JP6340941B2 - Optical fiber cooling device and optical fiber manufacturing method - Google Patents

Optical fiber cooling device and optical fiber manufacturing method Download PDF

Info

Publication number
JP6340941B2
JP6340941B2 JP2014125552A JP2014125552A JP6340941B2 JP 6340941 B2 JP6340941 B2 JP 6340941B2 JP 2014125552 A JP2014125552 A JP 2014125552A JP 2014125552 A JP2014125552 A JP 2014125552A JP 6340941 B2 JP6340941 B2 JP 6340941B2
Authority
JP
Japan
Prior art keywords
cooling device
optical fiber
device main
main bodies
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014125552A
Other languages
Japanese (ja)
Other versions
JP2016003175A (en
Inventor
成樹 越水
成樹 越水
長谷川 慎治
慎治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014125552A priority Critical patent/JP6340941B2/en
Priority to CN201510341333.5A priority patent/CN105293889B/en
Publication of JP2016003175A publication Critical patent/JP2016003175A/en
Application granted granted Critical
Publication of JP6340941B2 publication Critical patent/JP6340941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ用冷却装置及び光ファイバの製造方法に関する。   The present invention relates to an optical fiber cooling device and an optical fiber manufacturing method.

一般に、光ファイバは、石英等の材料で製造された光ファイバ母材の下端側を加熱して軟化させ、この軟化させた部分に張力をかけて引き伸ばすことで細径化されたガラスファイバとし、さらにその周囲に樹脂を被覆することにより得られる。この光ファイバ母材を細径化して光ファイバとする工程は、線引きと呼ばれている。線引きされた光ファイバは、キャプスタンローラ等の引き取り手段により、その製造ラインの下流側に引き取られてボビン等に巻き取られる。   In general, an optical fiber is a glass fiber that has been reduced in diameter by heating and softening the lower end side of an optical fiber preform made of a material such as quartz, and stretching the softened portion by applying tension. Further, it can be obtained by coating a resin around it. The process of reducing the diameter of the optical fiber preform to form an optical fiber is called drawing. The drawn optical fiber is taken down to the downstream side of the production line by take-up means such as a capstan roller and wound around a bobbin or the like.

上記のように光ファイバを製造する際、光ファイバ母材から引き伸ばしたガラスファイバは冷却装置内へ通される。そして、この冷却装置では、例えば、ヘリウムガス等の熱伝達率の高い冷却ガスをガラスファイバへ吹き付け、これによりガラスファイバを強制的に冷却している。ガラスファイバを冷却する冷却装置としては、半割構造の装置であって、開閉可能な一対の冷却装置本体を備えたものが知られている(例えば、特許文献1参照)。この冷却装置では、一対の冷却装置本体が相互に突き合わされて閉じることにより、ガラスファイバが挿通可能な挿通孔が形成され、その挿通孔内でガラスファイバが冷却される。   When manufacturing an optical fiber as described above, the glass fiber drawn from the optical fiber preform is passed through the cooling device. In this cooling device, for example, a cooling gas having a high heat transfer coefficient such as helium gas is blown onto the glass fiber, thereby forcibly cooling the glass fiber. As a cooling device for cooling a glass fiber, a device having a halved structure and including a pair of cooling device bodies that can be opened and closed is known (for example, see Patent Document 1). In this cooling device, a pair of cooling device main bodies are brought into contact with each other and closed to form an insertion hole through which the glass fiber can be inserted, and the glass fiber is cooled in the insertion hole.

特開2013−220988号公報JP 2013-220988 A

このような冷却装置における冷却装置本体は、例えばアルミニウム等の熱伝導率の高い材料によって形成されることが多く、高温状態で形成された光ファイバを冷却するための冷却ガスにより、冷却装置の稼働時には、例えば常温(25℃)から極低温へと冷却される。このように冷却装置本体は常温(装置停止時)と極低温(装置稼働時)との間を反復するため、冷却装置本体が熱膨張及び熱収縮を繰り返すことになる。その結果、突き合わせ面自体が歪んでしまい、突き合わせ面の間に隙間が形成され、それにより、比較的高価な冷却ガスがその隙間から装置外部に漏れてしまうことがある。   The cooling device main body in such a cooling device is often formed of a material having high thermal conductivity such as aluminum, and the cooling device is operated by a cooling gas for cooling the optical fiber formed in a high temperature state. Sometimes, for example, it is cooled from room temperature (25 ° C.) to a very low temperature. Thus, since the cooling device body repeats between normal temperature (when the device is stopped) and extremely low temperature (when the device is operating), the cooling device body repeats thermal expansion and contraction. As a result, the abutting surfaces themselves are distorted, and gaps are formed between the abutting surfaces, so that relatively expensive cooling gas may leak from the gaps to the outside of the apparatus.

そこで、本発明は、冷却ガスの漏れを抑制して、冷却効率を向上することができる光ファイバ用冷却装置及び光ファイバの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an optical fiber cooling device and an optical fiber manufacturing method capable of suppressing cooling gas leakage and improving cooling efficiency.

上記目的を達成するため、本発明の一形態に係る光ファイバ用冷却装置は、相互に突き合わされることにより光ファイバが挿通可能な挿通孔を形成する一対の冷却装置本体を備え、挿通孔に通された光ファイバを冷却する光ファイバ用冷却装置であって、
一対の冷却装置本体それぞれを光ファイバの走行方向に沿って支持する支持部材を更に備え、
一対の冷却装置本体それぞれは、一部において固定部材により支持部材に固定されると共に、他の部分においては前記光ファイバの走行方向にスライド可能な接続部材により支持部材と接続されている。
In order to achieve the above object, an optical fiber cooling device according to an aspect of the present invention includes a pair of cooling device main bodies that form insertion holes through which optical fibers can be inserted by being butted against each other. An optical fiber cooling device for cooling a passed optical fiber,
A support member for supporting each of the pair of cooling device bodies along the traveling direction of the optical fiber;
Each of the pair of cooling device main bodies is fixed to the support member by a fixing member in part, and is connected to the support member by a connection member that can slide in the traveling direction of the optical fiber in the other part.

本発明によれば、冷却ガスの漏れを抑制して、冷却効率を向上することができる光ファイバ用冷却装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling device for optical fibers which can suppress cooling gas leak and can improve cooling efficiency can be provided.

本発明の一実施形態に係る光ファイバ用冷却装置を備えた光ファイバ製造装置の概略構成図である。It is a schematic block diagram of the optical fiber manufacturing apparatus provided with the cooling device for optical fibers which concerns on one Embodiment of this invention. 装置停止時であって開放状態の光ファイバ用冷却装置を示す正面図である。It is a front view which shows the cooling device for optical fibers of an open state at the time of apparatus stop. 図2の光ファイバ用冷却装置の一部を拡大した平面図である。It is the top view to which a part of cooling device for optical fibers of Drawing 2 was expanded. 装置稼働時であって閉じた状態の光ファイバ用冷却装置を示す正面図である。It is a front view which shows the cooling device for optical fibers of the closed state at the time of apparatus operation. 図4の光ファイバ用冷却装置の一部を拡大した平面図である。It is the top view to which a part of cooling device for optical fibers of Drawing 4 was expanded. 冷却装置本体で発生する反りを模式的に示した正面図である。It is the front view which showed typically the curvature which generate | occur | produces in a cooling device main body.

[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本願発明に係る光ファイバ用冷却装置は、(1)相互に突き合わされることにより光ファイバが挿通可能な挿通孔を形成する一対の冷却装置本体を備え、挿通孔に通された光ファイバを冷却する光ファイバ用冷却装置であって、一対の冷却装置本体それぞれを光ファイバの走行方向に沿って支持する支持部材を更に備え、一対の冷却装置本体それぞれは、一部において固定部材により支持部材に固定されると共に、他の部分においては光ファイバの走行方向にスライド可能な接続部材により支持部材と接続されている。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
An optical fiber cooling device according to the present invention includes (1) a pair of cooling device main bodies that form insertion holes through which optical fibers can be inserted by being abutted with each other, and cool the optical fibers that are passed through the insertion holes. A cooling device for an optical fiber, further comprising a support member that supports each of the pair of cooling device bodies along the traveling direction of the optical fiber, and each of the pair of cooling device bodies is partially supported by the fixing member. In addition to being fixed, it is connected to the supporting member by a connecting member that can slide in the traveling direction of the optical fiber in other portions.

上記の光ファイバ用冷却装置では、挿通孔を形成する一対の冷却装置本体それぞれを光ファイバの走行方向(長手方向)から反らないように支持部材によって支持及び固定している。このため、上記の光ファイバ用冷却装置によれば、一対の冷却装置本体が形成する挿通孔からの冷却ガスの漏れを抑制して、光ファイバ用冷却装置の冷却効率を向上させることができる。   In the above optical fiber cooling device, the pair of cooling device main bodies forming the insertion holes are supported and fixed by the support members so as not to warp from the traveling direction (longitudinal direction) of the optical fiber. For this reason, according to said optical fiber cooling device, the leakage of the cooling gas from the insertion hole which a pair of cooling device main body forms can be suppressed, and the cooling efficiency of the optical fiber cooling device can be improved.

もう少し詳細に説明すると、一対の冷却装置本体が光ファイバの走行方向における両端部において支持部材に固定されている場合、冷却装置本体と支持部材との温度変化に伴う伸縮差を阻害してしまう(吸収できない)場合がある。具体的には、光ファイバ冷却装置を稼働して極低温まで冷却すると、例えばアルミニウム等から構成される冷却装置本体が縮み、中央部がへこむ。その状態で中央部は開閉シリンダに押されており、冷却装置本体はまっすぐになるように矯正される。しかし、その後、常温に戻ると、例えば支持部材を構成するSUS材よりも冷却装置本体を構成するアルミニウムの方が膨張するため、中央部が膨らむ形で反りが残留してしまう。しかしながら、上記構成(1)等の光ファイバ冷却装置によれば、冷却装置本体の一部(例えば端部)がスライド可能な接続部材により支持部材に接続されているため、反りが生じても、反りが解消するようにスライドさせることができ、上述した熱膨張に伴う反りを解消させることができる。これにより、反りが解消した状態で(若しくは反りを解消しつつ)冷却装置を固定することができるので、冷却装置本体が形成する挿通孔からの冷却ガスの漏れを更に抑制して、光ファイバ用冷却装置の冷却効率を一層向上させることができる。   More specifically, when the pair of cooling device main bodies are fixed to the support members at both ends in the traveling direction of the optical fiber, the expansion / contraction difference due to the temperature change between the cooling device main body and the support members is hindered ( May not be absorbed). Specifically, when the optical fiber cooling device is operated and cooled to an extremely low temperature, the cooling device main body made of, for example, aluminum shrinks and the central portion is recessed. In this state, the central portion is pushed by the open / close cylinder, and the cooling device body is straightened. However, when it returns to normal temperature after that, since the aluminum which comprises a cooling device main body expands rather than the SUS material which comprises a support member, for example, curvature will remain in the form which the center part swells. However, according to the optical fiber cooling device of the above configuration (1) or the like, a part (for example, an end portion) of the cooling device main body is connected to the support member by the slidable connection member. It can be slid so as to eliminate the warp, and the warp due to the thermal expansion described above can be eliminated. As a result, the cooling device can be fixed in a state in which the warp has been eliminated (or while the warp is eliminated), so that the leakage of the cooling gas from the insertion hole formed by the cooling device body can be further suppressed, and the optical fiber can be used. The cooling efficiency of the cooling device can be further improved.

(2)一対の冷却装置本体それぞれは、光ファイバの走行方向における両端部において、スライド可能な接続部材により支持部材に接続されていてもよい。
(3)支持部材は、一対の冷却装置本体よりも高強度であってもよい。これにより、一対の冷却装置本体を支持部材によって確実に支持することができる。
(4)一対の冷却装置本体を相互に突き合わせるための駆動手段を更に備え、一対の冷却装置本体それぞれは、駆動手段の配置される中央部において、固定部材により支持部材に固定されていてもよい。
なお、上述した何れかの光ファイバ用冷却装置を用いて光ファイバを製造するようにしてもよい。
(2) Each of the pair of cooling device main bodies may be connected to the support member by a slidable connection member at both ends in the traveling direction of the optical fiber.
(3) The support member may be stronger than the pair of cooling device main bodies. Thereby, a pair of cooling device main body can be reliably supported with a supporting member.
(4) Drive means for abutting the pair of cooling device main bodies to each other is further provided, and each of the pair of cooling device main bodies may be fixed to the support member by a fixing member at the central portion where the drive means is disposed. Good.
In addition, you may make it manufacture an optical fiber using the cooling device for optical fibers mentioned above.

[本願発明の実施形態の詳細]
以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.

まず、最初に本発明の一実施形態に係る光ファイバ用冷却装置が用いられる光ファイバの製造工程について説明する。図1は、本発明の一実施形態に係る光ファイバ用冷却装置を備えた光ファイバ製造装置の概略構成図である。図1に示されるように、光ファイバの製造装置1は、その最も上流側に、光ファイバ母材Gを加熱する加熱炉2を備えている。加熱炉2は、内側に光ファイバ母材Gが供給される円筒状の炉心管3と、この炉心管3を囲む発熱体4とを備える。加熱炉2には、加熱領域にヘリウムや窒素等のパージガスを供給する。   First, an optical fiber manufacturing process in which an optical fiber cooling device according to an embodiment of the present invention is used will be described. FIG. 1 is a schematic configuration diagram of an optical fiber manufacturing apparatus including an optical fiber cooling device according to an embodiment of the present invention. As shown in FIG. 1, the optical fiber manufacturing apparatus 1 includes a heating furnace 2 that heats the optical fiber preform G on the most upstream side. The heating furnace 2 includes a cylindrical furnace core tube 3 to which an optical fiber preform G is supplied, and a heating element 4 surrounding the furnace core tube 3. A purge gas such as helium or nitrogen is supplied to the heating furnace 2 in the heating region.

加熱炉2内に供給された光ファイバ母材Gは、その下端側が加熱領域内で加熱されて軟化し、下方に引き伸ばされて細径化され、樹脂被覆前の光ファイバ(以下、「ガラスファイバ」ともいう)G1が形成される。   The lower end side of the optical fiber preform G supplied into the heating furnace 2 is heated and softened in the heating region, and is stretched downward to be reduced in diameter. The optical fiber before resin coating (hereinafter referred to as “glass fiber”). G1 is formed.

加熱炉2の下流側には、ヘリウムガス等の冷却ガスを用いた冷却装置7が設けられている。加熱炉2を出た直後のガラスファイバG1は、この冷却装置7によって強制的に冷却される。これにより、ガラスファイバG1は、数百℃から室温近くまで急速に冷却される。   A cooling device 7 using a cooling gas such as helium gas is provided on the downstream side of the heating furnace 2. The glass fiber G <b> 1 immediately after leaving the heating furnace 2 is forcibly cooled by the cooling device 7. Thereby, the glass fiber G1 is rapidly cooled from several hundred degrees C. to near room temperature.

冷却装置7の下流側には、例えばレーザ光式の外径測定器8が設けられており、冷却装置7を出たガラスファイバG1は、この外径測定器8によりその外径が測定され、線引き時におけるガラスファイバG1の外径が管理される。   On the downstream side of the cooling device 7, for example, a laser beam type outer diameter measuring device 8 is provided, and the outer diameter of the glass fiber G1 exiting the cooling device 7 is measured by the outer diameter measuring device 8, The outer diameter of the glass fiber G1 at the time of drawing is managed.

外径測定器8の下流側には、ガラスファイバG1に紫外線硬化型樹脂を塗布するダイス(Die)9及び塗布された紫外線硬化型樹脂を硬化させるための紫外線照射装置10が順に設けられている。このダイス9及び紫外線照射装置10を通過したガラスファイバG1は、その外周に紫外線硬化型樹脂の被覆層が形成され、光ファイバG2とされる。   On the downstream side of the outer diameter measuring device 8, a die 9 for applying an ultraviolet curable resin to the glass fiber G1 and an ultraviolet irradiation device 10 for curing the applied ultraviolet curable resin are sequentially provided. . The glass fiber G1 that has passed through the die 9 and the ultraviolet irradiation device 10 is formed with an ultraviolet curable resin coating layer on the outer periphery thereof to form an optical fiber G2.

その後、光ファイバG2は、ガイドローラ11,12を介してキャプスタン(Capstan)13に引き込まれ、スクリーニング装置14及びダンサローラ15,16を介して巻き取りボビン17に送られて巻き取られる。   Thereafter, the optical fiber G2 is drawn into a capstan 13 via guide rollers 11 and 12, and sent to a take-up bobbin 17 via a screening device 14 and dancer rollers 15 and 16, and taken up.

次に、上記の光ファイバの製造装置1に設けられた冷却装置7の構造について詳細に説明する。   Next, the structure of the cooling device 7 provided in the optical fiber manufacturing apparatus 1 will be described in detail.

図2は、装置停止時で開放状態となっている冷却装置を示す正面図であり、図3は、図2に示す冷却装置の一部を拡大した平面図である。図4は、装置稼働時で閉じた状態となっている冷却装置を示す正面図であり、図5は、図4に示す冷却装置の一部を拡大した平面図である。図2〜図5に示されるように、冷却装置7は、一対の冷却装置本体21A,21Bを備え、開閉可能な半割構造の装置である。   FIG. 2 is a front view showing the cooling device that is open when the device is stopped, and FIG. 3 is an enlarged plan view of a part of the cooling device shown in FIG. 4 is a front view showing the cooling device in a closed state when the device is in operation, and FIG. 5 is an enlarged plan view of a part of the cooling device shown in FIG. As shown in FIGS. 2 to 5, the cooling device 7 includes a pair of cooling device main bodies 21 </ b> A and 21 </ b> B and is a half-structured device that can be opened and closed.

冷却装置本体21A,21Bは、例えば略直方体形状のアルミニウムのブロック体からそれぞれ形成されており、その背面で、複数のボルト26A,26Bを介して支持部材25A,25Bにより固定及び支持されている。支持部材25A,25Bは、例えばSUS等の高剛性の部材から構成されており、冷却装置本体21A,21Bは、高剛性の支持部材25A,25Bに固定及び支持されることで、歪みにくいように構成されている。なお、支持部材25A,25Bは、冷却装置本体21A,21Bよりも高強度(引張り強度)の材料であればよく、SUS以外の材料から構成されていてもよい。また、支持部材25A,25Bは、その背面で駆動手段27A,27Bに接続されている。駆動手段27A,27Bは、例えば開閉シリンダである。各冷却装置本体21A,21Bは、駆動手段27A,27Bによる駆動動作により、相互に接近する方向へ移動して突き合わされたり、逆に相互に離反する方向へ移動したりするようになっている。   The cooling device main bodies 21A and 21B are each formed, for example, from a substantially rectangular parallelepiped aluminum block body, and are fixed and supported on the back by support members 25A and 25B via a plurality of bolts 26A and 26B. The support members 25A and 25B are made of high-rigidity members such as SUS, for example, and the cooling device main bodies 21A and 21B are fixed and supported by the high-rigidity support members 25A and 25B so that they are not easily distorted. It is configured. The support members 25A and 25B may be made of a material having higher strength (tensile strength) than the cooling device main bodies 21A and 21B, and may be made of a material other than SUS. Further, the support members 25A and 25B are connected to the driving means 27A and 27B on the back surfaces thereof. The drive means 27A and 27B are, for example, open / close cylinders. Each of the cooling device main bodies 21A and 21B is moved and abutted in directions approaching each other or moved away from each other by a driving operation by the driving means 27A and 27B.

冷却装置本体21A,21Bは、その長手方向(光ファイバの走行方向)の中央において、固定部材であるボルト26A,26Bにより支持部材25A,25Bに固定されている。一方、冷却装置本体21A,21Bは、その長手方向の両端部においては、ボルト26A,26Bにより支持部材25A,25Bに、スライド部材50A,50Bを介して接続されている。長手方向の両端部に位置するボルト26A,26Bと各冷却装置本体21A,21Bとの間にスライド部材50A,50Bを配置することにより、ボルト26A,26Bは、その接続位置を冷却装置本体21A,21Bに対し相対的にその長手方向にスライド可能な状態としている。なお、このスライド部材50A,50Bは、例えば、冷却装置本体21A,21Bの背面に設けられ、ボルト26A,26Bの先端部がスライド可能な溝等で構成されており、冷却装置本体21A,21Bの長手方向への伸び等を許容して、接続できる。なお、このボルト26A,26Bとスライド部材50A,50Bとを合わせて、接続部材と称する。   The cooling device main bodies 21A and 21B are fixed to the supporting members 25A and 25B by bolts 26A and 26B, which are fixing members, at the center in the longitudinal direction (traveling direction of the optical fiber). On the other hand, the cooling device main bodies 21A and 21B are connected to the support members 25A and 25B via the slide members 50A and 50B by bolts 26A and 26B at both ends in the longitudinal direction. By arranging slide members 50A and 50B between the bolts 26A and 26B located at both ends in the longitudinal direction and the respective cooling device main bodies 21A and 21B, the bolts 26A and 26B are connected to the cooling device main bodies 21A and 21B. It can be slid in the longitudinal direction relative to 21B. The slide members 50A and 50B are provided, for example, on the rear surfaces of the cooling device main bodies 21A and 21B, and are configured by grooves or the like in which the tip ends of the bolts 26A and 26B can slide. Connection can be made while allowing elongation in the longitudinal direction. The bolts 26A and 26B and the slide members 50A and 50B are collectively referred to as a connection member.

また、冷却装置本体21A,21Bは、図3等に示すように、互いに対向する突き合わせ面20A,20Bを中央付近に有しており、その突き合わせ面20A,20Bには、平面視して三角形形状を呈する溝部28A,28Bが形成されている。冷却装置本体21A,21B同士が相互に突き合わされると、図5等に示すように、これら溝部28A,28Bによって四角形状の挿通孔29が形成される。そして、この挿通孔29に、光ファイバ母材Gから線引きされたガラスファイバG1が挿通され冷却される。なお、溝部28A,28Bの形状は、平面視三角形形状に限られるものではなく、四角形形状や半円形形状等であってもよい。   Further, as shown in FIG. 3 and the like, the cooling device main bodies 21A and 21B have abutting surfaces 20A and 20B facing each other in the vicinity of the center, and the abutting surfaces 20A and 20B have a triangular shape in plan view. Grooves 28A and 28B exhibiting the above are formed. When the cooling device main bodies 21A and 21B are abutted with each other, a rectangular insertion hole 29 is formed by the grooves 28A and 28B as shown in FIG. The glass fiber G1 drawn from the optical fiber preform G is inserted into the insertion hole 29 and cooled. The shape of the groove portions 28A and 28B is not limited to a triangular shape in plan view, and may be a quadrangular shape or a semicircular shape.

冷却装置本体21A,21Bには、ガラスファイバG1に沿う長手方向の複数箇所に、冷却ガスを噴き出す吹き出し口31A,31Bが設けられており、これら吹き出し口31A,31Bにヘリウム等の冷却ガスを供給する冷却ガス供給管32A,32Bが接続されている。各冷却装置本体21A,21Bでは、冷却ガス供給管32A,32Bから冷却ガスが供給されることで、各吹き出し口31A,31Bから挿通孔29の中心へ向かって冷却ガスを噴き出す。これにより、ガラスファイバG1が冷却される。   The cooling device main bodies 21A and 21B are provided with blowout ports 31A and 31B for blowing out the cooling gas at a plurality of longitudinal positions along the glass fiber G1, and a cooling gas such as helium is supplied to these blowout ports 31A and 31B. The cooling gas supply pipes 32A and 32B to be connected are connected. In each cooling device main body 21 </ b> A, 21 </ b> B, the cooling gas is supplied from the cooling gas supply pipes 32 </ b> A, 32 </ b> B, so that the cooling gas is ejected from the outlets 31 </ b> A, 31 </ b> B toward the center of the insertion hole 29. Thereby, the glass fiber G1 is cooled.

冷却装置本体21A,21Bは、互いに対向する突き合わせ面20A,20Bにおいて、各溝部28A,28Bの両側に形成された凹部24A及び凹部24Bを有している。凹部24A、24Bの一方には弾性部材22が取り付けられており、これと対向する凹部の面には突起部23が設けられている。   The cooling device main bodies 21A and 21B have recesses 24A and recesses 24B formed on both sides of the groove portions 28A and 28B on the facing surfaces 20A and 20B facing each other. An elastic member 22 is attached to one of the recesses 24A and 24B, and a protrusion 23 is provided on the surface of the recess facing the recess.

弾性部材22は、直方体形状を呈し、突起部23と突き合わされて変形する弾性部材であり、例えば、パッキンに使用される部材やゴム部材等を挙げることができ、例えば、シリコーンゴム、ウレタンゴム等が好適である。特にシリコーンゴムは耐熱温度範囲が広いので、高温ガラスの接触や低温使用にも耐えることができ、好適である。弾性部材22は、その厚みを調整することで、突起部23との気密性を確保できる領域(幅)を広くとることができる。つまり、弾性部材22の厚みを厚くすると、突起部23の位置ずれの吸収度合(幅)を高めることができる。一方、弾性部材22は、突起部23が確実に且つ破損することなく弾性部材22内に埋入されることが気密の点からは必要となり、そのような観点から、弾性部材22は、潰れやすい材料から構成されることが好ましく、例えば、その弾性率が0.8MPa以下であることが好ましい。   The elastic member 22 has a rectangular parallelepiped shape and is an elastic member that is deformed by being brought into contact with the protruding portion 23. Examples of the elastic member 22 include a member used for packing and a rubber member. Examples thereof include silicone rubber and urethane rubber. Is preferred. In particular, silicone rubber is suitable because it has a wide heat-resistant temperature range and can withstand contact with high-temperature glass and low-temperature use. By adjusting the thickness of the elastic member 22, it is possible to widen a region (width) in which airtightness with the protrusion 23 can be ensured. That is, when the thickness of the elastic member 22 is increased, the degree of absorption (width) of the displacement of the protrusion 23 can be increased. On the other hand, it is necessary for the elastic member 22 to be embedded in the elastic member 22 reliably and without being damaged, and from such a viewpoint, the elastic member 22 is easily crushed. For example, the elastic modulus is preferably 0.8 MPa or less.

突起部23は、弾性部材22と突き合わされ、弾性部材22を変形させることが可能な部材であり、例えば、金属からなる部材等が挙げられる。突起部23は、長手方向に連続するような部材でもよいし、その一部が長手方向において断続しているような部材でもよい。また、本実施形態では、突起部23は、冷却装置本体21A,21Bの一部として一体形成されているが、冷却装置本体と別部材として設けるようにしてもよい。なお、冷却装置7では、冷却を実行するために冷却装置本体21A,21Bを閉じると、冷却装置本体21Bの突起部23が冷却装置本体21Aの弾性部材22に突き合うように埋入し、冷却装置本体21Aの突起部23が冷却装置本体21Bの弾性部材22に突き合うように埋入する。そして、このような弾性部材22と突起部23との突き合わせにより、冷却装置本体21A,21Bの突き合わせ面20A,20B等に多少の歪みが発生したとしても、両突き合わせ部の間に位置する挿通孔29を中心とした内部の気密性を高めることができ、冷却ガスの外部への漏れを低減することができる。   The protrusion 23 is a member that can be abutted with the elastic member 22 and can deform the elastic member 22, and examples thereof include a member made of metal. The protrusion 23 may be a member that is continuous in the longitudinal direction, or may be a member that is partially interrupted in the longitudinal direction. Moreover, in this embodiment, although the projection part 23 is integrally formed as a part of cooling device main body 21A, 21B, you may make it provide as a cooling device main body and another member. In the cooling device 7, when the cooling device main bodies 21 </ b> A and 21 </ b> B are closed in order to perform cooling, the protrusion 23 of the cooling device main body 21 </ b> B is embedded so as to abut against the elastic member 22 of the cooling device main body 21 </ b> A. The protrusion 23 of the apparatus main body 21A is embedded so as to abut against the elastic member 22 of the cooling apparatus main body 21B. And even if some distortion generate | occur | produces in butt | matching surface 20A, 20B etc. of cooling device main body 21A, 21B by butt | matching with such an elastic member 22 and the projection part 23, the insertion hole located between both butt | matching parts The internal airtightness centering on 29 can be improved, and leakage of the cooling gas to the outside can be reduced.

このような構造の冷却装置7を用いてガラスファイバG1を冷却する場合、まず、図2及び図3に示されるように、中央にガラスファイバG1を位置させると共に、冷却装置本体21A,21Bが開放された状態で、吹き出し口31A,31Bから一定流量の冷却ガスを流し始める。そして、冷却ガスを流し始めてから、駆動手段27A,27Bにより冷却装置本体21A,21Bを中央側に移動させて冷却装置7を閉じる。このとき、溝部28A,28Bは、ガラスファイバG1が通過される挿通孔29を形成する。   When the glass fiber G1 is cooled using the cooling device 7 having such a structure, first, as shown in FIGS. 2 and 3, the glass fiber G1 is positioned at the center and the cooling device main bodies 21A and 21B are opened. In this state, a constant flow of cooling gas is started to flow from the outlets 31A and 31B. Then, after starting to flow the cooling gas, the cooling device main bodies 21A and 21B are moved to the center side by the driving means 27A and 27B, and the cooling device 7 is closed. At this time, the groove portions 28A and 28B form an insertion hole 29 through which the glass fiber G1 is passed.

そして、冷却装置本体21A,21Bが閉じたとき、冷却装置本体21Bの突起部23は冷却装置本体21Aの弾性部材22に突き合わされており、冷却装置本体21Aの突起部23は冷却装置本体21Bの弾性部材22に突き合わされており、挿通孔29を中心とした対向領域において外部との気密性が確保される。   When the cooling device main bodies 21A and 21B are closed, the protrusion 23 of the cooling device main body 21B is abutted against the elastic member 22 of the cooling device main body 21A, and the protrusion 23 of the cooling device main body 21A is It is abutted against the elastic member 22, and airtightness with the outside is ensured in the facing region centered on the insertion hole 29.

ところで、冷却装置7では、アルミニウム等から構成される冷却装置本体21A,21Bを、SUS等からなる高剛性の支持部材25A,25Bにより中央部で固定する一方、両端部ではスライド可能に接続するようにしている。仮に、長手方向の上下両端部のボルト26A,26Bも冷却装置本体21A,21Bに固定されていると、冷却装置本体21A,21Bと支持部材25A,25Bとの温度変化に伴う伸縮差を阻害してしまう(吸収できない)場合がある。つまり、冷却装置7によって冷却を行う際、冷却装置本体21A,21Bが縮み、その中央部が合わせ目に対して凹む。この状態で、冷却装置本体21A,21Bの中央部が支持部材25A,25Bを経由して駆動手段27A,27Bにより押されており、冷却装置本体21A,21Bは真っ直ぐになる。しかし、再び常温になると、SUS等の高剛性な支持部材25A,25Bにより、アルミニウム等からなる冷却装置本体21A,21Bの方が膨張する。その結果、図6に示すように、冷却装置本体21A,21Bの中央部が膨らむ形になり、冷却装置本体21A,21Bの両端部に反りが発生し、冷却ガスが漏れて冷却効率が低下される可能性がある。なお、図6では、反りの発生状況を分かり易く説明するため、強調して記載している。   By the way, in the cooling device 7, the cooling device main bodies 21A and 21B made of aluminum or the like are fixed at the center by high-rigid support members 25A and 25B made of SUS or the like, while being slidably connected at both ends. I have to. If the bolts 26A and 26B at both upper and lower ends in the longitudinal direction are also fixed to the cooling device main bodies 21A and 21B, the expansion / contraction difference accompanying the temperature change between the cooling device main bodies 21A and 21B and the support members 25A and 25B is hindered. (Cannot be absorbed). That is, when cooling is performed by the cooling device 7, the cooling device main bodies 21 </ b> A and 21 </ b> B are contracted, and the central portion is recessed with respect to the joint. In this state, the central portions of the cooling device main bodies 21A and 21B are pushed by the driving means 27A and 27B via the support members 25A and 25B, so that the cooling device main bodies 21A and 21B become straight. However, when the temperature reaches room temperature again, the cooling device main bodies 21A and 21B made of aluminum or the like expand by the highly rigid support members 25A and 25B such as SUS. As a result, as shown in FIG. 6, the central portions of the cooling device main bodies 21A and 21B swell, warping occurs at both ends of the cooling device main bodies 21A and 21B, the cooling gas leaks, and the cooling efficiency is lowered. There is a possibility. In FIG. 6, the warp occurrence state is emphasized for easy understanding.

しかしながら、本実施形態に係る冷却装置7では、冷却装置本体21A,21Bの上下両端部において、ボルト26A,26Bによって支持部材25A,25Bを単に固定するのではなく、スライド部材50A,50Bを設け、光ファイバの走行方向にボルト26A,26Bの冷却装置本体21A,21Bに対する接続位置がスライド可能となっている。このため、温度変化に伴って冷却装置7に反りが発生したとしても、このようなスライド機構によりその反りを抑制した状態で固定でき、長手方向の両端部において挿通孔26からの冷却ガス漏れを抑制する。以上により、冷却装置7によれば、冷却効率を向上させることができる。なお、スライド部材50A,50Bは、稼働中にもスライド可能とすることもできるが、稼働中は固定するようにしても良い。   However, in the cooling device 7 according to the present embodiment, the support members 25A and 25B are not simply fixed by the bolts 26A and 26B at the upper and lower ends of the cooling device main bodies 21A and 21B, but the slide members 50A and 50B are provided. The connection positions of the bolts 26A and 26B with respect to the cooling device main bodies 21A and 21B can be slid in the traveling direction of the optical fiber. For this reason, even if the cooling device 7 warps as the temperature changes, it can be fixed in a state in which the warping is suppressed by such a slide mechanism, and cooling gas leaks from the insertion holes 26 at both ends in the longitudinal direction. Suppress. As described above, according to the cooling device 7, the cooling efficiency can be improved. The slide members 50A and 50B can be slidable during operation, but may be fixed during operation.

以上、本発明をその実施形態に基づき説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を行うことができる。例えば、上記実施形態では、冷却装置本体21A,21Bに突起部23を設けると共に弾性部材22を取り付けて挿通孔29の気密性を確保していたが、支持部材25A,25Bにより冷却装置本体21A,21Bの反りが十分に抑制されている場合、突起部23及び弾性部材22を設けなくてもよい。この場合であっても、冷却装置本体21A,21Bの反りが抑制されていることにより、冷却ガスの漏れを抑制して、冷却効率を向上することが可能である。   As mentioned above, although this invention was demonstrated based on the embodiment, this invention is not limited to said embodiment, A various change can be made. For example, in the above-described embodiment, the cooling device main bodies 21A and 21B are provided with the protrusions 23 and the elastic members 22 are attached to ensure the airtightness of the insertion holes 29. However, the cooling members main body 21A and 21B are supported by the support members 25A and 25B. When the warpage of 21B is sufficiently suppressed, the protrusion 23 and the elastic member 22 may not be provided. Even in this case, since the warpage of the cooling device main bodies 21A and 21B is suppressed, the leakage of the cooling gas can be suppressed and the cooling efficiency can be improved.

7…冷却装置、21A,21B…冷却装置本体、25A,25B…支持部材、29…挿通孔、26A,26B…ボルト、27A,27B…駆動手段、50A,50B…スライド部材、G1…ガラスファイバ。
7 ... Cooling device, 21A, 21B ... Cooling device main body, 25A, 25B ... Support member, 29 ... Insertion hole, 26A, 26B ... Bolt, 27A, 27B ... Driving means, 50A, 50B ... Slide member, G1 ... Glass fiber.

Claims (5)

相互に突き合わされることにより光ファイバが挿通可能な挿通孔を形成する一対の冷却装置本体を備え、前記挿通孔に通された前記光ファイバを冷却する光ファイバ用冷却装置であって、
前記一対の冷却装置本体それぞれを前記光ファイバの走行方向に沿って支持する支持部材を更に備え、
前記一対の冷却装置本体それぞれは、一部において固定部材により前記支持部材に固定されると共に、他の部分においては前記光ファイバの走行方向にスライド可能な接続部材により前記支持部材と接続されている、光ファイバ用冷却装置。
A cooling device for an optical fiber comprising a pair of cooling device main bodies forming an insertion hole through which an optical fiber can be inserted by being butted against each other, and cooling the optical fiber passed through the insertion hole,
A support member for supporting each of the pair of cooling device main bodies along the traveling direction of the optical fiber;
Each of the pair of cooling device main bodies is fixed to the support member by a fixing member in part, and is connected to the support member by a connection member that can slide in the traveling direction of the optical fiber in the other part. , Cooling device for optical fiber.
前記一対の冷却装置本体それぞれは、前記光ファイバの走行方向における両端部において、スライド可能な前記接続部材により前記支持部材に接続されている、請求項1に記載の光ファイバ用冷却装置。   2. The optical fiber cooling device according to claim 1, wherein each of the pair of cooling device main bodies is connected to the support member by the slidable connection member at both ends in the traveling direction of the optical fiber. 前記支持部材は、前記一対の冷却装置本体よりも高強度である、請求項1又は2に記載の光ファイバ用冷却装置。   The optical fiber cooling device according to claim 1, wherein the support member has higher strength than the pair of cooling device main bodies. 前記一対の冷却装置本体を相互に突き合わせるための駆動手段を更に備え、
前記一対の冷却装置本体それぞれは、前記駆動手段の配置される中央部において、前記固定部材により前記支持部材に固定されている、請求項1〜3の何れか一項に記載の光ファイバ用冷却装置。
Drive means for abutting the pair of cooling device bodies to each other;
The optical fiber cooling according to any one of claims 1 to 3, wherein each of the pair of cooling device main bodies is fixed to the support member by the fixing member at a central portion where the driving unit is disposed. apparatus.
請求項1〜4の何れか一項に記載の光ファイバ用冷却装置を用いて光ファイバを製造する光ファイバの製造方法。

The manufacturing method of the optical fiber which manufactures an optical fiber using the cooling device for optical fibers as described in any one of Claims 1-4.

JP2014125552A 2014-06-18 2014-06-18 Optical fiber cooling device and optical fiber manufacturing method Active JP6340941B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014125552A JP6340941B2 (en) 2014-06-18 2014-06-18 Optical fiber cooling device and optical fiber manufacturing method
CN201510341333.5A CN105293889B (en) 2014-06-18 2015-06-18 The manufacturing method of optical fiber cooling device and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125552A JP6340941B2 (en) 2014-06-18 2014-06-18 Optical fiber cooling device and optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2016003175A JP2016003175A (en) 2016-01-12
JP6340941B2 true JP6340941B2 (en) 2018-06-13

Family

ID=55191831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125552A Active JP6340941B2 (en) 2014-06-18 2014-06-18 Optical fiber cooling device and optical fiber manufacturing method

Country Status (2)

Country Link
JP (1) JP6340941B2 (en)
CN (1) CN105293889B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904235B2 (en) * 2017-12-15 2021-07-14 住友電気工業株式会社 Cooling device used for optical fiber drawing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631879B2 (en) * 1984-11-30 1994-04-27 株式会社竹中工務店 High-level radioactive material storage facility
JPH05299722A (en) * 1992-04-24 1993-11-12 Nec Corp Air cooled type gas laser oscillator
JP2001304776A (en) * 2000-04-19 2001-10-31 Mitsubishi Heavy Ind Ltd Heat exchanger device
US6546758B1 (en) * 2000-08-16 2003-04-15 Alcatel Multi-chamber fiber cooling apparatus
JP2007063086A (en) * 2005-09-01 2007-03-15 Sumitomo Electric Ind Ltd Cooling apparatus for optical fiber and method of positioning the same
CN201713431U (en) * 2010-06-25 2011-01-19 长飞光纤光缆有限公司 Device for drawing and cooling optical fiber
FR2967154A1 (en) * 2010-11-08 2012-05-11 Delachaux Sa COOLING DEVICE FOR IMPROVED OPTICAL FIBER

Also Published As

Publication number Publication date
JP2016003175A (en) 2016-01-12
CN105293889A (en) 2016-02-03
CN105293889B (en) 2019-08-16

Similar Documents

Publication Publication Date Title
TWI814450B (en) Method for bonding substrates
JP6451320B2 (en) Sheet glass forming method
US20150321945A1 (en) Optical fiber manufacturing apparatus and method
JP5662148B2 (en) Method of manufacturing a tube by welding
JP6340941B2 (en) Optical fiber cooling device and optical fiber manufacturing method
JP2013151423A (en) Micro-prism and micro-rod lens, and method and apparatus for producing them
KR102170374B1 (en) End finishing device of brittle material substrate and end finishing method of brittle material substrate
JP5910278B2 (en) Optical fiber manufacturing method
JP2016169121A (en) Bending molding equipment and bending molding method of sheet glass
JP6291727B2 (en) Glass fiber manufacturing apparatus and manufacturing method
JP2007063086A (en) Cooling apparatus for optical fiber and method of positioning the same
JP5619935B2 (en) Thin glass manufacturing method and thin glass manufacturing apparatus
CN204125369U (en) Optical fiber refrigerating unit
US8662373B2 (en) Device for welding the end faces of thin-walled jackets
JP2012030985A (en) Method for joining glass tube, and method for manufacturing glass tube
WO2023157698A1 (en) Molding device
KR20230041714A (en) Manufacturing method of glass article
JP5690194B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
TW202422756A (en) Device and method for bonding of substrates
JP2016124716A (en) Cutting method of glass film having film attached
JP3691795B2 (en) Optical fiber manufacturing method
JP5868667B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP2004347946A (en) Manufacture device and manufacture method of optical fiber coupler
JP2008266100A (en) Method and apparatus for cutting glass tube
JP2007126314A (en) Mold for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R150 Certificate of patent or registration of utility model

Ref document number: 6340941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250