JP6331327B2 - Method for producing D-lactic acid - Google Patents

Method for producing D-lactic acid Download PDF

Info

Publication number
JP6331327B2
JP6331327B2 JP2013218917A JP2013218917A JP6331327B2 JP 6331327 B2 JP6331327 B2 JP 6331327B2 JP 2013218917 A JP2013218917 A JP 2013218917A JP 2013218917 A JP2013218917 A JP 2013218917A JP 6331327 B2 JP6331327 B2 JP 6331327B2
Authority
JP
Japan
Prior art keywords
lactic acid
fermentation
saccharification
producing
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013218917A
Other languages
Japanese (ja)
Other versions
JP2015080429A (en
Inventor
池水 昭一
昭一 池水
哲 河津
哲 河津
山下 耕二
耕二 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2013218917A priority Critical patent/JP6331327B2/en
Publication of JP2015080429A publication Critical patent/JP2015080429A/en
Application granted granted Critical
Publication of JP6331327B2 publication Critical patent/JP6331327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パルプを原料として使用し、D−乳酸生産菌を用いてD−乳酸を製造する方法に関する。   The present invention relates to a method for producing D-lactic acid using pulp as a raw material and using a D-lactic acid-producing bacterium.

セルロースを含む木質系バイオマスを原料とし、酵素や微生物を添加して、糖化や糖化発酵を行って糖液や発酵液を得る方法は多く実施されている。また、乳酸は、生物の解糖系によりグルコースなどの糖分が分解されて生産される有機酸であり、さらにTCA回路に誘導されて生体エネルギー産生の起点になる重要な化合物である。   Many methods have been implemented in which woody biomass containing cellulose is used as a raw material, enzymes and microorganisms are added, and saccharification and saccharification and fermentation are performed to obtain a sugar solution and a fermentation broth. Lactic acid is an organic acid produced by the decomposition of sugars such as glucose by a biological glycolysis system, and is also an important compound that is induced by the TCA circuit and becomes the starting point of bioenergy production.

非特許文献1には、セルロースを並行糖化発酵することによって乳酸を生産することが記載されている。非特許文献2及び3には、木片を粉砕及び化学処理してから、セルラーゼと乳酸菌とを使用して併行糖化発酵を行うことによって乳酸を生産することが記載されている。非特許文献4には、Entetococcus faecalismによる木材加水分解物の発酵によってL−乳酸を生産することが記載されている。非特許文献5には、セルラーゼとLactobacillus coryniformis とを使用して併行糖化発酵によってD−乳酸を生産することが記載されている。非特許文献6には、ペーパースラッジを原料として併行糖化発酵によって乳酸を生産することが記載されている。   Non-Patent Document 1 describes that lactic acid is produced by parallel saccharification and fermentation of cellulose. Non-Patent Documents 2 and 3 describe that lactic acid is produced by pulverizing and chemically treating a piece of wood, followed by parallel saccharification and fermentation using cellulase and lactic acid bacteria. Non-Patent Document 4 describes that L-lactic acid is produced by fermentation of a wood hydrolyzate by Entetococcus faecalism. Non-Patent Document 5 describes that D-lactic acid is produced by parallel saccharification and fermentation using cellulase and Lactobacillus coryniformis. Non-Patent Document 6 describes that lactic acid is produced by parallel saccharification and fermentation using paper sludge as a raw material.

また、特許文献1には、キャッサバパルプから高収率かつ安価に乳酸を生産する方法が記載されている。しかし、この方法は、乳酸を生産する方法であるが、D−乳酸のみを生産する方法ではない。   Patent Document 1 describes a method for producing lactic acid from cassava pulp at high yield and low cost. However, this method is a method for producing lactic acid, but is not a method for producing only D-lactic acid.

さらに、特許文献2には、ラクトバシラス・デルブルキ(Lactobacillus delbrueckii)に属する乳酸菌を用いてD−乳酸を発酵することが記載されている。この文献は、グルコースを基質としてD−乳酸を発酵するものであり、グルコース以外の原料を基質とすることについての記載はない。   Furthermore, Patent Document 2 describes that D-lactic acid is fermented using a lactic acid bacterium belonging to Lactobacillus delbrueckii. This document ferments D-lactic acid using glucose as a substrate, and there is no description about using a raw material other than glucose as a substrate.

Shin-ichiro Abe and Motoyoshi Takagi, Simultaneous Saccharification and Fermentation of Cellulose to Lactic Acid, Biotechnology and Bioengineering, Vol. 37, Pp. 93-96 (1991)Shin-ichiro Abe and Motoyoshi Takagi, Simultaneous Saccharification and Fermentation of Cellulose to Lactic Acid, Biotechnology and Bioengineering, Vol. 37, Pp. 93-96 (1991) Moldes, A. B., Alonso, J. L. and Parajo, J. C, Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation., J. Chem. Technol. Biotechnol., 76: 279-284 (2001)Moldes, A. B., Alonso, J. L. and Parajo, J. C, Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation., J. Chem. Technol. Biotechnol., 76: 279-284 (2001) Moldes, A. B., Alonso, J. L. and Parajo, J. C., Multi-step feeding systems for lactic acid production by simultaneous saccharification and fermentation of processed wood, Bioprocess Engineering, Volume 22, Issue 2, pp 175-180 (2000)Moldes, A. B., Alonso, J. L. and Parajo, J. C., Multi-step feeding systems for lactic acid production by simultaneous saccharification and fermentation of processed wood, Bioprocess Engineering, Volume 22, Issue 2, pp 175-180 (2000) Young-Jung Wee, Jong-Sun Yun, Don-Hee Park, Hwa-Won Ryu, Biotechnological production of l(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis, Biotechnology Letters, Volume 26, Issue 1, pp 71-74 (2004)Young-Jung Wee, Jong-Sun Yun, Don-Hee Park, Hwa-Won Ryu, Biotechnological production of l (+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis, Biotechnology Letters, Volume 26, Issue 1, pp 71-74 (2004) R Yanez, A Belen Moldes, JL Alonso, JC Parajo, Production of D (-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens, Biotechnology letters, Volume 25, Issue 14, pp 1161-1164 (2003)R Yanez, A Belen Moldes, JL Alonso, JC Parajo, Production of D (-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp.torquens, Biotechnology letters, Volume 25, Issue 14, pp 1161-1164 ( 2003) S Marques, JAL Santos, FM Girio, JC Roseiro, Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation, Biochemical Engineering Journal, Volume 41, Issue 3, pp 210-216 (2008)S Marques, JAL Santos, FM Girio, JC Roseiro, Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation, Biochemical Engineering Journal, Volume 41, Issue 3, pp 210-216 (2008)

特開2004−097136号公報JP 2004-097136 A 特開2010−279332号公報JP 2010-279332 A

本発明は、木質バイオマス・パルプを原料として使用し、D−乳酸生産菌を用いてD−乳酸を高い生産量かつ高い生成速度で製造する方法を提供することを解決すべき課題とした。   This invention made it the subject which should be solved to provide the method of manufacturing D-lactic acid with a high production amount and a high production rate using a woody biomass pulp as a raw material and using a D-lactic acid production microbe.

本発明者らは上記課題を解決するために鋭意検討した。その結果、木質バイオマスとして広葉樹漂白クラフトパルプ(LBKP)を原料として使用し、酵素による糖化工程と、D−乳酸生産菌による発酵工程とを順次行うことによって、D−乳酸を高い生産量かつ高い生成速度で製造できることを見出した。これにより本発明を完成するに至った。   The present inventors diligently studied to solve the above problems. As a result, hardwood bleached kraft pulp (LBKP) is used as a raw material for woody biomass, and a saccharification step by an enzyme and a fermentation step by a D-lactic acid-producing bacterium are sequentially performed to produce a high production amount and high production of D-lactic acid. It was found that it can be manufactured at a speed. Thus, the present invention has been completed.

即ち、本発明によれば、以下の発明が提供される。
(1)(a)広葉樹漂白クラフトパルプを酵素で糖化することにより酵素糖化液を得る工程:及び
(b)前記工程(a)で得た酵素糖化液をD−乳酸生産菌を用いて発酵することによりD−乳酸を生産する工程:
を含むD−乳酸の製造方法。
That is, according to the present invention, the following inventions are provided.
(1) (a) A step of obtaining an enzyme saccharified solution by saccharifying hardwood bleached kraft pulp with an enzyme: and (b) fermenting the enzyme saccharified solution obtained in the step (a) using a D-lactic acid-producing bacterium. To produce D-lactic acid by:
The manufacturing method of D-lactic acid containing this.

(2) 前記工程(a)で得た酵素糖化液が、グルコースを含む液である、(1)に記載のD−乳酸の製造方法。
(3) 前記D−乳酸生産菌が、ラクトバシラス属乳酸菌である、(1)又は(2)に記載のD−乳酸の製造方法。
(2) The method for producing D-lactic acid according to (1), wherein the enzyme saccharified solution obtained in the step (a) is a solution containing glucose.
(3) The method for producing D-lactic acid according to (1) or (2), wherein the D-lactic acid-producing bacterium is a Lactobacillus lactic acid bacterium.

(4) 前記D−乳酸生産菌が、ラクトバシラス・デルブルキに属する乳酸菌である、(1)から(3)の何れか1項に記載のD−乳酸の製造方法。
(5) 前記工程(b)における発酵をpH5〜7、温度30℃〜50℃で撹拌して行う、(1)から(4)の何れか1項に記載のD−乳酸の製造方法。
(4) The method for producing D-lactic acid according to any one of (1) to (3), wherein the D-lactic acid-producing bacterium is a lactic acid bacterium belonging to Lactobacillus delbruki.
(5) The method for producing D-lactic acid according to any one of (1) to (4), wherein the fermentation in the step (b) is performed with stirring at a pH of 5 to 7 and a temperature of 30 ° C to 50 ° C.

本発明によれば、木質バイオマス・パルプを原料として使用し、D−乳酸生産菌を用いてD−乳酸を高い生産量かつ高い生成速度で製造することができる。   According to the present invention, woody biomass pulp can be used as a raw material, and D-lactic acid can be produced with a high production amount and a high production rate using D-lactic acid-producing bacteria.

図1は、LBKP酵素糖化液(本発明)及びグルコース(比較例)からD−乳酸を製造した場合における、D−乳酸生成量及びグルコース量の推移を示す。黒丸はLBKP酵素糖化液(本発明)の場合を示し、白三角はグルコース(比較例)の場合を示す。FIG. 1 shows changes in the amount of D-lactic acid produced and the amount of glucose when D-lactic acid was produced from an LBKP enzyme saccharified solution (present invention) and glucose (comparative example). Black circles show the case of LBKP enzyme saccharified solution (present invention), and white triangles show the case of glucose (comparative example).

以下、本発明について更に詳細に説明する。
<原料>
本発明において、広葉樹漂白クラフトパルプ(LBKP)を原料として使用する。LBKPを製造するための原料として使用する木材チップとしては、ユーカリ、オーク、アカシア、ビーチ、タンオーク、オルダー等の広葉樹材であれば特に限定されない。また、使用する広葉樹材に多少の針葉樹材を含まれていても構わない。
Hereinafter, the present invention will be described in more detail.
<Raw material>
In the present invention, hardwood bleached kraft pulp (LBKP) is used as a raw material. The wood chip used as a raw material for producing LBKP is not particularly limited as long as it is a hardwood material such as eucalyptus, oak, acacia, beach, tan oak, and alder. Moreover, some softwoods may be included in the hardwood used.

上記した木材チップをクラフト蒸解処理に供し、次いで漂白処理に供することによって、広葉樹漂白クラフトパルプ(LBKP)を得ることができる。
クラフト蒸解は公知の方法により行うことができる。例えば、木材をクラフト蒸解する場合、クラフト蒸解液の硫化度は5〜75%、好ましくは20〜35%であり、有効アルカリ添加率は絶乾木材質量当たり5〜30質量%、好ましくは10〜25質量%であり、蒸解温度は140〜170℃である。しかし、クラフト蒸解の条件はこれらに限定されるものではない。また、クラフト蒸解方式は、連続蒸解法あるいはバッチ蒸解法のどちらでもよく、連続蒸解釜を用いる場合は、蒸解白液を分割で添加する蒸解法でもよく、その方式は特に限定されない。
Hardwood bleached kraft pulp (LBKP) can be obtained by subjecting the above wood chips to kraft cooking and then bleaching.
Kraft cooking can be performed by a known method. For example, when kraft cooking wood, the sulfidity of the kraft cooking solution is 5 to 75%, preferably 20 to 35%, and the effective alkali addition rate is 5 to 30% by weight, preferably 10 to 10% by weight of the absolutely dry wood. The cooking temperature is 140-170 ° C. However, the conditions for kraft cooking are not limited to these. The kraft cooking method may be either a continuous cooking method or a batch cooking method, and when a continuous cooking kettle is used, it may be a cooking method in which cooking white liquor is added in portions, and the method is not particularly limited.

蒸解に際して使用する蒸解液には、蒸解助剤として公知の環状ケト化合物を使用することができる。例えばベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン及び前記キノン系化合物のアルキル、アミノ等の核置換体、或いは前記キノン系化合物の還元型であるアントラヒドロキノンのようなヒドロキノン系化合物、さらにはディールスアルダー法によるアントラキノン合成法の中間体として得られる安定な化合物である9,10−ジケトヒドロアントラセン化合物等から選ばれた1種又は2種以上が添加されてもよい。添加率は特に限定されないが、一般的には、木材チップの絶乾質量当たり0.001〜1.0質量%である。   A known cyclic keto compound as a cooking aid can be used in the cooking solution used for cooking. For example, benzoquinone, naphthoquinone, anthraquinone, anthrone, phenanthroquinone and the above-mentioned quinone compounds such as alkyl, amino and other nuclear substitutes, or hydroquinone compounds such as anthrahydroquinone, which is a reduced form of the quinone compounds, and Diels Alder One or more selected from 9,10-diketohydroanthracene compounds and the like, which are stable compounds obtained as intermediates in the method of synthesizing anthraquinones, may be added. Although an addition rate is not specifically limited, Generally, it is 0.001-1.0 mass% per the absolute dry mass of a wood chip.

クラフト蒸解法により得られた未漂白化学パルプは、所望により、洗浄工程を経て、公知の酸素脱リグニン法により脱リグニンすることができる。酸素脱リグニン法に用いるアルカリとしては苛性ソーダあるいは酸化されたクラフト白液を使用することができる。酸素ガスとしては、深冷分離法からの酸素、PSA(PRESSURE Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。   The unbleached chemical pulp obtained by the kraft cooking method can be delignified by a known oxygen delignification method through a washing step if desired. As the alkali used in the oxygen delignification method, caustic soda or oxidized kraft white liquor can be used. As the oxygen gas, oxygen from a cryogenic separation method, oxygen from PSA (PRESSURE Swing Adsorption), oxygen from VSA (Vacuum Swing Adsorption), or the like can be used.

酸素脱リグニン工程では、前記酸素ガスとアルカリが中濃度ミキサーにおいて中濃度のパルプスラリーに添加され、混合が十分に行われた後、加圧下でパルプ、酸素及びアルカリの混合物を一定時間保持できる反応塔へ送られ、脱リグニンされる。酸素ガスの添加率は特に限定されないが、絶乾パルプ質量当たり0.5〜3質量%であり、アルカリ添加率は0.5〜4質量%である。また、反応温度は80〜120℃で、反応時間は15〜100分であり、パルプ濃度は8〜15質量%であるが、これらの条件は特に限定されない。   In the oxygen delignification step, the oxygen gas and alkali are added to a medium concentration pulp slurry in a medium concentration mixer, and after sufficiently mixed, a reaction that can hold a mixture of pulp, oxygen and alkali for a certain period of time under pressure It is sent to the tower and delignified. Although the addition rate of oxygen gas is not specifically limited, it is 0.5-3 mass% with respect to the absolute dry pulp mass, and an alkali addition rate is 0.5-4 mass%. Moreover, although reaction temperature is 80-120 degreeC, reaction time is 15-100 minutes, and a pulp density | concentration is 8-15 mass%, these conditions are not specifically limited.

酸素脱リグニンを施されたパルプは洗浄工程へ送ることができる。酸素脱リグニン後の洗浄工程で使用する洗浄機、及び多段漂白工程中の洗浄に使用する洗浄機は、特に限定されるものではない。例えば、プレッシャーディフューザー、ディフュージョンウオッシャー、加圧型ドラムウオッシャー、水平長網型ウオッシャー、プレス洗浄機等を挙げることができる。   Pulp that has been subjected to oxygen delignification can be sent to the washing step. The washing machine used in the washing process after oxygen delignification and the washing machine used for washing during the multi-stage bleaching process are not particularly limited. For example, a pressure diffuser, a diffusion washer, a pressure drum washer, a horizontal long washer, a press washer, and the like can be given.

上記の通り脱リグニン処理されたパルプは多段漂白工程へ供することができる。多段漂白工程は、二酸化塩素(D)、アルカリ(E)、酸素(O)、過酸化水素(P)、オゾン(Z)といった公知のECF漂白法を組合せて行うことができる。また、多段漂白工程中に、高温酸処理段(A)や酸洗浄段、酵素処理段、高温二酸化塩素漂白段、過硫酸や過酢酸等による過酸漂白段を導入することもできる。多段漂白工程中には、エチレンジアミンテトラ酢酸(EDTA)やジエチレントリアミンペンタ酢酸(DTPA)等によるキレート剤処理段等を導入することもできる。   The pulp that has been delignified as described above can be subjected to a multistage bleaching step. The multi-stage bleaching step can be performed by combining known ECF bleaching methods such as chlorine dioxide (D), alkali (E), oxygen (O), hydrogen peroxide (P), and ozone (Z). Further, during the multi-stage bleaching step, a high-temperature acid treatment stage (A), an acid washing stage, an enzyme treatment stage, a high-temperature chlorine dioxide bleaching stage, a peracid bleaching stage using persulfuric acid or peracetic acid can be introduced. A chelating agent treatment stage with ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), or the like can be introduced into the multistage bleaching process.

上記により、本発明において原料として使用する広葉樹漂白クラフトパルプ(LBKP)を得ることができる。   By the above, the hardwood bleached kraft pulp (LBKP) used as a raw material in this invention can be obtained.

また、広葉樹漂白クラフトパルプ(LBKP)に対しては、LBKP懸濁液の調製に使用する前に、殺菌処理を行うこともできる。LBKP原料中に雑菌が混入していると、酵素による糖化を行う際に雑菌が糖を消費して生成物の収量が低下してしまうという問題が発生する。殺菌処理は、酸やアルカリなど、菌の生育困難なpHに原料を晒す方法でも良いが、高温下で処理する方法でも良く、両方を組み合わせても良い。酸、アルカリ処理後の原料については、中性付近、もしくは、糖化・発酵工程に適したpHに調整した後に原料として使用することが好ましい。また、高温高圧殺菌した場合も、室温もしくは糖化工程に適した温度まで降温させてから原料として使用することが好ましい。このように、温度やpHを調整してから原料を送り出すことで、好適pH、好適温度外に酵素が晒されて、失活することを防ぐことができる。   In addition, hardwood bleached kraft pulp (LBKP) can be sterilized before being used to prepare the LBKP suspension. When miscellaneous bacteria are mixed in the LBKP raw material, there is a problem that the miscellaneous bacteria consume sugar when the enzyme saccharifies and the yield of the product decreases. The sterilization treatment may be a method in which the raw material is exposed to a pH at which bacteria are difficult to grow, such as an acid or an alkali. About the raw material after acid and alkali treatment, it is preferable to use it as a raw material after adjusting it to neutral vicinity or pH suitable for a saccharification and fermentation process. Moreover, even when sterilized at high temperature and high pressure, it is preferable to use the raw material after lowering the temperature to room temperature or a temperature suitable for the saccharification process. Thus, by feeding out the raw material after adjusting the temperature and pH, it is possible to prevent the enzyme from being exposed to the outside of the preferred pH and the preferred temperature and being deactivated.

<糖化処理>
本発明においては、広葉樹漂白クラフトパルプ(LBKP)を、発酵処理に先立って、糖化処理する。
<Saccharification treatment>
In the present invention, hardwood bleached kraft pulp (LBKP) is saccharified prior to fermentation.

糖化処理においては、LBKPは、適量の水と酵素と混合され、糖化発酵工程に供給される。LBKPの懸濁濃度は、1〜30質量%であることが好ましい。1質量%未満であると、最終的に生産物の濃度が低すぎて生産物の濃縮のコストが高くなるという問題が発生する。また、30質量%を超えて高濃度となるにしたがって原料の攪拌が困難になり、生産性が低下するという問題が発生する。   In the saccharification treatment, LBKP is mixed with an appropriate amount of water and an enzyme and supplied to the saccharification and fermentation process. The suspension concentration of LBKP is preferably 1 to 30% by mass. If it is less than 1% by mass, there is a problem in that the concentration of the product is ultimately too low and the cost for concentrating the product becomes high. Moreover, as the concentration exceeds 30% by mass, it becomes difficult to stir the raw materials, resulting in a problem that productivity is lowered.

糖化で使用するセルロース分解酵素は、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する、所謂セルラーゼと総称される酵素である。各セルロース分解酵素は、夫々の活性を有する酵素を適宜の量で添加しても良いが、市販されているセルラーゼ製剤は、上記の各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多いので市販のセルラーゼ製剤を用いれば良い。   Cellulolytic enzymes used for saccharification are enzymes collectively called cellulases having cellobiohydrolase activity, endoglucanase activity, and betaglucosidase activity. Each cellulolytic enzyme may be added with an appropriate amount of an enzyme having the respective activity. However, commercially available cellulase preparations have the above-mentioned various cellulase activities and also have hemicellulase activity. Since many products are available, a commercially available cellulase preparation may be used.

市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス(Trametes)属、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、GC220(ジェネンコア社製)等が挙げられる。   Commercial cellulase preparations include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, the genus Trametes, the genus Humicola, and the like. There are cellulase formulations derived from Commercially available products of such cellulase preparations are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), GC220 (manufactured by Genencor), etc. Is mentioned.

原料固形分100質量部に対するセルラーゼ製剤の使用量は、0.5〜100質量部が好ましく、1〜50質量部が特に好ましい。   0.5-100 mass parts is preferable and, as for the usage-amount of the cellulase formulation with respect to 100 mass parts of raw material solid content, 1-50 mass parts is especially preferable.

糖化処理でのpHは3.5〜10.0の範囲にすることが好ましく、4.0〜7.5の範囲に維持することがより好ましい。   The pH in the saccharification treatment is preferably in the range of 3.5 to 10.0, and more preferably in the range of 4.0 to 7.5.

糖化処理の温度は、酵素の至適温度の範囲内であれば特に制限はなく、通例25〜60℃が好ましく、45〜55℃がさらに好ましい。反応は、連続式が好ましいが、バッチ方式でも良い。反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜120時間である。連続式の場合も、平均滞留時間が、10〜150時間、さらに好ましくは15〜100時間である。   The temperature of the saccharification treatment is not particularly limited as long as it is within the optimum temperature range of the enzyme, and is usually preferably 25 to 60 ° C and more preferably 45 to 55 ° C. The reaction is preferably continuous, but may be batch. The reaction time varies depending on the enzyme concentration, but in the case of a batch system, it is 10 to 240 hours, more preferably 15 to 120 hours. Also in the case of a continuous type, the average residence time is 10 to 150 hours, more preferably 15 to 100 hours.

<発酵処理>
上記した糖化工程により得られた酵素糖化液は、発酵処理に供される。
発酵処理に用いられる微生物としては、糖類(六炭糖、五炭糖)を発酵して、D−乳酸を製造できるD−乳酸生産菌であれば特に限定はされない。D−乳酸生産菌としては、例えば、ラクトバシラス属 (Lactobacillus)、ビフィドバクテリウム属 (Bifidobacterium)、エンテロコッカス属 (Enterococcus)、ラクトコッカス属 (Lactococcus)、ペディオコッカス属(Pediococcus)、ロイコノストック属 (Leuconostoc)、又はスポロラクトバシラス属(Spololactobacillus属)に属する細菌を挙げることができるが、特に限定されない。具体的には、ラクトバシラス・デルブルキ(Lactobacillus delbrueckii)、ラクトバシラス・プランタルム(Lactobacillus plantarum)、ロイコノストック・メセンテロイデス(Leuconostoc mesenteroides)などを挙げることができるが、特にこれらに限定されない。また、遺伝子組換え技術を用いて作製した遺伝子組換え微生物(細菌等)を用いることもできる。遺伝子組換え微生物としては、六炭糖又は五炭糖を発酵してD−乳酸を生産できる微生物を特に制限なく用いることができる。
<Fermentation treatment>
The enzyme saccharified solution obtained by the above saccharification step is subjected to fermentation treatment.
The microorganism used for the fermentation treatment is not particularly limited as long as it is a D-lactic acid-producing bacterium that can ferment sugars (hexose sugar, pentose sugar) to produce D-lactic acid. Examples of D-lactic acid-producing bacteria include Lactobacillus, Bifidobacterium, Enterococcus, Lactococcus, Pediococcus, Leuconostoc (Leuconostoc) or bacteria belonging to the genus Spololactobacillus can be mentioned, but is not particularly limited. Specific examples include Lactobacillus delbrueckii, Lactobacillus plantarum, and Leuconostoc mesenteroides, but are not particularly limited thereto. Moreover, genetically modified microorganisms (bacteria etc.) produced using genetic recombination techniques can also be used. As the genetically modified microorganism, a microorganism capable of producing D-lactic acid by fermenting hexose or pentose can be used without particular limitation.

微生物は固定化しておいても良い。微生物を固定化しておくと、次工程で微生物を分離して再回収するという工程を省くことができるため、少なくとも回収工程に要する負担を軽減することができ、微生物のロスが軽減できるというメリットがある。また、凝集性のある微生物を選択することにより微生物の回収を容易にすることができる。   Microorganisms may be immobilized. By immobilizing microorganisms, the process of separating and re-recovering microorganisms in the next process can be omitted, so that at least the burden required for the recovery process can be reduced and the loss of microorganisms can be reduced. is there. Moreover, the collection of microorganisms can be facilitated by selecting microorganisms having aggregating properties.

発酵処理でのpHは3.0〜10.0の範囲にすることが好ましく、3.5〜7.5の範囲に維持することがより好ましく、4.0〜7.0の範囲に維持することがさらに好ましい。   The pH in the fermentation treatment is preferably in the range of 3.0 to 10.0, more preferably in the range of 3.5 to 7.5, and in the range of 4.0 to 7.0. More preferably.

発酵処理の温度は、酵素の至適温度の範囲内であれば特に制限はなく、通例25〜60℃が好ましく、30〜55℃がさらに好ましい。反応は、連続式が好ましいが、バッチ方式でも良い。反応時間は、酵素濃度によっても異なるが、バッチ式の場合は10〜240時間、さらに好ましくは15〜160時間である。連続式の場合も、平均滞留時間が、10〜150時間、さらに好ましくは15〜100時間である。   The temperature of the fermentation treatment is not particularly limited as long as it is within the optimum temperature range of the enzyme, and is usually preferably 25 to 60 ° C, more preferably 30 to 55 ° C. The reaction is preferably continuous, but may be batch. The reaction time varies depending on the enzyme concentration, but in the case of a batch system, it is 10 to 240 hours, more preferably 15 to 160 hours. Also in the case of a continuous type, the average residence time is 10 to 150 hours, more preferably 15 to 100 hours.

<D−乳酸の回収>
上記した発酵により生産されたD−乳酸は、発酵液から公知の方法により分離・精製することにより回収することができる。例えば、発酵液を、遠心分離や濾過等によって不溶な物質(菌体など)を除去した後、イオン交換樹脂などで脱塩し、その溶液から、結晶化やカラムクロマトグラフィー等の常法に従って所望の乳酸を分離・精製することができる。
以下の実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
<Recovery of D-lactic acid>
D-lactic acid produced by fermentation as described above can be recovered from the fermentation broth by separation and purification by a known method. For example, after removing insoluble substances (such as bacterial cells) from the fermentation broth by centrifugation, filtration, etc., desalting with an ion exchange resin, etc., and then using the solution according to conventional methods such as crystallization and column chromatography Of lactic acid can be separated and purified.
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1:
本実施例で用いた糖化発酵は、(1)パルプを酵素による糖化処理を行って酵素糖化液を得た後に、(2)D−乳酸生産菌(Lactobacillus delbrueckii)による乳酸発酵を行う2工程から成る。
Example 1:
The saccharification and fermentation used in this example consists of (1) two steps of performing saccharification treatment with pulp to obtain an enzyme saccharified solution and then (2) lactic acid fermentation with D-lactic acid producing bacteria ( Lactobacillus delbrueckii ). Become.

(1)酵素糖化液の調製
本発明においては、広葉樹漂白クラフトパルプ(LBKP)を発酵処理に先立って、糖化処理するため、LBKPを製造した。
<LBKP製造方法>
広葉樹混合木材チップ(ユーカリ70%、アカシア30%)を用い、液比4、硫化度28%、有効アルカリ添加率17%(Na2Oとして)となるように調製した蒸解白液に木材チップに加えた後、蒸解温度160℃にて2時間クラフト蒸解を行なった。クラフト蒸解終了後、黒液を分離し、得られたチップを解繊後、遠心脱水と水洗浄を3回繰り返し、次いでスクリーンにより未蒸解物を除き、蒸解未漂白パルプを得た。この未漂白パルプ絶乾質量に対して、NaOHを2.0質量%添加し、酸素ガスを注入し、100℃で60分間酸素脱リグニン処理を行なった。続いて、酸素脱リグニンパルプを、D−E−P−Dの4段漂白処理に供した。漂白時のパルプ濃度は全て10質量%に調製し、最初の二酸化塩素処理(D)は、対絶乾パルプの二酸化塩素添加率1.0質量%、70℃、40分間処理を行ない、イオン交換水にて洗浄、脱水した。次いで、パルプ絶乾質量に対してNaOH添加率を1質量%として、70℃、90分間のアルカリ抽出処理(E)を行ない、イオン交換水にて洗浄、脱水した。次いで、パルプ絶乾質量に対して過酸化水素添加率を0.2質量%、NaOH添加率を0.5質量%とし、70℃、120分間の過酸化水素処理(P)を行ない、イオン交換水にて洗浄、脱水した。次いで、パルプ絶乾質量に対して二酸化塩素添加率を0.2質量%とし、70℃、120分間の二酸化塩素処理(D)を行ない、イオン交換水にて洗浄、脱水後、白色度85%の漂白パルプ(LBKP)を得た。
(1) Preparation of Enzymatic Saccharification Solution In the present invention, LBKP was produced in order to saccharify hardwood bleached kraft pulp (LBKP) prior to fermentation.
<LBKP manufacturing method>
Using hardwood mixed wood chips (eucalyptus 70%, acacia 30%), the liquid ratio 4, sulfidity 28%, effective alkali addition rate 17% (as Na 2 O) to cooked white liquor to wood chips After the addition, kraft cooking was performed at a cooking temperature of 160 ° C. for 2 hours. After completion of the kraft cooking, the black liquor was separated, and the obtained chips were defibrated, and then centrifugal dehydration and water washing were repeated three times, and then the uncooked material was removed by a screen to obtain a cooked unbleached pulp. With respect to the absolute dry mass of unbleached pulp, 2.0% by mass of NaOH was added, oxygen gas was injected, and oxygen delignification treatment was performed at 100 ° C. for 60 minutes. Subsequently, the oxygen delignified pulp was subjected to a four-stage bleaching process of D-E-P-D. The pulp concentration at the time of bleaching is adjusted to 10% by mass, and the first chlorine dioxide treatment (D) is performed by treating the dry dry pulp with chlorine dioxide at a rate of 1.0% by mass at 70 ° C. for 40 minutes. Washed with water and dehydrated. Next, an alkali extraction treatment (E) was performed at 70 ° C. for 90 minutes with an NaOH addition rate of 1% by mass with respect to the absolute dry mass of the pulp, washed with ion-exchanged water, and dehydrated. Next, the hydrogen peroxide addition rate is 0.2% by mass and the NaOH addition rate is 0.5% by mass with respect to the absolute dry mass of the pulp, and hydrogen peroxide treatment (P) is performed at 70 ° C. for 120 minutes to perform ion exchange. Washed with water and dehydrated. Next, the chlorine dioxide addition rate is 0.2% by mass with respect to the absolute dry mass of the pulp, and the chlorine dioxide treatment (D) is performed at 70 ° C. for 120 minutes, washed with ion-exchanged water, dehydrated, and the whiteness is 85%. Of bleached pulp (LBKP) was obtained.

<LBKPの糖化処理>
所定量の水が入れられている容量300mLの培養容器に、LBKP絶乾10%と終濃度10mMとなるように酢酸緩衝液(pH5.0)を加えて、オートクレーブ滅菌(121℃、20分間)した。次に、0.22μmのディスクフィルター(DISMIC 13HP020AN、ADVANTEC社製)で無菌ろ過したセルラーゼ製剤GC220(ジェネンコア社製)を、反応液に対して10質量%添加して、全量100mLの反応液を調製した。反応液は、処理温度を50℃として、回転振とう培養機の回転数120rpmで24時間、糖化反応を行った。
<Saccharification treatment of LBKP>
Acetate buffer solution (pH 5.0) is added to a 300 mL culture container containing a predetermined amount of water so that the final concentration of LBKP is 10% and 10 mM, and then autoclaved (121 ° C., 20 minutes). did. Next, 10% by mass of cellulase preparation GC220 (manufactured by Genencor), which has been aseptically filtered through a 0.22 μm disk filter (DISMIC 13HP020AN, manufactured by ADVANTEC), is added to the reaction liquid to prepare a total volume of 100 mL of the reaction liquid. did. The reaction solution was subjected to a saccharification reaction at a treatment temperature of 50 ° C. for 24 hours at a rotation speed of 120 rpm in a rotary shaker.

得られた糖化反応液のグルコース濃度は、糖化反応液を適量採取し、遠心分離後、上清を0.22μmのディスクフィルター(DISMIC 13HP020AN、ADVANTEC社製)でろ過し、脱イオン水で希釈して測定用試料とした。この測定用試料について、グルコース電極(EDO05-0003/王子計測機器社製)を使用して、バイオセンサー(BF-5/王子計測機器社製)で測定した。   Glucose concentration of the resulting saccharification reaction solution is collected by collecting an appropriate amount of saccharification reaction solution, and after centrifugation, the supernatant is filtered through a 0.22 μm disk filter (DISMIC 13HP020AN, manufactured by ADVANTEC) and diluted with deionized water. A sample for measurement was obtained. This measurement sample was measured with a biosensor (BF-5 / Oji Scientific Instruments) using a glucose electrode (EDO05-0003 / Oji Scientific Instruments).

(2)D−乳酸発酵
<前培養>
−80℃で凍結保存したLactobacillus delbrueckii subsp. delbrueckii NBRC3202株[独立行政法人製品評価技術基盤機構(千葉県木更津市かずさ鎌足2−5−8)から入手可能]を解凍した。オートクレーブにより滅菌した前培養培地(1体積%ポリペプトン(日本製薬社製)、1体積%酵母エキス(BD社製)、1体積%グルコース(和光純薬社製)、0.02体積%硫酸マグネシウム七水和物(和光純薬社製)pH6.6−7.0)10mlに植菌した。37℃、48-72時間静置培養を行ない、前々培養液を調製した。さらに、滅菌処理した前培養培地30mlに、前々培養液を0.9ml接種する。これを37℃、48時間静置培養を行ない、前培養液を調製した。
(2) D-lactic acid fermentation <pre-culture>
Lactobacillus delbrueckii subsp. Delbrueckii NBRC3202 strain [available from National Institute of Technology and Evaluation (2-5-8, Kazusa-Kamashita, Kisarazu-shi, Chiba)] thawed at −80 ° C. Pre-culture medium sterilized by autoclave (1 volume% polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.), 1 volume% yeast extract (manufactured by BD), 1 volume% glucose (manufactured by Wako Pure Chemical Industries, Ltd.), 0.02 volume% magnesium sulfate seven Inoculated into 10 ml of hydrate (manufactured by Wako Pure Chemical Industries, Ltd., pH 6.6-7.0). Static culture was performed at 37 ° C. for 48-72 hours to prepare a culture solution in advance. Further, 0.9 ml of the culture solution is inoculated into 30 ml of the sterilized preculture medium. This was subjected to static culture at 37 ° C. for 48 hours to prepare a preculture solution.

<本培養>
本培養培地(1体積%ポリペプトン(日本製薬社製)、1体積%酵母エキス(BD社製)、0.02体積%硫酸マグネシウム七水和物(和光純薬社製) pH6.6−7.0)を500mL容の培養容器に入れてオートクレーブ滅菌した。これにグルコース濃度を最終30g/Lになるように上記糖化反応液を添加して、容量を200mLに調製した。上記前培養液を4ml接種し、37℃にて培養した。この際、培養開始後24時間はpHの制御は行わずに嫌気的に培養し、24時間後から5M アンモニア水を添加することにより、pH6.0に制御して攪拌培養した。培養液のグルコース濃度は、糖化反応液のグルコース濃度測定と同様に行った。
<Main culture>
Main culture medium (1 volume% polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.), 1 volume% yeast extract (manufactured by BD), 0.02 volume% magnesium sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) pH 6.6-7. 0) was placed in a 500 mL culture container and sterilized by autoclave. The saccharification reaction solution was added so that the final glucose concentration was 30 g / L, and the volume was adjusted to 200 mL. 4 ml of the above preculture was inoculated and cultured at 37 ° C. Under the present circumstances, it culture | cultivated anaerobically without performing control of pH for 24 hours after culture | cultivation start, and it stirred and culture | cultivated by controlling to pH 6.0 by adding 5M ammonia water after 24 hours. The glucose concentration of the culture solution was the same as the glucose concentration measurement of the saccharification reaction solution.

培養液のD-乳酸およびL-乳酸濃度は、培養液を適量採取し、遠心分離後、上清を0.22μmのディスクフィルターでろ過し、脱イオン水で希釈した測定用試料を、次の条件でHPLC法により測定した。
カラム:住化分析センター製 Sumichiral OA−5000(内径:4.6mm、カラム長:15.0cm)
溶媒: 2mM 硫酸銅水溶液/2−プロパノール 98/2
流速: 1mL/分
検出器:UV(紫外線吸収、波長:254nm)
カラム温度:30℃
The concentration of D-lactic acid and L-lactic acid in the culture solution is determined by taking an appropriate amount of the culture solution, centrifuging, filtering the supernatant with a 0.22 μm disk filter, and diluting with deionized water under the following conditions: Was measured by HPLC method.
Column: Sumikal OA-5000 manufactured by Sumika Chemical Analysis Center (inner diameter: 4.6 mm, column length: 15.0 cm)
Solvent: 2 mM aqueous copper sulfate / 2-propanol 98/2
Flow rate: 1 mL / min Detector: UV (UV absorption, wavelength: 254 nm)
Column temperature: 30 ° C

また、D-乳酸の光学純度は次式で計算した。
D-乳酸の光学純度(%ee)={(D−乳酸濃度)−(L−乳酸濃度)}/[(D−乳酸濃度)+(L−乳酸濃度)}×100
The optical purity of D-lactic acid was calculated by the following formula.
Optical purity of D-lactic acid (% ee) = {(D-lactic acid concentration)-(L-lactic acid concentration)} / [(D-lactic acid concentration) + (L-lactic acid concentration)} × 100

比較例1:
LBKPの酵素糖化液(糖化処理後、本培養のグルコース濃度 30g/Lに調製)の代わりにグルコース(和光純薬社製)溶液(30g/L)を用いる以外は実施例1と同様に実験を行った。これによりD−乳酸生産菌 Lactobacillus delbrueckii subsp. delbrueckii NBRC3202株を用いてD−乳酸の生成を確認した。
Comparative Example 1:
Experiments were conducted in the same manner as in Example 1 except that a glucose (manufactured by Wako Pure Chemical Industries, Ltd.) solution (30 g / L) was used instead of the enzymatic saccharified solution of LBKP (prepared to a glucose concentration of 30 g / L after saccharification treatment) went. Thereby, the production of D-lactic acid was confirmed using the D-lactic acid-producing bacterium Lactobacillus delbrueckii subsp. Delbrueckii NBRC3202.

実施例1及び比較例1の結果を図1に示す。LBKP酵素糖化液(グルコース30g/L含有)からは、2日間でグルコースを全量消費して、D−乳酸48.5g/Lが生成した。一方、グルコース溶液(30g/L)からは、5日間でグルコースを全量消費して、D−乳酸44.2g/Lが生成した。上記の結果から、LBKP酵素糖化液の方がグルコースより早く発酵が進行することが示された。   The results of Example 1 and Comparative Example 1 are shown in FIG. From the LBKP enzyme saccharified solution (containing 30 g / L of glucose), the entire amount of glucose was consumed in 2 days, and D-lactic acid 48.5 g / L was produced. On the other hand, from the glucose solution (30 g / L), the entire amount of glucose was consumed in 5 days to produce 44.2 g / L of D-lactic acid. From the above results, it was shown that fermentation progresses faster in the LBKP enzyme saccharified solution than in glucose.

Claims (3)

(a)1〜30質量%の懸濁濃度の広葉樹漂白クラフトパルプをセルラーゼpH3.5〜7.5および温度25〜60℃において糖化することによりグルコースを含む酵素糖化液を得る工程:
及び
(b)前記工程(a)で得た酵素糖化液をラクトバシラス・デルブルキに属する乳酸菌を用いてpH3.0〜7.0および温度30〜55℃において撹拌して、嫌気的に発酵することによりD−乳酸を生産する工程:
を含むD−乳酸の製造方法。
(A) A step of obtaining an enzyme saccharified solution containing glucose by saccharifying a hardwood bleached kraft pulp having a suspension concentration of 1 to 30% by mass with cellulase at a pH of 3.5 to 7.5 and a temperature of 25 to 60 ° C . :
And (b) by anaerobically fermenting the enzyme saccharified solution obtained in the step (a) using lactic acid bacteria belonging to Lactobacillus delbruki at pH 3.0 to 7.0 and temperature 30 to 55 ° C. Process for producing D-lactic acid:
The manufacturing method of D-lactic acid containing this.
前記工程(b)における発酵をpH4.0〜7.0、温度30℃〜50℃で撹拌して行う、請求項1に記載のD−乳酸の製造方法。 The method for producing D-lactic acid according to claim 1, wherein the fermentation in the step (b) is performed with stirring at a pH of 4.0 to 7.0 and a temperature of 30C to 50C. 前記工程(a)における糖化処理のpHが3.5〜5.0である、請求項1又は2に記載のD−乳酸の製造方法。 The manufacturing method of D-lactic acid of Claim 1 or 2 whose pH of the saccharification process in the said process (a) is 3.5-5.0.
JP2013218917A 2013-10-22 2013-10-22 Method for producing D-lactic acid Active JP6331327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218917A JP6331327B2 (en) 2013-10-22 2013-10-22 Method for producing D-lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218917A JP6331327B2 (en) 2013-10-22 2013-10-22 Method for producing D-lactic acid

Publications (2)

Publication Number Publication Date
JP2015080429A JP2015080429A (en) 2015-04-27
JP6331327B2 true JP6331327B2 (en) 2018-05-30

Family

ID=53011382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218917A Active JP6331327B2 (en) 2013-10-22 2013-10-22 Method for producing D-lactic acid

Country Status (1)

Country Link
JP (1) JP6331327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3782478A1 (en) * 2019-08-22 2021-02-24 BrainBoost Solutions Food, food precursors or beverages comprising d-lactic acid and/or a salt thereof and a method of producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131717A1 (en) * 1981-08-11 1983-03-03 Hoechst Ag, 6000 Frankfurt LACTOBACILLUS BULGARICUS DSM 2129 AND ITS USE FOR THE PRODUCTION OF D-LACTIC ACID
JP4221558B2 (en) * 2002-09-11 2009-02-12 株式会社オールマイティー Method for producing lactic acid
JP2007215427A (en) * 2006-02-14 2007-08-30 Musashino Chemical Laboratory Ltd Method for producing lactic acid
JP4928254B2 (en) * 2006-12-28 2012-05-09 日本製紙株式会社 Method for saccharification of cellulose-containing materials
WO2010113849A1 (en) * 2009-03-31 2010-10-07 日本製紙株式会社 Base paper for paper container and laminate sheet for paper container using same
JP2010279332A (en) * 2009-06-08 2010-12-16 Kyushu Univ New d-lactic acid-producing microorganism and method for producing d-lactic acid
DE102010011695B4 (en) * 2010-03-17 2013-12-19 Ksb Aktiengesellschaft wheelmounting

Also Published As

Publication number Publication date
JP2015080429A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
da Silva Machado et al. Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation
US10337040B2 (en) Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars
Yankov Fermentative lactic acid production from lignocellulosic feedstocks: from source to purified product
Naidu et al. Production of pectolytic enzymes–a review
KR100329019B1 (en) Method for Manufacturing Organic Acid by High-Efficiency Fermentation
Mussatto et al. Effects of medium supplementation and pH control on lactic acid production from brewer's spent grain
US20090110798A1 (en) Process for obtaining pectin
US7217545B2 (en) Method for production of lactic acid
Mori et al. Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624
Abdel-Rahman et al. Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies
Jonglertjunya et al. Utilization of sugarcane bagasses for lactic acid production by acid hydrolysis and fermentation using Lactobacillus sp
Rahayu et al. Surfactant, nitrogen and carbon media optimization for Trichoderma asperellum LBKURCC1 laccase production by flask solid state fermentation of rice straw
JP6331327B2 (en) Method for producing D-lactic acid
JP6890134B2 (en) A method for producing cellulase from pretreated lignocellulosic juice residue
CN112593437A (en) Biodegradation method of lignin
Roushdy et al. Biotechnological approach for lignin peroxidase (lip) production from agricultural wastes (rice husk) by Cunninghamella elegans
JP6390476B2 (en) Method for producing D-lactic acid
JP6620405B2 (en) Method for producing D-lactic acid
WO2022060294A1 (en) A method of pre-treating biowaste
JP2015080430A (en) Method for producing d-lactic acid
EP3938525A1 (en) Process for producing a fermentation broth
Mussatto et al. Total reuse of brewer’s spent grain in chemical and biotechnological processes for the production of added-value compounds
EP2591119B2 (en) Fermentation process with GH61 polypeptides
Kumar et al. Optimization of sugarcane bagasse, nutrient and temperature on the yield of penicillin V in solid state fermentation by Penicillium chrysogenum
Jame et al. Carbon source utilization and hydrogen production by isolated anaerobic bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250