JP2014202260A - Expansion joint - Google Patents

Expansion joint Download PDF

Info

Publication number
JP2014202260A
JP2014202260A JP2013077779A JP2013077779A JP2014202260A JP 2014202260 A JP2014202260 A JP 2014202260A JP 2013077779 A JP2013077779 A JP 2013077779A JP 2013077779 A JP2013077779 A JP 2013077779A JP 2014202260 A JP2014202260 A JP 2014202260A
Authority
JP
Japan
Prior art keywords
bellows
expansion joint
flange
gas
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077779A
Other languages
Japanese (ja)
Inventor
敬尚 藤原
Takanao Fujiwara
敬尚 藤原
幸一 松尾
Koichi Matsuo
幸一 松尾
寛 寺内
Hiroshi Terauchi
寛 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSM KK
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
CSM KK
NS Plant Designing Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSM KK, NS Plant Designing Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical CSM KK
Priority to JP2013077779A priority Critical patent/JP2014202260A/en
Publication of JP2014202260A publication Critical patent/JP2014202260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expansion joint which reduces an internal stress even when a temperature difference is produced on a welding portion for joining constituents of an expansion joint to each other by a temperature change of gas circulating in a gas duct and a repetitionary internal stress is generated, can improve durability of the welded portion and can provide a longer life, regarding the expansion joint of the metallic gas duct.SOLUTION: An expansion joint 10 includes an annular flange 1 and a bellows 2 having a two-layer structure constituted by overlapping two annular freely expansible bellows 2A, 2B. Therein, respective end parts 2Ba, 2Aa of inner side bellows 2B and outer side bellows 2A of the bellows 2 having the two-layer structure are folded to the outer side in the radial direction, the annular flange 1 is arranged between the end parts 2Ba, 2Aa of folded two bellows 2B, 2A, and both surfaces of the annular flange 1 and the respective end parts 2Aa, 2Ba of two bellows 2A, 2B are welded.

Description

本発明は、金属製のガスダクトを構成するベローズを備えた伸縮継手に関するものである。   The present invention relates to an expansion joint including a bellows constituting a metal gas duct.

鋼帯の連続焼鈍炉もしくは連続溶融亜鉛めっき設備等においては、多数の金属製のガスダクトが配設されており、たとえば特許文献1で記載される鋼帯連続処理設備における均熱炉操業方法とその均熱炉にその一例が開示されている。   In a continuous annealing furnace or continuous galvanizing equipment for steel strip, a number of metal gas ducts are arranged, for example, a soaking furnace operating method in a steel strip continuous treatment equipment described in Patent Document 1 and its An example is disclosed in a soaking furnace.

上記するガスダクト内には、鋼帯の加熱や均熱、冷却といった熱処理サイクルに応じて高温ガス流体と低温ガス流体が通過することから、ガスダクトは熱処理サイクルに応じて加熱・冷却が繰り返され、膨張と収縮といった熱変形が繰返し生じることになる。そして、この熱変形を吸収するために、ガスダクトには金属製のベローズ(伸縮管)が多数配設されており、このベローズによって設備の安定操業が保証されている。   In the gas duct described above, high-temperature gas fluid and low-temperature gas fluid pass according to the heat treatment cycle such as heating, soaking, and cooling of the steel strip. Therefore, the gas duct is repeatedly heated and cooled according to the heat treatment cycle, and expanded. Thermal deformation such as shrinkage occurs repeatedly. In order to absorb this thermal deformation, a large number of metal bellows (expandable tubes) are disposed in the gas duct, and the stable operation of the equipment is guaranteed by the bellows.

ここで、従来のベローズを備えた伸縮継手の具体的構成を特許文献2の図7〜9(これらは特許文献2における従来技術を示すもの)を参照して説明する。特許文献2の図7で示すように、伸縮継手はフランジとベローズが溶接部を介して繋がれて構成されている。フランジとベローズの溶接部の構成は特許文献2の図8で示すように、内周側にベローズを差し込む異径部を有するフランジにベローズを差し込み、溶接部にて内周側を全周溶接している。   Here, the concrete structure of the expansion joint provided with the conventional bellows will be described with reference to FIGS. 7 to 9 of Patent Document 2 (these show the prior art in Patent Document 2). As shown in FIG. 7 of Patent Document 2, the expansion joint is configured by connecting a flange and a bellows via a welded portion. As shown in FIG. 8 of Patent Document 2, the structure of the welded portion between the flange and the bellows is that the bellows is inserted into a flange having a different diameter portion into which the bellows is inserted on the inner peripheral side, and the inner peripheral side is welded all around the welded portion. ing.

特許文献2で開示される伸縮継手においては、非定常状態(昇温や降温)においてフランジとベローズがガスと直接接触しており、板厚の薄いベローズが板厚の厚いフランジよりも温度変化の速度が早いためにベローズとフランジの間に温度差が生じ、溶接部にこの温度差に起因した繰り返しの熱応力が発生するために伸縮継手の寿命が短命化するという課題を有している。   In the expansion joint disclosed in Patent Document 2, the flange and the bellows are in direct contact with the gas in an unsteady state (temperature increase or decrease), and the thin bellows has a temperature change more than the thick flange. Since the speed is high, a temperature difference is generated between the bellows and the flange, and the repeated thermal stress caused by the temperature difference is generated in the welded portion, so that the life of the expansion joint is shortened.

一方、特許文献2の図9には、フランジとベローズを外周側で溶接した伸縮継手が示されている。同図において、単管の端部外周側に形成された異径部がベローズの端部平行部に差し込まれ、溶接部において外周側が全周溶接されている。単管の他方の端は内周側に異径部を有するフランジに差し込まれ、溶接部において内周および外周側が全周溶接されている。   On the other hand, FIG. 9 of Patent Document 2 shows an expansion joint in which a flange and a bellows are welded on the outer peripheral side. In the same figure, the different diameter part formed in the outer peripheral side of the end part of a single pipe is inserted in the parallel part of the end part of a bellows, and the outer peripheral side is welded all around in the welding part. The other end of the single pipe is inserted into a flange having a different diameter portion on the inner peripheral side, and the inner periphery and the outer peripheral side are welded all around the welded portion.

同図で示す構成の伸縮継手においては、端管は外周から溶接するためのスペースを確保することを目的に設置されているものの、各溶接部の熱応力の抑制方法や構造ついての開示は一切ない。   In the expansion joint of the configuration shown in the figure, although the end pipe is installed for the purpose of securing a space for welding from the outer periphery, there is no disclosure of methods for suppressing thermal stress and the structure of each welded part. Absent.

ところで、連続焼鈍炉や連続溶融亜鉛めっき設備等では、ガスダクト内を流通するガス流体としてCOGをはじめとする可燃性ガス等のように、その取扱いに注意を要するガス流体が流れている場合もあり、このようなガス流体に起因した伸縮継手の破損を早期に発見することも重要な課題となっている。   By the way, in continuous annealing furnaces and continuous hot dip galvanizing equipment, gas fluids that require careful handling may flow, such as flammable gases such as COG, as gas fluids that circulate in the gas duct. In addition, it is an important subject to detect the breakage of the expansion joint caused by such a gas fluid at an early stage.

ここで、特許文献3には、二層のベローズとその端部に溶接された金属管、金属管に設けられた漏えい検出孔で構成された伸縮継手が開示されている。しかし、ここで開示される伸縮継手は二層のベローズの内側のベローズと金属管の溶接点が伸縮継手内部のガスの流通経路上に位置するため、ベローズと金属管の温度差が大きくなり、この温度差に起因した熱応力も大きくなり、伸縮継手の寿命を短命化させてしまう。   Here, Patent Document 3 discloses an expansion joint including a two-layer bellows, a metal pipe welded to an end portion thereof, and a leak detection hole provided in the metal pipe. However, in the expansion joint disclosed here, the welding point between the bellows inside the two-layer bellows and the metal pipe is located on the gas flow path inside the expansion joint, so the temperature difference between the bellows and the metal pipe increases. The thermal stress resulting from this temperature difference also increases, shortening the life of the expansion joint.

特開2007−92140号公報JP 2007-92140 A 特開2001−263563号公報JP 2001-263563 A 特開平3−294023号公報JP-A-3-294003

本発明は上記する問題に鑑みてなされたものであり、連続焼鈍炉や連続溶融亜鉛めっき設備等に適用される金属製のガスダクトの伸縮継手に関し、ガスダクト内を流通するガスの温度変化によって伸縮継手の構成部材同士を繋ぐ溶接箇所に温度差が生じ、この温度差に起因して繰り返しの内部応力が発生した場合でも溶接箇所の耐久性を向上させることができ、もって高寿命化を実現することのできる伸縮継手を提供することを目的としている。また、望ましくはさらに、不純ガス等の漏えいを検出できる簡易な構成の手段が講じられた伸縮継手を提供することを目的としている。   The present invention has been made in view of the above-described problems, and relates to an expansion joint of a metal gas duct applied to a continuous annealing furnace, a continuous hot dip galvanization facility, etc., and an expansion joint according to a temperature change of gas flowing in the gas duct Even if a temperature difference occurs in the welded part that connects the structural members of each other, and repeated internal stress occurs due to this temperature difference, the durability of the welded part can be improved, thereby realizing a long life The purpose of this invention is to provide an expansion joint. It is another object of the present invention to provide an expansion joint provided with a simple configuration means capable of detecting leakage of impure gas or the like.

前記目的を達成すべく、本発明による伸縮継手は、環状のフランジと、環状で伸縮自在な2つのベローズが重ね合わされて構成された2層構造のベローズと、から構成され、2層構造のベローズの内側のベローズ、外側のベローズそれぞれの端部が径方向外側に折り曲げられ、折り曲げられた2つのベローズの端部の間に前記環状のフランジが配設され、該環状のフランジの両面と2つのベローズの端部のそれぞれが溶接されているものである。   In order to achieve the above object, an expansion joint according to the present invention includes an annular flange and a two-layered bellows formed by superposing two annular bellows that can be stretched and contracted. The end portions of the inner bellows and the outer bellows are bent radially outwardly, and the annular flange is disposed between the ends of the two folded bellows. Each end of the bellows is welded.

本発明の伸縮継手は、2層構造のベローズの内側のベローズ、外側のベローズそれぞれの端部が径方向外側に折り曲げられ、折り曲げられた2つのベローズの端部の間に環状のフランジが挟み込まれてフランジの両面でそれぞれのベローズと溶接にて接続されたものであり、この構成によって、ベローズとフランジの溶接箇所が伸縮継手内部のガスの流通経路から離れた位置に設定されることとなり、ガスの温度変化に起因した溶接箇所にて生じ得る熱応力を効果的に低減することができるものである。なお、この環状のフランジは、金属製ガスダクト等のフランジにシール性を保証された態様で締結される。   In the expansion joint of the present invention, the end portions of the inner bellows and the outer bellows of the two-layered bellows are radially outwardly folded, and an annular flange is sandwiched between the end portions of the two folded bellows. The flanges are connected to the respective bellows by welding, and with this configuration, the welded portion of the bellows and flange is set at a position away from the gas flow path inside the expansion joint. It is possible to effectively reduce the thermal stress that may occur at the welded part due to the temperature change. The annular flange is fastened to a flange such as a metal gas duct in a manner in which sealing performance is guaranteed.

ここで、溶接箇所の位置、すなわち、環状のフランジの内側(ガスと接触する箇所)から溶接箇所までの距離は、一般的な高さ40mm程度のベローズが使用される場合には、溶接の影響をベローズに及ぼさないために、ベローズの高さ40mm以上の高さ45mm〜50mm程度、もしくは50mm以上に設定するのがよい。   Here, the position of the welded part, that is, the distance from the inside of the annular flange (the part in contact with the gas) to the welded part is the influence of welding when a general bellows with a height of about 40 mm is used. In order not to affect the bellows, the height of the bellows should be set to a height of about 45 mm to 50 mm, which is 40 mm or more, or 50 mm or more.

なお、フランジの材質をオーステナイト系ステンレスとし、ベローズの材質をインコロイ等の耐熱性合金とすることで、頻繁に昇温・降温が繰り返される過酷な状況下での各部材の脆化耐性を向上させることができる。   In addition, by using austenitic stainless steel as the flange material and heat-resistant alloy such as incoloy as the bellows material, the resistance to embrittlement of each member under severe conditions where the temperature rises and falls frequently is improved. be able to.

また、本発明による伸縮継手の他の実施の形態は、前記フランジにおいて、環状の内側から径方向外側に向かって貫通孔が設けてあり、この貫通孔が伸縮継手内を流通するガスが内側のベローズから漏洩しているのを検知する漏洩検知孔となっているものである。   In another embodiment of the expansion joint according to the present invention, in the flange, a through hole is provided from an annular inner side toward a radial outer side, and the gas flowing through the expansion joint is inside the expansion joint. It is a leak detection hole for detecting leakage from the bellows.

本実施の形態では、2層構造のベローズでフランジを挟んだ構成に加えて、環状のフランジの内側から径方向外側に向かって貫通孔が設けてあることから、伸縮継手内を流通するガスに直接接する内側のベローズから可燃性ガス等が仮に漏洩した場合には、この可燃性ガス等は2層構造のベローズとフランジで囲まれた空間に入ることになる。   In the present embodiment, in addition to the configuration in which the flange is sandwiched between the two-layered bellows, a through hole is provided from the inner side of the annular flange toward the outer side in the radial direction. If combustible gas or the like leaks from the inner bellows that is in direct contact, the combustible gas or the like enters a space surrounded by the two-layered bellows and the flange.

そして、2層構造のベローズとフランジで囲まれた空間にはベローズに開設された貫通孔の端部開口が臨んでいることから、この端部開口を介し、貫通孔を介して可燃性ガス等が貫通孔の他方の端部開口から排出されて漏洩検知されることになる。   And since the end opening of the through-hole established in the bellows faces the space surrounded by the two-layer structure bellows and the flange, the combustible gas or the like passes through this end opening and the through-hole. Is discharged from the other end opening of the through hole, and leakage is detected.

このように、ベローズの構成を2層構造とした主な要因はフランジとともに上記する漏洩ガスを収容する空間を形成し、該空間に収容された漏洩ガスを貫通孔を介して効果的に導出して検知することにある。   As described above, the main factor of the two-layer structure of the bellows is that the flange together with the flange forms a space for accommodating the leaked gas, and the leaked gas accommodated in the space is effectively derived through the through hole. It is to detect.

本実施の形態を構成する漏洩検知手段は、フランジに対して1つもしくは複数の貫通孔を開設しただけの簡易な構成であり、しかも、この貫通孔は径方向に延びる直線状に形成すればよいことから、加工手間もかからない。   The leakage detection means constituting the present embodiment is a simple configuration in which one or a plurality of through holes are opened for the flange, and if the through holes are formed in a straight line extending in the radial direction, Because it's good, it doesn't take much work.

また、本発明による伸縮継手の好ましい実施の形態は、前記フランジの一方の面と環状の板材が前記内側のベローズの端部を挟み込んでいるものである。   In a preferred embodiment of the expansion joint according to the present invention, one end of the flange and an annular plate sandwich the end of the inner bellows.

本実施の形態では、環状の板材をフランジの一方の面に配し、この板材とフランジにて内側のベローズの端部を挟み込んだ構成としたことで温度変化のあるガスに直接曝される内側のベローズが熱変形し、特に熱膨張して膨らもうとした際にこの膨らみを板材にて抑止することができ、この膨らみに起因する内側ベローズの溶接箇所への引抜き力の付与を防止したり、内側のベローズの膨らみによってガスの流路断面が欠損するといった課題は生じ得ない。   In this embodiment, an annular plate member is arranged on one surface of the flange, and the end portion of the inner bellows is sandwiched between the plate member and the flange so that the inner side directly exposed to the gas having a temperature change. When the bellows of this product is thermally deformed, especially when it is about to expand due to thermal expansion, this bulge can be suppressed by the plate material, which prevents the pulling force from being applied to the welded part of the inner bellows due to this bulge. Moreover, the problem that the cross section of the gas flow path is lost due to the swelling of the inner bellows cannot occur.

以上の説明から理解できるように、本発明の伸縮継手によれば、2層構造のベローズの内側のベローズ、外側のベローズそれぞれの端部が径方向外側に折り曲げられ、折り曲げられた2つのベローズの端部の間に環状のフランジが挟み込まれてフランジの両面でそれぞれのベローズと溶接にて接続された構成を具備することにより、ベローズとフランジの溶接箇所が伸縮継手内部のガスの流通経路から離れた位置に設定されることとなり、ガスの温度差に起因した溶接箇所にて生じ得る熱応力を効果的に低減してその耐久性を向上させることができ、もって伸縮継手の高寿命化を実現することができる。   As can be understood from the above description, according to the expansion joint of the present invention, the end portions of the inner bellows and the outer bellows of the two-layered bellows are bent radially outward, and the two bellows folded An annular flange is sandwiched between the end portions and connected to the bellows on both sides of the flange by welding, so that the welded portion of the bellows and the flange is separated from the gas flow path inside the expansion joint. Therefore, it is possible to effectively reduce the thermal stress that can occur at the weld location due to the temperature difference of the gas and improve its durability, thereby realizing a long life of the expansion joint. can do.

本発明の伸縮継手の実施の形態1の縦断面図である。It is a longitudinal cross-sectional view of Embodiment 1 of the expansion joint of this invention. 本発明の伸縮継手の実施の形態2の縦断面図である。It is a longitudinal cross-sectional view of Embodiment 2 of the expansion joint of this invention. 本発明の伸縮継手の実施の形態3の縦断面図である。It is a longitudinal cross-sectional view of Embodiment 3 of the expansion joint of this invention. 応力解析において適用したガスとベローズの温度変化を示した図である。It is the figure which showed the temperature change of the gas and bellows which were applied in stress analysis. 応力解析において適用した強制変位の概要を説明した模式図である。It is the schematic diagram explaining the outline | summary of the forced displacement applied in stress analysis. 応力解析モデルにおける溶接箇所を説明した模式図である。It is the schematic diagram explaining the welding location in a stress analysis model. 測定位置(溶接箇所1、2、3、4)でのフランジとベローズの温度差に関する解析結果を示した図である。It is the figure which showed the analysis result regarding the temperature difference of the flange and bellows in a measurement position (welding location 1, 2, 3, 4). 測定位置(溶接箇所1、2、3、4)での応力解析結果を示した図である。It is the figure which showed the stress analysis result in the measurement position (welding location 1, 2, 3, 4).

以下、図面を参照して本発明の伸縮継手の実施の形態1〜3を説明する。なお、図示例は伸縮継手を構成するベローズが中間パイプに繋がれた形態を示しているが、図示するフランジおよび二層構造のベローズから構成される伸縮継手が適用された多様な形態のガスダクト、たとえば、伸縮継手を構成するベローズが中間パイプではなくて別途のフランジに接続された形態などであってもよいことは勿論のことである。   Hereinafter, the first to third embodiments of the expansion joint of the present invention will be described with reference to the drawings. The illustrated example shows a form in which the bellows constituting the expansion joint is connected to the intermediate pipe, but various forms of gas ducts to which the expansion joint composed of the illustrated flange and the bellows of the two-layer structure is applied, For example, it goes without saying that the bellows constituting the expansion joint may be connected to a separate flange instead of the intermediate pipe.

(伸縮継手の実施の形態1)
図1は本発明の伸縮継手の実施の形態1の縦断面図である。同図で示す伸縮継手10は、被接続対象フランジ3(金属製ガスダクト等のフランジ)に接続されるフランジ1と、中間パイプ4に接続される伸縮自在で二層構造のベローズ2とから大略構成されている。なお、この伸縮継手10は、温度変化の激しいガスが流通する、不図示の連続焼鈍炉や連続溶融亜鉛めっき設備等を構成する多数の金属製のガスダクトの一部もしくは全部に適用するのが好ましい。
(Embodiment 1 of expansion joint)
FIG. 1 is a longitudinal sectional view of the first embodiment of the expansion joint of the present invention. The expansion joint 10 shown in the figure is generally composed of a flange 1 connected to a flange 3 to be connected (a flange such as a metal gas duct) and a bellows 2 having an expandable and two-layer structure connected to an intermediate pipe 4. Has been. The expansion joint 10 is preferably applied to some or all of a number of metal gas ducts constituting a continuous annealing furnace (not shown), a continuous hot dip galvanizing facility, or the like through which a gas having a large temperature change flows. .

環状で二層構造のベローズ2は外側のベローズ2Aと内側のベローズ2Bが積層した構成を備えており、ベローズ2の一端で双方のベローズ2A、2Bの端部2Aa,2Baが離れるとともに径方向外側に折り曲げられ、折り曲げられた端部2Aa,2Baの間に環状のフランジ1が配設され、環状のフランジ1の両面と2つの端部2Aa,2Baのそれぞれが環状の溶接箇所5を介して繋がれている。   The ring-shaped and two-layered bellows 2 has a structure in which an outer bellows 2A and an inner bellows 2B are stacked. The ends 2Aa and 2Ba of both bellows 2A and 2B are separated from each other at one end of the bellows 2 and radially outward. The annular flange 1 is disposed between the bent end portions 2Aa and 2Ba, and both ends of the annular flange 1 and the two end portions 2Aa and 2Ba are connected via an annular welded portion 5. It is.

ここで、溶接箇所5の位置、すなわち、環状のフランジ1の内側から溶接箇所5までの距離は、一般的な高さ40mm程度のベローズ2が使用される場合には、溶接の影響をベローズ2に及ぼさない観点から、ベローズ2の高さ40mm以上の高さ45mm〜50mm程度、もしくは50mm以上に設定する。   Here, when the bellows 2 having a general height of about 40 mm is used, the position of the welded portion 5, that is, the distance from the inside of the annular flange 1 to the welded portion 5 is affected by the bellows 2. From the viewpoint of not affecting the height, the height of the bellows 2 is set to about 45 mm to 50 mm, which is 40 mm or more, or 50 mm or more.

フランジ1の材質をオーステナイト系ステンレス(SUS321、SUS310等)とし、ベローズ2の材質を耐熱性合金(インコロイ800HT、インコネル600、601、625等)とすることで、頻繁に昇温・降温が繰り返される過酷な状況下での各部材の脆化耐性を向上させることができる。上記する耐熱合金は高いクロム量とニッケル量を有しており、クロムはベローズの表層に酸化保護膜を形成し、ニッケルは高温における酸化保護膜の恒久性を向上させるとともに、σ相の析出を抑制する効果を有することから、ベローズの耐腐食性と耐脆性を向上させることができ、伸縮継手10の長寿命化を図ることができる。   The material of the flange 1 is austenitic stainless steel (SUS321, SUS310, etc.) and the material of the bellows 2 is a heat-resistant alloy (Incoloy 800HT, Inconel 600, 601, 625, etc.). The resistance to embrittlement of each member under severe conditions can be improved. The above heat-resistant alloys have a high chromium content and nickel content, and chromium forms an oxidation protective film on the surface of the bellows, and nickel improves the durability of the oxidation protective film at high temperatures and precipitates the σ phase. Since it has the inhibitory effect, the corrosion resistance and brittleness resistance of the bellows can be improved, and the life of the expansion joint 10 can be extended.

このように、伸縮継手10は、2層構造のベローズ2の外側のベローズ2A、内側のベローズ2Bそれぞれの端部2Aa,2Baが径方向外側に折り曲げられ、折り曲げられた2つの端部2Aa,2Baの間に環状のフランジ1が挟み込まれてフランジ1の両面でそれぞれの端部2Aa,2Baと溶接にて接続された構成を具備することにより、ベローズ2とフランジ1の溶接箇所5が伸縮継手10の内部のガスの流通経路から離れた位置に設定され、溶接箇所5の近傍におけるフランジ1とベローズ2の温度差が小さくなる。そのため、ガスの温度変化に起因した溶接箇所5にて生じ得る熱応力を効果的に低減してその耐久性を向上させることができ、もって伸縮継手10の高寿命化を実現することができる。   In this manner, the expansion joint 10 has two end portions 2Aa and 2Ba which are bent by radially bending the end portions 2Aa and 2Ba of the outer bellows 2A and the inner bellows 2B of the two-layered bellows 2, respectively. The annular flange 1 is sandwiched between the flanges 1 and the ends 2Aa and 2Ba are connected to both ends of the flange 1 by welding so that the welded portion 5 of the bellows 2 and the flange 1 is connected to the expansion joint 10. The temperature difference between the flange 1 and the bellows 2 in the vicinity of the welded portion 5 becomes small. Therefore, it is possible to effectively reduce the thermal stress that may occur at the welded portion 5 due to the temperature change of the gas and improve the durability thereof, and thus it is possible to realize the extension of the life of the expansion joint 10.

(伸縮継手の実施の形態2)
図2は本発明の伸縮継手の実施の形態2の縦断面図である。同図で示す伸縮継手10Aは、図1で示す伸縮継手10に改良を加え、環状の内側から径方向外側に向かって貫通孔1Aaが設けられたフランジ1Aを適用したものである。
(Embodiment 2 of expansion joint)
FIG. 2 is a longitudinal sectional view of a second embodiment of the expansion joint of the present invention. The expansion joint 10A shown in the figure is obtained by modifying the expansion joint 10 shown in FIG. 1 and applying a flange 1A provided with a through hole 1Aa from the inside of the ring toward the outside in the radial direction.

貫通孔1Aaは、伸縮継手10A内を流通するガスが内側のベローズ2Bから漏洩しているのを検知する漏洩検知孔となっている。   The through hole 1Aa is a leak detection hole that detects that gas flowing through the expansion joint 10A leaks from the inner bellows 2B.

2層構造のベローズ2でフランジ1Aを挟んだ構成に加えて、環状のフランジ1Aの内側から径方向外側に向かって貫通孔1Aaが設けてあることから、伸縮継手10A内を流通するガスに直接接する内側のベローズ2Bから可燃性ガス等が仮に漏洩した場合には、この可燃性ガス等は2層構造のベローズ2とフランジ1Aで囲まれた空間Gにまず入ることになる(X1方向)。そして、2層構造のベローズ2とフランジ1で囲まれた空間Gにはフランジ1Aに開設された貫通孔1Aaの端部開口1Aa’が臨んでいることから、この端部開口1Aa’を介し、貫通孔1Aaを介して可燃性ガス等が貫通孔1Aaの他方の端部開口1Aa”から排出され(X2方向)、漏洩検知されることになる。このように、ベローズ2の構成を2層構造とした主な要因はフランジ1Aとともに漏洩ガスを収容する空間Gを形成し、該空間Gに収容された漏洩ガスを貫通孔1Aaを介して効果的に導出して検知することにある。伸縮継手10Aを構成する漏洩検知手段は、フランジ1Aに対して1つもしくは複数の貫通孔1Aaを開設しただけの簡易な構成であり、しかも、この貫通孔1Aaは径方向に延びる直線状に形成すればよいことから加工手間もかからない。   In addition to the configuration in which the flange 1A is sandwiched between the two-layered bellows 2, the through-hole 1Aa is provided from the inner side of the annular flange 1A to the outer side in the radial direction. If flammable gas or the like leaks from the inner bellows 2B in contact, the flammable gas or the like first enters the space G surrounded by the two-layered bellows 2 and the flange 1A (X1 direction). Since the end opening 1Aa ′ of the through hole 1Aa opened in the flange 1A faces the space G surrounded by the two-layered bellows 2 and the flange 1, through this end opening 1Aa ′, A combustible gas or the like is discharged from the other end opening 1Aa ″ of the through-hole 1Aa through the through-hole 1Aa (in the X2 direction), and leakage is detected. Thus, the configuration of the bellows 2 has a two-layer structure. The main factor is to form a space G for accommodating leakage gas together with the flange 1A, and to effectively derive and detect the leakage gas accommodated in the space G through the through hole 1Aa. The leakage detection means constituting 10A is a simple configuration in which one or a plurality of through holes 1Aa are opened with respect to the flange 1A, and if the through holes 1Aa are formed in a linear shape extending in the radial direction. Good In less than processing time from the.

(伸縮継手の実施の形態3)
図3は本発明の伸縮継手の実施の形態3の縦断面図である。同図で示す伸縮継手10Bは、図2で示す伸縮継手10Aに改良を加え、環状の板材6Aをフランジ1Aの一方面側に配し、この板材6Aとフランジ1Aにて内側のベローズ2Bの端部2Baを挟み込んだ構成としたものである。
(Third embodiment of expansion joint)
FIG. 3 is a longitudinal sectional view of a third embodiment of the expansion joint of the present invention. The expansion joint 10B shown in the figure is an improvement on the expansion joint 10A shown in FIG. 2, and an annular plate 6A is arranged on one surface side of the flange 1A, and the end of the inner bellows 2B between the plate 6A and the flange 1A. The configuration is such that the portion 2Ba is sandwiched.

より具体的には、環状の板材6Aと、ガスの流通方向に延びる筒材6Bから構成された膨らみ防止材6を内側のベローズ2Bの内側に配設し、フランジ1Aの一方面の窪み箇所1bに内側のベローズ2Bの端部2Baを挟むようにして板材6Aを配設し、この際に板材6Aの端面とフランジ1の突出箇所1cの端面が面一となるようにして膨らみ防止材6が組み付けられている。   More specifically, a bulge prevention member 6 composed of an annular plate member 6A and a tubular member 6B extending in the gas flow direction is disposed inside the inner bellows 2B, and a recess 1b on one surface of the flange 1A. The plate member 6A is disposed so as to sandwich the end 2Ba of the inner bellows 2B, and at this time, the bulge prevention member 6 is assembled so that the end surface of the plate member 6A and the end surface of the protruding portion 1c of the flange 1 are flush with each other. ing.

温度変化のあるガスに直接曝される内側のベローズ2Bが熱変形し、特に熱膨張して膨らもうとした際に(図中の一点鎖線の状態でZ方向に膨らむ)、この膨らみを板材6A,筒材6Bにて抑止することができ、この膨らみに起因する内側のベローズ2Bの溶接箇所5への引抜き力の付与を防止したり、内側のベローズ2Bの膨らみによってガスの流路断面が欠損するといった課題を抑制することができる。   When the inner bellows 2B that is directly exposed to a gas having a temperature change is thermally deformed, particularly when it tries to expand due to thermal expansion (swells in the Z direction in the state of the one-dot chain line in the figure), this swelling is used as a plate material. 6A and the cylindrical material 6B can be prevented, and it is possible to prevent the inner bellows 2B from being given a pulling force to the welded portion 5 due to the swelling, or the gas bellows cross section is caused by the swelling of the inner bellows 2B. The problem of missing can be suppressed.

また、フランジ1Aの一方面の窪み箇所1bに内側のベローズ2Bの端部2Baを収容してここで溶接するとともに、内側のベローズ2Bの膨らみ防止用の板材6Aもこの窪み箇所1bに収容し、板材6Aの端面とフランジ1Aの突出箇所1cの端面を面一に形成しておくことで、シール性が保証された態様で被接合対象フランジ3と容易に締結することが可能となる。   In addition, the end portion 2Ba of the inner bellows 2B is accommodated in the recessed portion 1b on one side of the flange 1A and welded here, and a plate member 6A for preventing the swelling of the inner bellows 2B is also accommodated in the recessed portion 1b. By forming the end face of the plate member 6A and the end face of the projecting portion 1c of the flange 1A flush with each other, it is possible to easily fasten the joint target flange 3 in a manner in which the sealing performance is guaranteed.

[応力解析とその結果]
本発明者等は、本発明にかかる構造の伸縮継手(実施例)と従来構造の伸縮継手(比較例であり、二層構造ではなくて一層のベローズが環状のフランジの内側で溶接接合された形態)の解析モデルをコンピュータ内で作成し、伝熱による熱応力と機械的変位(強制変位)による応力の連成解析を実施した。熱応力解析に関し、図4は本解析において適用したガスとベローズの温度変化を示した図である。また、強制変位による応力解析に関し、図5は本解析において適用した強制変位の概要を説明した模式図である。そして、図6は本応力解析モデルを示しており、このモデルにおける溶接箇所(応力解析対象部位)説明した模式図である。
[Stress analysis and results]
The inventors of the present invention have an expansion joint (example) according to the present invention and a conventional expansion joint (comparative example), in which a single bellows is welded and joined inside the annular flange instead of a two-layer structure. Model) was created in a computer, and a coupled analysis of thermal stress due to heat transfer and stress due to mechanical displacement (forced displacement) was performed. Regarding thermal stress analysis, FIG. 4 is a diagram showing temperature changes of the gas and bellows applied in this analysis. Further, regarding stress analysis by forced displacement, FIG. 5 is a schematic diagram illustrating an outline of forced displacement applied in this analysis. FIG. 6 shows the present stress analysis model, and is a schematic diagram illustrating the welding location (stress analysis target site) in this model.

まず、図4において、同図における時間T1までの区間、時間T1〜T2区間、時間T2〜T3区間、時間T4以降の区間の時間変化に伴う各溶接箇所の応力の変化についてシミュレーションを実施した。   First, in FIG. 4, a simulation was performed on a change in stress at each welding location with a time change in a section up to time T1, a time period T1 to T2, a time period T2 to T3, and a time period after time T4 in FIG.

ここで、時間T1までの区間は、伸縮継手の内部を650℃程度に加熱されたガス流体が十分な時間通過し、伸縮継手の温度が一様となっている定常状態を示している。また、時間T1〜T2区間は、時間T1までの区間から内部ガス流体を500℃程度まで冷却し、該内部ガス流体の温度変化に追従して伸縮継手の温度が低下している途中の状態であり、伸縮継手内の温度分布にバラツキがある非定常状態を示している。また、時間T2〜T3区間は、500℃程度のガス流体が十分な時間通過し、伸縮継手の温度が一様となった定常状態を示している。さらに、時間T3〜T4区間は、内部ガス流体を650℃程度まで加熱し、該内部ガス流体の温度変化に追従して伸縮継手の温度が上昇している途中の状態であり、伸縮継手内の温度分布にバラツキがある非定常状態を示している。   Here, the section up to time T1 shows a steady state in which the gas fluid heated to about 650 ° C. passes through the expansion joint for a sufficient time and the temperature of the expansion joint is uniform. Also, during the period from time T1 to T2, the internal gas fluid is cooled to about 500 ° C. from the period up to time T1, and the temperature of the expansion joint is decreasing following the temperature change of the internal gas fluid. There is an unsteady state in which the temperature distribution in the expansion joint varies. Moreover, the time T2-T3 area has shown the steady state in which the gas fluid of about 500 degreeC passed sufficient time, and the temperature of the expansion joint became uniform. Furthermore, the time period T3 to T4 is a state in which the internal gas fluid is heated to about 650 ° C. and the temperature of the expansion joint is rising following the temperature change of the internal gas fluid. An unsteady state in which the temperature distribution varies.

一方、図5に関し、鋼帯の連続焼鈍炉または連続溶融亜鉛めっき設備において伸縮継手は種々の方向に設けられたガスダクトの熱変形を吸収する目的で設置されているため、該熱変形によって伸縮継手は軸方向変位と軸直角方向変位を生じる。そこで、本解析では、軸方向変位と軸直角方向変位を強制的に付加し、伸縮継手が破線の形状となった場合の各溶接箇所における応力状態のシミュレーションを実施した。   On the other hand, with respect to FIG. 5, the expansion joint is installed for the purpose of absorbing the thermal deformation of the gas duct provided in various directions in the continuous annealing furnace or continuous galvanizing equipment of the steel strip. Causes axial displacement and axial displacement. Therefore, in this analysis, axial displacement and axial displacement were forcibly added, and a simulation of the stress state at each weld location was performed when the expansion joint had a broken line shape.

また、図6に関し、解析モデルは、フランジとベローズ、中間パイプから構成されている。ここで、フランジの肉厚は25mm、外側ベローズ、内側ベローズの厚みはともに0.8mmである。本解析では、伸縮継手におけるベローズとフランジおよび中間パイプの溶接箇所に発生する応力に着目し、これらの箇所を応力解析対象部位とした。   Further, with reference to FIG. 6, the analysis model is composed of a flange, a bellows, and an intermediate pipe. Here, the thickness of the flange is 25 mm, and the thickness of both the outer and inner bellows is 0.8 mm. In this analysis, attention was paid to the stress generated at the welded portion of the bellows and flange and the intermediate pipe in the expansion joint, and these portions were set as stress analysis target portions.

本解析における各構成部材の材質、物性を以下の表1に示す。   Table 1 below shows the material and physical properties of each constituent member in this analysis.

Figure 2014202260
Figure 2014202260

解析結果を図7,8に示す。ここで、図7は測定位置(溶接箇所1、2、3、4)でのフランジとベローズの温度差に関する解析結果を示した図であり、図8は測定位置(溶接箇所1、2、3、4)での応力解析結果を示した図である。   The analysis results are shown in FIGS. Here, FIG. 7 is a diagram showing an analysis result regarding the temperature difference between the flange and the bellows at the measurement position (welding points 1, 2, 3, 4), and FIG. 8 is a measurement position (welding points 1, 2, 3). FIG. 4 is a diagram showing a stress analysis result in 4).

図7で示すフランジとベローズの温度差に関する解析結果は、図4で示す状態変化の内、降温時の非定常状態である時間T1〜T2区間の状態の場合における溶接箇所でのフランジとベローズの温度差を示したものである。   The analysis result regarding the temperature difference between the flange and the bellows shown in FIG. 7 shows that the flange and bellows at the welding point in the state of time T1 to T2, which is an unsteady state when the temperature is lowered, among the state changes shown in FIG. It shows the temperature difference.

同図から明らかなように、比較例に比して実施例の溶接部箇所における温度差はいずれの測定箇所においても大幅に低減されていることが分かる。   As is clear from the figure, it can be seen that the temperature difference at the welded portion of the example is significantly reduced at any measurement location as compared with the comparative example.

一方、図8で示す応力解析結果は、図4で示す状態変化の内、降温時の非定常状態である時間T1〜T2区間の状態の場合において、図5で示す軸方向変位と軸直角方向変位を強制的に付加した際の溶接箇所での応力解析結果を示したものである。   On the other hand, the stress analysis result shown in FIG. 8 shows that the axial displacement and the direction perpendicular to the axis shown in FIG. 5 are obtained in the state T1 to T2 which is an unsteady state at the time of temperature reduction in the state change shown in FIG. The stress analysis result in the welding location when displacement is forcibly added is shown.

図8からも明らかなように、比較例に比して実施例の溶接部箇所における応力値はいずれの測定箇所においても大幅に低減されていることが分かる。このことは図7の結果より、フランジとベローズの溶接箇所における温度差が緩和されたために溶接箇所に発生する繰り返しの熱応力が低減されたことによるものと考えられる。   As is apparent from FIG. 8, it can be seen that the stress value at the welded portion of the example is significantly reduced at any measurement location as compared with the comparative example. From this result of FIG. 7, this is considered to be due to the reduction of the repeated thermal stress generated at the welded part because the temperature difference at the welded part between the flange and the bellows was relaxed.

比較例と実施例の各測定箇所における温度差の相違については、以下のように考察することができる。すなわち、比較例においては、熱処理サイクルの変更によって内部を流通するガスの温度が下がった場合には低温ガス流体と溶接箇所の間で伝熱(以下、伝熱Aとする)が生じ、また、ベローズに接続されるフランジと溶接箇所の間でも伝熱(以下、伝熱Bとする)が生じ、伝熱Aによって溶接箇所が失った熱量を伝熱Bによって補填しようとするものの、伝熱Aによるベローズと溶接箇所の温度変化が伝熱Bによるフランジの温度変化よりも速いためにフランジとベローズの間の温度差が大きくなり、熱応力も大きくなると考えられる。熱処理サイクルの変更によって内部を流通するガスの温度が下がった場合に、ベローズから低温ガス流体へ伝熱(以下、伝熱Cとする)によって熱量が移動する。この伝熱Cにより、ベローズが失った熱量はベローズと接続されるフランジ、これに接続される被接続対象フランジや溶接箇所からの伝熱(以下、伝熱Dとする)によって補填される。この伝熱Dは、ベローズと接続されるフランジや被接続対象フランジ、溶接箇所のそれぞれの温度が一様になるように実行されるため、ベローズと接続されるフランジと溶接箇所の間の温度差が比較例よりも小さくなり、結果として熱応力の発生が低減されるものと考えられる。   The difference in temperature difference between the measurement points in the comparative example and the example can be considered as follows. That is, in the comparative example, when the temperature of the gas flowing through the inside decreases due to the change of the heat treatment cycle, heat transfer (hereinafter referred to as heat transfer A) occurs between the low temperature gas fluid and the welded portion, Heat transfer (hereinafter referred to as heat transfer B) occurs between the flange connected to the bellows and the welded portion, and the heat transfer A tries to compensate for the amount of heat lost to the welded portion by heat transfer A. It is considered that the temperature difference between the flange and the bellows increases because the temperature change between the bellows and the welded part due to the heat transfer is faster than the temperature change of the flange due to heat transfer B, and the thermal stress also increases. When the temperature of the gas flowing through the heat treatment cycle changes, the amount of heat moves from the bellows to the low-temperature gas fluid by heat transfer (hereinafter referred to as heat transfer C). Due to this heat transfer C, the amount of heat lost by the bellows is compensated for by heat transfer from the flange connected to the bellows, the flange to be connected to the bellows, and the welding location (hereinafter referred to as heat transfer D). This heat transfer D is performed so that the temperatures of the flange connected to the bellows, the flange to be connected, and the welded portion are uniform, and therefore the temperature difference between the flange connected to the bellows and the welded portion. Is smaller than the comparative example, and as a result, the generation of thermal stress is considered to be reduced.

[実機導入試験とその結果]
本発明者等はさらに、ガスダクト内を流通するガスが頻繁な昇温・降温を繰り返す連続焼鈍炉(実機)に本発明の伸縮継手を適用し、伸縮継手の各構成部材の素材を以下の表2で示す3つのケースにおいて、繰り返し応力による溶接箇所の割れとガスダクト内のガス流体性状によるベローズの腐食の程度を観察し、本発明の伸縮継手の効果を検証した。検証結果を以下の表3に示す。
[Real machine introduction test and results]
The present inventors further applied the expansion joint of the present invention to a continuous annealing furnace (actual machine) in which the gas flowing in the gas duct repeatedly raises and lowers the temperature, and shows the material of each component of the expansion joint as shown in the table below. In three cases shown by No. 2, the degree of corrosion of the bellows due to cracking of the welded part due to repeated stress and the gas fluid property in the gas duct was observed, and the effect of the expansion joint of the present invention was verified. The verification results are shown in Table 3 below.

Figure 2014202260
Figure 2014202260

Figure 2014202260
Figure 2014202260

溶接箇所の割れに関し、実機試験に導入されたケース1〜3の伸縮継手は、溶接箇所に発生する熱応力が低減されており、いずれのケースの伸縮継手も導入後数年を経た現在においても、溶接箇所における割れは確認されていない。   With regard to cracks in welded parts, the expansion joints of cases 1 to 3 introduced in the actual machine test have reduced thermal stresses generated in the welded parts, and even now several years after the introduction of expansion joints in any case No cracks have been confirmed at the welded part.

ベローズの腐食に関し、ケース1の伸縮継手ではベローズにSUS321(オーステナイト系ステンレス)を使用しており、SUS321はインコロイ800HT、インコネル625と比較してクロム量、ニッケル量が少なく、十分な耐腐食性、耐脆化性が得られないため、約半年で腐食が発生し、破損に至っている。これに対し、ケース2、3の伸縮継手では、ベローズにインコロイ800HT、インコネル625使用しているが、インコロイ800HTとインコネル625はSUS321に代表されるようなオーステナイト系ステンレスよりもクロム量とニッケル量が多いため、耐腐食性、耐脆化性に優れており、設置後数年を経過しても腐食は確認されなかった。   Regarding the corrosion of the bellows, the expansion joint of Case 1 uses SUS321 (austenitic stainless steel) for the bellows. Since brittleness resistance cannot be obtained, corrosion occurs in about half a year, leading to breakage. In contrast, in the expansion joints of cases 2 and 3, Incoloy 800HT and Inconel 625 are used for the bellows, but Incoloy 800HT and Inconel 625 have a chromium amount and a nickel amount that are higher than austenitic stainless steel such as SUS321. Many of them are excellent in corrosion resistance and embrittlement resistance, and no corrosion was confirmed even after several years after installation.

よって、本実機導入試験より、伸縮継手の各構成部材を上記ケース2,3の素材から形成するのが好ましいことが分かる。   Therefore, it can be seen from the actual machine introduction test that each constituent member of the expansion joint is preferably formed from the material of the cases 2 and 3.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1,1A…フランジ、1a…切欠き箇所、1b…窪み箇所、1c…突出箇所、1Aa…貫通孔、1Aa’、1Aa”…端部開口、2…ベローズ(二層構造のベローズ)、2A…外側のベローズ、2B…内側のベローズ、3…被接合対象フランジ、4…中間パイプ、5…溶接箇所、6…膨らみ防止材、6A…板材(環状の板材)、6B…筒材、10,10A,10B…伸縮継手、G…空間   DESCRIPTION OF SYMBOLS 1,1A ... Flange, 1a ... Notch location, 1b ... Depression location, 1c ... Projection location, 1Aa ... Through-hole, 1Aa ', 1Aa "... End opening, 2 ... Bellows (two-layer structure bellows), 2A ... Outer bellows, 2B ... Inner bellows, 3 ... Flange to be joined, 4 ... Intermediate pipe, 5 ... Welding point, 6 ... Expansion prevention material, 6A ... Plate material (annular plate material), 6B ... Cylinder material, 10, 10A , 10B ... Expansion joint, G ... Space

Claims (3)

環状のフランジと、環状で伸縮自在な2つのベローズが重ね合わされて構成された2層構造のベローズと、から構成され、
2層構造のベローズの内側のベローズ、外側のベローズそれぞれの端部が径方向外側に折り曲げられ、折り曲げられた2つのベローズの端部の間に前記環状のフランジが配設され、該環状のフランジの両面と2つのベローズの端部のそれぞれが溶接されている伸縮継手。
It is composed of an annular flange and a two-layered bellows formed by overlapping two annular bellows that can be stretched and contracted.
The ends of the inner and outer bellows of the two-layer structure are folded radially outward, and the annular flange is disposed between the two bent bellows, and the annular flange is disposed. An expansion joint in which both sides of each and the end of two bellows are welded.
前記フランジにおいて、環状の内側から径方向外側に向かって貫通孔が設けてあり、この貫通孔が伸縮継手内を流通するガスが内側のベローズから漏洩しているのを検知する漏洩検知孔となっている請求項1に記載の伸縮継手。   In the flange, a through hole is provided from the inner side of the ring toward the outer side in the radial direction, and this through hole serves as a leak detection hole for detecting the gas flowing through the expansion joint leaking from the inner bellows. The expansion joint according to claim 1. 前記フランジの一方の面と環状の板材が前記内側のベローズの端部を挟み込んでいる請求項1または2に記載の伸縮継手。   The expansion joint according to claim 1 or 2, wherein one surface of the flange and an annular plate sandwich an end of the inner bellows.
JP2013077779A 2013-04-03 2013-04-03 Expansion joint Pending JP2014202260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077779A JP2014202260A (en) 2013-04-03 2013-04-03 Expansion joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077779A JP2014202260A (en) 2013-04-03 2013-04-03 Expansion joint

Publications (1)

Publication Number Publication Date
JP2014202260A true JP2014202260A (en) 2014-10-27

Family

ID=52352888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077779A Pending JP2014202260A (en) 2013-04-03 2013-04-03 Expansion joint

Country Status (1)

Country Link
JP (1) JP2014202260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345330A (en) * 2019-07-19 2019-10-18 福建福清核电有限公司 A kind of online leakage monitor of double-level-metal expansion joint and method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1763574A (en) * 1927-07-27 1930-06-10 Williams Oil O Matic Heating Expanding stuffing box
US2232657A (en) * 1941-02-18 Expansion joint and method of
GB1351136A (en) * 1970-03-13 1974-04-24 Brockington Scott Ltd Bellows assemblies for relatively reciprocable tubular members
US3934618A (en) * 1974-08-26 1976-01-27 Controls Southeast, Inc. Jacketed pipe assembly formed of corrugated metal tubes
JPS6228991U (en) * 1985-08-06 1987-02-21
JPS6269692U (en) * 1985-10-21 1987-05-01
JPS62244213A (en) * 1986-04-17 1987-10-24 株式会社東芝 Flexible joint
JPS6357991A (en) * 1986-08-28 1988-03-12 三菱重工業株式会社 Expansion joint
JPH02195097A (en) * 1989-01-24 1990-08-01 Asahi Glass Co Ltd Telescoping pipe fitting and production thereof
DE19533627C1 (en) * 1995-09-12 1997-04-03 Witzenmann Metallschlauchfab Axial compensator for accommodating pipe conduit expansions
DE19632756A1 (en) * 1996-08-14 1998-02-19 Stenflex Rudolf Stender Gmbh Pipe compensator link made of inner and outer tubular bellows
JP2001263563A (en) * 2000-03-22 2001-09-26 Toshiba Corp Expansion joint
JP2004211868A (en) * 2003-01-08 2004-07-29 Csm:Kk Metallic expansion pipe joint
WO2011161524A1 (en) * 2010-06-21 2011-12-29 Flexider S.R.L. Decoupling joint for exhaust pipings of endothermic engines

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2232657A (en) * 1941-02-18 Expansion joint and method of
US1763574A (en) * 1927-07-27 1930-06-10 Williams Oil O Matic Heating Expanding stuffing box
GB1351136A (en) * 1970-03-13 1974-04-24 Brockington Scott Ltd Bellows assemblies for relatively reciprocable tubular members
US3934618A (en) * 1974-08-26 1976-01-27 Controls Southeast, Inc. Jacketed pipe assembly formed of corrugated metal tubes
JPS6228991U (en) * 1985-08-06 1987-02-21
JPS6269692U (en) * 1985-10-21 1987-05-01
JPS62244213A (en) * 1986-04-17 1987-10-24 株式会社東芝 Flexible joint
JPS6357991A (en) * 1986-08-28 1988-03-12 三菱重工業株式会社 Expansion joint
JPH02195097A (en) * 1989-01-24 1990-08-01 Asahi Glass Co Ltd Telescoping pipe fitting and production thereof
DE19533627C1 (en) * 1995-09-12 1997-04-03 Witzenmann Metallschlauchfab Axial compensator for accommodating pipe conduit expansions
DE19632756A1 (en) * 1996-08-14 1998-02-19 Stenflex Rudolf Stender Gmbh Pipe compensator link made of inner and outer tubular bellows
JP2001263563A (en) * 2000-03-22 2001-09-26 Toshiba Corp Expansion joint
JP2004211868A (en) * 2003-01-08 2004-07-29 Csm:Kk Metallic expansion pipe joint
WO2011161524A1 (en) * 2010-06-21 2011-12-29 Flexider S.R.L. Decoupling joint for exhaust pipings of endothermic engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345330A (en) * 2019-07-19 2019-10-18 福建福清核电有限公司 A kind of online leakage monitor of double-level-metal expansion joint and method

Similar Documents

Publication Publication Date Title
JP4926892B2 (en) Flange connection structure of heat exchanger
JP2010071466A (en) Gas turbine seal
Xu et al. Using FEM to determine the thermo-mechanical stress in tube to tube–sheet joint for the SCC failure analysis
Kim et al. Manufacturing and mechanical evaluation of cooled cooling air (CCA) heat exchanger for aero engine
Yoon et al. Stress relaxation cracking in 304H stainless steel weld of a chemical reactor serviced at 560° C
JP2014202260A (en) Expansion joint
JP6828658B2 (en) Exhaust manifold
Tokarev et al. Determining Optimal Geometric Dimensions of Alternative Design Elements of Rolled and Welded Tube-to-Tube Sheet Joints
Yang et al. Finite element creep-fatigue analysis of a welded furnace roll for identifying failure root cause
JP3180377U (en) Heat exchanger
JP2013213491A (en) Double pipe exhaust manifold
US11319879B2 (en) Manufacturing method of turbine casing
JP2015017778A (en) Header part structure and heat exchanger using the same
Liu et al. Theoretical study on thermal hydraulic expansion process of stainless steel lined clad pipe
JP6207833B2 (en) Heat exchanger
JP6617477B2 (en) Stainless steel clad for gasket
JP5676894B2 (en) Fixing structure between metal plate and heat transfer tube
KR101611364B1 (en) Channel type recuperator
JP7319139B2 (en) Piping structure and heat exchanger
Zhu et al. A New Analytical Theory for the Strength Calculation of the Two Different Tubesheets in Floating-Head Heat Exchangers
JP5579950B2 (en) Steam piping
JP6677301B2 (en) gasket
KR20100048569A (en) Bellows connector of exhaust manifold
JP2013249798A (en) Egr gas cooling device
JP2016080215A (en) Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905