換器の製造方法。
In the manufacturing method of the parallel flow type heat exchanger according to any one of claims 1 to 3,
The method for manufacturing a parallel flow heat exchanger, further comprising a step of heating the heat exchanger core to solidify the adhesive after the step of filling the adhesive.
JP2015004691A 2015-01-14 2015-01-14 Manufacturing method of parallel flow type heat exchanger Expired - Fee Related JP6341098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004691A JP6341098B2 (en) 2015-01-14 2015-01-14 Manufacturing method of parallel flow type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004691A JP6341098B2 (en) 2015-01-14 2015-01-14 Manufacturing method of parallel flow type heat exchanger

Publications (2)

Publication Number Publication Date
JP2016130603A JP2016130603A (en) 2016-07-21
JP6341098B2 true JP6341098B2 (en) 2018-06-13

Family

ID=56415941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004691A Expired - Fee Related JP6341098B2 (en) 2015-01-14 2015-01-14 Manufacturing method of parallel flow type heat exchanger

Country Status (1)

Country Link
JP (1) JP6341098B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772731B2 (en) * 2016-09-30 2020-10-21 ダイキン工業株式会社 How to make a heat exchanger
US11499210B2 (en) 2016-12-21 2022-11-15 Mitsubishi Electric Corporation Heat exchanger and method of manufacturing thereof, and refrigeration cycle apparatus
JP2023137587A (en) * 2022-03-18 2023-09-29 株式会社デンソー Laminated heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612218B2 (en) * 1987-08-28 1994-02-16 住友軽金属工業株式会社 Heat exchanger manufacturing method
JP3178051B2 (en) * 1991-12-11 2001-06-18 株式会社デンソー Heat exchanger and method of manufacturing the same
JP2009036428A (en) * 2007-08-01 2009-02-19 Denso Corp Method of manufacturing heat exchanger
JP2009150582A (en) * 2007-12-19 2009-07-09 Denso Corp Flat tube for heat exchanger, heat exchanger, and method for manufacturing flat tube for heat exchanger

Also Published As

Publication number Publication date
JP2016130603A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP3899986B2 (en) How to apply brazing material
JP6341098B2 (en) Manufacturing method of parallel flow type heat exchanger
CN100434855C (en) Heat exchanger for industrial installations
JP6049631B2 (en) Manufacturing method for producing brazed heat exchanger with reinforced parting sheet
JP2007507355A5 (en)
PT1670609E (en) Thermal spray application of brazing material for manufacture of heat transfer devices
CN104233284B (en) The anti-corrosive treatment method of aluminium extrusion profile heat-exchange tube outer surface and the manufacturing method of heat exchanger
CN101489709A (en) Production of a heat exchanger
JPS63282393A (en) Cooling roller
US6120848A (en) Method of making a braze sheet
US5809647A (en) Process for manufacturing ribbed tubes
JP2005111527A (en) Aluminum-made heat exchanger manufacturing method
WO2016119364A1 (en) Tube-and-plate type compound heat exchange sheet and manufacturing method therefor
CN102451940A (en) Method for continuously soldering aluminum alloy heat exchanger of gas water heater
JP2013113486A (en) Method of manufacturing heat exchanger
US20190105742A1 (en) Method for manufacturing heat exchanger
EP2226150B1 (en) Process for producing member for heat exchanger
JP4705559B2 (en) Manufacturing method of heat exchanger and heat exchanger
JP3858685B2 (en) Method for manufacturing aluminum heat exchanger
JP2015117875A (en) Parallel flow type heat exchanger and its process of manufacture
JP2006284009A (en) Method of manufacturing twisted tube-type heat exchanger
JP2006090612A (en) Heat exchanger and its manufacturing method
WO2013129065A1 (en) Resin coating layer and life-extending processing method for pipe
WO2021077765A1 (en) Composite heat conduction pipe comprising modified heat conduction liquid and production method thereof
CN108064323A (en) For manufacturing the method for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R150 Certificate of patent or registration of utility model

Ref document number: 6341098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees