JP6333192B2 - Thermoelectric material manufacturing method - Google Patents

Thermoelectric material manufacturing method Download PDF

Info

Publication number
JP6333192B2
JP6333192B2 JP2015030535A JP2015030535A JP6333192B2 JP 6333192 B2 JP6333192 B2 JP 6333192B2 JP 2015030535 A JP2015030535 A JP 2015030535A JP 2015030535 A JP2015030535 A JP 2015030535A JP 6333192 B2 JP6333192 B2 JP 6333192B2
Authority
JP
Japan
Prior art keywords
thermoelectric material
liquid phase
amount
mol
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015030535A
Other languages
Japanese (ja)
Other versions
JP2016152388A (en
Inventor
朋治 片岡
朋治 片岡
慎介 広納
慎介 広納
盾哉 村井
盾哉 村井
拓也 服部
拓也 服部
義徳 大川内
義徳 大川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Admatechs Co Ltd
Original Assignee
Toyota Motor Corp
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Admatechs Co Ltd filed Critical Toyota Motor Corp
Priority to JP2015030535A priority Critical patent/JP6333192B2/en
Publication of JP2016152388A publication Critical patent/JP2016152388A/en
Application granted granted Critical
Publication of JP6333192B2 publication Critical patent/JP6333192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、液相中で熱電材料、特にn型熱電材料を製造する方法に関する。   The present invention relates to a method for producing a thermoelectric material, particularly an n-type thermoelectric material, in a liquid phase.

熱電材料は、熱エネルギーと電気エネルギーとを相互に変換することのできる材料である。様々な熱電材料及びその製造方法が報告されている(例えば、特許文献1〜4)。   Thermoelectric materials are materials that can convert thermal energy and electrical energy to each other. Various thermoelectric materials and production methods thereof have been reported (for example, Patent Documents 1 to 4).

特許文献1は、Bi2−xSbTe3−ySe(0≦x≦2,0≦y≦3)によって表される合金を粉砕し、酸化雰囲気下に暴露し、次に還元雰囲気下又は不活性雰囲気下で焼成することを含む、熱電材料の製造方法を開示している。 Patent Document 1 discloses that an alloy represented by Bi 2-x Sb x Te 3-y Se y (0 ≦ x ≦ 2, 0 ≦ y ≦ 3) is pulverized, exposed to an oxidizing atmosphere, and then reduced. Disclosed is a method for producing a thermoelectric material, comprising firing under or under an inert atmosphere.

特許文献2は、酸素親和性元素(アルカリ金属又はアルカリ土類金属)と熱電材料構成元素を、メカニカルアロイング法を用いて微粒子状態で混合することを含む、熱電材料の製造方法を開示している。   Patent Document 2 discloses a method for producing a thermoelectric material, which includes mixing an oxygen affinity element (alkali metal or alkaline earth metal) and a thermoelectric material constituent element in a fine particle state using a mechanical alloying method. Yes.

特許文献3は、Bi及びTe並びに過剰量のSb(脱酸剤)の単体元素粉末を真空又は不活性雰囲気下で混合し、大気雰囲気下でプレスによる予備成形体の形成及びその加圧焼結を行うことを含む、熱電材料の製造方法を開示している。   In Patent Document 3, Bi and Te and an excessive amount of a single element powder of Sb (deoxidizer) are mixed in a vacuum or in an inert atmosphere, and a preform is formed by pressing in an air atmosphere and pressure-sintered. The manufacturing method of the thermoelectric material including performing is disclosed.

特許文献4は、Bi及びTe並びに過剰量のSbを溶解し、還元し、水熱処理することを含む、熱電材料の製造方法を開示している。   Patent document 4 is disclosing the manufacturing method of the thermoelectric material including melt | dissolving Bi, Te, and excess Sb, reduce | restoring, and hydrothermally treating.

特開2014−22565号公報JP 2014-22565 A 特開2006−237461号公報JP 2006-237461 A 特開平9−275228号公報JP-A-9-275228 特開2013−254924号公報JP 2013-254924 A

特許文献1の方法では、合金の粉砕時における表面酸化が問題となる。そのため、その後に還元雰囲気下で熱処理することが知られている。しかし、表面酸化を防止するために雰囲気を厳密に管理したり、還元雰囲気下での熱処理工程を追加すると、コストが増加してしまう。   In the method of Patent Document 1, surface oxidation during pulverization of the alloy becomes a problem. For this reason, it is known that heat treatment is subsequently performed in a reducing atmosphere. However, if the atmosphere is strictly controlled to prevent surface oxidation or a heat treatment step in a reducing atmosphere is added, the cost increases.

特許文献2では、アルカリ金属又はアルカリ土類金属を酸素親和性元素として使用しているが、これらの元素は水やアルコール等の溶媒と容易に反応し、酸化してしまう。そのため、特許文献2の方法を液相中で実施することはできない。   In Patent Document 2, alkali metal or alkaline earth metal is used as an oxygen affinity element, but these elements easily react with a solvent such as water or alcohol and are oxidized. Therefore, the method of Patent Document 2 cannot be performed in the liquid phase.

特許文献3では、脱酸剤としてのSbを粗大な粒子として使用している。ここで、特許文献3の方法を液相法に適用しても、十分な耐酸化性能を得ることはできない。実際、液相中に粗大なSb粒子を添加しても、予備成形体の形成及びその加圧焼結を大気雰囲気下で行うと熱電材料が酸化することが確認されている。この理由としては、液相法の場合、得られる熱電材料の粒径が非常に小さく、酸化されうる表面の割合が多いことが推測される(特許文献3の方法による粒径は約100μmであり、液相法による粒径は約10nmである)。   In Patent Document 3, Sb as a deoxidizer is used as coarse particles. Here, even if the method of Patent Document 3 is applied to the liquid phase method, sufficient oxidation resistance cannot be obtained. In fact, even when coarse Sb particles are added to the liquid phase, it has been confirmed that the thermoelectric material is oxidized when the preformed body is formed and subjected to pressure sintering in an air atmosphere. The reason for this is that in the case of the liquid phase method, the particle size of the obtained thermoelectric material is very small, and it is estimated that the ratio of the surface that can be oxidized is large (the particle size by the method of Patent Document 3 is about 100 μm). The particle size by the liquid phase method is about 10 nm).

特許文献3及び4では、過剰量のSbを使用している。しかし、n型熱電材料に多量のSbを含有させるとp型熱電材料となる虞がある。   In Patent Documents 3 and 4, an excessive amount of Sb is used. However, if a large amount of Sb is contained in the n-type thermoelectric material, it may become a p-type thermoelectric material.

本発明が対象とするn型熱電材料(Bi(Te,Se)系材料)は、酸化の影響を受けやすく、各製造工程を不活性雰囲気下で実施しても酸化してしまう(以下の比較例1を参照)。この原因は、各製造工程間(例えば輸送)における瞬間的な大気暴露にあると推測される。それ故、n型熱電材料の製造においては、不活性雰囲気を極めて高度に制御することが要求されており、このままでは実用化に耐えることはできなかった。 The n-type thermoelectric material (Bi 2 (Te, Se) 3 -based material) targeted by the present invention is susceptible to oxidation, and oxidizes even if each manufacturing process is carried out in an inert atmosphere (hereinafter referred to as “inductive atmosphere”). See Comparative Example 1). This is presumed to be due to instantaneous atmospheric exposure between manufacturing processes (for example, transportation). Therefore, in manufacturing the n-type thermoelectric material, it is required to control the inert atmosphere to a very high degree, and it has not been possible to withstand practical use as it is.

本発明は、耐酸化性能を有する熱電材料、特にn型熱電材料を液相中で製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a thermoelectric material having oxidation resistance, particularly an n-type thermoelectric material, in a liquid phase.

本発明者等は、鋭意検討した結果、Bi、Te及びSe並びに所定の量のSbを液相中で還元し、水熱処理することにより、耐酸化性能を有するn型熱電材料が得られることを見出した。   As a result of intensive studies, the present inventors have found that an n-type thermoelectric material having oxidation resistance can be obtained by reducing Bi, Te, and Se and a predetermined amount of Sb in a liquid phase and hydrothermally treating them. I found it.

本発明によれば、耐酸化性能を有するn型熱電材料を提供することができる。   According to the present invention, an n-type thermoelectric material having oxidation resistance can be provided.

Sb量とキャリア濃度との関係を示す。The relationship between the amount of Sb and the carrier concentration is shown.

本発明は、液相還元工程及び水熱処理工程を含む熱電材料、特にn型熱電材料の製造方法に関する。n型熱電材料は、例えばBi(Te,Se)3±x(x=0〜1)で表すことができる。 The present invention relates to a thermoelectric material including a liquid phase reduction step and a hydrothermal treatment step, particularly to a method for producing an n-type thermoelectric material. The n-type thermoelectric material can be represented by, for example, Bi 2 (Te, Se) 3 ± x (x = 0 to 1).

<液相還元工程>
液相還元工程は、Bi(ビスマス)、Te(テルル)、Se(セレン)及びSb(アンチモン)を液相中で還元して、複合粒子を形成する工程である。
<Liquid phase reduction process>
The liquid phase reduction step is a step of forming composite particles by reducing Bi (bismuth), Te (tellurium), Se (selenium) and Sb (antimony) in the liquid phase.

Sbの量は、Bi、Te、Se及びSbの合計量に対して、3.3mol%以下である。この量のSbを使用することにより、n型熱電材料の性能を維持し、当該熱電材料の酸化を抑制し、且つ当該熱電材料のキャリア濃度を低く維持することができる。   The amount of Sb is 3.3 mol% or less with respect to the total amount of Bi, Te, Se and Sb. By using this amount of Sb, the performance of the n-type thermoelectric material can be maintained, oxidation of the thermoelectric material can be suppressed, and the carrier concentration of the thermoelectric material can be kept low.

Sbの量の下限は、0mol%でなければ特に限定されないが、例えば、0.01mol%、0.1mol%、0.5mol%、1.0mol%、1.5mol%、2.0mol%等を例示することができる。   The lower limit of the amount of Sb is not particularly limited unless it is 0 mol%. For example, 0.01 mol%, 0.1 mol%, 0.5 mol%, 1.0 mol%, 1.5 mol%, 2.0 mol%, etc. It can be illustrated.

Bi、Te、Se及びSbの原料は、液相に溶解するものであればよい。例えば、Bi、Te、Se及びSbの塩化物、水酸化物、硫酸塩、硝酸塩、酢酸塩等を例示することができる。   The raw materials for Bi, Te, Se, and Sb may be any materials that can be dissolved in the liquid phase. For example, Bi, Te, Se and Sb chlorides, hydroxides, sulfates, nitrates, acetates and the like can be exemplified.

液相を構成する溶媒は、特に限定されないが、水及び有機溶媒等を例示することができる。有機溶媒としては、アルコール、アミド、ケトン等を例示することができる。アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等を例示することができる。アミドとしては、アセトアミド、N−メチル−2−ピロリドン等を例示することができる。ケトンとしては、アセトン、メチルエチルケトン等を例示することができる。   Although the solvent which comprises a liquid phase is not specifically limited, Water, an organic solvent, etc. can be illustrated. Examples of the organic solvent include alcohol, amide, ketone and the like. Examples of the alcohol include methanol, ethanol, propanol, isopropanol, butanol and the like. Examples of amides include acetamido and N-methyl-2-pyrrolidone. Examples of ketones include acetone and methyl ethyl ketone.

液相中の還元のために使用される還元剤は、特に限定されないが、水素化ホウ素ナトリウム(NaBH)、水素化ホウ素リチウム(LiBH)、水素化ホウ素カリウム(KBH)、水素化アルミニウムリチウム(LiAlH)、水素化ジイソブチルアルミニウム([(CHCHCH]AlH)、ヒドラジン(N)、フェニルヒドラジン(PhHNNH)等を例示することができる。 The reducing agent used for the reduction in the liquid phase is not particularly limited, hydrogen sodium borohydride (NaBH 4), lithium borohydride (LiBH 4), potassium borohydride (KBH 4), aluminum hydride Examples include lithium (LiAlH 4 ), diisobutylaluminum hydride ([(CH 3 ) 2 CHCH 2 ] 2 AlH), hydrazine (N 2 H 4 ), and phenylhydrazine (PhHNNH 2 ).

液相還元工程は不活性雰囲気下(窒素雰囲気下、アルゴン雰囲気下等)で実施することが好ましい。   The liquid phase reduction step is preferably performed under an inert atmosphere (such as a nitrogen atmosphere or an argon atmosphere).

<水熱処理工程>
水熱処理工程は、液相還元工程で得られた複合粒子を水熱処理して、熱電材料を形成する工程である。
<Hydrothermal treatment process>
The hydrothermal treatment step is a step of forming a thermoelectric material by hydrothermally treating the composite particles obtained in the liquid phase reduction step.

水熱処理の温度は、特に限定されないが、100〜400℃、150〜350℃、200〜300℃等を例示することができる。   Although the temperature of hydrothermal treatment is not specifically limited, 100-400 degreeC, 150-350 degreeC, 200-300 degreeC etc. can be illustrated.

水熱処理の時間は、特に限定されないが、4〜16時間、6〜14時間、8〜12時間等を例示することができる。   The time for the hydrothermal treatment is not particularly limited, and examples thereof include 4 to 16 hours, 6 to 14 hours, and 8 to 12 hours.

<乾燥工程>
本発明の製造方法は、更に乾燥工程を含んでいてもよい。乾燥工程は、水熱処理工程で製造された熱電材料の粉末を乾燥する工程である。乾燥工程は不活性雰囲気下(窒素雰囲気下、アルゴン雰囲気下等)で実施することが好ましい。
<Drying process>
The production method of the present invention may further include a drying step. The drying step is a step of drying the thermoelectric material powder produced in the hydrothermal treatment step. The drying step is preferably performed under an inert atmosphere (such as a nitrogen atmosphere or an argon atmosphere).

<バルク化処理工程>
本発明の製造方法は、更にバルク化処理工程を含んでいてもよい。バルク化処理工程は、水熱処理工程で製造された熱電材料の粉末、又は乾燥工程で乾燥された熱電材料の粉末をバルク化する工程である。バルク化処理の方法は、特に限定されないが、熱電材料の粉末を圧粉形成し、放電プラズマ焼結する方法を例示することができる。
<Bulkization process>
The production method of the present invention may further include a bulking treatment step. The bulking process is a process of bulking the thermoelectric material powder produced in the hydrothermal treatment process or the thermoelectric material powder dried in the drying process. The method of bulking treatment is not particularly limited, and examples thereof include a method of compacting a thermoelectric material powder and performing discharge plasma sintering.

放電プラズマ焼結の温度は、特に限定されないが、300〜500℃、350〜450℃等を例示することができる。   Although the temperature of discharge plasma sintering is not specifically limited, 300-500 degreeC, 350-450 degreeC etc. can be illustrated.

放電プラズマ焼結の時間は、特に限定されないが、5〜60分、5〜40分、5〜20分等を例示することができる。   Although the time of discharge plasma sintering is not specifically limited, 5-60 minutes, 5-40 minutes, 5-20 minutes etc. can be illustrated.

放電プラズマ焼結の圧力は、特に限定されないが、20〜80MPa、30〜70MPa、40〜60MPa等を例示することができる。   Although the pressure of discharge plasma sintering is not specifically limited, 20-80 MPa, 30-70 MPa, 40-60 MPa etc. can be illustrated.

以下、実施例、参考例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, a reference example, and a comparative example, the technical scope of this invention is not limited to this.

<熱電材料の製造及びその特性測定>
[実施例1]
(1)原料溶液の調製
塩化ビスマス(14.27g)、塩化テルル(17.99g)、塩化セレン(0.25g)、及び塩化アンチモン(Bi、Te、Se及びSbの合計量に対してSbの量が2.0mol%となる量)をエタノール(1700ml)に溶解させて、原料溶液を調製した。
<Manufacture of thermoelectric materials and measurement of their characteristics>
[Example 1]
(1) Preparation of raw material solution Sb with respect to the total amount of bismuth chloride (14.27 g), tellurium chloride (17.99 g), selenium chloride (0.25 g), and antimony chloride (Bi, Te, Se, and Sb) An amount of 2.0 mol%) was dissolved in ethanol (1700 ml) to prepare a raw material solution.

(2)還元剤溶液の調製
水素化ホウ素ナトリウム(19.58g)をエタノール(1700ml)に溶解させて、還元剤溶液を調製した。
(2) Preparation of reducing agent solution Sodium borohydride (19.58 g) was dissolved in ethanol (1700 ml) to prepare a reducing agent solution.

(3)液相還元
窒素雰囲気下で還元剤溶液を原料溶液に滴下して、複合粒子を形成した。複合粒子は水及びエタノールで洗浄した。ここで、ナノ粒子を導入することで分散相が形成され、材料の性能が向上する。
(3) Liquid phase reduction The reducing agent solution was dropped into the raw material solution in a nitrogen atmosphere to form composite particles. The composite particles were washed with water and ethanol. Here, by introducing nanoparticles, a dispersed phase is formed, and the performance of the material is improved.

(4)水熱処理
複合粒子をエタノール(200ml)と混合し、水熱処理(10時間、240℃)して、熱電材料の粉末を得た。熱電材料の粉末はエタノールで洗浄した。
(4) Hydrothermal treatment The composite particles were mixed with ethanol (200 ml) and hydrothermally treated (10 hours, 240 ° C) to obtain a thermoelectric material powder. The thermoelectric material powder was washed with ethanol.

(5)乾燥
熱電材料の粉末を不活性雰囲気下で乾燥した。
(5) Drying The powder of the thermoelectric material was dried under an inert atmosphere.

(6)バルク化処理
乾燥させた熱電材料の粉末を圧粉成形し、放電プラズマ焼結(10分間、400℃、50MPa)によりバルク化した。
(6) Bulking treatment The dried thermoelectric material powder was compacted and bulked by discharge plasma sintering (10 minutes, 400 ° C., 50 MPa).

(7)特性測定
X線回折装置(株式会社リガク製、水平型X線回折装置SmartLab)を用いて、酸化物の有無を測定した。
(7) Characteristic measurement The presence or absence of an oxide was measured using an X-ray diffractometer (manufactured by Rigaku Corporation, horizontal X-ray diffractometer SmartLab).

Resi−test9340DC(株式会社東陽テクニカ製)を用いて、キャリア濃度を測定した。   The carrier concentration was measured using Resi-test 9340DC (manufactured by Toyo Corporation).

[参考例1]
実施例1の「(1)原料溶液の調製」におけるSbの量を3.9mol%に変更したこと以外は、実施例1と同様の操作を行った。
[Reference Example 1]
The same operation as in Example 1 was performed except that the amount of Sb in “(1) Preparation of raw material solution” in Example 1 was changed to 3.9 mol%.

[参考例2]
実施例1の「(1)原料溶液の調製」におけるSbの量を5.7mol%に変更したこと以外は、実施例1と同様の操作を行った。
[Reference Example 2]
The same operation as in Example 1 was performed except that the amount of Sb in “(1) Preparation of raw material solution” in Example 1 was changed to 5.7 mol%.

[比較例1]
実施例1の「(1)原料溶液の調製」において塩化アンチモンを使用しなかったこと以外は、実施例1と同様の操作を行った。
[Comparative Example 1]
The same operation as in Example 1 was performed except that antimony chloride was not used in “(1) Preparation of raw material solution” in Example 1.

<結果>
Sbの量が増加するにつれて、熱電材料の代わりに酸化されたSbの酸化物相が確認された。
<Result>
As the amount of Sb increased, an oxidized Sb oxide phase was observed instead of a thermoelectric material.

Sbの量が増加するにつれて、キャリア濃度が低下したが、一定の量を超えると、逆にキャリア濃度が上昇した(図1)。キャリア濃度の上昇は、Sbが酸化されずに熱電材料内に合金化されることが原因であると推測される。   As the amount of Sb increased, the carrier concentration decreased. However, when the amount exceeded a certain amount, the carrier concentration increased conversely (FIG. 1). The increase in carrier concentration is presumed to be caused by the fact that Sb is not oxidized but alloyed in the thermoelectric material.

上述の通り、液相法を利用する本発明によって得られる熱電材料の表面積は大きく、酸化の影響を受けやすいため、酸化を抑制するためにSbを多量に使用することが予測される。しかし、キャリア濃度の観点から、Sbの量は3.3mol%以下であることが好ましい。   As described above, since the surface area of the thermoelectric material obtained by the present invention using the liquid phase method is large and easily affected by oxidation, it is predicted that a large amount of Sb is used to suppress oxidation. However, from the viewpoint of carrier concentration, the amount of Sb is preferably 3.3 mol% or less.

キャリア濃度を増加させることなく、少量のSbで効果的に酸化を抑制できる理由は、Sbが他の元素よりも還元されにくく、液相における熱電材料粒子の合成時にSbがin−situで合成されるため、熱電材料粒子の表面にSbが薄い保護膜のように形成されることによると推測される。   The reason why oxidation can be effectively suppressed with a small amount of Sb without increasing the carrier concentration is that Sb is less likely to be reduced than other elements, and Sb is synthesized in-situ during the synthesis of thermoelectric material particles in the liquid phase. Therefore, it is estimated that Sb is formed on the surface of the thermoelectric material particle like a thin protective film.

なお、キャリア濃度を測定する際に、電子及び正孔の数を測定した結果、実施例、参考例及び比較例で製造された熱電材料はいずれもn型熱電材料であった。   When the carrier concentration was measured, the number of electrons and holes was measured. As a result, the thermoelectric materials produced in the examples, reference examples, and comparative examples were all n-type thermoelectric materials.

Claims (2)

Bi、Te、Se及びSbを液相中で還元して、複合粒子を形成する液相還元工程;及び
液相還元工程で得られた複合粒子を水熱処理して、熱電材料を形成する水熱処理工程;を含み、
液相還元工程におけるSbの量が、Bi、Te、Se及びSbの合計量に対して、3.3mol%以下である、n型熱電材料の製造方法。
A liquid phase reduction step in which Bi, Te, Se and Sb are reduced in the liquid phase to form composite particles; and a hydrothermal treatment in which the composite particles obtained in the liquid phase reduction step are hydrothermally treated to form a thermoelectric material. Comprising the steps of:
The method for producing an n-type thermoelectric material, wherein the amount of Sb in the liquid phase reduction step is 3.3 mol% or less with respect to the total amount of Bi, Te, Se, and Sb.
水熱処理を4〜16時間行う、請求項1に記載の製造方法 The manufacturing method of Claim 1 which performs a hydrothermal treatment for 4 to 16 hours .
JP2015030535A 2015-02-19 2015-02-19 Thermoelectric material manufacturing method Expired - Fee Related JP6333192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030535A JP6333192B2 (en) 2015-02-19 2015-02-19 Thermoelectric material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030535A JP6333192B2 (en) 2015-02-19 2015-02-19 Thermoelectric material manufacturing method

Publications (2)

Publication Number Publication Date
JP2016152388A JP2016152388A (en) 2016-08-22
JP6333192B2 true JP6333192B2 (en) 2018-05-30

Family

ID=56696943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030535A Expired - Fee Related JP6333192B2 (en) 2015-02-19 2015-02-19 Thermoelectric material manufacturing method

Country Status (1)

Country Link
JP (1) JP6333192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077967B2 (en) 2019-01-10 2022-05-31 株式会社Soken Driving lane estimation device, driving lane estimation method, and control program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275228A (en) * 1996-04-01 1997-10-21 Kubota Corp Sb-containing thermoelectric material molding and manufacturing method thereof
TW405273B (en) * 1998-04-23 2000-09-11 Toyo Kohan Co Ltd Manufacturing method of sintered material for thermo-electric converter elements, sintered materials for thermo-electric converter elements, and a thermoelectric converter element made by using the same
JP3594008B2 (en) * 2000-11-30 2004-11-24 ヤマハ株式会社 Thermoelectric material, manufacturing method thereof and Peltier module
JP2002246662A (en) * 2001-02-21 2002-08-30 Aisin Seiki Co Ltd Method for manufacturing thermoelectric semiconductor
JP4428082B2 (en) * 2004-02-24 2010-03-10 パナソニック電工株式会社 Manufacturing method of semiconductor thermoelectric material
JP4645575B2 (en) * 2006-10-23 2011-03-09 ヤマハ株式会社 Thermoelectric material manufacturing method, thermoelectric material, and thermoelectric conversion module
JP5721127B2 (en) * 2010-03-16 2015-05-20 国立大学法人北陸先端科学技術大学院大学 Metal nanomaterial and manufacturing method thereof
JP5533240B2 (en) * 2010-05-18 2014-06-25 トヨタ自動車株式会社 Manufacturing method of anisotropic thermoelectric conversion nanoparticles and manufacturing method of anisotropic thermoelectric conversion sintered body using the same
US8834736B2 (en) * 2011-12-01 2014-09-16 Toyota Motor Engineering & Manufacturing North America, Inc. Ternary thermoelectric material containing nanoparticles and process for producing the same
US20130330225A1 (en) * 2012-06-07 2013-12-12 Toyota Motor Engineering & Manufacturing North America, Inc. Production method for nanocomposite thermoelectric conversion material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077967B2 (en) 2019-01-10 2022-05-31 株式会社Soken Driving lane estimation device, driving lane estimation method, and control program

Also Published As

Publication number Publication date
JP2016152388A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
Hareesh et al. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol
Raveendran et al. A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles
JP5767447B2 (en) Method for producing powder containing Cu, In, Ga and Se elements, and sputtering target containing Cu, In, Ga and Se elements
Hoseinpur et al. Mechanochemical synthesis of tungsten carbide nano particles by using WO3/Zn/C powder mixture
WO2016052272A1 (en) P-type thermoelectric material, thermoelectric element and method for producing p-type thermoelectric material
JP6333192B2 (en) Thermoelectric material manufacturing method
JP2011202208A (en) Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
Li et al. Synthesis of nitrogen-doped graphene–BiOBr nanocomposites with enhanced visible light photocatalytic activity
TWI491556B (en) Thermoelectric material and method for manufacturing the same
Wang et al. High thermoelectric performance of fullerene doped Bi0. 5Sb1. 5Te3 alloys
JP5721127B2 (en) Metal nanomaterial and manufacturing method thereof
Shojaei et al. Enhanced thermoelectric performance of CuAlS2 by adding multi-walled carbon nanotubes
Lee et al. Synthesis of Bi-Te-Se-based thermoelectric powder by an oxide-reduction process
Wang et al. Electrical/thermal behaviors of bimetallic (Ag–Cu, Ag–Sn) nanoparticles for printed electronics
WO2022211739A1 (en) Ambient scalable synthesis of surfactant-free nanostructured chalcogenide particles for near room-temperature thermoelectric applications
JP2014165260A (en) Method of producing thermoelectric conversion material
KR20130005105A (en) Nano-thermoelectric powder and thermoelectric device using the same
KR20120043273A (en) Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
Kim et al. Synthesis and thermoelectric properties of bismuth–antimony–tellurium-based nanopowders
JP5784888B2 (en) Method for producing BiTe-based thermoelectric material
KR102670992B1 (en) Themoelectric material and manufacturing method thereof
Hesse et al. High-energy ball milling of intermetallic Ti-Cu alloys for the preparation of oxide nanoparticles
Wang et al. Growth of Ag3Sn and Sn Nanoparticles Based on the Variation of Reaction Conditions
JP6258222B2 (en) Niobium capacitor anode chemical and method for producing the same
KR102336650B1 (en) Composite thermoelectric material and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R151 Written notification of patent or utility model registration

Ref document number: 6333192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees