JP6335380B1 - Furnace wall repair method - Google Patents

Furnace wall repair method Download PDF

Info

Publication number
JP6335380B1
JP6335380B1 JP2017225441A JP2017225441A JP6335380B1 JP 6335380 B1 JP6335380 B1 JP 6335380B1 JP 2017225441 A JP2017225441 A JP 2017225441A JP 2017225441 A JP2017225441 A JP 2017225441A JP 6335380 B1 JP6335380 B1 JP 6335380B1
Authority
JP
Japan
Prior art keywords
pipe
repair
furnace wall
predetermined section
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017225441A
Other languages
Japanese (ja)
Other versions
JP2019095133A (en
Inventor
亀山 達也
達也 亀山
小山 智規
智規 小山
北田 昌司
昌司 北田
渡辺 大剛
大剛 渡辺
紘希 片渕
紘希 片渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017225441A priority Critical patent/JP6335380B1/en
Application granted granted Critical
Publication of JP6335380B1 publication Critical patent/JP6335380B1/en
Publication of JP2019095133A publication Critical patent/JP2019095133A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

【課題】ガス化装置やボイラ等の火炉壁に溶接で取り付けられた補修管の残留応力を低減することを目的とする。【解決手段】本発明の少なくとも一実施形態に係る火炉壁の補修方法は、複数の配管によって構成される火炉壁の補修方法であって、前記複数の配管における補修対象箇所を選定するステップと、前記補修対象箇所を含む前記配管の所定区間を切除するステップと、前記所定区間が切除された前記火炉壁に、曲部を有する補修管の両端部を溶接で取り付けるステップと、を備える。【選択図】図2An object of the present invention is to reduce the residual stress of a repair pipe attached by welding to a furnace wall of a gasifier or a boiler. A furnace wall repair method according to at least one embodiment of the present invention is a furnace wall repair method constituted by a plurality of pipes, the step of selecting a repair target portion in the plurality of pipes; Cutting a predetermined section of the pipe including the repair target portion, and attaching both ends of a repair pipe having a curved portion to the furnace wall from which the predetermined section has been cut by welding. [Selection] Figure 2

Description

本開示は、火炉壁の補修方法に関する。   The present disclosure relates to a method for repairing a furnace wall.

ボイラや石炭等の炭素含有固体燃料を部分燃焼させてガス化するガス化装置等では、火炉壁の加熱を抑制するために、火炉壁は、冷却媒体が通過する複数の配管と、各配管の間に設けられる複数のフィンとを有し、配管とフィンとが溶接等によって相互に接合されることで形成されている(特許文献1参照)。   In gasifiers that partially burn and gasify carbon-containing solid fuels such as boilers and coal, in order to suppress heating of the furnace wall, the furnace wall includes a plurality of pipes through which a cooling medium passes and each pipe. It has a plurality of fins provided therebetween, and the pipe and the fin are joined to each other by welding or the like (see Patent Document 1).

特開2010−254727号公報JP 2010-254727 A

火炉壁を構成する配管は、ガス化装置やボイラ等の運転時間の経過により減肉や亀裂等の損傷が生じることがある。このような場合には、減肉や亀裂等が生じた配管の全体を更新するのではなく、減肉や亀裂等を含む所定区間を切除し、所定区間が切除された火炉壁に補修管を溶接で取り付ける補修が行われることがある。   The piping that constitutes the furnace wall may be damaged, such as thinning or cracking, due to the passage of operating time of a gasifier or a boiler. In such a case, instead of renewing the entire pipe where the thinning or cracking has occurred, the predetermined section including the thinning or cracking is excised, and the repair pipe is attached to the furnace wall from which the predetermined section has been excised. Repair may be performed by welding.

しかしながら、所定区間が切除された火炉壁に補修管を溶接で取り付けると、補修管の寿命が当初の予測よりも短くなる場合があることに発明者らは気が付いた。
発明者らは、鋭意検討した結果、所定区間が切除された火炉壁に補修管を溶接で取り付けると、溶接後の温度低下により溶接部分が収縮することで補修管に引張応力が生じ、このようにして生じた引張応力が残留応力として残った状態でガス化装置やボイラ等が運転されると、補修管の寿命が短くなるおそれがあることを見出した。
However, the inventors have noticed that when a repair pipe is attached to a furnace wall with a predetermined section removed by welding, the life of the repair pipe may be shorter than originally predicted.
As a result of intensive studies, the inventors of the present invention have found that when a repair pipe is attached to a furnace wall with a predetermined section removed by welding, a tensile stress occurs in the repair pipe due to shrinkage of the weld due to a decrease in temperature after welding. It has been found that the life of the repair pipe may be shortened if the gasifier or the boiler is operated in a state where the tensile stress generated as described above remains as a residual stress.

上述の事情に鑑みて、本発明の少なくとも一実施形態は、火炉壁に溶接で取り付けられた補修管の残留応力を低減することを目的とする。   In view of the above circumstances, at least one embodiment of the present invention aims to reduce the residual stress of a repair pipe attached to a furnace wall by welding.

(1)本発明の少なくとも一実施形態に係る火炉壁の補修方法は、
複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管の所定区間を切除するステップと、
前記所定区間が切除された前記火炉壁に、曲部を有する補修管の両端部を溶接で取り付けるステップと、
を備える。
(1) A method for repairing a furnace wall according to at least one embodiment of the present invention includes:
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Cutting out a predetermined section of the pipe including the repair target portion;
Attaching both ends of a repair pipe having a curved portion to the furnace wall from which the predetermined section has been cut by welding;
Is provided.

上記(1)の方法によれば、所定区間が切除された火炉壁に、曲部を有する補修管の両端部を溶接で取り付ける。そのため、補修管の取り付け後に両端部の溶接部分の温度が低下して溶接部分が収縮すると、曲部が両端から引っ張られる。これにより、曲部の曲がりが伸ばされるように変形する。このように、曲部が伸ばされるように変形することで、補修管に生じる残留応力を低減できる。   According to the method of (1) above, both ends of the repair pipe having a curved portion are attached by welding to the furnace wall from which a predetermined section has been cut. Therefore, when the temperature of the welded portion at both ends decreases after the repair pipe is attached and the welded portion contracts, the curved portion is pulled from both ends. Thereby, it deform | transforms so that the bending of a music part may be extended. Thus, the residual stress which arises in a repair pipe | tube can be reduced by deform | transforming so that a curved part may be extended.

(2)幾つかの実施形態では、上記(1)の方法において、前記所定区間は、前記複数の配管における直管部分である。 (2) In some embodiments, in the method of (1), the predetermined section is a straight pipe portion in the plurality of pipes.

上記(2)の方法によれば、補修対象箇所を含む配管から所定区間として直管部分が切除される。そして、上記(1)のように、該所定区間が切除された火炉壁に、曲部を有する補修管の両端部が溶接で取り付けられる。そのため、補修管の取り付け後に両端部の溶接部分の温度が低下して溶接部分が収縮しても、曲部の曲がりが伸ばされるように変形することで、補修管に生じる残留応力を低減できる。   According to the method (2), the straight pipe portion is excised as a predetermined section from the pipe including the repair target portion. And as shown in said (1), the both ends of the repair pipe which has a curved part are attached to the furnace wall by which this predetermined area was excised by welding. Therefore, even if the temperature of the welded portion at both ends decreases after the repair tube is attached and the welded portion contracts, the residual stress generated in the repaired tube can be reduced by deforming so that the bending of the curved portion is extended.

(3)幾つかの実施形態では、上記(1)又は(2)の方法において、
前記補修管は、
前記補修管の一端側に形成される一端側曲部、
前記補修管の他端側に形成される他端側曲部、及び
前記一端側曲部と他端側曲部との間に形成される中間部、を有する第1補修管を含み、
前記補修管の両端部を溶接で取り付けるステップでは、前記中間部が炉外側に向かって突出するように前記所定区間が切除された前記火炉壁に前記第1補修管を取り付ける。
(3) In some embodiments, in the method of (1) or (2) above,
The repair pipe is
One end side bend formed on one end side of the repair pipe,
Including a first repair pipe having the other end side bent portion formed on the other end side of the repair pipe, and an intermediate portion formed between the one end side bent portion and the other end side bent portion,
In the step of attaching both ends of the repair pipe by welding, the first repair pipe is attached to the furnace wall from which the predetermined section has been cut so that the intermediate portion protrudes toward the outside of the furnace.

上記(3)の方法によれば、一端側曲部と他端側曲部とを有する第1補修管を所定区間が切除された火炉壁に取り付けるので、第1補修管の取り付け後に溶接部分の温度が低下して溶接部分が収縮しても、一端側曲部及び他端側曲部の曲がりが伸ばされるように変形することで、第1補修管に生じる残留応力を低減できる。また、上記(3)の方法によれば、中間部が炉外側に向かって突出するように所定区間が切除された火炉壁に第1補修管を取り付けるので、中間部が火炉の温度の影響を受け難くなる。また、上記(3)の方法によれば、中間部が炉外側に向かって突出するように所定区間が切除された火炉壁に第1補修管を取り付けるので、切除された所定区間が直管部分であっても、切除された所定区間に隣接する他の配管と、一端側曲部と他端側曲部とを有する第1補修管とが干渉しない。   According to the method of (3) above, the first repair pipe having the one end side bend and the other end bend is attached to the furnace wall from which a predetermined section has been cut. Even if the temperature is lowered and the welded portion contracts, the residual stress generated in the first repair pipe can be reduced by deforming so that the bending of the one end side bent portion and the other end side bent portion is extended. Also, according to the method (3), the first repair pipe is attached to the furnace wall whose predetermined section has been cut so that the intermediate portion protrudes toward the outside of the furnace, so that the intermediate portion has an influence on the temperature of the furnace. It becomes difficult to receive. Further, according to the method (3), the first repair pipe is attached to the furnace wall whose predetermined section is cut so that the intermediate portion protrudes toward the outside of the furnace. Even so, the other pipe adjacent to the cut out predetermined section does not interfere with the first repair pipe having the one end side curved portion and the other end side curved portion.

(4)幾つかの実施形態では、上記(1)の方法において、
前記補修対象箇所を選定するステップでは、前記配管における損耗度合いが規定の損耗度以上の箇所を前記補修対象箇所として選定し、
前記配管の所定区間を切除するステップでは、前記補修対象箇所を含む前記配管が曲管部分を含む配管であれば、該曲管部分の損耗度合いが前記規定の損耗度未満の場合であっても該曲管部分の少なくとも一部を含む区間を前記所定区間として設定し、該所定区間を切除する。
(4) In some embodiments, in the method of (1) above,
In the step of selecting the repair target location, a location where the degree of wear in the pipe is greater than or equal to a specified wear level is selected as the repair target location,
In the step of cutting out the predetermined section of the pipe, if the pipe including the repair target portion is a pipe including a curved pipe part, even if the degree of wear of the curved pipe part is less than the specified wear degree A section including at least a part of the curved pipe portion is set as the predetermined section, and the predetermined section is excised.

上記(4)の方法によれば、切除される所定区間に曲管部分の少なくとも一部を含めることで、上記曲管部分のうち上記所定区間に含まれる部分に相当する曲部を補修管に設けることができる。これにより、補修管の取り付け後に両端部の溶接部分の温度が低下して溶接部分が収縮しても、該曲部の曲がりが伸ばされるように変形することで、補修管に生じる残留応力を低減できる。   According to the method of (4) above, by including at least a part of the curved pipe portion in the predetermined section to be excised, the curved portion corresponding to the portion included in the predetermined section of the curved pipe portion is used as a repair pipe. Can be provided. As a result, even if the temperature of the welded part at both ends drops after the repair pipe is attached and the welded part shrinks, the bending of the curved part is deformed to be extended, thereby reducing the residual stress generated in the repaired pipe. it can.

(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの方法において、
前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後に前記補修管の両端部における前記溶接後の収縮によって前記補修管に生じる引張応力を低減するために、前記補修管の冷却、及び前記所定区間が切除された前記火炉壁の加熱の少なくとも一方を行う応力緩和策を実施するステップをさらに備える。
(5) In some embodiments, in any of the above methods (1) to (4),
In order to reduce the tensile stress generated in the repair pipe due to the shrinkage after the welding at both ends of the repair pipe after the repair pipe is attached to the furnace wall where the predetermined section is cut by welding, The method further includes the step of implementing a stress relaxation measure for performing at least one of cooling and heating the furnace wall from which the predetermined section is cut.

上記(5)の方法によれば、後述する応力緩和策をさらに実施するので、補修管に生じる残留応力をさらに低減できる。   According to the above method (5), since the stress relaxation measure described later is further implemented, the residual stress generated in the repair pipe can be further reduced.

(6)本発明の少なくとも一実施形態に係る火炉壁の補修方法は、
複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管の所定区間を切除するステップと、
前記所定区間が切除された前記火炉壁に補修管の両端部を溶接で取り付けるステップと、
前記補修管の両端部における前記溶接後の収縮によって前記補修管に生じる引張応力を低減するために、前記補修管の冷却、及び前記所定区間が切除された前記火炉壁の加熱、の少なくとも何れか一方を行う応力緩和策を実施するステップと、
を備える。
(6) A method for repairing a furnace wall according to at least one embodiment of the present invention includes:
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Cutting out a predetermined section of the pipe including the repair target portion;
Attaching both ends of the repair pipe to the furnace wall from which the predetermined section has been removed by welding;
At least one of cooling of the repair pipe and heating of the furnace wall from which the predetermined section has been cut in order to reduce tensile stress generated in the repair pipe due to shrinkage after welding at both ends of the repair pipe Implementing stress relief measures to do one of the following;
Is provided.

上記(6)の方法によれば、後述する応力緩和策を実施するので、補修管に生じる残留応力を低減できる。   According to the above method (6), since the stress relaxation measures described later are implemented, the residual stress generated in the repair pipe can be reduced.

(7)幾つかの実施形態では、上記(6)の方法において、
前記応力緩和策を実施するステップでは、前記補修管を冷却し、
前記補修管の両端部を溶接で取り付けるステップでは、前記応力緩和策を実施するステップで冷却された状態にある前記補修管を溶接で取り付ける。
(7) In some embodiments, in the method of (6) above,
In the step of implementing the stress relaxation measure, the repair pipe is cooled,
In the step of attaching both ends of the repair pipe by welding, the repair pipe that has been cooled in the step of implementing the stress relaxation measure is attached by welding.

上記(7)の方法によれば、冷却された状態にある補修管を溶接で取り付けるので、取り付け後に冷却されていた補修管の温度が上昇すると補修管が熱伸びする。これにより、補修管の両端部における溶接後の収縮を減少させることができるので、補修管に生じる残留応力を低減できる。   According to the above method (7), the repaired pipe in a cooled state is attached by welding, so that the repair pipe is thermally stretched when the temperature of the repaired pipe that has been cooled after the attachment rises. Thereby, since the shrinkage | contraction after welding in the both ends of a repair pipe | tube can be reduced, the residual stress which arises in a repair pipe | tube can be reduced.

(8)幾つかの実施形態では、上記(6)の方法において、
前記火炉壁は、隣接する配管同士を連結するフィンを含み、
前記応力緩和策を実施するステップでは、前記補修対象箇所を含む前記配管に隣接する隣接配管を含む前記火炉壁の所定範囲を加熱し、
前記補修管の両端部を溶接で取り付けるステップでは、前記応力緩和策を実施するステップで前記火炉壁の所定範囲を加熱した状態において、前記所定区間が切除された前記火炉壁に前記補修管を溶接で取り付ける。
(8) In some embodiments, in the method of (6) above,
The furnace wall includes fins connecting adjacent pipes,
In the step of implementing the stress relaxation measure, a predetermined range of the furnace wall including an adjacent pipe adjacent to the pipe including the repair target portion is heated,
In the step of attaching both ends of the repair pipe by welding, the repair pipe is welded to the furnace wall from which the predetermined section is cut in a state where the predetermined range of the furnace wall is heated in the step of implementing the stress relaxation measure. Attach with.

上記(8)の方法によれば、隣接する配管同士がフィンで連結されているので、補修対象箇所を含む配管に隣接する隣接配管を含む火炉壁の所定範囲を加熱することで隣接配管が熱伸びすると、所定区間が切除された火炉壁に残っている配管の端部間の距離が長くなる。この状態で補修管の両端部を溶接で取り付けた後、加熱していた所定範囲の温度が低下すると、隣接配管が収縮するので、所定区間が切除された火炉壁に残っていた配管の端部間の距離が短くなる。これにより、補修管の両端部における溶接後の収縮を減少させることができるので、補修管に生じる残留応力を低減できる。   According to the above method (8), since adjacent pipes are connected by fins, the adjacent pipes are heated by heating a predetermined range of the furnace wall including the adjacent pipes adjacent to the pipe including the repair target part. When extended, the distance between the ends of the pipes remaining on the furnace wall from which the predetermined section has been cut becomes longer. In this state, after attaching both ends of the repair pipe by welding, when the temperature of the predetermined range that was heated decreases, the adjacent pipe contracts, so the end of the pipe remaining on the furnace wall where the predetermined section was cut The distance between them becomes shorter. Thereby, since the shrinkage | contraction after welding in the both ends of a repair pipe | tube can be reduced, the residual stress which arises in a repair pipe | tube can be reduced.

(9)幾つかの実施形態では、上記(6)の方法において、前記応力緩和策を実施するステップでは、前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後の前記補修管を冷却し、熱応力によって引っ張り力を与えることで前記補修管を降伏させる。 (9) In some embodiments, in the method of (6), in the step of implementing the stress relaxation measure, the repair pipe is attached to the furnace wall from which the predetermined section is cut by welding. The repair pipe is cooled, and the repair pipe is yielded by applying a tensile force by thermal stress.

上記(9)の方法によれば、溶接で取り付けた後の補修管を冷却し、熱応力によって引っ張り力を与えることで補修管を降伏させるので、補修管の温度が常温に戻ると、補修管を降伏させる前と比べて補修管の残留応力が低下する。これにより、補修管に生じる残留応力を低減できる。   According to the method (9) above, the repair pipe after welding is cooled, and the repair pipe is yielded by applying a tensile force due to thermal stress. Therefore, when the temperature of the repair pipe returns to room temperature, the repair pipe The residual stress of the repair pipe is lower than before yielding. Thereby, the residual stress which arises in a repair pipe can be reduced.

(10)幾つかの実施形態では、上記(6)の方法において、前記応力緩和策を実施するステップでは、前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後、前記補修対象箇所を含む前記配管に隣接する隣接配管を含む前記火炉壁の所定範囲を加熱し、前記補修管に引っ張り力を与えることで前記補修管を降伏させる。 (10) In some embodiments, in the method of (6) above, in the step of implementing the stress relaxation measure, after the repair pipe is attached to the furnace wall from which the predetermined section is cut by welding, A predetermined range of the furnace wall including the adjacent pipe adjacent to the pipe including the repair target portion is heated, and a tensile force is applied to the repair pipe to yield the repair pipe.

上記(10)の方法によれば、補修管を溶接で取り付けた後、補修対象箇所を含む配管に隣接する隣接配管、すなわち補修管に隣接する隣接配管を含む火炉壁の所定範囲を加熱し、該所定範囲の熱伸びによって補修管に引っ張り力を与えることで補修管を降伏させるので、該所定範囲の温度が常温に戻ると、補修管を降伏させる前と比べて補修管の残留応力が低下する。これにより、補修管に生じる残留応力を低減できる。   According to the method of (10) above, after attaching the repair pipe by welding, the adjacent pipe adjacent to the pipe including the repair target portion, that is, the predetermined range of the furnace wall including the adjacent pipe adjacent to the repair pipe is heated, Since the repair pipe is yielded by applying a tensile force to the repair pipe by the thermal elongation of the predetermined range, when the temperature of the predetermined range returns to room temperature, the residual stress of the repair pipe is lower than before the yield of the repair pipe To do. Thereby, the residual stress which arises in a repair pipe can be reduced.

本発明の少なくとも一実施形態によれば、火炉壁に溶接で取り付けられた補修管の残留応力を低減できる。   According to at least one embodiment of the present invention, the residual stress of the repair pipe attached to the furnace wall by welding can be reduced.

幾つかの実施形態に係る火炉壁の補修方法が適用される、石炭ガス化炉等のガス化装置やボイラにおける火炉壁の一部を模式的に示す図であり、(a)は火炉壁を炉内側から見た図であり、(b)は(a)のB1−B1矢視断面図である。It is a figure which shows typically a part of furnace wall in gasification apparatuses, such as a coal gasification furnace, and a boiler to which the repair method of the furnace wall concerning some embodiments is applied, (a) It is the figure seen from the furnace inner side, (b) is B1-B1 arrow sectional drawing of (a). 幾つかの実施形態に係る火炉壁の補修方法における概略の流れを示すフローチャートである。It is a flowchart which shows the general | schematic flow in the repair method of the furnace wall which concerns on some embodiment. 補修対象配管から切除区間を切除した後の火炉壁の一部を模式的に示す図であり、(a)は火炉壁を炉内側から見た図であり、(b)は(a)のB3−B3矢視断面図である。It is a figure which shows typically a part of furnace wall after excising a cutting section from repair object piping, (a) is the figure which looked at the furnace wall from the furnace inner side, (b) is B3 of (a). -B3 arrow sectional drawing. 補修管を取り付けた後の火炉壁の一部を模式的に示す図であり、(a)は火炉壁を炉内側から見た図であり、(b)は(a)のB4−B4矢視断面図である。It is a figure which shows a part of furnace wall after attaching a repair pipe, (a) is the figure which looked at the furnace wall from the furnace inner side, (b) is B4-B4 arrow view of (a) It is sectional drawing. 補修管と、補修管の両隣の配管とをシールプレートで連結した後の火炉壁の一部を模式的に示す図であり、(a)は火炉壁を炉内側から見た図であり、(b)は(a)のB5−B5矢視断面図であり、(c)は(a)のC5−C5矢視断面図である。It is the figure which shows a part of the furnace wall after connecting a repair pipe and piping of the both sides of a repair pipe with a seal plate, (a) is the figure which looked at the furnace wall from the furnace inside, b) is a B5-B5 arrow sectional view of (a), and (c) is a C5-C5 arrow sectional view of (a). 開口部を有する火炉壁の一部を炉内側から見たときの模式的な図である。It is a typical figure when a part of furnace wall which has an opening part is seen from the furnace inner side. 他の実施形態に係る火炉壁の補修方法における概略の流れを示すフローチャートである。It is a flowchart which shows the general flow in the repair method of the furnace wall which concerns on other embodiment. 補修管の熱収縮について説明するための模式的な図である。It is a schematic diagram for demonstrating the thermal contraction of a repair pipe. 加熱範囲について説明する図である。It is a figure explaining a heating range. 補修管を冷却する様子を模式的に示す図である。It is a figure which shows a mode that a repair pipe | tube is cooled. 図1〜図6に示した幾つかの実施形態に係る火炉壁の補修方法に、火炉壁の補修方法の他の実施形態におけるステップS20で実施される応力緩和策を適用した場合の概略の流れを示すフローチャートである。Schematic flow when applying stress relaxation measures implemented in step S20 in another embodiment of the furnace wall repair method to the furnace wall repair method according to some embodiments shown in FIGS. It is a flowchart which shows.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.

図1は、幾つかの実施形態に係る火炉壁の補修方法が適用される、石炭ガス化炉等のガス化装置やボイラにおける火炉壁の一部を模式的に示す図であり、図1(a)は、火炉壁を炉内側から見た図であり、図1(b)は、図1(a)のB1−B1矢視断面図である。
火炉壁10は、冷却水としての給水や蒸気などの冷媒が流通する複数の配管11と、隣接する配管11同士を連結するフィン12とを有する。
FIG. 1 is a diagram schematically showing a part of a furnace wall in a gasifier such as a coal gasifier or a boiler to which a method for repairing a furnace wall according to some embodiments is applied. a) is a view of the furnace wall viewed from the inside of the furnace, and FIG. 1B is a cross-sectional view taken along arrow B1-B1 in FIG.
The furnace wall 10 includes a plurality of pipes 11 through which coolant such as water supply or steam as cooling water flows, and fins 12 that connect adjacent pipes 11 to each other.

火炉壁10を構成する配管11は、ガス化装置やボイラ等の運転時間の経過により減肉や亀裂等の損傷が生じることがある。このような場合には、減肉や亀裂等が生じた配管11の全体を更新するのではなく、以下で説明するように、減肉や亀裂等を含む所定区間を切除し、所定区間が切除された火炉壁10に補修管を溶接で取り付ける補修が行われることがある。   The piping 11 constituting the furnace wall 10 may be damaged such as thinning or cracking with the passage of operation time of a gasifier or a boiler. In such a case, instead of renewing the entire pipe 11 in which the thinning or cracking has occurred, the predetermined section including the thinning or cracking is excised as described below, and the predetermined section is cut off. Repair may be performed in which a repair pipe is welded to the furnace wall 10 that has been welded.

図2は、幾つかの実施形態に係る火炉壁の補修方法における概略の流れを示すフローチャートである。幾つかの実施形態に係る火炉壁の補修方法は、複数の配管11における補修対象箇所を選定するステップS1と、補修対象箇所を含む配管11の所定区間を切除するステップS3と、所定区間が切除された火炉壁10に、曲部を有する補修管の両端部を溶接で取り付けるステップS5とを備える。
すなわち、幾つかの実施形態に係る火炉壁の補修方法によれば、所定区間が切除された火炉壁10に、曲部を有する補修管の両端部を溶接で取り付ける。そのため、補修管の取り付け後に両端部の溶接部分の温度が低下して溶接部分が収縮すると、曲部が両端から引っ張られる。これにより、曲部の曲がりが伸ばされるように変形する。このように、曲部が伸ばされるように変形することで、補修管に生じる残留応力を低減できる。以下、詳細に説明する。
FIG. 2 is a flowchart showing a schematic flow in a method for repairing a furnace wall according to some embodiments. The furnace wall repair method according to some embodiments includes a step S1 for selecting a repair target portion in the plurality of pipes 11, a step S3 for cutting a predetermined section of the pipe 11 including the repair target portions, and a predetermined section being cut. Step S5 which attaches the both ends of the repair pipe which has a curved part to welding furnace wall 10 made by welding.
That is, according to the furnace wall repair method according to some embodiments, both ends of a repair pipe having a curved portion are attached to the furnace wall 10 from which a predetermined section is cut by welding. Therefore, when the temperature of the welded portion at both ends decreases after the repair pipe is attached and the welded portion contracts, the curved portion is pulled from both ends. Thereby, it deform | transforms so that the bending of a music part may be extended. Thus, the residual stress which arises in a repair pipe | tube can be reduced by deform | transforming so that a curved part may be extended. Details will be described below.

なお、以下の説明では、複数の配管11における補修対象箇所を選定するステップS1のことを補修対象箇所を選定するステップS1とも呼び、補修対象箇所を含む配管11の所定区間を切除するステップS3のことを所定区間を切除するステップS3とも呼び、所定区間が切除された火炉壁10に、曲部を有する補修管の両端部を溶接で取り付けるステップS5のことを補修管の両端部を溶接で取り付けるステップS5とも呼ぶ。   In the following description, step S1 for selecting a repair target portion in a plurality of pipes 11 is also called step S1 for selecting a repair target portion, and a predetermined section of the pipe 11 including the repair target portion is excised. This is also called step S3 for excising a predetermined section, and step S5 for attaching both ends of a repair pipe having a curved portion to the furnace wall 10 from which the predetermined section has been excised is attached to both ends of the repair pipe by welding. Also referred to as step S5.

補修対象箇所を選定するステップS1では、例えば事前に実施された探傷検査等の検査結果に基づいて、補修対象箇所を選定する。例えば、超音波探傷検査等によって、配管11における損耗度合いが規定の損耗度以上の箇所、例えば、配管11に補修が必要と判断される程度の減肉や亀裂等が存在する箇所を、補修対象箇所として選定する。説明の便宜上、以下の説明では、複数の配管11のうち、補修対象箇所が存在する配管11を、補修対象配管13と呼ぶ。
例えば、火炉壁10の一部を示す図1(a)において、並列している5本の配管11のうち、中央の配管11に補修対象箇所14が存在するものとする。すなわち、図1(a)において、5本の配管11のうち、中央の配管11が補修対象配管13である。
In step S1 of selecting a repair target location, a repair target location is selected based on, for example, an inspection result such as a flaw detection test performed in advance. For example, by ultrasonic inspection or the like, a portion where the degree of wear in the pipe 11 is equal to or higher than a specified wear degree, for example, a place where the pipe 11 is thinned or cracked to the extent that repair is determined to be necessary, is to be repaired. Select as the location. For convenience of explanation, in the following explanation, the pipe 11 in which the repair target portion exists among the plurality of pipes 11 is referred to as a repair target pipe 13.
For example, in FIG. 1A showing a part of the furnace wall 10, it is assumed that the repair target portion 14 exists in the central pipe 11 among the five pipes 11 arranged in parallel. That is, in FIG. 1A, the central pipe 11 among the five pipes 11 is the repair target pipe 13.

所定区間を切除するステップS3では、まず、補修対象配管13のうち、補修対象箇所14を含む所定区間を切除する区間として設定する。補修対象箇所14を含む所定区間を切除区間15とも呼ぶ。
例えば図1及び図3に示す実施形態では、補修対象箇所14を含む所定区間は、配管11における直管部分である。
In step S3 for excising the predetermined section, first, the predetermined section including the repair target portion 14 in the repair target pipe 13 is set as a section to be excised. A predetermined section including the repair target portion 14 is also referred to as an excision section 15.
For example, in the embodiment shown in FIGS. 1 and 3, the predetermined section including the repair target portion 14 is a straight pipe portion in the pipe 11.

そして、所定区間を切除するステップS3では、図3に示すように、補修対象配管13から切除区間15を切除する。図3は、補修対象配管13から切除区間15を切除した後の火炉壁10の一部を模式的に示す図であり、図3(a)は、火炉壁10を炉内側から見た図であり、図3(b)は、図3(a)のB3−B3矢視断面図である。
なお、所定区間を切除するステップS3では、切除区間15の周囲のフィン12も切除する。
And in step S3 which excises a predetermined area, as shown in FIG. 3, the excision area 15 is excised from the piping 13 for repair. FIG. 3 is a diagram schematically showing a part of the furnace wall 10 after the excision section 15 has been excised from the pipe 13 to be repaired, and FIG. 3A is a diagram of the furnace wall 10 viewed from the inside of the furnace. FIG. 3B is a cross-sectional view taken along arrow B3-B3 in FIG.
In step S3 for cutting a predetermined section, the fins 12 around the cutting section 15 are also cut.

両端部を溶接で取り付けるステップS5では、図4に示すように、所定区間が切除された火炉壁10に補修管20を取り付ける。図4は、補修管20を取り付けた後の火炉壁10の一部を模式的に示す図であり、図4(a)は、火炉壁10を炉内側から見た図であり、図4(b)は、図4(a)のB4−B4矢視断面図である。   In step S5 where both ends are attached by welding, as shown in FIG. 4, the repair pipe 20 is attached to the furnace wall 10 from which a predetermined section has been cut. FIG. 4 is a view schematically showing a part of the furnace wall 10 after the repair pipe 20 is attached, and FIG. 4A is a view of the furnace wall 10 as seen from the inside of the furnace. b) is a B4-B4 arrow sectional view of FIG.

補修管20は、両端部21の間に複数の曲部22と直部23とを備える曲管部分24を有する。以下の説明では、配管において湾曲している区間を曲部と呼び、配管において直線状に延在する区間を直部と呼ぶ。また、少なくとも1つの曲部を含む区間を曲管部分と呼び、曲管部分には少なくとも1つの直部を含んでいてもよいこととする。例えば、図4(b)に示す補修管20は、複数の曲部及び複数の直部を含む曲管部分である。すなわち、図4(b)に示す補修管20には、両端部21のうち図4(b)における上側の端部21aを一端とする第1直部23aと、第1直部23aの他端に一端が接続されている第1曲部22aと、第1曲部22aの他端に一端が接続されている第2直部23bと、第2直部23bの他端に一端が接続されている第2曲部22bと、第2曲部22bの他端に一端が接続されている第3直部23cとが含まれる。また、図4(b)に示す補修管20には、第3直部23cの他端に一端が接続されている第3曲部22cと、第3曲部22cの他端に一端が接続されている第4直部23dと、第4直部23dの他端に一端が接続されている第4曲部22dと、第4曲部22dの他端に一端が接続され、両端部21のうち図4(b)における下側の端部21bを他端とする第5直部23eとが含まれる。
また、配管における直部からなる区間のことを直管部分と呼ぶ。直管部分には、曲部は含まれない。
以下の説明では、第1曲部22a〜第4曲部22dの何れかを特定しない場合には、符号末尾のアルファベットの記載を省略し、単に曲部22と呼ぶ。同様に、第1直部23a〜第5直部23eの何れかを特定しない場合には、符号末尾のアルファベットの記載を省略し、単に直部23と呼ぶ。
The repair pipe 20 has a bent pipe portion 24 including a plurality of bent portions 22 and a straight portion 23 between both end portions 21. In the following description, a section that is curved in the pipe is referred to as a curved section, and a section that extends linearly in the pipe is referred to as a straight section. Further, a section including at least one curved portion is referred to as a curved pipe portion, and the curved pipe portion may include at least one straight portion. For example, the repair pipe 20 shown in FIG. 4B is a curved pipe portion including a plurality of curved portions and a plurality of straight portions. That is, in the repair pipe 20 shown in FIG. 4B, the first straight part 23a having one end of the upper end part 21a in FIG. 4B among the both end parts 21 and the other end of the first straight part 23a. One end is connected to the other end of the first straight portion 22a, the second straight portion 23b having one end connected to the other end of the first curved portion 22a, and the other end of the second straight portion 23b. And a third straight portion 23c having one end connected to the other end of the second curved portion 22b. 4B, one end is connected to the other end of the third curved portion 22c, and the third curved portion 22c has one end connected to the other end of the third straight portion 23c. The fourth straight portion 23d, one end connected to the other end of the fourth straight portion 23d, and one end connected to the other end of the fourth curved portion 22d. A fifth straight part 23e having the lower end part 21b in FIG. 4B as the other end is included.
Moreover, the section which consists of a straight part in piping is called a straight pipe part. The straight pipe portion does not include a curved portion.
In the following description, when any one of the first music part 22a to the fourth music part 22d is not specified, the description of the alphabet at the end of the code is omitted, and is simply referred to as the music part 22. Similarly, in the case where any one of the first straight part 23a to the fifth straight part 23e is not specified, the description of the alphabet at the end of the code is omitted, and is simply referred to as the straight part 23.

したがって、図4に示す実施形態では、補修管の両端部を溶接で取り付けるステップS5において、火炉壁10に残された補修対象配管13の上側の端部13aと補修管20の上側の端部21aとが溶接で接続され、火炉壁10に残された補修対象配管13の下側の端部13bと補修管20の下側の端部21bとが溶接で接続される。
すなわち、図1、図3及び図4に示す実施形態では、補修対象箇所14を含む補修対象配管13から所定区間としての切除区間15として直管部分が切除される。そして、該所定区間が切除された火炉壁10に、曲部を有する補修管20の両端部21が溶接で取り付けられる。そのため、補修管20の取り付け後に両端部21の溶接部分、より具体的には、補修対象配管13の上側の端部13aと補修管20の上側の端部21aとの溶接部分5a、及び、補修対象配管13の下側の端部13bと補修管20の下側の端部21bとの溶接部分5bの温度が低下して溶接部分が収縮しても、曲部22の曲がりが伸ばされるように変形することで、補修管20に生じる残留応力を低減できる。
Therefore, in the embodiment shown in FIG. 4, the upper end portion 13 a of the repair target pipe 13 left on the furnace wall 10 and the upper end portion 21 a of the repair pipe 20 are left in step S <b> 5 where both ends of the repair pipe are attached by welding. Are connected by welding, and the lower end 13b of the repair target pipe 13 left on the furnace wall 10 and the lower end 21b of the repair pipe 20 are connected by welding.
That is, in the embodiment shown in FIGS. 1, 3, and 4, a straight pipe portion is cut out as a cut section 15 as a predetermined section from the repair target pipe 13 including the repair target portion 14. And the both ends 21 of the repair pipe | tube 20 which has a curved part are attached to the furnace wall 10 by which this predetermined area was excised by welding. Therefore, after the repair pipe 20 is attached, the welded portions at both ends 21, more specifically, the welded portion 5 a between the upper end portion 13 a of the repair target pipe 13 and the upper end portion 21 a of the repair pipe 20, and repair Even if the temperature of the welded portion 5b between the lower end portion 13b of the target pipe 13 and the lower end portion 21b of the repair pipe 20 decreases and the welded portion contracts, the bending of the bent portion 22 is extended. By deforming, the residual stress generated in the repair pipe 20 can be reduced.

なお、図4に示す一実施形態では、補修管20は、補修管20の一端側に形成される一端側曲部25a、補修管20の他端側に形成される他端側曲部25b、及び、一端側曲部25aと他端側曲部25bとの間に形成される中間部26を有する。図4に示す補修管20を第1補修管20Aとも呼ぶ。第1補修管20Aの一端側曲部25aは例えば第1曲部22aであり、他端側曲部25bは例えば第4曲部22dである。第1補修管20Aの中間部26には、例えば、第2直部23bと、第2曲部22bと、第3直部23cと、第3曲部22cと、第4直部23dとが含まれる。
図4に示す実施形態では、補修管の両端部を溶接で取り付けるステップS5では、中間部26が炉外側に向かって突出するように所定区間が切除された火炉壁10に第1補修管20Aを取り付ける。
In one embodiment shown in FIG. 4, the repair pipe 20 includes one end side bent portion 25 a formed on one end side of the repair pipe 20, and the other end side bent portion 25 b formed on the other end side of the repair pipe 20. And it has the intermediate part 26 formed between the one end side curved part 25a and the other end side curved part 25b. The repair pipe 20 shown in FIG. 4 is also referred to as a first repair pipe 20A. The one end side bent portion 25a of the first repair pipe 20A is, for example, the first bent portion 22a, and the other end side bent portion 25b is, for example, the fourth bent portion 22d. The intermediate portion 26 of the first repair pipe 20A includes, for example, a second straight portion 23b, a second curved portion 22b, a third straight portion 23c, a third curved portion 22c, and a fourth straight portion 23d. It is.
In the embodiment shown in FIG. 4, in step S <b> 5 in which both ends of the repair pipe are attached by welding, the first repair pipe 20 </ b> A is attached to the furnace wall 10 whose predetermined section is cut so that the intermediate portion 26 protrudes toward the outside of the furnace. Install.

このように、一端側曲部25aと他端側曲部25bとを有する第1補修管20Aを所定区間が切除された火炉壁10に取り付けるので、第1補修管20Aの取り付け後に溶接部分5a,5bの温度が低下して溶接部分5a,5bが収縮しても、一端側曲部25a及び他端側曲部25bを含む各曲部22の曲がりが伸ばされるように変形することで、第1補修管20Aに生じる残留応力を低減できる。
また、図4に示す実施形態では、中間部26が炉外側に向かって突出するように所定区間が切除された火炉壁10に第1補修管20Aを取り付けるので、中間部26が火炉の温度の影響を受け難くなる。また、図4に示す実施形態では、中間部26が炉外側に向かって突出するように所定区間が切除された火炉壁10に第1補修管20Aを取り付けるので、切除された所定区間が直管部分であっても、切除された所定区間に隣接する他の配管11と、一端側曲部25aと他端側曲部25bとを有していて中間部26が突出する第1補修管20Aとが干渉しない。
Thus, since the 1st repair pipe 20A which has the one end side curved part 25a and the other end side curved part 25b is attached to the furnace wall 10 by which the predetermined area was excised, after welding of the 1st repair pipe 20A, the welding part 5a, Even when the temperature of 5b decreases and the welded portions 5a and 5b contract, the first curved portion 22 including the one end side bent portion 25a and the other end side bent portion 25b are deformed so that the bend is extended. Residual stress generated in the repair pipe 20A can be reduced.
In the embodiment shown in FIG. 4, the first repair pipe 20A is attached to the furnace wall 10 whose predetermined section is cut so that the intermediate part 26 protrudes toward the outside of the furnace. It becomes difficult to be affected. Further, in the embodiment shown in FIG. 4, the first repair pipe 20A is attached to the furnace wall 10 whose predetermined section is cut so that the intermediate portion 26 protrudes toward the outside of the furnace. Even if it is a part, it has the other piping 11 adjacent to the cut-out predetermined section, the 1st repair pipe 20A which has the one end side curved part 25a and the other end side curved part 25b, and the intermediate part 26 protrudes from Does not interfere.

なお、補修管の両端部を溶接で取り付けるステップS5では、補修管20の取り付け後、切除されたフィン12を修復する。具体的には、例えば図5に示すように、補修管20と、補修管20の両隣の配管11とをシールプレート16で連結する。これにより、炉内側の気密が保たれる。なお、図5は、補修管20と、補修管20の両隣の配管11とをシールプレート16で連結した後の火炉壁10の一部を模式的に示す図であり、図5(a)は、火炉壁を炉内側から見た図であり、図5(b)は、図5(a)のB5−B5矢視断面図であり、図5(c)は、図5(a)のC5−C5矢視断面図である。
なお、シールプレート16の炉内側の面、及び、補修管20の炉内側の外表面を耐火材で覆うようにしてもよい。
In addition, in step S5 which attaches the both ends of a repair pipe | tube with welding, after the repair pipe | tube 20 is attached, the excised fin 12 is restored. Specifically, for example, as shown in FIG. 5, the repair pipe 20 and the pipe 11 adjacent to the repair pipe 20 are connected by a seal plate 16. Thereby, airtightness inside a furnace is maintained. 5 is a diagram schematically showing a part of the furnace wall 10 after the repair pipe 20 and the pipe 11 adjacent to the repair pipe 20 are connected by the seal plate 16, and FIG. FIG. 5 (b) is a cross-sectional view taken along the line B5-B5 in FIG. 5 (a), and FIG. 5 (c) is a view of C5 in FIG. 5 (a). -C5 arrow sectional drawing.
The furnace inner surface of the seal plate 16 and the outer surface of the repair pipe 20 inside the furnace may be covered with a refractory material.

また、例えば図6に示すように、火炉壁10に不図示のバーナ等を配置するための開口部17を設けるなどの理由により、補修対象配管13が曲管部分を有する場合、所定区間を切除するステップS3では、該曲管部分の損耗度合いが規定の損耗度未満の場合であっても、該曲管部分の少なくとも一部を含む区間を切除区間15として設定し、該切除区間15を切除する。
なお、図6は、不図示のバーナ等を配置するための開口部17を有する火炉壁10の一部を炉内側から見たときの模式的な図である。
Further, for example, as shown in FIG. 6, when the repair target pipe 13 has a curved pipe portion due to the provision of an opening 17 for arranging a burner or the like (not shown) on the furnace wall 10, a predetermined section is cut off. In step S3, even when the degree of wear of the bent pipe portion is less than a predetermined wear degree, a section including at least a part of the bent pipe portion is set as the cut section 15, and the cut section 15 is cut off. To do.
FIG. 6 is a schematic view when a part of the furnace wall 10 having the opening 17 for arranging a burner or the like (not shown) is viewed from the inside of the furnace.

例えば、図6に示すように、曲管部分11cを有する配管11における直管部分11dに補修対象箇所14が存在する場合、曲管部分11cの損耗度合いが規定の損耗度未満の場合であっても、曲管部分11cの少なくとも一部を含む区間を切除区間15として設定する。図6に示す例では、曲管部分11cの図示下方の直管部分11dに補修対象箇所14が存在している。切除区間15の図示下方の端部15bは、補修対象箇所14の下方に設定される。切除区間15の図示上方の端部15aは、補修対象箇所14の上方であって、曲管部分11cの少なくとも1つの曲部22を含むように設定される。
このように切除区間15を設定することで、切除区間15に曲管部分11cの少なくとも一部を含めることで、曲管部分11cのうち切除区間15に含まれる曲部22に相当する曲部を補修管20に設けることができる。これにより、補修管20の取り付け後に両端部21(図5参照)の溶接部分5aの温度が低下して溶接部分5aが収縮しても、該曲部の曲がりが伸ばされるように変形することで、補修管20に生じる残留応力を低減できる。
なお、補修管20の形状を切除区間15の形状と同形状とすれば、補修管20が補修管20に隣接する配管11等と干渉することを防止できる。
For example, as shown in FIG. 6, when the repair target portion 14 is present in the straight pipe portion 11 d of the pipe 11 having the curved pipe portion 11 c, the wear degree of the bent pipe portion 11 c is less than a specified wear degree. Also, a section including at least a part of the curved pipe portion 11c is set as the cutting section 15. In the example shown in FIG. 6, the repair target location 14 exists in the straight pipe portion 11d below the curved pipe portion 11c. The lower end 15 b of the excision section 15 is set below the repair target location 14. An upper end 15a of the excision section 15 in the drawing is set above the repair target portion 14 and includes at least one bent portion 22 of the bent tube portion 11c.
By setting the excision section 15 in this way, by including at least a part of the curved pipe portion 11c in the excision section 15, a curved portion corresponding to the curved portion 22 included in the excised section 15 in the curved pipe portion 11c. The repair pipe 20 can be provided. As a result, even if the temperature of the welded portion 5a at both ends 21 (see FIG. 5) drops and the welded portion 5a contracts after the repair pipe 20 is attached, the bent portion of the bent portion is deformed to be extended. The residual stress generated in the repair pipe 20 can be reduced.
If the shape of the repair pipe 20 is the same as that of the excision section 15, the repair pipe 20 can be prevented from interfering with the pipe 11 adjacent to the repair pipe 20.

(火炉壁の補修方法の他の実施形態について)
火炉壁の補修方法の他の実施形態について説明する。
図7は、他の実施形態に係る火炉壁の補修方法における概略の流れを示すフローチャートである。他の実施形態に係る火炉壁の補修方法は、複数の配管11における補修対象箇所を選定するステップS1と、補修対象箇所を含む配管11の所定区間を切除するステップS3と、所定区間が切除された火炉壁10に補修管の両端部を溶接で取り付けるステップS11と、補修管の両端部における溶接後の収縮によって補修管に生じる引張応力を低減するために、補修管の冷却、及び所定区間が切除された火炉壁10の加熱、の少なくとも何れか一方を行う応力緩和策を実施するステップS20と、を備える。
火炉壁の補修方法の他の実施形態では、切除区間15が直管部分であり、補修管20が曲部22を有さないものとして説明する。
(About other embodiment of the repair method of a furnace wall)
Another embodiment of the furnace wall repair method will be described.
FIG. 7 is a flowchart showing a schematic flow in a furnace wall repair method according to another embodiment. In the furnace wall repair method according to another embodiment, a step S1 for selecting a repair target portion in the plurality of pipes 11, a step S3 for cutting a predetermined section of the pipe 11 including the repair target portion, and a predetermined section are cut off. Step S11 for attaching both ends of the repair pipe to the furnace wall 10 by welding, and cooling of the repair pipe and a predetermined section to reduce tensile stress generated in the repair pipe due to shrinkage after welding at both ends of the repair pipe. Step S20 for implementing a stress relaxation measure for performing at least one of heating of the cut furnace wall 10.
In another embodiment of the method for repairing a furnace wall, it is assumed that the excision section 15 is a straight pipe portion and the repair pipe 20 does not have a curved portion 22.

他の実施形態に係る火炉壁の補修方法において、図7に示した複数の配管11における補修対象箇所を選定するステップS1、及び、補修対象箇所を含む配管11の所定区間を切除するステップS3は、図2に示した複数の配管11における補修対象箇所を選定するステップS1、及び、補修対象箇所を含む配管11の所定区間を切除するステップS3と同じである。   In the furnace wall repairing method according to another embodiment, the step S1 for selecting a repair target portion in the plurality of pipes 11 shown in FIG. 7 and the step S3 for excising a predetermined section of the pipe 11 including the repair target portions are as follows: 2 is the same as step S1 for selecting a repair target portion in the plurality of pipes 11 shown in FIG. 2 and step S3 for cutting out a predetermined section of the pipe 11 including the repair target portion.

以下の説明では、所定区間が切除された火炉壁10に補修管の両端部を溶接で取り付けるステップS11のことを補修管の両端部を溶接で取り付けるステップS11とも呼ぶ。また、以下の説明では、補修管の両端部における溶接後の収縮によって補修管に生じる引張応力を低減するために、補修管の冷却、及び所定区間が切除された火炉壁10の加熱、の少なくとも何れか一方を行う応力緩和策を実施するステップS20のことを応力緩和策を実施するステップS20、又は単にステップS20とも呼ぶ。
なお、図示の便宜上、図7のフローチャートでは、補修管の両端部を溶接で取り付けるステップS11の後で応力緩和策を実施するステップS20を実施するかの如く記載されているが、後述するように、補修管の両端部を溶接で取り付けるステップS11の前に応力緩和策を実施するステップS20を実施してもよく、補修管の両端部を溶接で取り付けるステップS11の実施と並行して応力緩和策を実施するステップS20を実施してもよい。
In the following description, step S11 in which both ends of the repair pipe are attached to the furnace wall 10 from which a predetermined section has been removed by welding is also referred to as step S11 in which both ends of the repair pipe are attached by welding. Further, in the following description, in order to reduce the tensile stress generated in the repair pipe due to shrinkage after welding at both ends of the repair pipe, at least cooling of the repair pipe and heating of the furnace wall 10 from which a predetermined section is cut off are performed. Step S20 for implementing either one of the stress relaxation measures is also referred to as step S20 for implementing stress relaxation measures, or simply as step S20.
For convenience of illustration, in the flowchart of FIG. 7, it is described as if step S <b> 20 for performing stress relaxation measures is performed after step S <b> 11 for attaching both ends of the repair pipe by welding, as described later. In addition, step S20 for performing stress relaxation measures may be performed before step S11 for attaching both ends of the repair pipe by welding, and stress relaxation measures may be performed in parallel with the execution of step S11 for attaching both ends of the repair pipe by welding. You may implement step S20 which implements.

他の実施形態に係る火炉壁の補修方法では、後述する応力緩和策を実施するので、補修管20に生じる残留応力を低減できる。   In the method for repairing a furnace wall according to another embodiment, a stress relaxation measure described later is performed, so that residual stress generated in the repair pipe 20 can be reduced.

(一実施形態のステップS20で実施される応力緩和策について)
以下、応力緩和策を実施するステップS20で実施される応力緩和策について説明する。
一実施形態のステップS20で実施される応力緩和策は、火炉壁10への取り付け前の補修管20を冷却することである。例えば、図8に示すように、火炉壁10への取り付け前の補修管20を冷却すると、補修管20の全長が短くなる。なお、図8は、補修管20の熱収縮について説明するための模式的な図であり、破線は冷却前の補修管20の状態を示し、実線は、冷却後の補修管20の状態を示す。
溶接後の溶接部分5a,5bの収縮を考慮して、補修管20の長さを予め所定の長さだけ長くしておく。そして、ステップS20において、この補修管20を火炉壁10への取り付け前に冷却することで熱収縮させる。
線膨張係数をαとし、補修管20の冷却前の長さをL1とし、冷却前後の温度差を△T1とすると、補修管20の熱収縮量△L1は、次式(1)で表される。
△L1=L1×α×△T1 ・・・(1)
例えば、線膨張係数がα=1.33×10−5(1/K)であり、熱収縮量△L1を補修管の長さL1の0.1%とすると、冷却前後の温度差△T1は75(K)となる。
(About the stress relaxation measure implemented by step S20 of one Embodiment)
Hereinafter, the stress relaxation measure implemented by step S20 which implements a stress relaxation measure is demonstrated.
The stress relaxation measure implemented in step S <b> 20 of one embodiment is to cool the repair pipe 20 before being attached to the furnace wall 10. For example, as shown in FIG. 8, when the repair pipe 20 before being attached to the furnace wall 10 is cooled, the entire length of the repair pipe 20 is shortened. FIG. 8 is a schematic diagram for explaining the thermal contraction of the repair pipe 20, the broken line shows the state of the repair pipe 20 before cooling, and the solid line shows the state of the repair pipe 20 after cooling. .
Considering the shrinkage of the welded parts 5a and 5b after welding, the length of the repair pipe 20 is previously increased by a predetermined length. And in step S20, this repair pipe | tube 20 is heat-shrinked by cooling before the attachment to the furnace wall 10. FIG.
When the linear expansion coefficient is α, the length of the repair pipe 20 before cooling is L1, and the temperature difference before and after cooling is ΔT1, the heat shrinkage amount ΔL1 of the repair pipe 20 is expressed by the following equation (1). The
ΔL1 = L1 × α × ΔT1 (1)
For example, if the linear expansion coefficient is α = 1.33 × 10 −5 (1 / K) and the heat shrinkage ΔL1 is 0.1% of the length L1 of the repair pipe, the temperature difference ΔT1 before and after cooling. Is 75 (K).

そして、補修管の両端部を溶接で取り付けるステップS11では、応力緩和策を実施するステップS20で冷却された状態にある補修管20を溶接で取り付ける。
このように、冷却された状態にある補修管20を溶接で取り付けるので、取り付け後に冷却されていた補修管20の温度が上昇すると補修管20が熱伸びする。これにより、補修管20の両端部21における溶接後の収縮を減少させることができるので、補修管20に生じる残留応力を低減できる。
なお、補修管の両端部を溶接で取り付けるステップS11では、補修管20の取り付け後、切除されたフィン12を修復する。以下で説明する補修管の両端部を溶接で取り付けるステップS11においても同様である。
And in step S11 which attaches the both ends of a repair pipe by welding, the repair pipe 20 in the state cooled by step S20 which implements a stress relaxation measure is attached by welding.
Thus, since the repair pipe 20 in the cooled state is attached by welding, when the temperature of the repair pipe 20 cooled after the attachment rises, the repair pipe 20 is thermally expanded. Thereby, since the shrinkage | contraction after welding in the both ends 21 of the repair pipe | tube 20 can be reduced, the residual stress which arises in the repair pipe | tube 20 can be reduced.
In step S11 where both ends of the repair pipe are attached by welding, the cut fins 12 are repaired after the repair pipe 20 is attached. The same applies to step S11 where both ends of the repair pipe described below are attached by welding.

(他の実施形態のステップS20で実施される応力緩和策について)
また、他の実施形態のステップS20で実施される応力緩和策は、補修対象箇所14を含む補修対象配管13に隣接する配管11である隣接配管11Aを含む火炉壁10の所定範囲を加熱することである。他の実施形態のステップS20では、例えば、図9に示すように、隣接配管11Aを含む火炉壁10の所定範囲を加熱する。該所定範囲を加熱範囲18とも呼ぶ。なお、図9は、加熱範囲18について説明する図である。加熱範囲18については後述する。
(Regarding stress relaxation measures implemented in step S20 of other embodiments)
Moreover, the stress relaxation measure implemented by step S20 of other embodiment heats the predetermined range of the furnace wall 10 containing 11 A of adjacent piping which is the piping 11 adjacent to the repair object piping 13 containing the repair object location 14. FIG. It is. In step S20 of another embodiment, for example, as shown in FIG. 9, a predetermined range of the furnace wall 10 including the adjacent pipe 11A is heated. The predetermined range is also called a heating range 18. FIG. 9 is a diagram illustrating the heating range 18. The heating range 18 will be described later.

上述したように、隣接する配管11同士がフィン12で連結されているので、加熱範囲18を加熱することで加熱範囲18が熱伸びすると、火炉壁10に残された補修対象配管13の上側の端部13aと下側の端部13bとの距離が長くなる。
なお、加熱範囲18の熱伸び量△L2は、線膨張係数をαとし、配管11の延在方向に沿った加熱範囲18の長さをL2とし、加熱前後の温度差を△T2とすると、次式(2)で表される。
△L2=L2×α×△T2 ・・・(2)
例えば、線膨張係数がα=1.33×10−5(1/K)であり、熱伸び量△L2を配管11の延在方向に沿った加熱範囲18の長さL2の0.1%とすると、加熱前後の温度差△Tは75(K)となる。
As described above, since the adjacent pipes 11 are connected to each other by the fins 12, when the heating range 18 is thermally expanded by heating the heating range 18, the upper side of the pipe 13 to be repaired left on the furnace wall 10. The distance between the end portion 13a and the lower end portion 13b is increased.
The thermal expansion amount ΔL2 of the heating range 18 is α, where the linear expansion coefficient is α, the length of the heating range 18 along the extending direction of the pipe 11 is L2, and the temperature difference before and after heating is ΔT2. It is represented by the following formula (2).
ΔL2 = L2 × α × ΔT2 (2)
For example, the linear expansion coefficient is α = 1.33 × 10 −5 (1 / K), and the thermal elongation amount ΔL2 is 0.1% of the length L2 of the heating range 18 along the extending direction of the pipe 11. Then, the temperature difference ΔT before and after heating is 75 (K).

加熱範囲18における配管11の延在方向に沿った範囲は、例えば、図9における上下方向の位置で言えば、補修対象配管13の上側の端部13aと同じ位置から、下側の端部13bと同じ位置までの間の範囲とされる。この場合、配管11の延在方向に沿った加熱範囲18の長さL2は、補修対象配管13の上側の端部13aと下側の端部13bとの距離と等しい。
なお、隣接する配管11同士は、フィン12によって連結されているので、加熱範囲18の一部に熱が加えられると、伝熱によってその周囲も加熱されることとなる。例えば、隣接配管11Aを直接加熱しなくても、隣接配管11Aの隣の配管11を加熱することで、フィン12を介して隣接配管11Aにも熱が伝わる。
The range along the extending direction of the pipe 11 in the heating range 18 is, for example, the position in the vertical direction in FIG. 9, and the lower end 13b from the same position as the upper end 13a of the pipe 13 to be repaired. And the same range. In this case, the length L2 of the heating range 18 along the extending direction of the pipe 11 is equal to the distance between the upper end 13a and the lower end 13b of the pipe 13 to be repaired.
In addition, since adjacent piping 11 is connected by the fin 12, if heat is applied to a part of the heating range 18, the periphery will also be heated by heat transfer. For example, even if the adjacent pipe 11A is not directly heated, the heat is transmitted to the adjacent pipe 11A through the fins 12 by heating the pipe 11 adjacent to the adjacent pipe 11A.

溶接後の溶接部分5a,5bの収縮を考慮して、補修管20の長さを予め所定の長さだけ長くしておく。そして、加熱範囲18を加熱した状態で、補修管の両端部を溶接で取り付けるステップS11を実施して補修管20の両端部21を溶接で取り付ける。その後、加熱範囲18の加熱を止め、加熱範囲18の温度が低下すると、加熱範囲18が収縮するので、補修対象配管13の上側の端部13aと下側の端部13bとの距離もが短くなる。これにより、補修管20の両端部21における溶接後の収縮を減少させることができるので、補修管20に生じる残留応力を低減できる。   Considering the shrinkage of the welded parts 5a and 5b after welding, the length of the repair pipe 20 is previously increased by a predetermined length. And in the state which heated the heating range 18, step S11 which attaches the both ends of a repair pipe by welding is implemented, and the both ends 21 of the repair pipe 20 are attached by welding. After that, when the heating of the heating range 18 is stopped and the temperature of the heating range 18 decreases, the heating range 18 contracts, so the distance between the upper end 13a and the lower end 13b of the repair target pipe 13 is also short. Become. Thereby, since the shrinkage | contraction after welding in the both ends 21 of the repair pipe | tube 20 can be reduced, the residual stress which arises in the repair pipe | tube 20 can be reduced.

(さらに他の実施形態のステップS20で実施される応力緩和策について)
また、さらに他の実施形態のステップS20で実施される応力緩和策は、所定区間が切除された火炉壁10に溶接で取り付けた後の補修管20を冷却し、熱応力によって引っ張り力を与えることで補修管20を降伏させることである。
補修管の両端部を溶接で取り付けるステップS11を実施して補修管20の両端部21を溶接で取り付けた後、例えば、図10に示すように、補修管20を冷却する。図10は、補修管20を含む冷却領域31を冷却する様子を模式的に示す図である。冷却領域31は、例えばドライアイス等の冷媒により冷却される領域である。冷却領域31は端部13aおよび13bを含まない領域とすることも可能である。
(About the stress relaxation measure implemented by step S20 of other embodiment)
In addition, the stress relaxation measure implemented in step S20 of still another embodiment is to cool the repair pipe 20 after being welded to the furnace wall 10 from which a predetermined section has been cut, and to give a tensile force due to thermal stress. This is to yield the repair pipe 20.
After performing step S11 of attaching both ends of the repair pipe by welding and attaching both ends 21 of the repair pipe 20 by welding, the repair pipe 20 is cooled, for example, as shown in FIG. FIG. 10 is a diagram schematically illustrating the cooling of the cooling region 31 including the repair pipe 20. The cooling area 31 is an area cooled by a refrigerant such as dry ice. The cooling region 31 may be a region that does not include the end portions 13a and 13b.

このように、補修管20を冷却すると補修管20は熱収縮によって収縮しようとするが、補修管20は、その上下に接続されている配管11によって両端部21が拘束されている。そのため、補修管20には熱応力により補修管20の延在方向に沿って引っ張り力が与えられる。このようにして補修管20に作用する引張応力が補修管20の降伏点を超えると、補修管20が降伏するので、補修管20の温度が常温に戻った時の補修管20の残留応力が補修管20を降伏させる前と比べて低下する。これにより、補修管20に生じる残留応力を低減できる。   As described above, when the repair pipe 20 is cooled, the repair pipe 20 tends to shrink due to heat shrinkage, but both ends 21 of the repair pipe 20 are constrained by the pipes 11 connected to the upper and lower sides thereof. Therefore, a tensile force is given to the repair pipe 20 along the extending direction of the repair pipe 20 due to thermal stress. When the tensile stress acting on the repair pipe 20 exceeds the yield point of the repair pipe 20 in this way, the repair pipe 20 yields, so the residual stress of the repair pipe 20 when the temperature of the repair pipe 20 returns to room temperature. Compared to before the repair pipe 20 yields. Thereby, the residual stress generated in the repair pipe 20 can be reduced.

以上の場合は補修管20を冷却する場合の例を示したが、これ以外に補修管20周辺を加熱することによって、補修管20を降伏させ、補修管20周辺の温度が常温に戻ったときの補修管20の残留応力を低減させることができる。
すなわち、応力緩和策として、補修管20を所定区間が切除された火炉壁10に溶接で取り付けた後、補修対象箇所14を含む補修対象配管13に隣接する隣接配管11A(図9参照)を含む火炉壁10の所定範囲を加熱し、補修管20に引っ張り力を与えることで補修管20を降伏させてもよい。なお、該所定範囲は、例えば図9で示した加熱範囲18である。
このように、補修管20を溶接で取り付けた後、補修管20に隣接する隣接配管11Aを含む火炉壁10の所定範囲(加熱範囲18)を加熱することで、加熱範囲18の熱伸びによって補修管20に引っ張り力を与えて補修管20を降伏させることができる。加熱範囲18の温度が常温に戻ると、補修管20を降伏させる前と比べて補修管20の残留応力が低下する。これにより、補修管20に生じる残留応力を低減できる。
In the above case, an example in which the repair pipe 20 is cooled has been shown. However, when the periphery of the repair pipe 20 is heated, the repair pipe 20 is yielded and the temperature around the repair pipe 20 returns to room temperature. The residual stress of the repair pipe 20 can be reduced.
That is, as a stress relaxation measure, after the repair pipe 20 is attached to the furnace wall 10 with a predetermined section removed by welding, an adjacent pipe 11A (see FIG. 9) adjacent to the repair target pipe 13 including the repair target portion 14 is included. The repair tube 20 may be yielded by heating a predetermined range of the furnace wall 10 and applying a tensile force to the repair tube 20. The predetermined range is, for example, the heating range 18 shown in FIG.
As described above, after the repair pipe 20 is attached by welding, the predetermined range (heating range 18) of the furnace wall 10 including the adjacent pipe 11A adjacent to the repair pipe 20 is heated, so that the repair is performed by the thermal elongation of the heating range 18. The repair pipe 20 can be yielded by applying a pulling force to the pipe 20. When the temperature of the heating range 18 returns to room temperature, the residual stress of the repair pipe 20 is reduced as compared to before the repair pipe 20 is yielded. Thereby, the residual stress generated in the repair pipe 20 can be reduced.

以上、火炉壁の補修方法の他の実施形態について、切除区間15が直管部分であり、補修管20が曲部22を有さないものとして説明した。しかし、切除区間15に曲部22が含まれていてもよく、補修管20が曲部22を有していてもよい。すなわち、火炉壁の補修方法の他の実施形態におけるステップS20で実施される応力緩和策は、図1〜図6に示した幾つかの実施形態に係る火炉壁の補修方法にも適用できる。図11は、図1〜図6に示した幾つかの実施形態に係る火炉壁の補修方法に、火炉壁の補修方法の他の実施形態におけるステップS20で実施される応力緩和策を適用した場合の概略の流れを示すフローチャートである。この火炉壁の補修方法は、図2に示した補修対象箇所を選定するステップS1、所定区間を切除するステップS3、及び補修管の両端部を溶接で取り付けるステップS5に加えて、応力緩和策を実施するステップS30を備える。   As mentioned above, about other embodiment of the repair method of the furnace wall, the excision area 15 was demonstrated as what is a straight pipe | tube part, and the repair pipe | tube 20 does not have the curved part 22. FIG. However, the cut section 15 may include the curved portion 22, and the repair pipe 20 may have the curved portion 22. That is, the stress relaxation measure implemented in step S20 in another embodiment of the furnace wall repair method can also be applied to the furnace wall repair methods according to some embodiments shown in FIGS. FIG. 11 shows a case where the stress relaxation measure implemented in step S20 in another embodiment of the furnace wall repair method is applied to the furnace wall repair method according to some embodiments shown in FIGS. It is a flowchart which shows the outline flow of. This furnace wall repair method includes a stress relaxation measure in addition to step S1 for selecting a repair target location shown in FIG. 2, step S3 for cutting a predetermined section, and step S5 for attaching both ends of the repair pipe by welding. Step S30 is provided.

応力緩和策を実施するステップS30では、補修管20を所定区間が切除された火炉壁10に溶接で取り付けた後に補修管20の両端部21における溶接後の収縮によって補修管20に生じる引張応力を低減するために、補修管20の冷却、及び所定区間が切除された火炉壁10の加熱の少なくとも一方を行う応力緩和策を実施する。   In step S30 in which stress relaxation measures are implemented, the tensile stress generated in the repair pipe 20 due to shrinkage after welding at both ends 21 of the repair pipe 20 after the repair pipe 20 is attached to the furnace wall 10 with a predetermined section removed by welding. In order to reduce the stress, a stress relaxation measure is performed in which at least one of cooling of the repair pipe 20 and heating of the furnace wall 10 from which a predetermined section is cut is performed.

なお、図示の便宜上、図11のフローチャートでは、補修管の両端部を溶接で取り付けるステップS5の後で応力緩和策を実施するステップS30を実施するかの如く記載されているが、上述した図7のフローチャートに係る実施形態と同様に、補修管の両端部を溶接で取り付けるステップS5の前に応力緩和策を実施するステップS30を実施してもよく、補修管の両端部を溶接で取り付けるステップS5の実施と並行して応力緩和策を実施するステップS30を実施してもよい。   For convenience of illustration, in the flowchart of FIG. 11, it is described as if step S <b> 30 for implementing stress relaxation measures is performed after step S <b> 5 for attaching both ends of the repair pipe by welding. As in the embodiment according to the flowchart, step S30 of implementing stress relaxation measures may be performed before step S5 of attaching both ends of the repair pipe by welding, and step S5 of attaching both ends of the repair pipe by welding. In parallel with the implementation of step S30, step S30 of implementing a stress relaxation measure may be performed.

すなわち、応力緩和策を実施するステップS30では、上述したように、火炉壁10への取り付け前の補修管20を冷却してもよい。そして、補修管の両端部を溶接で取り付けるステップS5では、応力緩和策を実施するステップS30で冷却された状態にある補修管20を溶接で取り付けるようにしてもよい。
また、応力緩和策を実施するステップS30では、上述したように、加熱範囲18を加熱してもよい。そして、加熱範囲18を加熱した状態で、補修管の両端部を溶接で取り付けるステップS5を実施して補修管20の両端部21を溶接で取り付けるようにしてもよい。
また、応力緩和策を実施するステップS30では、上述したように、所定区間が切除された火炉壁10に溶接で取り付けた後の補修管20を冷却し、熱応力によって引っ張り力を与えることで補修管20を降伏させてもよい。
このように、応力緩和策を実施するステップS30を実施することで、補修管20に生じる残留応力をさらに低減できる。
That is, in step S30 for implementing the stress relaxation measure, the repair pipe 20 before being attached to the furnace wall 10 may be cooled as described above. And in step S5 which attaches the both ends of a repair pipe by welding, you may make it attach the repair pipe 20 in the state cooled by step S30 which implements a stress relaxation measure by welding.
Further, in step S30 for implementing the stress relaxation measure, the heating range 18 may be heated as described above. And in the state which heated the heating range 18, step S5 which attaches the both ends of a repair pipe by welding may be implemented, and you may make it attach the both ends 21 of the repair pipe 20 by welding.
Moreover, in step S30 which implements a stress relaxation measure, as mentioned above, the repair pipe 20 after being welded to the furnace wall 10 from which a predetermined section has been cut is cooled and repaired by applying a tensile force due to thermal stress. The tube 20 may yield.
Thus, the residual stress which arises in the repair pipe | tube 20 can further be reduced by implementing step S30 which implements a stress relaxation measure.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、図4(b)に示した補修管20は、第1曲部22a〜第4曲部22dと第1直部23a〜第5直部23eとを有するが、第1直部23a〜第5直部23eの少なくとも何れか一つを有していなくてもよい。
また、例えば、図6において、切除区間15を曲管部分11cの1つの曲部22を含むように設定したが、切除区間15を曲管部分11cの全体を含むように設定してもよい。
The present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.
For example, the repair pipe 20 shown in FIG. 4B has a first curved portion 22a to a fourth curved portion 22d and a first straight portion 23a to a fifth straight portion 23e, but the first straight portion 23a to the second straight portion 23e. At least one of the five straight portions 23e may not be provided.
Further, for example, in FIG. 6, the excision section 15 is set so as to include one curved portion 22 of the curved pipe portion 11c, but the excision section 15 may be set so as to include the entire curved pipe portion 11c.

5a,5b 溶接部分
10 火炉壁
11 配管
12 フィン
13 補修対象配管
14 補修対象箇所
15 切除区間
20 補修管
21 両端部
20A 第1補修管
25a 一端側曲部
25b 他端側曲部
26 中間部
5a, 5b Welded part 10 Furnace wall 11 Pipe 12 Fin 13 Repair target pipe 14 Repair target part 15 Cutting section 20 Repair pipe 21 Both ends 20A First repair pipe 25a One end side bent part 25b The other end side bent part 26 Middle part

Claims (10)

複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管である補修対象管の所定区間を切除するステップと、
前記所定区間が切除された前記補修対象管に、曲部を有する補修管の両端部を溶接で取り付けるステップと、
を備え
前記所定区間は、前記補修対象管における直管部分の一部であり、
前記補修管は、
前記補修対象管の上側の端部に取り付けられる端部を一端とする上側直部であって、前記補修対象管における前記直管部分の長手方向に沿って延在する上側直部と、
前記補修対象管の下側の端部に取り付けられる端部を他端とする下側直部であって、前記補修対象管における前記直管部分の長手方向に沿って延在する下側直部と、
前記上側直部の他端と前記下側直部の一端との間に、前記上側直部および前記下側直部と一体的に形成されている複数の曲部と、を含む、
火炉壁の補修方法。
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Excising a predetermined section of the pipe to be repaired, which is the pipe including the repair target part;
Attaching the both ends of the repair pipe having a curved portion to the repair target pipe from which the predetermined section has been removed by welding; and
Equipped with a,
The predetermined section is a part of a straight pipe portion in the repair target pipe,
The repair pipe is
An upper straight portion having an end attached to an upper end portion of the pipe to be repaired as one end, and an upper straight portion extending along a longitudinal direction of the straight pipe portion in the pipe to be repaired;
A lower straight part having an end attached to the lower end of the pipe to be repaired as the other end, and extending along a longitudinal direction of the straight pipe part in the pipe to be repaired When,
A plurality of curved portions formed integrally with the upper straight portion and the lower straight portion between the other end of the upper straight portion and one end of the lower straight portion;
How to repair the furnace wall.
複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管の所定区間を切除するステップと、
前記所定区間が切除された前記火炉壁に、曲部を有する補修管の両端部を溶接で取り付けるステップと、
を備え
前記補修対象箇所を選定するステップでは、前記配管における損耗度合いが規定の損耗度以上の箇所を前記補修対象箇所として選定し、
前記配管の所定区間を切除するステップでは、前記補修対象箇所を含む前記配管が曲管部分を含む配管であれば、該曲管部分の損耗度合いが前記規定の損耗度未満の場合であっても該曲管部分の少なくとも一部を含む区間を前記所定区間として設定し、該所定区間を切除する
火炉壁の補修方法。
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Cutting out a predetermined section of the pipe including the repair target portion;
Attaching both ends of a repair pipe having a curved portion to the furnace wall from which the predetermined section has been cut by welding;
Equipped with a,
In the step of selecting the repair target location, a location where the degree of wear in the pipe is greater than or equal to a specified wear level is selected as the repair target location,
In the step of cutting out the predetermined section of the pipe, if the pipe including the repair target portion is a pipe including a curved pipe part, even if the degree of wear of the curved pipe part is less than the specified wear degree A method for repairing a furnace wall, wherein a section including at least a part of the curved pipe portion is set as the predetermined section, and the predetermined section is excised .
複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管の所定区間を切除するステップと、
前記所定区間が切除された前記火炉壁に、曲部を有する補修管の両端部を溶接で取り付けるステップと、
を備え
前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後に前記補修管の両端部における前記溶接後の収縮によって前記補修管に生じる引張応力を低減するために、前記補修管の冷却、及び前記所定区間が切除された前記火炉壁の加熱の少なくとも一方を行う応力緩和策を実施するステップをさらに備える
火炉壁の補修方法。
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Cutting out a predetermined section of the pipe including the repair target portion;
Attaching both ends of a repair pipe having a curved portion to the furnace wall from which the predetermined section has been cut by welding;
Equipped with a,
In order to reduce the tensile stress generated in the repair pipe due to the shrinkage after the welding at both ends of the repair pipe after the repair pipe is attached to the furnace wall where the predetermined section is cut by welding, The furnace wall repairing method further comprising the step of implementing a stress relaxation measure for performing at least one of cooling and heating the furnace wall from which the predetermined section has been cut .
前記所定区間は、前記複数の配管における直管部分である
請求項3に記載の火炉壁の補修方法。
The predetermined section is a straight pipe portion in the plurality of pipes.
The method for repairing a furnace wall according to claim 3 .
前記補修管は、
前記補修管の一端側に形成される一端側曲部、
前記補修管の他端側に形成される他端側曲部、及び
前記一端側曲部と他端側曲部との間に形成される中間部、を有する第1補修管を含み、
前記補修管の両端部を溶接で取り付けるステップでは、前記中間部が炉外側に向かって突出するように前記所定区間が切除された前記火炉壁に前記第1補修管を取り付ける
請求項3又は4に記載の火炉壁の補修方法。
The repair pipe is
One end side bend formed on one end side of the repair pipe,
Including a first repair pipe having the other end side bent portion formed on the other end side of the repair pipe, and an intermediate portion formed between the one end side bent portion and the other end side bent portion,
In the step of attaching both ends of the repair pipe by welding, the first repair pipe is attached to the furnace wall from which the predetermined section has been cut so that the intermediate portion protrudes toward the outside of the furnace.
The method for repairing a furnace wall according to claim 3 or 4 .
複数の配管によって構成される火炉壁の補修方法であって、
前記複数の配管における補修対象箇所を選定するステップと、
前記補修対象箇所を含む前記配管の所定区間を切除するステップと、
前記所定区間が切除された前記火炉壁に補修管の両端部を溶接で取り付けるステップと、
前記補修管の両端部における前記溶接後の収縮によって前記補修管に生じる引張応力を低減するために、前記補修管の冷却、及び前記所定区間が切除された前記火炉壁の加熱、の少なくとも何れか一方を行う応力緩和策を実施するステップと、
を備える火炉壁の補修方法。
A method for repairing a furnace wall composed of a plurality of pipes,
Selecting a repair target location in the plurality of pipes;
Cutting out a predetermined section of the pipe including the repair target portion;
Attaching both ends of the repair pipe to the furnace wall from which the predetermined section has been removed by welding;
At least one of cooling of the repair pipe and heating of the furnace wall from which the predetermined section has been cut in order to reduce tensile stress generated in the repair pipe due to shrinkage after welding at both ends of the repair pipe Implementing stress relief measures to do one of the following;
A method for repairing a furnace wall.
前記応力緩和策を実施するステップでは、前記補修管を冷却し、
前記補修管の両端部を溶接で取り付けるステップでは、前記応力緩和策を実施するステップで冷却された状態にある前記補修管を溶接で取り付ける
請求項6に記載の火炉壁の補修方法。
In the step of implementing the stress relaxation measure, the repair pipe is cooled,
The method for repairing a furnace wall according to claim 6, wherein in the step of attaching both ends of the repair pipe by welding, the repair pipe that has been cooled in the step of implementing the stress relaxation measure is attached by welding.
前記火炉壁は、隣接する配管同士を連結するフィンを含み、
前記応力緩和策を実施するステップでは、前記補修対象箇所を含む前記配管に隣接する隣接配管を含む前記火炉壁の所定範囲を加熱し、
前記補修管の両端部を溶接で取り付けるステップでは、前記応力緩和策を実施するステップで前記火炉壁の所定範囲を加熱した状態において、前記所定区間が切除された前記火炉壁に前記補修管を溶接で取り付ける
請求項6に記載の火炉壁の補修方法。
The furnace wall includes fins connecting adjacent pipes,
In the step of implementing the stress relaxation measure, a predetermined range of the furnace wall including an adjacent pipe adjacent to the pipe including the repair target portion is heated,
In the step of attaching both ends of the repair pipe by welding, the repair pipe is welded to the furnace wall from which the predetermined section is cut in a state where the predetermined range of the furnace wall is heated in the step of implementing the stress relaxation measure. The method for repairing a furnace wall according to claim 6, wherein the furnace wall is attached at a step.
前記応力緩和策を実施するステップでは、前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後の前記補修管を冷却し、熱応力によって引っ張り力を与えることで前記補修管を降伏させる
請求項6に記載の火炉壁の補修方法。
In the step of implementing the stress relaxation measure, the repair pipe is cooled by attaching the repair pipe to the furnace wall from which the predetermined section has been cut, and a tensile force is applied by thermal stress to thereby provide the repair pipe. The method for repairing a furnace wall according to claim 6, wherein
前記応力緩和策を実施するステップでは、前記補修管を前記所定区間が切除された前記火炉壁に溶接で取り付けた後、前記補修対象箇所を含む前記配管に隣接する隣接配管を含む前記火炉壁の所定範囲を加熱し、前記補修管に引っ張り力を与えることで前記補修管を降伏させる
請求項6に記載の火炉壁の補修方法。
In the step of implementing the stress relaxation measure, after the repair pipe is attached to the furnace wall where the predetermined section is cut by welding, the furnace wall including the adjacent pipe adjacent to the pipe including the repair target portion The furnace wall repair method according to claim 6, wherein the repair pipe is yielded by heating a predetermined range and applying a tensile force to the repair pipe.
JP2017225441A 2017-11-24 2017-11-24 Furnace wall repair method Active JP6335380B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225441A JP6335380B1 (en) 2017-11-24 2017-11-24 Furnace wall repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225441A JP6335380B1 (en) 2017-11-24 2017-11-24 Furnace wall repair method

Publications (2)

Publication Number Publication Date
JP6335380B1 true JP6335380B1 (en) 2018-05-30
JP2019095133A JP2019095133A (en) 2019-06-20

Family

ID=62236438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225441A Active JP6335380B1 (en) 2017-11-24 2017-11-24 Furnace wall repair method

Country Status (1)

Country Link
JP (1) JP6335380B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135004A (en) * 1975-05-19 1976-11-22 Mitsubishi Heavy Ind Ltd Method for repairing a damaged tire
JPH09303706A (en) * 1996-05-13 1997-11-28 Mitsubishi Heavy Ind Ltd Repair method for furnace wall pipe, and pipe bender used for its execution
US5781995A (en) * 1997-01-09 1998-07-21 Allegheny Power Service Corporation Method of repairing a defective portion in a fluid carrying tube
EP2000251A1 (en) * 2007-06-05 2008-12-10 Alstom Technology Ltd Repair welding method for waterwall tubes
JP2012110943A (en) * 2010-11-25 2012-06-14 Mitsubishi Heavy Ind Ltd Build-up welding device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135004A (en) * 1975-05-19 1976-11-22 Mitsubishi Heavy Ind Ltd Method for repairing a damaged tire
JPH09303706A (en) * 1996-05-13 1997-11-28 Mitsubishi Heavy Ind Ltd Repair method for furnace wall pipe, and pipe bender used for its execution
US5781995A (en) * 1997-01-09 1998-07-21 Allegheny Power Service Corporation Method of repairing a defective portion in a fluid carrying tube
EP2000251A1 (en) * 2007-06-05 2008-12-10 Alstom Technology Ltd Repair welding method for waterwall tubes
JP2012110943A (en) * 2010-11-25 2012-06-14 Mitsubishi Heavy Ind Ltd Build-up welding device and method

Also Published As

Publication number Publication date
JP2019095133A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US8671890B2 (en) Pipe assembly
Purbolaksono et al. Failure analysis on a primary superheater tube of a power plant
RU2742159C1 (en) Anti-erosion device for shell-and-tube equipment
JP6335380B1 (en) Furnace wall repair method
JP2020510174A (en) Damping tube and method of manufacturing the same
JP6979488B2 (en) Heat exchanger for quenching the reaction gas
BR112012029055B1 (en) method for installing air pipes for an exhaust gas air preheater, exhaust gas air preheater, and, air pipe component for an exhaust gas air preheater
JP4912430B2 (en) Repair method for heat exchanger piping
JP5968247B2 (en) Burner, combustion furnace, burner assembly method, and burner repair method
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
JP2007182929A (en) Pipe repairing method
KR20190049011A (en) mounting arrangement of bellows cover
Deshmukh et al. Coupled CFD-FEA simulation of bulging tube failure in hot temperature zone
KR20210031769A (en) Heat exchange device for cooling synthetic gas and method of assembly thereof
JP6539860B2 (en) Stab cooler
JP5347873B2 (en) Hot air branch structure of a hot blast furnace
KR100683285B1 (en) Dividable metal bellows
Gwynn-Jones et al. Thermal bending of air cooled tubes
US7559294B2 (en) End support configuration for steam tubes of a superheater or reheater
Nikic et al. Alternative Selections of Delayed Coke Drum Materials Based on ASME Material Property Data
JP5726013B2 (en) Expansion joint, gas turbine equipped with the same, and expansion joint mounting method
Van Zyl et al. Numerical Simulation of the Creep Failure of a Steam Reformer Outlet Manifold
JP2014202260A (en) Expansion joint
CN202532431U (en) Combplate device capable of being welded with finned tube at furnace bottom
Muldoon Repairing Feedwater Heater Tubes Using Explosively Welded and Brazed Sleeves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180427

R150 Certificate of patent or registration of utility model

Ref document number: 6335380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350