JP6340223B2 - Method and apparatus for measuring impurity concentration in thin film - Google Patents

Method and apparatus for measuring impurity concentration in thin film Download PDF

Info

Publication number
JP6340223B2
JP6340223B2 JP2014056448A JP2014056448A JP6340223B2 JP 6340223 B2 JP6340223 B2 JP 6340223B2 JP 2014056448 A JP2014056448 A JP 2014056448A JP 2014056448 A JP2014056448 A JP 2014056448A JP 6340223 B2 JP6340223 B2 JP 6340223B2
Authority
JP
Japan
Prior art keywords
film thickness
sample
measuring
impurity concentration
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014056448A
Other languages
Japanese (ja)
Other versions
JP2015179015A (en
Inventor
哲也 佐久間
哲也 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Priority to JP2014056448A priority Critical patent/JP6340223B2/en
Publication of JP2015179015A publication Critical patent/JP2015179015A/en
Application granted granted Critical
Publication of JP6340223B2 publication Critical patent/JP6340223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、主として半導体ウェハ上に設けられた薄膜中の不純物濃度の測定方法及びその測定装置に関する。   The present invention mainly relates to a method for measuring an impurity concentration in a thin film provided on a semiconductor wafer and a measuring apparatus therefor.

蛍光X線分析装置は、一次X線を試料に照射することによって、当該試料から放出される蛍光X線を検出し、試料中に含まれる元素の同定分析及び定量分析を行う装置である。従来から、蛍光X線分析装置は、半導体製造分野等においてシリコン基板上の各種薄膜の組成及び膜厚の分析に用いられている。例えば、シリコン基板上に成膜した、ボロン(B)、リン(P)を不純物として含有するシリコン酸化膜(BPSG膜)のボロン(B)あるいはリン(P)の濃度管理に蛍光X線分析装置は用いられている。蛍光X線分析装置の構成図を図4に示す。X線管1で発生した一次X線2は試料3に照射され、試料3から発生した蛍光X線4はスレット5を通過後、分光結晶6によって分光され、ゴニオメータなどの検出器7を用いて検出される。因みに、本構成は波長分散型の蛍光X線分析装置の概略構成である。   A fluorescent X-ray analyzer is an apparatus that detects fluorescent X-rays emitted from a sample by irradiating the sample with primary X-rays, and performs identification analysis and quantitative analysis of elements contained in the sample. Conventionally, X-ray fluorescence analyzers have been used to analyze the composition and film thickness of various thin films on a silicon substrate in the field of semiconductor manufacturing and the like. For example, a fluorescent X-ray analyzer for concentration control of boron (B) or phosphorus (P) in a silicon oxide film (BPSG film) containing boron (B) and phosphorus (P) as impurities formed on a silicon substrate Is used. A block diagram of the X-ray fluorescence analyzer is shown in FIG. The primary X-ray 2 generated in the X-ray tube 1 is irradiated to the sample 3, and the fluorescent X-ray 4 generated from the sample 3 passes through the threat 5 and is then dispersed by the spectral crystal 6, and is detected using a detector 7 such as a goniometer. Detected. Incidentally, this configuration is a schematic configuration of a wavelength dispersive X-ray fluorescence analyzer.

上記蛍光X線分析装置において定量分析を行う場合、検出器7のゲインのずれ、周囲の環境温度の変化、X線管1の劣化、分光系6のズレなどに起因する装置のX線強度のドリフトを補正するために、校正用の標準試料のX線強度を測定することによって校正(強度の補正)を行う。特にBPSG膜の分析の場合には、ボロン(B)の蛍光X線の強度が弱いため校正は重要である。この標準試料は、あらかじめICP発光分析等によって組成分析を行って、濃度、膜厚が既知の試料を使用する。   When quantitative analysis is performed in the fluorescent X-ray analysis apparatus, the X-ray intensity of the apparatus due to a gain shift of the detector 7, a change in ambient environmental temperature, deterioration of the X-ray tube 1, deviation of the spectroscopic system 6, and the like. In order to correct the drift, calibration (intensity correction) is performed by measuring the X-ray intensity of the standard sample for calibration. In particular, in the case of analysis of a BPSG film, calibration is important because the intensity of the fluorescent X-ray of boron (B) is weak. This standard sample is subjected to composition analysis by ICP emission analysis or the like in advance, and a sample having a known concentration and film thickness is used.

一方、精度の高い分析をするためには、標準試料の変質等に伴う標準試料起因のX線強度のドリフトを考慮し、適正に校正する必要がある。BPSG膜は非常に吸湿性が高いため、標準試料の保管には変質を防ぐために窒素デシケーターや真空デシケーター等の清潔で乾燥された雰囲気が用いられている。また、分析装置自体に試料を保管するための真空保管室を有する装置も提案されている(例えば、特許文献1参照)。   On the other hand, in order to perform analysis with high accuracy, it is necessary to appropriately calibrate in consideration of the drift of the X-ray intensity caused by the standard sample accompanying the alteration of the standard sample. Since the BPSG film is very hygroscopic, a clean and dry atmosphere such as a nitrogen desiccator or a vacuum desiccator is used to store the standard sample in order to prevent alteration. An apparatus having a vacuum storage chamber for storing a sample in the analyzer itself has also been proposed (see, for example, Patent Document 1).

特開平6−331574号公報JP-A-6-331574

しかしながら、上記装置では、吸湿自体は軽減できるが、他の要因、例えば、分析装置内外で試料が受けた汚染を回避するものではない。例えば、蛍光X線分析装置の校正に用いる標準試料は校正の度にX線照射を受けることになる。繰り返しX線を照射すると、試料表面に炭素を含む有機物が付着して汚染され、その付着膜の吸収により長波長スペクトルのX線強度が減少することになる。このような校正時の基準となるべき標準試料から得られるX線強度が変化することによって、日々の分析試料の測定値が信頼のおけないものとなる。   However, in the above apparatus, moisture absorption itself can be reduced, but it does not avoid other factors, for example, contamination that the sample has received inside and outside the analyzer. For example, a standard sample used for calibration of a fluorescent X-ray analyzer is subjected to X-ray irradiation every time calibration is performed. When X-rays are repeatedly irradiated, organic matter containing carbon adheres to the sample surface and is contaminated, and the X-ray intensity of the long wavelength spectrum decreases due to absorption of the attached film. By changing the X-ray intensity obtained from the standard sample to be used as a reference at the time of calibration, the measurement value of the daily analytical sample becomes unreliable.

本発明は、試料が変質し易い分析方法においても信頼性の高い測定値を得ることが可能な半導体ウェハ上に設けられた薄膜中の不純物濃度の測定方法及びその測定装置を提供することを目的とする。   An object of the present invention is to provide an impurity concentration measurement method in a thin film provided on a semiconductor wafer and a measurement apparatus thereof capable of obtaining a highly reliable measurement value even in an analysis method in which a sample is easily altered. And

上記課題解決のために、本発明では以下の手段を用いた。
まず、半導体基板上に形成した薄膜中の不純物濃度の測定方法において、第1の分析試料の薄膜の膜厚を蛍光X線分析装置で測定して第1の膜厚値を得るステップと、前記第1の分析試料の薄膜の膜厚を光学式膜厚計で測定して第2の膜厚値を得るステップと、前記第2の膜厚値に対する前記第1の膜厚値の比からなる基準膜厚比を算出し、前記膜厚比の管理幅を決定するステップと、第2の分析試料を蛍光X線分析装置で測定して第3の膜厚値及び前記薄膜中の前記不純物濃度を得るステップと、前記第2の分析試料を光学式膜厚計で測定して第4の膜厚値を得るステップと、前記第4の膜厚値に対する前記第3の膜厚値の比からなるサンプル膜厚比を算出するステップと、前記サンプル膜厚比が前記管理幅内かを判断するステップと、前記サンプル膜厚比が前記管理幅内であれば、前記不純物濃度を正しいと判断するステップと、からなることを特徴とする薄膜中の不純物濃度の測定方法を用いた。
In order to solve the above problems, the following means are used in the present invention.
First, in a method for measuring an impurity concentration in a thin film formed on a semiconductor substrate, a step of measuring a thin film thickness of a first analysis sample with a fluorescent X-ray analyzer to obtain a first film thickness value; A step of measuring the thickness of the thin film of the first analysis sample with an optical film thickness meter to obtain a second thickness value; and a ratio of the first thickness value to the second thickness value. Calculating a reference film thickness ratio, determining a management width of the film thickness ratio; measuring a second analysis sample with a fluorescent X-ray analyzer; and measuring a third film thickness value and the impurity concentration in the thin film From the step of obtaining the fourth film thickness value by measuring the second analytical sample with an optical film thickness meter, and the ratio of the third film thickness value to the fourth film thickness value. Calculating a sample film thickness ratio, determining whether the sample film thickness ratio is within the control width, and If the sample thickness ratio is within the control range, and determining the correct the impurity concentration, it was used a method for measuring the concentration of impurities in the thin film characterized consisting.

また、前記サンプル膜厚比が前記管理幅外であれば、前記分析試料の再測定または、同一ロットの他の分析試料を測定することを特徴とする薄膜中の不純物濃度の測定方法を用いた。
また、前記サンプル膜厚比が前記管理幅外であれば、蛍光X線分析装置及び光学干渉式膜厚計を再校正することを特徴とする薄膜中の不純物濃度の測定方法を用いた。
Further, when the sample film thickness ratio is outside the control range, the measurement method of the impurity concentration in the thin film is used, wherein the analysis sample is remeasured or another analysis sample of the same lot is measured. .
In addition, when the sample film thickness ratio is outside the control range, an X-ray fluorescence analyzer and an optical interference film thickness meter are recalibrated, and the impurity concentration measurement method in the thin film is used.

また、薄膜中の不純物濃度の測定装置を、蛍光X線分析装置に光学膜厚計が内蔵されているものとした。   In addition, an apparatus for measuring the impurity concentration in the thin film is assumed to have an optical film thickness meter incorporated in the fluorescent X-ray analyzer.

上記手段を用いることで、薄膜中の不純物濃度の測定信頼性を向上させることができる。   By using the above means, the measurement reliability of the impurity concentration in the thin film can be improved.

本発明の分析装置の管理方法を示す図The figure which shows the management method of the analyzer of this invention 本発明の管理方法を説明する管理図Control chart explaining the management method of the present invention 本発明の管理方法を説明する例図Example diagram illustrating the management method of the present invention 蛍光X線分析装置の構成図Configuration of X-ray fluorescence analyzer

以下、本発明の実施例を説明する。
図1は、本発明の実施例に係る半導体基板上に形成した薄膜中の不純物濃度の測定方法を示す図である。
Examples of the present invention will be described below.
FIG. 1 is a diagram showing a method for measuring an impurity concentration in a thin film formed on a semiconductor substrate according to an embodiment of the present invention.

本実施例の測定方法では、まず、シリコン基板にBPSG膜を成膜した標準試料を用いて校正された蛍光X線分析装置、光学干渉式膜厚計を準備する。そして、シリコン基板上に薄膜、例えばBPSG膜を成膜した第1の分析試料のBPSG膜の膜厚を蛍光X線分析装置で測定し、膜厚値Aを得る(Step1)。   In the measurement method of this example, first, a fluorescent X-ray analyzer calibrated using a standard sample in which a BPSG film is formed on a silicon substrate and an optical interference film thickness meter are prepared. Then, the thickness of the BPSG film of the first analysis sample in which a thin film, for example, a BPSG film is formed on the silicon substrate, is measured with a fluorescent X-ray analyzer, and a film thickness value A is obtained (Step 1).

次に、同一の第1の分析試料のBPSG膜の膜厚を光学干渉式膜厚計で測定し、膜厚値Bを得る(Step2)。なお、第1の分析試料は成膜直後に直ちに膜厚測定することで大気暴露時間を少なくし、表面汚染が極力少ないものとした。また、ここで光学干渉式膜厚計に代えて分光式エリプソメーターなどを用いても構わない、さらに、蛍光X線分析装置に光学干渉式膜厚計を内蔵させてStep1およびStep2の測定を連続して自動で行う構成としても良い。   Next, the film thickness of the BPSG film of the same first analysis sample is measured with an optical interference film thickness meter to obtain a film thickness value B (Step 2). The first analysis sample was measured immediately after film formation to reduce the exposure time to the atmosphere and minimize surface contamination. In addition, a spectroscopic ellipsometer may be used instead of the optical interference film thickness meter, and the measurement of Step 1 and Step 2 is continuously performed by incorporating the optical interference film thickness meter in the fluorescent X-ray analyzer. And it is good also as a structure performed automatically.

次に、Step3に示すように、得られた膜厚値AおよびBより、基準膜厚比(膜厚値A/膜厚値B)を算出する。蛍光X線分析装置及び光学干渉式膜厚計が正常に校正されていれば、膜厚値A、Bは近い値を示すが、BPSG膜の膜厚域やボロン(B),リン(P)の濃度域によっては多少異なることもあり、各膜厚域、各濃度域における基準膜厚比を膜種毎(膜厚、濃度)に算出・記録しておくことが重要である。測定された基準膜厚比に基づいて、サンプル膜厚比の管理幅を設定する。   Next, as shown in Step 3, a reference film thickness ratio (film thickness value A / film thickness value B) is calculated from the obtained film thickness values A and B. If the fluorescent X-ray analyzer and the optical interference film thickness meter are calibrated normally, the film thickness values A and B will be close, but the film thickness range of the BPSG film, boron (B), phosphorus (P) Depending on the concentration range, it may be somewhat different, and it is important to calculate and record each film thickness region and the reference film thickness ratio in each concentration region for each film type (film thickness, concentration). A management width of the sample film thickness ratio is set based on the measured reference film thickness ratio.

Step4は、標準試料を用いて蛍光X線分析装置や光学干渉式膜厚計を定期的に校正するステップである。光学干渉式膜厚計用の標準試料が劣化することはあまりないが、蛍光X線分析装置用の標準試料はX線の長時間照射によって試料から発せられる蛍光X線の強度が低下することになる。よって、ここで用いる標準試料の管理は重要であり、汚染されていると判断すれば交換する必要がある。   Step 4 is a step of periodically calibrating a fluorescent X-ray analyzer or an optical interference film thickness meter using a standard sample. The standard sample for the optical interference type film thickness meter is not deteriorated so much, but the standard sample for the fluorescent X-ray analyzer is that the intensity of the fluorescent X-ray emitted from the sample is lowered by the long-time irradiation of the X-ray. Become. Therefore, management of the standard sample used here is important, and if it is judged that it is contaminated, it must be replaced.

次に、日々の半導体装置の生産活動において行われる第2の分析試料の濃度測定は以下の手順で実施される。なお、第2の分析試料は第1の分析試料と同じ条件で成膜したものである。   Next, the concentration measurement of the second analysis sample performed in the daily production activity of the semiconductor device is performed by the following procedure. The second analysis sample is a film formed under the same conditions as the first analysis sample.

まず、step5に示すように、シリコン基板上に薄膜、例えば、BPSG膜を成膜した第2の分析試料を蛍光X線分析装置で測定し、BPSG膜の膜厚値C及び膜中のボロン(B)濃度,リン(P)濃度を得る。   First, as shown in step 5, a second analytical sample in which a thin film, for example, a BPSG film is formed on a silicon substrate is measured with a fluorescent X-ray analyzer, and the film thickness value C of the BPSG film and boron ( B) Obtain the concentration and phosphorus (P) concentration.

次に、同一のBPSG膜サンプルの膜厚を光学干渉式膜厚計で測定し、BPSG膜の膜厚値Dを得る(Step6)。そして、膜厚値C/膜厚値Dからなるサンプル膜厚比を算出し、それが、先に決めた管理幅内であるか否かを判断する(Step7)。管理幅内であれば、Step4で得たボロン(B)濃度,リン(P)濃度が正しいものと判断し、その濃度値を記録する(Step8)。   Next, the film thickness of the same BPSG film sample is measured with an optical interference film thickness meter to obtain the film thickness value D of the BPSG film (Step 6). Then, a sample film thickness ratio consisting of film thickness value C / film thickness value D is calculated, and it is determined whether or not it is within the previously determined management width (Step 7). If it is within the control range, it is determined that the boron (B) concentration and phosphorus (P) concentration obtained in Step 4 are correct, and the concentration values are recorded (Step 8).

図2は、本発明の半導体基板上に形成した薄膜中の不純物濃度の測定方法を正しく実施するための管理図を示した。(a)は管理上限(UCL)および管理下限(LCL)を用いた図である。本例では、標準試料から得られた基準膜厚比は98%、UCLは100%、LCLは96%であり、UCLやLCLを越えた場合や連の数などカウントして修正の要否が判断される。   FIG. 2 shows a control chart for correctly carrying out the method for measuring the impurity concentration in a thin film formed on a semiconductor substrate according to the present invention. (A) is a figure using the management upper limit (UCL) and the management lower limit (LCL). In this example, the reference film thickness ratio obtained from the standard sample is 98%, UCL is 100%, and LCL is 96%. If UCL or LCL is exceeded or the number of reams is counted, it is necessary to correct it. To be judged.

図のポイント1〜7は管理幅内であり、連の数も所定の数を越えないことから正常であると判断できる。ポイント8及び12では管理幅を越えて異常点8となっており、第2の分析試料や標準試料、または、蛍光X線分析装置や光学干渉式膜厚計に異常があったと判断できる。   Points 1 to 7 in the figure are within the management range, and the number of reams does not exceed the predetermined number, so that it can be determined to be normal. At points 8 and 12, an abnormal point 8 is exceeded beyond the control range, and it can be determined that there is an abnormality in the second analysis sample, the standard sample, the fluorescent X-ray analyzer or the optical interference film thickness meter.

このような管理幅外の場合は、まず、図1のStep9のルートに従い、同一ウェハの再測定または、同一ロットの他ウェハを測定する。これで正常なサンプル膜厚比が得られれば、Step8に移行するが、それでも所望のサンプル膜厚比が得られない場合はStep10のルートに従い、新たな標準試料による再校正を行い、そして、最終的にStep8まで進んで測定終了となる。   If it is outside such a management range, first, the same wafer is remeasured or another wafer of the same lot is measured according to the route of Step 9 in FIG. If a normal sample film thickness ratio is obtained in this way, the process proceeds to Step 8, but if the desired sample film thickness ratio is still not obtained, recalibration with a new standard sample is performed according to the route of Step 10, and the final Thus, the process proceeds to Step 8 to complete the measurement.

もし、それでも解決しなければ、蛍光X線分析装置及び光学干渉式膜厚計に異常がないかどうかの調査と以上があった場合には異常の除去を行うことになる。ただ、第2の分析試料は成膜後に直ちに測定することから、第2の分析試料が汚染されている可能性は低く、むしろ、定期的な校正をする際に用いる標準試料が連続使用されているため、その表面が汚染されていることが多い。本発明は標準試料と日々の第2の分析試料の両方の異常を察知する上で有効な手法である。   If this does not solve the problem, if there is an investigation on whether there is an abnormality in the fluorescent X-ray analyzer and the optical interference type film thickness meter, the abnormality is removed. However, since the second analysis sample is measured immediately after the film formation, it is unlikely that the second analysis sample is contaminated. Rather, the standard sample used for periodic calibration is used continuously. Therefore, the surface is often contaminated. The present invention is an effective technique for detecting abnormalities in both the standard sample and the daily second analytical sample.

図2(b)は、UCL/LCLに代えて上限規格値/下限規格値を用いた例である。管理上限(UCL)および管理下限(LCL)を用いるか、上限規格値および下限規格値を用いるかは製品や工程で要求される精度に従って使い分ければ良い。
また、以上では、BPSG膜を例に説明したが、BSG膜中のボロン濃度、PSG膜中のリン濃度の測定などにも利用できることは言うまでもない。
FIG. 2B shows an example in which the upper limit standard value / lower limit standard value is used instead of UCL / LCL. Whether the control upper limit (UCL) and the control lower limit (LCL) are used or whether the upper limit specification value and the lower limit specification value are used may be properly used according to the accuracy required for the product or process.
In the above description, the BPSG film has been described as an example. Needless to say, the present invention can also be used for measuring the boron concentration in the BSG film and the phosphorus concentration in the PSG film.

参考に、図3に、標準試料の汚染有無での膜厚比(蛍光X線/光学膜厚計)の違いを示す。表面汚染の無い通常標準試料の場合は98%前後の値であるのに対し、汚染のある劣化標準試料の場合は86%程度に低下している。もし、劣化標準試料で校正したとすると、第2の分析試料の測定値が本来の値から大きくずれることが容易に理解できる。この場合、第2の分析試料のB、P濃度は本来より高めに、膜厚値は薄い方向にシフトする。膜厚値が薄い方向にシフトするのは、膜厚値はSiの蛍光X線であるSi−Kα線と負の相関があるからである。   For reference, FIG. 3 shows the difference in film thickness ratio (fluorescence X-ray / optical film thickness meter) with and without contamination of the standard sample. In the case of a normal standard sample having no surface contamination, the value is around 98%, whereas in the case of a deteriorated standard sample having contamination, the value is reduced to about 86%. If it is calibrated with a deteriorated standard sample, it can be easily understood that the measured value of the second analytical sample deviates greatly from the original value. In this case, the B and P concentrations of the second analysis sample are higher than the original, and the film thickness value is shifted in the thinner direction. The reason why the film thickness value is shifted in the thin direction is that the film thickness value has a negative correlation with the Si-Kα line which is a fluorescent X-ray of Si.

なお、通常標準試料は、成膜後に直ちに測定を行った試料で汚染の無い状態のものである。また、劣化標準試料は、その表面にX線を長時間照射し、目視にて表面に付着物の色ムラが確認できる状態になった試料を用いている。   Note that the normal standard sample is a sample that is measured immediately after film formation and is free from contamination. Moreover, the deterioration standard sample uses the sample which irradiated the X-ray to the surface for a long time, and was in the state which can confirm the color nonuniformity of a deposit | attachment on the surface visually.

以上説明したように、上記手順に従って工程管理することで、BPSG膜のB、P濃度を正しく測定することができる。
また、膜厚比を管理することにより、標準試料起因の校正ずれの他に、突発的に装置の励起X線の強度が変動した場合も検知できるので、分析全般の信頼性の指標として使用することが可能である。
As described above, the B and P concentrations of the BPSG film can be correctly measured by managing the process according to the above procedure.
Also, by managing the film thickness ratio, it is possible to detect not only the calibration deviation caused by the standard sample but also the sudden change in the intensity of the excitation X-ray of the apparatus, so it is used as an index of the reliability of the overall analysis. It is possible.

本発明は、半導体ウェハ上の薄膜等に限らず、他の薄膜の分析に用いられる蛍光X線分析装置の分析精度の管理に利用することが可能である。   The present invention is not limited to a thin film on a semiconductor wafer, but can be used for management of analysis accuracy of a fluorescent X-ray analyzer used for analyzing other thin films.

1 X線管
2 一次X線
3 試料
4 蛍光X線
5 スリット
6 分光結晶
7 検出器
8 異常点
1 X-ray tube 2 Primary X-ray 3 Sample 4 Fluorescent X-ray 5 Slit 6 Spectroscopic crystal 7 Detector 8 Abnormal point

Claims (4)

半導体基板上に形成した薄膜中の不純物濃度の測定方法において、
第1の分析試料の薄膜の膜厚を蛍光X線分析装置で測定して第1の膜厚値を得るステップと、
前記第1の分析試料の薄膜の膜厚を光学式膜厚計で測定して第2の膜厚値を得るステップと、
前記第2の膜厚値に対する前記第1の膜厚値の比からなる基準膜厚比を算出し、前記基準膜厚比に基づいてサンプル膜厚比の管理幅を決定するステップと、
第2の分析試料を蛍光X線分析装置で測定して第3の膜厚値及び前記薄膜中の前記不純物濃度を得るステップと、
前記第2の分析試料を光学式膜厚計で測定して第4の膜厚値を得るステップと、
前記第4の膜厚値に対する前記第3の膜厚値の比からなる前記サンプル膜厚比を算出するステップと、
前記サンプル膜厚比が前記管理幅内かを判断するステップと、
前記サンプル膜厚比が前記管理幅内であれば、前記不純物濃度を正しいと判断するステップと、
を備えた薄膜中の不純物濃度の測定方法。
In the method for measuring the impurity concentration in a thin film formed on a semiconductor substrate,
Measuring the thickness of the thin film of the first analysis sample with a fluorescent X-ray analyzer to obtain a first thickness value;
Measuring the film thickness of the thin film of the first analysis sample with an optical film thickness meter to obtain a second film thickness value;
Calculating a reference film thickness ratio composed of a ratio of the first film thickness value to the second film thickness value, and determining a management width of the sample film thickness ratio based on the reference film thickness ratio;
Measuring a second analysis sample with a fluorescent X-ray analyzer to obtain a third film thickness value and the impurity concentration in the thin film;
Measuring the second analysis sample with an optical film thickness meter to obtain a fourth film thickness value;
Calculating the sample film thickness ratio comprising the ratio of the third film thickness value to the fourth film thickness value;
Determining whether the sample thickness ratio is within the control range;
If the sample film thickness ratio is within the control range, determining that the impurity concentration is correct;
For measuring the impurity concentration in a thin film comprising:
前記サンプル膜厚比が前記管理幅外であれば、前記第2の分析試料の再測定または、同一ロットの他の第2の分析試料を測定することを特徴とする請求項1記載の薄膜中の不純物濃度の測定方法。   2. The thin film according to claim 1, wherein if the sample film thickness ratio is outside the control range, the second analysis sample is remeasured or another second analysis sample of the same lot is measured. Method for measuring the impurity concentration of water. 前記サンプル膜厚比が前記管理幅外であれば、前記蛍光X線分析装置を新たな標準試料で再校正することを特徴とする請求項1または請求項2記載の薄膜中の不純物濃度の測定方法。 3. The measurement of impurity concentration in a thin film according to claim 1, wherein if the sample thickness ratio is outside the control range, the X-ray fluorescence analyzer is recalibrated with a new standard sample. Method. 前記サンプル膜厚比の管理幅を決定するステップにおいて、前記管理幅を上限規格値と下限規格値で決めることを特徴とする請求項1乃至3のいずれか1項記載の薄膜中の不純物濃度の測定方法。   4. The impurity concentration in the thin film according to claim 1, wherein in the step of determining the management width of the sample film thickness ratio, the management width is determined by an upper limit specification value and a lower limit specification value. Measuring method.
JP2014056448A 2014-03-19 2014-03-19 Method and apparatus for measuring impurity concentration in thin film Active JP6340223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056448A JP6340223B2 (en) 2014-03-19 2014-03-19 Method and apparatus for measuring impurity concentration in thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056448A JP6340223B2 (en) 2014-03-19 2014-03-19 Method and apparatus for measuring impurity concentration in thin film

Publications (2)

Publication Number Publication Date
JP2015179015A JP2015179015A (en) 2015-10-08
JP6340223B2 true JP6340223B2 (en) 2018-06-06

Family

ID=54263163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056448A Active JP6340223B2 (en) 2014-03-19 2014-03-19 Method and apparatus for measuring impurity concentration in thin film

Country Status (1)

Country Link
JP (1) JP6340223B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211004A (en) * 1981-06-23 1982-12-24 Rigaku Denki Kogyo Kk Method and device for measuring thickness of glassy thin film
JPS63292043A (en) * 1987-05-26 1988-11-29 D S Sukiyanaa:Kk Apparatus for analyzing film thickness and composition at the same time
JP3124407B2 (en) * 1993-02-09 2001-01-15 セイコーインスツルメンツ株式会社 X-ray fluorescence film thickness meter
JP3889851B2 (en) * 1997-05-15 2007-03-07 日本政策投資銀行 Film thickness measurement method
JP3883267B2 (en) * 1997-10-01 2007-02-21 富士通株式会社 Structure analysis method of metal multilayer film by X-ray reflectivity measurement and fluorescent X-ray measurement, and standard sample and apparatus used therefor
JP2014048275A (en) * 2012-09-04 2014-03-17 Sharp Corp Off-set quantity calibration sample and film thickness measurement device

Also Published As

Publication number Publication date
JP2015179015A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6501230B2 (en) Multi-element simultaneous fluorescent X-ray analyzer and multi-element simultaneous fluorescent X-ray analysis method
KR101647857B1 (en) Spectrometer, spectrometry, and spectrometry program
WO2014034565A1 (en) Film thickness measurement device
US20180128679A1 (en) Method for compensating a spectrum drift in a spectrometer
JP2011133446A (en) Defect inspection device and defect inspection method of semiconductor substrate
JP5712778B2 (en) Method for measuring film thickness of SOI layer of SOI wafer
Lu et al. Analysis of boron in diamond with UV photoluminescence
JP2006201156A (en) Device and method for compensating temperature dependence of detector used for spectrometer
JP6617736B2 (en) Carbon concentration measurement method
JP6340223B2 (en) Method and apparatus for measuring impurity concentration in thin film
JP6520795B2 (en) Film thickness distribution measurement method
US20090229995A1 (en) Analysis of fluoride at low concentrations in acidic processing solutions
US10151718B2 (en) Quantitative analysis device for trace carbon and quantitative analysis method for trace carbon
JP2017125782A (en) Method for measuring film thickness distribution of wafer with thin film
WO2014038403A1 (en) Film thickness measuring device
JP4928501B2 (en) Liquid scintillation counter
JP5919146B2 (en) Film thickness measuring device
JP6357794B2 (en) X-ray diffractometer and sensitivity correction method for X-ray diffractometer
JP4146697B2 (en) Temperature measuring method and temperature measuring device
JP2019036661A (en) Method for measuring carbon concentration
US9080948B2 (en) Dynamic peak tracking in X-ray photoelectron spectroscopy measurement tool
JP6033723B2 (en) Method for evaluating compound semiconductors
RU2418306C1 (en) Method of correcting scintillation detector signals
JP2002340794A (en) Method for measuring infrared absorption of semiconductor wafer
JP2009002719A (en) Calibration method of angle of inclination of sample stage in secondary ion mass spectrometer and secondary ion mass spectrometric method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180514

R150 Certificate of patent or registration of utility model

Ref document number: 6340223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250