JP6325385B2 - Method and apparatus for forming heterogeneous liquid region in liquid - Google Patents

Method and apparatus for forming heterogeneous liquid region in liquid Download PDF

Info

Publication number
JP6325385B2
JP6325385B2 JP2014154144A JP2014154144A JP6325385B2 JP 6325385 B2 JP6325385 B2 JP 6325385B2 JP 2014154144 A JP2014154144 A JP 2014154144A JP 2014154144 A JP2014154144 A JP 2014154144A JP 6325385 B2 JP6325385 B2 JP 6325385B2
Authority
JP
Japan
Prior art keywords
liquid
box
region
top surface
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154144A
Other languages
Japanese (ja)
Other versions
JP2016030963A (en
Inventor
新保 裕美
裕美 新保
ブーン ケン リン
ブーン ケン リン
田中 昌宏
昌宏 田中
完幸 秋山
完幸 秋山
伸一 吉村
伸一 吉村
誠 岡山
誠 岡山
康祐 横関
康祐 横関
剛 小倉
剛 小倉
悠希 塙
悠希 塙
秋山 義信
義信 秋山
伸幸 岩前
伸幸 岩前
清也 末長
清也 末長
治彦 椿
治彦 椿
小川 雄一郎
雄一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014154144A priority Critical patent/JP6325385B2/en
Publication of JP2016030963A publication Critical patent/JP2016030963A/en
Application granted granted Critical
Publication of JP6325385B2 publication Critical patent/JP6325385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は液体中の異質液体領域形成方法及び装置に関し,とくに第1液体中に異質の第2液体の領域を形成する方法及び装置に関する。   The present invention relates to a method and apparatus for forming a foreign liquid region in a liquid, and more particularly, to a method and device for forming a region of a second liquid that is different from a first liquid.

水中構造物の建築・保守・更新その他の潜水作業を必要とする工事(検査,調査,環境保全等を含む)において,特定の性質の第1液体(例えば濁水等)中に異なる性質の第2液体(例えば清水等)の領域を作ることが求められることがある。例えば,ダム(堰堤)の老朽化に伴う放水設備の更新や性能向上等のリニューアル工事では潜水作業が必要となるが,ダム湖内に堰き止められた水の濁り(濁水)によって潜水作業に必要な視界が得られないことがあり,作業の進捗を図るために濁水中に視界を確保するための清水域(濁度の異なる液体領域)を形成することが求められる。また,立坑等の先端部では出来形等の確認のために水中カメラを用いて検査・調査を行っているが,その先端部の水が濁っていると出来型の確認に時間がかかることがあり,水中カメラの撮影に必要な視界を確保するために濁水中に清水域を形成することが求められる。   In construction (maintenance, renewal, etc.) of underwater structures and other constructions that require diving work (including inspection, investigation, environmental conservation, etc.) It may be required to create an area of liquid (eg, fresh water). For example, renewal work such as renewal of drainage facilities and performance improvement due to aging of dams (dams) requires diving work, but it is necessary for diving work due to the turbidity of muddy water in the dam lake. Therefore, it is required to form a clear water area (liquid areas with different turbidity) for securing the visibility in muddy water in order to progress the work. In addition, at the tip of shafts, etc., inspections and surveys are carried out using an underwater camera to check the finished shape. However, if the water at the tip is cloudy, it may take time to check the finished shape. Yes, it is required to form a clear water area in muddy water to secure the field of view necessary for underwater camera photography.

従来から,ダム湖のリニューアル工事等において濁水中の視界を確保する場合は,潜水士の作業域周囲に囲いを設け,その中に凝集剤を投入して濁り成分を沈殿させることにより作業域の透明度をあげる方法(凝集沈殿法)が採用されている。また,水中作業用のバックホウ,ブルドーザー等を用いて防波堤・護岸等を構築する水中工事等では,水中作業機の操縦席付近から作業用アッタッチメント(アーム先端)に向けて清澄水を吐出する水流発生装置を水中作業機に取り付け,その水流発生装置から吐出される清澄水によって水中作業機の操縦席から作業用アタッチメントまでの間に存在する濁水を除去して視界を確保する方法(清澄水吐出法)が提案されている(特許文献1参照)。   Conventionally, in order to ensure visibility of muddy water in dam lake renewal work, etc., an enclosure is provided around the work area for divers, and a flocculant is introduced into the work area to precipitate muddy components. A method of increasing transparency (aggregation precipitation method) is employed. Also, in underwater construction where a breakwater, revetment, etc. are constructed using backhoes, bulldozers, etc. for underwater work, clear water is discharged from the vicinity of the cockpit of the underwater work machine toward the work attachment (arm tip) A method that secures visibility by attaching a water flow generator to an underwater work machine and removing turbid water existing between the cockpit of the underwater work machine and the work attachment with the clarified water discharged from the water flow generator. (Discharge method) has been proposed (see Patent Document 1).

特開平8−311920号公報JP-A-8-311920

しかし,上述した凝集沈殿法は,透明度を高めた後に潜水士が動くと沈殿物がまきあげられて水が再懸濁してしまい,濁水中に形成した透明度の高い清水領域を安定的に維持することが難しい問題点がある。また,透明度を高める領域(作業域)の周囲に囲いを設ける必要があるため,作業域の移動又は拡張に応じて周囲の囲いも併せて移動又は拡張しなければならず,作業域を移動又は拡張することが難しい問題点もある。予め作業域を広めに設定しておくことも考えられるが,作業域が大きくなると凝集剤が多量に必要となるためコストが嵩む原因となり,多量の凝集剤が水中生物等に影響を与えることも懸念されるため現場によっては適用できない場合もある。   However, the above-described coagulation sedimentation method is to maintain a highly transparent fresh water area formed in muddy water, as the diver moves after increasing the transparency, the sediment is sprinkled and the water is resuspended. There are difficult problems. In addition, since it is necessary to provide an enclosure around the area (work area) that increases transparency, the surrounding enclosure must be moved or expanded together with the movement or expansion of the work area. There are also problems that are difficult to expand. It is conceivable to set a wider work area in advance, but if the work area becomes large, a large amount of flocculant is required, which increases costs, and a large amount of flocculant may affect aquatic organisms. It may not be applicable depending on the site due to concerns.

他方,上述した清澄水吐出法も,単に清澄水を吐出するだけでは清澄水が周囲に拡散してしまい,それに応じて周囲の濁水が水中作業機の操縦席付近に引き込まれるため,やはり視界の高い領域を安定的に維持することが難しい問題点がある。特許文献1は,このような周囲の濁水による清澄水の汚濁を防止するため,水中作業機の操縦席と作業用アッタッチメントとの間の水域を汚濁防止用遮蔽装置で囲むことを提案している。しかし,そのような遮蔽装置を使用すると,上述した凝集沈殿法の場合と同様に,作業域を移動又は拡張することが難しくなるので,潜水作業の効率低下を招きうる。潜水作業の効率向上・環境改善等を図るため,濁水のような液体(第1液体)中に清水のような異なる性質の液体(第2液体)の領域を簡単に形成することでき,しかも安定的に維持することができる技術の開発が求められている。   On the other hand, in the above-described clear water discharge method, the clear water diffuses to the surroundings simply by discharging the clear water, and the surrounding turbid water is drawn into the vicinity of the cockpit of the underwater work equipment. There is a problem that it is difficult to stably maintain a high region. Patent Document 1 proposes to surround the water area between the cockpit of the underwater work machine and the work attachment with a pollution prevention shielding device in order to prevent the clear water from being contaminated by the surrounding muddy water. ing. However, if such a shielding device is used, it becomes difficult to move or expand the work area, as in the case of the above-described coagulation sedimentation method, and this may lead to a reduction in the efficiency of diving work. In order to improve the efficiency of diving work and improve the environment, it is possible to easily form an area of liquid (second liquid) with different properties such as fresh water in a liquid (first liquid) such as turbid water and stable. Development of technology that can be maintained in a sustainable manner is required.

そこで本発明の目的は,特定の第1液体中に安定的に維持された異質の第2液体の領域を簡単に形成することができる方法及び装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus that can easily form a region of a foreign second liquid that is stably maintained in a specific first liquid.

図1の実施例を参照するに,本発明による液体中の異質液体領域形成方法は,潜水作業を必要とする第1液体M中に所定口径X1の頂面開口11を整流板12で覆った中空箱体10を設置し,箱体10の頂面又は側面に底面16へ向けて設けた注入口14から箱体10内に第1液体Mと濁度,温度,色,又は密度が異なる第2液体Fを所要流量Frで継続的に注入して充溢させ,箱体頂面11の整流板12を注入口14から離れた範囲の流れ抵抗が注入口14の周辺範囲の流れ抵抗よりも大きいものとし,箱体10内の底面16で流れの向きを変えた第2液体Fを箱体頂面11の整流板12全体から均等な流速Sで放流して第1液体M中に箱体頂面11から整流板12の法線方向へ柱状に延びる第2液体Fの領域Cを潜水作業域として形成してなるものである。 Referring to the embodiment of FIG. 1, in the method for forming a heterogeneous liquid region in a liquid according to the present invention, a top surface opening 11 having a predetermined diameter X1 is covered with a rectifying plate 12 in a first liquid M that requires diving work. The hollow box 10 is installed, and the first liquid M and the turbidity, temperature, color, or density are different from the first liquid M in the box 10 from the inlet 14 provided on the top surface or side surface of the box 10 toward the bottom surface 16. 2 The liquid F is continuously injected at the required flow rate Fr to overflow, and the flow resistance in the range where the rectifying plate 12 of the box top surface 11 is separated from the injection port 14 is larger than the flow resistance in the peripheral range of the injection port 14. and things, the box top to the first liquid M was discharged at a uniform flow rate S of the second liquid F for changing the flow direction in the bottom 16 of the box body 10 from the entire rectifying plate 12 of the box body top surface 11 the region C of the second liquid F extending pillar from the surface 11 to the normal direction of the current plate 12 is formed as a diving work area It become one.

また図1の実施例を参照するに,本発明による液体中の異質液体領域形成装置は,潜水作業を必要とする第1液体M中に所定口径X1の頂面開口11を整流板12で覆って設置する中空箱体10,箱体10の頂面又は側面に底面16へ向けて設けた注入口14,及び注入口14から箱体10内に第1液体Mと濁度,温度,色,又は密度が異なる第2液体Fを所要流量Frで継続的に注入して充溢させる供給装置2を備え,箱体頂面11の整流板12を注入口14から離れた範囲の流れ抵抗が注入口14の周辺範囲の流れ抵抗よりも大きいものとし,箱体10内の底面16で流れの向きを変えた第2液体Fを頂面11の整流板12全体から均等な流速Sで放流して第1液体M中に箱体頂面11から整流板12の法線方向へ柱状に延びる第2液体Fの領域Cを潜水作業域として形成してなるものである。 Further, referring to the embodiment of FIG. 1, the heterogeneous liquid region forming apparatus in the liquid according to the present invention covers the top surface opening 11 having a predetermined diameter X1 with the rectifying plate 12 in the first liquid M that requires diving work. And the first liquid M and the turbidity, temperature, color, and the like from the inlet 14 into the box 10 . Alternatively, a supply device 2 for continuously injecting and overflowing the second liquid F having a different density at a required flow rate Fr is provided, and the flow resistance in a range where the rectifying plate 12 on the box top surface 11 is separated from the injection port 14 is provided. 14, the flow resistance of the second liquid F having the flow direction changed at the bottom surface 16 in the box 10 is discharged from the entire rectifying plate 12 of the top surface 11 at a uniform flow velocity S. second liquid extending columnar from the box top surface 11 in the normal direction of the current plate 12 in 1 liquid M The region C is made by forming a diving work area.

好ましく実施例では,図1(C)に示すように,箱体頂面11の整流板12を注入口14から離れた範囲の流れ抵抗が注入口14の周辺範囲の流れ抵抗よりも大きいものとすることにより,箱体底面16で流れの向きを変えた第2液体Fの廻り込みやすい範囲15bの流れ抵抗が廻り込みにくい範囲15aの流れ抵抗よりも大きいものとすることができる。望ましくは,図4に示すように,箱体頂面11の整流板12を,流れ抵抗の異なる複数の整流板12a,12b,12c,12dを積層したものとする。更に望ましくは,箱体10内に注入する第2液体Fの所要流量Frを,所定口径X1を代表長さとしたときの整流板12からの放流のレイノルズ数(=流速×代表長さ/動粘性係数)が6000〜14000の範囲内となるように調整する。 In the preferred embodiment, as shown in FIG. 1C, the flow resistance in the range where the rectifying plate 12 of the box top surface 11 is separated from the inlet 14 is larger than the flow resistance in the peripheral area of the inlet 14. By doing so , the flow resistance of the range 15b in which the second liquid F in which the flow direction is changed on the bottom surface 16 of the box is easy to go around can be made larger than the flow resistance in the range 15a where it is difficult to go around. Desirably, as shown in FIG. 4, the rectifying plate 12 on the box top surface 11 is formed by laminating a plurality of rectifying plates 12a, 12b, 12c, and 12d having different flow resistances. More preferably, the required flow rate Fr of the second liquid F to be injected into the box body 10 is the Reynolds number of discharge from the rectifying plate 12 when the predetermined diameter X1 is a representative length (= flow velocity × representative length / kinematic viscosity). The coefficient is adjusted to be in the range of 6000 to 14000.

更に好ましくは,図9に示すように,箱体頂面11から整流板12の法線方向へ柱状に放流される第2液体F中に設置する箱体頂面12と対向する開口付きの液体回収装置20と,液体回収装置20の開口から回収した第2液体Fを供給装置2へ戻す返戻管22a,22bとを含める。望ましくは,返戻管22a,22b上に第2液体Fを浄化する浄化装置23を含める。他の好ましい実施例では,図7に示めすように,第1液体M中に所要大きさの閉鎖エリアZを画成する溢流口26付き遮液膜25を含め,その閉鎖エリアZの内側に上述した箱体10を設置して箱体頂面11から放流する第2液体Fにより閉鎖エリアZの内側を満たして第2液体Fの領域Cとする。例えば,第1液体Mを濁水とし,第2液体を清水又は凝集剤が添加された清水とすることができる。 More preferably, as shown in FIG. 9, a liquid with an opening facing the box top surface 12 installed in the second liquid F discharged in a columnar shape from the box top surface 11 in the normal direction of the rectifying plate 12. The recovery device 20 and return pipes 22a and 22b for returning the second liquid F recovered from the opening of the liquid recovery device 20 to the supply device 2 are included. Desirably, a purification device 23 for purifying the second liquid F is included on the return pipes 22a and 22b. In another preferred embodiment, as shown in FIG. 7, the first liquid M includes a liquid shielding film 25 with an overflow port 26 that defines the required size of the closed area Z. The inside of the closed area Z is filled with the second liquid F discharged from the box top surface 11 by installing the box body 10 described above to form a region C of the second liquid F. For example, it is possible to the first liquid M and turbid water, and Shimizu the second liquid Shimizu or flocculant is added.

本発明による液体中の異質液体領域形成方法及び装置は,潜水作業を必要とする第1液体M中に所定口径X1の頂面開口11を整流板12で覆った中空箱体10を設置し,箱体10の頂面又は側面に底面16へ向けて設けた注入口14から箱体10内に第1液体Mと濁度,温度,色,又は密度が異なる第2液体Fを所要流量Frで継続的に注入して充溢させ,箱体頂面11の整流板12を注入口14から離れた範囲の流れ抵抗が注入口14の周辺範囲の流れ抵抗よりも大きいものとし,箱体10内の底面16で流れの向きを変えた第2液体Fを箱体頂面11の整流板12全体から均等な流速Sで放流することにより第1液体M中に箱体頂面11から整流板12の法線方向へ柱状に延びる第2液体Fの領域Cを潜水作業域として形成するので,次の効果を奏する。 The method and apparatus for forming a foreign liquid region in a liquid according to the present invention includes a hollow box 10 in which a top surface opening 11 having a predetermined diameter X1 is covered with a rectifying plate 12 in a first liquid M that requires diving work . The second liquid F having a turbidity, temperature, color, or density different from that of the first liquid M in the box body 10 from the inlet 14 provided on the top surface or side surface of the box body 10 toward the bottom surface 16 at the required flow rate Fr. It is assumed that the flow resistance in the range where the rectifying plate 12 on the top surface 11 of the box body is away from the injection port 14 is larger than the flow resistance in the peripheral region of the injection port 14 . The second liquid F whose direction of flow is changed at the bottom surface 16 is discharged from the entire rectifying plate 12 on the top surface 11 of the box at a uniform flow rate S, whereby the rectifying plate 12 is discharged from the top surface 11 of the box into the first liquid M. because the region C of the second liquid F extending columnar normal direction to form a diving work area, Achieve the effect.

(イ)中空箱体10の比較的小口径の注入口14から注入した第2流体Fを底面16に衝突させて向きを変えることにより,箱体10の比較的大口径X1の頂面開口11全体に行き渡らせることができる。
(ロ)箱体10の頂面開口11の全体を整流板12で覆うことにより,開口11全体に分散した第2流体Fを均等な速度Sで放流することができる。
(ハ)所定口径X1の箱体頂面11の整流板12全体から均等な流速Sで第2流体Fを放流することにより,周囲の第1液体Mとの混合を小さく抑え,頂面11の法線方向に長く延びて安定的に維持された第2液体Fの領域Cを形成することができる。
(A) The top fluid opening 11 having a relatively large diameter X1 of the box 10 is changed by causing the second fluid F injected from the inlet 14 having a relatively small diameter of the hollow box 10 to collide with the bottom surface 16 and changing the direction. Can be spread throughout.
(B) By covering the entire top surface opening 11 of the box 10 with the rectifying plate 12, the second fluid F dispersed throughout the opening 11 can be discharged at a uniform speed S.
(C) By discharging the second fluid F from the entire rectifying plate 12 of the box top surface 11 having the predetermined diameter X1 at a uniform flow rate S, mixing with the surrounding first liquid M is suppressed to be small. A region C of the second liquid F extending long in the normal direction and stably maintained can be formed.

(ニ)第2液体Fの領域Cの周囲に囲いを設けてもよいが,囲いがなくても周囲の第1液体Mとの混ざりにくい安定的な第2液体Fの領域Cを形成することができる。
(ホ)中空箱体10の設置位置や整流板12の向きを調整することにより,第1液体M中に形成する第2液体Fの領域Cの形状や位置を簡単に調整することができる。
(ヘ)また,必要に応じて中空箱体10の頂面開口11の口径X1を拡大・縮小し,又は複数の中空箱体10を組み合わせることにより,第1液体M中に形成する第2液体Fの領域Cの形状や大きさを簡単に拡張することも可能である。
(ト)潜水作業を必要とする濁水又は冷水中に,第2液体Fとして清水又は温水を放流して清水領域又は温水領域Cを形成することにより,潜水作業の効率化及び環境改善に貢献することができる。
(D) An enclosure may be provided around the area C of the second liquid F, but a stable area C of the second liquid F that is difficult to mix with the surrounding first liquid M without being enclosed is formed. Can do.
(E) By adjusting the installation position of the hollow box 10 and the direction of the rectifying plate 12, the shape and position of the region C of the second liquid F formed in the first liquid M can be easily adjusted.
(F) The second liquid formed in the first liquid M by enlarging / reducing the diameter X1 of the top opening 11 of the hollow box 10 or combining a plurality of hollow boxes 10 as necessary. It is also possible to easily expand the shape and size of the region C of F.
(G) Contributing to the efficiency improvement and environmental improvement of diving work by discharging fresh water or warm water as the second liquid F into muddy water or cold water requiring diving work to form a fresh water area or warm water area C. be able to.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は,本発明による異質液体領域形成装置の一実施例の説明図である。 は,本発明による異質液体領域形成装置の他の実施例の説明図である。 は,本発明による異質液体領域形成装置の更に他の実施例の説明図である。 は,流れ抵抗の異なる複数の整流板を用いた異質液体領域形成装置の一例の説明図である。 は,図4の異質液体領域形成装置の整流板から放流される第2液体Fの放流のレイノルズ数と第2液体Fの領域Cの安定性との関係を計測した実験の説明図である。 は,図4の異質液体領域形成装置の整流板から放流される第2液体Fの流速Sを計測した実験の説明図である。 は,溢流口付き遮液膜を用いた本発明の異質液体領域形成装置の一例の説明図である。 は,撮像装置を組み合わせた本発明の異質液体領域形成装置の一例の説明図である。 は,液体回収装置を用いた本発明の異質液体領域形成装置の一例の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
These are explanatory drawings of one Example of the heterogeneous liquid area | region formation apparatus by this invention. These are explanatory drawings of other Examples of the heterogeneous liquid area | region formation apparatus by this invention. These are explanatory drawings of other Example of the heterogeneous liquid area | region formation apparatus by this invention. These are explanatory drawings of an example of the heterogeneous liquid area | region formation apparatus using the several baffle plate from which flow resistance differs. These are explanatory drawings of the experiment which measured the relationship between the Reynolds number of the discharge | release of the 2nd liquid F discharged | emitted from the baffle plate of the heterogeneous liquid area | region formation apparatus of FIG. 4, and the stability of the area | region C of the 2nd liquid F. These are explanatory drawings of the experiment which measured the flow velocity S of the 2nd liquid F discharged from the baffle plate of the heterogeneous liquid area | region formation apparatus of FIG. These are explanatory drawings of an example of the heterogeneous liquid area | region formation apparatus of this invention using the liquid shielding film with an overflow port. These are explanatory drawings of an example of the heterogeneous liquid area | region formation apparatus of this invention which combined the imaging device. These are explanatory drawings of an example of the heterogeneous liquid area | region formation apparatus of this invention using a liquid collection | recovery apparatus.

図1は,潜水作業を必要とするダム(堰堤)のリニューアル工事に本発明の異質液体領域形成装置を適用した実施例を示す。例えば,水中構造物1であるダム(堰堤)の接水面のリニューアル工事を潜水作業で行う場合に,ダム堤体で堰き止められたダム湖の濁水(第1液体)M中に清水(第2液体)Fを注入して接水面に沿って濁度の異なる清水領域(第2液体領域)Cを形成し,その領域C内で潜水作業を行うことにより必要な視野を確保する。以下,この場合濁水である第1液体M中に,この場合清水である異質の第2液体Fの領域Cを形成する同図の実施例を参照して本発明を説明する。   FIG. 1 shows an embodiment in which the heterogeneous liquid region forming apparatus of the present invention is applied to renewal work of a dam (dam) that requires diving work. For example, when renewal work on the water surface of a dam (dam), which is an underwater structure 1, is carried out by diving work, fresh water (second liquid) M is contained in muddy water (first liquid) M of the dam lake blocked by the dam body. Liquid (F) is injected to form a fresh water region (second liquid region) C having different turbidity along the water contact surface, and a necessary field of view is secured by performing a diving operation in the region C. Hereinafter, the present invention will be described with reference to an embodiment of the same figure in which the region C of the second liquid F, which is heterogeneous in this case, is formed in the first liquid M which is turbid water in this case.

ただし,本発明の適用範囲は濁水M中に清水Fの領域Cを形成する場合に限定されるわけではなく,例えば冷水中で潜水作業を行う際に, 冷水M中に温水(又は暖水)Fの領域Cを形成して作業環境を改善する場合や,特定の色水M中に異なる色水Fの領域Cを形成してマーキングする場合,淡水M中に塩水又は砂糖水Fを注入する場合等,特定の性質の第1液体M中に異なる性質の第2液体Fの領域Cを作る場合に広く適用可能である。また,第1液体M及び第2液体Fも水に限定されるわけではなく,例えば第1液体M及び第2液体Fの一方又は双方を適当な化学物質,例えば液体状の油(灯油,シリコンオイル等)その他の非親水性液体として本発明を実施することも可能である。   However, the application range of the present invention is not limited to the case where the region C of the fresh water F is formed in the turbid water M. For example, when performing a diving operation in cold water, warm water (or warm water) is contained in the cold water M. When forming an area C of F to improve the working environment, or when marking an area C of different colored water F in a specific colored water M, salt water or sugar water F is injected into the fresh water M For example, the present invention can be widely applied to the case where the region C of the second liquid F having a different property is formed in the first liquid M having a specific property. Further, the first liquid M and the second liquid F are not limited to water. For example, one or both of the first liquid M and the second liquid F may be made of an appropriate chemical substance such as liquid oil (kerosene, silicon It is also possible to implement the present invention as other non-hydrophilic liquids such as oil.

図示例の異質液体領域形成装置は,所定口径X1の頂面開口11を整流板12で覆って濁水M中に設置した中空箱体10と,箱体10の頂面に底面16へ向けて設けた注入口14から箱体10内に清水Fを継続的に注入する供給装置2とを有している。中空箱体10は頂面全体が開放されており,その頂面開口の全体を整流板12で覆ったものである。その箱体10に供給装置2から注入する清水Fは,例えば付近の地下水等の湧水を適宜調達して利用できるが,図示例のように水面上に浄化装置6を搭載した給水船2を浮かべ,取水管4経由で取り入れた濁水Mを浄化装置6により浄化したうえで清水Fとして利用することも可能である。図示例では,給水船2上に搭載した供給装置2と濁水M中に設置した中空箱体10の注入口14とを送水管5で接続し,供給装置2から清水Fを箱体10内に注入している。或いは,図9を参照して後述するように,頂面開口11から放流される清水F中に液体回収装置20を設置し,液体回収装置20で回収した第2液体Fを浄化装置23経由で供給装置2へ戻して再利用することも可能である。   The heterogeneous liquid region forming apparatus of the illustrated example is provided with a hollow box body 10 that is installed in turbid water M with a top surface opening 11 having a predetermined diameter X1 covered with a rectifying plate 12 and provided on the top surface of the box body 10 toward the bottom surface 16. And a supply device 2 for continuously injecting fresh water F into the box 10 from the inlet 14. The entire top surface of the hollow box 10 is open, and the entire top surface opening is covered with a current plate 12. The fresh water F injected into the box 10 from the supply device 2 can be procured from, for example, nearby groundwater or other springs as appropriate. However, as shown in the drawing, the water supply ship 2 having the purification device 6 mounted on the water surface is used. The turbid water M introduced through the floating and intake pipe 4 is purified by the purification device 6 and then used as the fresh water F. In the illustrated example, the supply device 2 mounted on the water supply ship 2 and the inlet 14 of the hollow box 10 installed in the muddy water M are connected by a water pipe 5, and fresh water F is supplied from the supply device 2 into the box 10. Injecting. Alternatively, as will be described later with reference to FIG. 9, the liquid recovery device 20 is installed in the fresh water F discharged from the top surface opening 11, and the second liquid F recovered by the liquid recovery device 20 is passed through the purification device 23. It is also possible to return to the supply device 2 for reuse.

図1(B)に示すように,中空箱体10の比較的小口径の注入口14から継続的に注入した清水Fを箱体10内の底面16に衝突させて流れの向きを変えながら分散させることにより,清水Fを比較的大口径X1の頂面開口11全体に行き渡らせることができる。また,頂面開口11の全体を整流板12で覆うことにより,頂面開口11全体に分散した清水Fに圧力をかけて均等に行き渡らせ,清水Fを整流板12全体から法線方向に均等な速度Sで放流することができる。なお,中空箱体10の注入口14は,清水Fを底面16に衝突させて開口11全体に分散させることができる適当な部位に設けることができ,中空箱体10の頂面に代えて側面に設けることも可能である(図8(B)の実施例を参照)。   As shown in FIG. 1 (B), the fresh water F continuously injected from the relatively small-diameter inlet 14 of the hollow box 10 collides with the bottom surface 16 in the box 10 to change the flow direction and disperse. By doing so, the fresh water F can be spread over the entire top surface opening 11 having a relatively large diameter X1. In addition, by covering the entire top surface opening 11 with the rectifying plate 12, pressure is applied to the fresh water F dispersed throughout the top surface opening 11 so that the fresh water F is evenly distributed from the entire rectifying plate 12 in the normal direction. Can be discharged at a high speed S. In addition, the inlet 14 of the hollow box 10 can be provided at an appropriate portion where the fresh water F can collide with the bottom surface 16 and can be dispersed throughout the opening 11. (See the embodiment in FIG. 8B).

図1(A)に示すように,所定口径X1の整流板12全体から均等な流速Sで清水Fを放流することにより,整流板12から放流された清水流と周囲の濁水Mとの混合を小さく抑え,整流板12から法線方向に長く延びて安定的に維持された清水領域Cを形成することができる。整流板12から放流される清水Fの流速は,必ずしも全面において同一である必要はなく,後述するように放流速度に多少のバラツキがあっても,そのバラツキが均等と認められる範囲内(例えば整流板12内の最小流速が最大流速に対して50%程度の範囲内)にあれば,周囲の濁水Mとの混合を抑えることができる。このように本発明において中空箱体10は,比較的小口径の注入口14から供給された清水Fを,均等と認められる速度Sで流れる比較的大口径X1の清水流(所定口径X1の第2液体Fの管状流れ)に変換する機能を果たす。なお,清水Fに代えて油等の非親水液体を用いることにより,濁水M中に形成した清水領域Cを一層安定的に維持することが期待できる。   As shown in FIG. 1 (A), the fresh water flow discharged from the rectifying plate 12 and the surrounding turbid water M are mixed by discharging the fresh water F from the entire rectifying plate 12 having a predetermined diameter X1 at an equal flow velocity S. It is possible to form a fresh water region C that is kept small and extends from the current plate 12 in the normal direction and is stably maintained. The flow rate of fresh water F discharged from the rectifying plate 12 does not necessarily have to be the same over the entire surface. As will be described later, even if there is some variation in the discharge velocity, the variation is within a range where the variation is recognized to be uniform (for example, rectification). If the minimum flow velocity in the plate 12 is in the range of about 50% of the maximum flow velocity), mixing with the surrounding turbid water M can be suppressed. As described above, in the present invention, the hollow box 10 has a relatively large diameter X1 of fresh water supplied from the relatively small diameter inlet 14 at a speed S that is recognized as being equal (a first diameter of the predetermined diameter X1). (Two liquid F tubular flow). In addition, it can be expected that the fresh water region C formed in the turbid water M is more stably maintained by using a non-hydrophilic liquid such as oil instead of the fresh water F.

図1(A)の実施例では,中空箱体10の頂面開口11及び整流板12を鉛直上方に向け,整流板12から放流される清水流によって箱体10の上方に延びる清水領域Cを形成している。清水流と周囲の濁水Mとの混合を小さく抑えることにより,形成した清水領域Cを安定的に維持することができる。清水流の放流向きは,濁水M中に形成する清水領域Cの位置や方向に応じて適宜変更することができる。例えば図3(A)に示すように,頂面開口11及び整流板12を鉛直下方に向け,箱体10の鉛直下方に延びる清水領域Cを形成することができる。或いは図3(B)に示すように,頂面開口11及び整流板12を水平に向け,箱体10から水平方向に延びる清水領域Cを形成することも可能である。   In the embodiment of FIG. 1 (A), the top surface opening 11 and the rectifying plate 12 of the hollow box 10 are directed vertically upward, and the fresh water region C extending above the box 10 by the fresh water flow discharged from the rectifying plate 12 is formed. Forming. By suppressing the mixing of the fresh water flow and the surrounding turbid water M to a small level, the formed fresh water region C can be stably maintained. The discharge direction of the fresh water flow can be appropriately changed according to the position and direction of the fresh water region C formed in the muddy water M. For example, as shown in FIG. 3A, the fresh water region C extending vertically downward of the box 10 can be formed with the top surface opening 11 and the current plate 12 directed vertically downward. Alternatively, as shown in FIG. 3B, it is also possible to form a fresh water region C extending horizontally from the box 10 with the top opening 11 and the rectifying plate 12 oriented horizontally.

なお,図1(A)のように中空箱体10から上方に延びる清水領域Cを形成する場合は,清水Fの密度(ないし比重)を周囲の濁水Mと同じ程度又は小さくすることが有効であり,例えば濁水Mに対して水温の高い清水Fを用いることができる。また,図3(A)のように中空箱体10から下方に延びる清水領域Cを形成する場合は,清水Fの密度を周囲の濁水Mと同じ程度又は大きくすることが有効であり,例えば濁水Mに対して水温の低い清水F(又は淡水の濁水Mに対して塩水又は砂糖水とした清水F)を用いることができる。更に,図3(B)のように中空箱体10から水平方向に延びる清水領域Cを形成する場合は,清水Fの密度を周囲の濁水Mと同じ程度とすることが有効である。   In addition, when forming the fresh water area | region C extended upwards from the hollow box 10 like FIG. 1 (A), it is effective to make the density (or specific gravity) of the fresh water F the same or smaller than the surrounding turbid water M. Yes, for example, fresh water F having a higher water temperature than muddy water M can be used. When forming the fresh water region C extending downward from the hollow box 10 as shown in FIG. 3A, it is effective to make the density of the fresh water F the same as or larger than the surrounding turbid water M. For example, The fresh water F whose water temperature is low with respect to M (or the fresh water F made into salt water or sugar water with respect to the turbid water M of fresh water) can be used. Furthermore, when forming the fresh water area | region C extended in the horizontal direction from the hollow box 10 like FIG. 3 (B), it is effective to make the density of the fresh water F into the same grade as the surrounding turbid water M.

また,図1(A)の実施例では頂面開口11及び整流板12の口径X1を1m〜2m程度とし,箱体10の鉛直上方に1m〜2m径で柱状に延びる清水領域Cを形成しているが,頂面開口11及び整流板12の所定口径X1も,濁水M中に形成する清水領域Cの形や大きさに応じて適宜変更することができる。例えば図3(A)及び(B)の実施例において,頂面開口11及び整流板12の所定口径X1を10〜20m程度とすることにより,濁水M中を10〜20m径で鉛直又は水平に伸びる清水領域Cを形成することができる。或いは,複数の中空箱体15を環状に並べて設置することにより,濁水M中に形成する清水領域Cの口径(大きさ)を調整することも可能である。   Further, in the embodiment of FIG. 1A, the aperture X1 of the top surface opening 11 and the rectifying plate 12 is about 1 m to 2 m, and a fresh water region C extending in a column shape with a diameter of 1 m to 2 m is formed vertically above the box 10. However, the predetermined aperture X1 of the top surface opening 11 and the rectifying plate 12 can also be appropriately changed according to the shape and size of the fresh water region C formed in the muddy water M. For example, in the embodiment of FIGS. 3 (A) and 3 (B), the predetermined aperture X1 of the top surface opening 11 and the rectifying plate 12 is set to about 10 to 20 m, so that the muddy water M is vertically or horizontally with a diameter of 10 to 20 m. An extending fresh water region C can be formed. Alternatively, it is possible to adjust the diameter (size) of the fresh water region C formed in the turbid water M by arranging a plurality of hollow box bodies 15 arranged in a ring shape.

更に,図3(C)に示すように,一対の中空箱体15を頂面開口11及び整流板12が相互に対向するように濁水M中に設置し,両方の頂面開口11及び整流板12から柱状に延びる清水領域Cを交差させることにより,比較的長く延びる安定的な清水領域Cを形成することもできる。或いは,図1又は図3(A)のような鉛直方向に延びる清水流と,図3(B)のような水平方向に延びる清水流とを組み合わせて清水領域Cを形成することも可能である。更に,図示例では頂面開口11及び整流板12を断面矩形としているが,形成すべき清水領域Cの形状に応じて頂面開口11及び整流板12の断面形状も適宜変更可能であり,例えば円形,楕円形,多角形等とすることも可能である。   Further, as shown in FIG. 3C, a pair of hollow boxes 15 are installed in the turbid water M so that the top surface opening 11 and the rectifying plate 12 face each other, and both the top surface opening 11 and the rectifying plate are arranged. By crossing the fresh water region C extending from 12 to the columnar shape, a stable fresh water region C extending relatively long can be formed. Alternatively, it is also possible to form the fresh water region C by combining the fresh water flow extending in the vertical direction as shown in FIG. 1 or FIG. 3 (A) and the fresh water flow extending in the horizontal direction as shown in FIG. 3 (B). . Furthermore, in the illustrated example, the top surface opening 11 and the rectifying plate 12 are rectangular in cross section, but the cross sectional shapes of the top surface opening 11 and the rectifying plate 12 can be appropriately changed according to the shape of the fresh water region C to be formed. It can also be circular, elliptical, polygonal, etc.

中空箱体10の頂面開口11を覆う整流板12は,例えば所要開口率のパンチング板(パンチングメタル),所要開口率のストレーナ等とすることができる。整流板12の流れ抵抗(開口率)は,整流板12全体から放流される清水流が均等と認められる速度Sとなるように設計することができる。また図1(C)に示すように,必要に応じて,箱体底面16で流れの向きを変えた清水Fの廻り込みやすい範囲15bと廻り込みにくい範囲15aとで,整流板12上の流れ抵抗を相違させることができる。すなわち,清水Fが廻り込みにくい注入口14周辺の領域15aでは流れ抵抗を比較的小さく(開口率を比較的大きく)し,清水Fが廻り込みやすい注入口14から離れた領域15bでは流れ抵抗を比較的大きく(開口率を比較的小さく)することにより,整流板12全体から放流される清水Fを均等な速度Sとすることができる。   The rectifying plate 12 covering the top surface opening 11 of the hollow box 10 can be, for example, a punching plate (punching metal) having a required aperture ratio, a strainer having a required aperture ratio, or the like. The flow resistance (opening ratio) of the rectifying plate 12 can be designed such that the fresh water flow discharged from the entire rectifying plate 12 has a speed S at which the flow is recognized as being uniform. Further, as shown in FIG. 1C, the flow on the rectifying plate 12 is divided into a range 15b where the fresh water F which has changed the direction of flow at the bottom surface 16 of the box is easy and a range 15a where the flow is difficult. The resistance can be made different. That is, the flow resistance is relatively small (the aperture ratio is relatively large) in the region 15a around the inlet 14 where the fresh water F is difficult to go around, and the flow resistance is reduced in the region 15b far from the inlet 14 where the fresh water F is easy to go around. By making it relatively large (the aperture ratio is relatively small), the fresh water F discharged from the entire rectifying plate 12 can be set to the uniform speed S.

図1(C)は中空箱体10の頂面開口11の端部に注入口14を設けた場合であるが,図2(A)に示すように,注入口14は中空箱体10の頂面開口11の中央部に設けることも可能である。その場合は,例えば図2(B)に示すように,整流板12上の流れ抵抗の比較的小さい領域(開口率の比較的大きい領域)15aと流れ抵抗の比較的大きい領域(開口率の比較的小さい領域)15bとを,注入口14の周りに同心状に配置することができる。或いは図2(C)に示すように,注入口14の周辺の整流板12上に流れ抵抗の比較的小さい領域(開口率の比較的大きい領域)15aを配置すると共に,その両側の整流板12上に流れ抵抗の比較的大きい領域(開口率の比較的小さい領域)15bを配置して,整流板12全体から放流される清水Fを均等な速度Sとすることも可能である。   FIG. 1 (C) shows a case where the inlet 14 is provided at the end of the top opening 11 of the hollow box 10, but the inlet 14 is the top of the hollow box 10 as shown in FIG. 2 (A). It is also possible to provide the central portion of the surface opening 11. In that case, for example, as shown in FIG. 2B, a region 15a having a relatively low flow resistance (region having a relatively high aperture ratio) 15a and a region having a relatively large flow resistance (comparison of the aperture ratios) Small region) 15b can be arranged concentrically around the inlet 14. Alternatively, as shown in FIG. 2C, a region 15a having a relatively low flow resistance (region having a relatively large aperture ratio) 15a is disposed on the rectifying plate 12 around the inlet 14, and the rectifying plates 12 on both sides thereof are arranged. It is also possible to arrange an area 15b having a relatively high flow resistance (area having a relatively small opening ratio) 15b on the upper side so that the fresh water F discharged from the entire rectifying plate 12 has a uniform speed S.

望ましくは,図4に示すように,箱体10の頂面開口11を覆う整流板12を,流れ抵抗の異なる複数の整流板12a〜12dを積層したものとする。上述したように,整流板12は単独であっても全体から清水Fが均等な速度Sで放流されるように設計できるが,複数の整流板12a〜12dを積層することにより,全体から放流される清水Fの速度Sを一層均等化することが期待できる。例えば,箱体底面15に最も近い最下層の整流板12aにより放流される清水F全体の速度を均等化したのち,その上層の整流板12b,12c,12dによって清水F全体の速度を更に均等化する。この場合は,最下層の整流板12aの流れ抵抗を最も大きく(開口率を最も小さく)し,上層になるに従って整流板12b,12c,12dの流れ抵抗を徐々に小さく(開口率を徐々に大きく)することが有効である。   Desirably, as shown in FIG. 4, the rectifying plate 12 covering the top surface opening 11 of the box 10 is formed by laminating a plurality of rectifying plates 12 a to 12 d having different flow resistances. As described above, the rectifying plate 12 can be designed so that the fresh water F is discharged from the whole at a uniform speed S even if it is a single plate. However, by laminating the plurality of rectifying plates 12a to 12d, the whole is discharged. It can be expected that the speed S of the fresh water F is made more uniform. For example, after equalizing the speed of the whole fresh water F discharged by the lowermost rectifying plate 12a closest to the box bottom surface 15, the speed of the whole fresh water F is further equalized by the upper rectifying plates 12b, 12c and 12d. To do. In this case, the flow resistance of the rectifying plate 12a in the lowermost layer is maximized (the aperture ratio is minimized), and the flow resistance of the rectifying plates 12b, 12c, and 12d is gradually decreased as the upper layer is formed (the aperture ratio is gradually increased). ) Is effective.

更に,整流板12(又は複数の整流板12a〜12d)により均等化された清水Fの放流の速度Sは,箱体10内に継続的に注入する清水Fの所要流量Frによって調整することができる。上述したように,清水Fの放流を全体的に均等な流速Sとすることで周囲の濁水Mとの混合を小さく抑えることができるが,整流板12から離隔するに従って濁水Mとの混合割合が徐々に大きくなることは避けがたい。本発明者は,後述するように,整流板12から離隔したときの清水と濁水Mとの混合割合が,整流板12からの放流の速度Sによって異なることを実験的に見出した(後述の実験例2参照)。従って,濁水M中の清水領域Cを安定的に維持するためには,放流が整流板12から離隔しても濁水Mとの混合割合ができるだけ小さい速度Sとなるように,例えば実験により又は数値計算によって,箱体10内に注入する清水Fの所要流量Frを調整することが有効である。   Furthermore, the discharge speed S of the fresh water F equalized by the current plate 12 (or the plurality of current plates 12a to 12d) can be adjusted by the required flow rate Fr of the fresh water F continuously injected into the box 10. it can. As described above, mixing the fresh water F with a uniform flow velocity S can suppress the mixing with the surrounding turbid water M, but the mixing ratio with the turbid water M increases as the distance from the rectifying plate 12 increases. It is inevitable that it will grow gradually. As will be described later, the inventor experimentally found that the mixing ratio of fresh water and muddy water M when separated from the rectifying plate 12 is different depending on the discharge speed S from the rectifying plate 12 (experiment described later). Example 2). Therefore, in order to maintain the fresh water region C in the turbid water M stably, the mixing ratio with the turbid water M is as small as possible even if the discharge is separated from the rectifying plate 12, for example by experiment or numerical value. It is effective to adjust the required flow rate Fr of the fresh water F injected into the box 10 by calculation.

なお,清水Fは箱体10内に所要流量Frで連続的に注入して箱体頂面の整流板12全体から均等な速度Sの清水Fを連続的に放流することが望ましいが,必要に応じて清水Fを断続的に注入し又は注入量を段階的に減少することも可能である。例えば,清水Fを連続的に注入することで清水領域Cの高い透明度を維持することができるが,それほど高い透明度が要求されないときは,例えば清水領域Cが形成された後に必要に応じて清水Fを断続的に注入し,或いは注入量を段階的に減少することで,目的の視界が確保できる程度の清水領域Cを形成・形成すれば足りる。また,そのように清水Fの断続的な注入又は注入量の減少により,清水領域Cを形成するために必要な清水Fの供給量を節約できる利点もある。   In addition, it is desirable that the fresh water F is continuously injected into the box 10 at the required flow rate Fr, and the fresh water F having an equal speed S is continuously discharged from the entire rectifying plate 12 on the top surface of the box. Accordingly, it is also possible to inject fresh water F intermittently or to reduce the injection amount stepwise. For example, the high transparency of the fresh water region C can be maintained by continuously injecting the fresh water F. However, when the high transparency is not required, for example, the fresh water F is formed as necessary after the fresh water region C is formed. It is sufficient to form and form a fresh water region C to the extent that a desired field of view can be secured by intermittently injecting water or by gradually reducing the amount of injection. Moreover, there is also an advantage that the supply amount of the fresh water F necessary for forming the fresh water region C can be saved by intermittent injection of the fresh water F or a decrease in the injection amount.

[実験例1]
本発明の異質液体領域形成装置により,清水Fを整流板12全体から均等な速度Sで放流できることを確認するため,図4に示すように頂面開口11が整流板12で覆われた中空箱体10を試作して実験を行った。先ず,一辺X1=935mmの矩形断面(所定口径X1)で頂面全体が開放された箱体を用い,その頂面開口11を図4(B)〜(E)に示すような流れ抵抗の異なる4枚のパンチング板12a〜12dを所要相互間隔で積み重ねた積層整流板12で覆うことにより,図4(A)に示すような中空箱体10を作成した。最下層のパンチング板12aは,図4(B)に示すように,清水Fの廻り込みやすい範囲15bと廻り込みにくい範囲15aとで流れ抵抗(開口率)が異なるものを使用し,領域15aの開口率を領域15bの開口率の2倍程度に大きくした。また,その上層のパンチング板12bは領域15aより大きな開口率とし,その上層のパンチング板12cはパンチング板12bより大きな開口率とし,最上層のパンチング板12dはパンチング板12cよりも更に大きな開口率とした。
[Experimental Example 1]
In order to confirm that the fresh water F can be discharged from the entire rectifying plate 12 at an equal speed S by the heterogeneous liquid region forming apparatus of the present invention, a hollow box whose top opening 11 is covered with the rectifying plate 12 as shown in FIG. An experiment was conducted with a prototype of the body 10. First, a box body whose entire top surface is opened with a rectangular cross section (predetermined diameter X1) of one side X1 = 935 mm is used, and the top surface opening 11 has different flow resistances as shown in FIGS. A hollow box 10 as shown in FIG. 4A was created by covering the four punching plates 12a to 12d with the laminated rectifying plates 12 stacked at a required mutual interval. As shown in FIG. 4 (B), the lowermost punching plate 12a is one having different flow resistance (opening ratio) in the range 15b where the fresh water F is easy to go around and the area 15a where the fresh water F is hard to go around. The aperture ratio was increased to about twice the aperture ratio of the region 15b. The upper punching plate 12b has a larger opening ratio than the region 15a, the upper punching plate 12c has a larger opening ratio than the punching plate 12b, and the uppermost punching plate 12d has a larger opening ratio than the punching plate 12c. did.

次いで,中空箱体10の底面16から最下層のパンチング板12aまでの高さ(中空部高さ)H1を変えながら,中空箱体10の注入口14から所要流量Fr(例えば500リットル/分程度)で清水Fを注入し,図6(A)に示すように中空箱体10の積層整流板12の表面に沿って設けた7つの計測点P1〜P7においてそれぞれ,積層整流板12から放流される清水Fの流速Sを計測した。各計測点P1〜P7は,各整流板12上の注入口14を通る同じ中心軸線上に配置したものであり,計測点P1〜P5は鉛直上方から見て積層整流板12と重なる上方位置であり,計測点P6,P7は積層整流板12と重ならない位置である。   Next, while changing the height (hollow part height) H1 from the bottom surface 16 of the hollow box body 10 to the lowermost punching plate 12a, the required flow rate Fr (for example, about 500 liters / minute) from the inlet 14 of the hollow box body 10 is changed. ), And fresh water F is discharged from the laminated rectifying plate 12 at seven measurement points P1 to P7 provided along the surface of the laminated rectifying plate 12 of the hollow box 10 as shown in FIG. The flow rate S of fresh water F was measured. The measurement points P1 to P7 are arranged on the same central axis passing through the inlet 14 on each rectifying plate 12, and the measurement points P1 to P5 are at an upper position overlapping the laminated rectifying plate 12 when viewed from above. Yes, the measurement points P6 and P7 are positions that do not overlap the laminated rectifying plate 12.

中空箱体10の中空部高さH1が適切に調整されていないときは,計測点P5の流速Sが他の計測点P1〜P4よりも大きくなり,整流板12全体から放流される清水Fの流れを均等な流速Sとすることは困難であった。これに対し,中空部高さH1を適切に調整することにより,図6(B)に示すように,各計測点P1〜P5における流速Sがそれぞれ最大流速15mm/sの50%程度の範囲内となり,整流板12全体から放流される清水Fの流れをほぼ均等と認められる流速Sとすることができた。この実験結果から,中空箱体10の頂端開口11を覆う整流板12の所定口径X1に応じて,整流板12の流れ抵抗(開口率及びその分布)と箱体10の中空部高さH1とを適切に調節することにより,整流板12全体から放流される清水Fの流れをほぼ均等な流速Sとすることができることを確認できた。   When the hollow part height H1 of the hollow box 10 is not properly adjusted, the flow velocity S at the measurement point P5 becomes larger than the other measurement points P1 to P4, and the fresh water F discharged from the entire rectifying plate 12 It was difficult to obtain a uniform flow rate S. On the other hand, by appropriately adjusting the hollow portion height H1, the flow velocity S at each of the measurement points P1 to P5 is within a range of about 50% of the maximum flow velocity of 15 mm / s, as shown in FIG. 6B. Thus, the flow rate of the fresh water F discharged from the entire rectifying plate 12 can be set to a flow velocity S that is recognized as being substantially uniform. From this experimental result, according to the predetermined aperture X1 of the rectifying plate 12 covering the top end opening 11 of the hollow box 10, the flow resistance (opening ratio and distribution thereof) of the rectifying plate 12 and the hollow portion height H1 of the box 10 It was confirmed that the flow rate of fresh water F discharged from the entire rectifying plate 12 can be made to have a substantially uniform flow velocity S by appropriately adjusting the flow rate.

[実験例2]
次に,上述したように流れ抵抗(開口率及びその分布)及び中空部高さH1が調節された図4の中空箱体10(所定口径X1)を用い,その入口14に注入する清水Fの流量Frを変えながら,図5(A)に示すように整流板12(頂面開口11)の鉛直上方の異なる高さの6つの計測点Q1〜Q6においてそれぞれ,その計測高さの濁度と放流前の濁度(周囲濁水の濁度)との比を計測した。計測点Q1は整流板12の口径X1だけ箱体10の鉛直上方に配置されており,計測点Q2〜Q6はそれぞれ口径X1の2〜6倍だけ箱体10の鉛直上方に配置されている。計測結果を図5(B)のグラフに示す。図5(B)のグラフは,整流板12全体から放流される清水Fの均等な流速Sを,箱体10の口径X1を代表長さとしたときの清水Fの放流のレイノルズ数(=流速×代表長さ/動粘性係数)で表し,清水Fの注入流量Frに応じて清水Fの放流のレイノルズ数が変化したときに,各計測点Q1〜Q6において濁水Mとの混合割合がどの程度進行するか,換言すると清水流の安定性がどの程度失われるかを表している。
[Experiment 2]
Next, using the hollow box 10 (predetermined diameter X1) of FIG. 4 in which the flow resistance (opening ratio and its distribution) and the height H1 of the hollow part are adjusted as described above, the fresh water F injected into the inlet 14 is supplied. While changing the flow rate Fr, as shown in FIG. 5 (A), the turbidity at the measurement height at each of the six measurement points Q1 to Q6 at different heights above the rectifying plate 12 (top surface opening 11). The ratio with the turbidity before discharge (turbidity of ambient turbid water) was measured. The measurement point Q1 is arranged vertically above the box 10 by the diameter X1 of the rectifying plate 12, and the measurement points Q2 to Q6 are arranged vertically above the box 10 by 2 to 6 times the diameter X1, respectively. The measurement results are shown in the graph of FIG. The graph of FIG. 5B shows the Reynolds number (= flow velocity × flow velocity) of the fresh water F discharged when the uniform flow velocity S of the fresh water F discharged from the entire rectifying plate 12 is the diameter X1 of the box 10 as a representative length. (Representative length / kinematic viscosity coefficient) When the Reynolds number of the fresh water F discharge changes according to the injection flow rate Fr of the fresh water F, how much the mixing ratio with the muddy water M progresses at each measurement point Q1 to Q6. In other words, it shows how much the stability of the fresh water flow is lost.

図5(B)のレイノルズ数=5000のグラフは,整流板12からの清水Fの放流速が小さすぎると計測点Q4〜Q5における濁度が大きくなり,周囲の濁水Mとの混合割合が大きくなることを示している。また,図5(B)のレイノルズ数=16000のグラフは,整流板12からの清水Fの放流速が大きすぎる場合も計測点Q3〜Q5における濁度が大きくなり,周囲の濁水Mとの混合割合が大きくなることを示している。これに対して図5(B)のレイノルズ数=6000〜14000のグラフは,計測点Q1〜Q6における濁度が何れも周囲濁水の0.4倍程度以下となっており,整流板12から口径X1の6倍程度離れても濁水Mとの混合が小さく抑えられていることを示す。この実験結果から,濁水M中に形成した清水領域Cを安定的に維持するためには,箱体10内に注入する清水Fの流量Frを,箱体10の口径X1を代表長さとしたときの箱体10の整流板12(頂面開口11)からの放流の清水Fのレイノルズ数が6000〜14000の範囲内となるように調整することが有効であることを確認できた。   In the graph of Reynolds number = 5000 in FIG. 5B, the turbidity at the measurement points Q4 to Q5 increases when the discharge flow rate of the fresh water F from the rectifying plate 12 is too small, and the mixing ratio with the surrounding turbid water M is large. It shows that it becomes. Further, the graph of Reynolds number = 16000 in FIG. 5B shows that the turbidity at the measurement points Q3 to Q5 increases even when the discharge flow rate of the fresh water F from the rectifying plate 12 is too large, and mixing with the surrounding turbid water M It shows that the ratio becomes large. On the other hand, in the graph of Reynolds number = 6000 to 14000 in FIG. 5B, the turbidity at the measurement points Q1 to Q6 is about 0.4 times or less of the surrounding turbid water, It shows that mixing with the turbid water M is kept small even if it is about 6 times away from X1. From this experimental result, in order to stably maintain the fresh water region C formed in the muddy water M, the flow rate Fr of the fresh water F injected into the box 10 is set to the diameter X1 of the box 10 as the representative length. It was confirmed that it was effective to adjust the Reynolds number of the fresh water F discharged from the current plate 12 (top opening 11) of the box 10 to be in the range of 6000 to 14000.

こうして,本発明の目的である「特定の第1液体中に安定的に維持された異質の第2液体の領域を簡単に形成することができる方法及び装置」の提供を達成することができる。   Thus, it is possible to achieve the object of the present invention, which is “a method and an apparatus that can easily form a region of a foreign second liquid that is stably maintained in a specific first liquid”.

以上,濁水(第1液体)M中に清水(第2液体)Fの領域Cを形成する図示例を参照して本発明を説明したが,例えば冷水(第1液体)中で潜水作業を行う場合等には,本発明によって冷水(第1液体)M中に温水(第2液体)Fの領域Cを形成することにより,潜水作業の効率化及び環境改善に貢献することも期待できる。また,第1液体Mと異質の第2液体Fとして,第1液体(例えば濁水)Mの性質を変化させる化学物質(例えば濁り成分の凝集剤)が添加された液体とすることも可能である。例えば,第2液体Fとして凝集剤が添加された清水Fを用いることにより,第1液体(濁水)Mへの放流後に第1液体(濁水)Mとの混合によって増加する第2液体(清水)F中の濁り成分の沈殿を促進し,放流後の第2液体(清水)Fの透明度を高め,或いは透明度を長い時間維持することが期待できる。また,本発明のように比較的大口径X1で放流される均等な流速の第2液体(清水)F中に凝集剤を添加することにより,比較的少量の凝集剤によって比較的広い範囲の濁り成分を効果的に沈殿させる効果も期待できる。なお,本発明は,ダム湖等のように第1液体(濁水,冷水等)Mが停滞している場合に広く適用できるが,流れをある程度軽減すれば,港湾又は河川等のように流れのある第1液体(濁水,冷水等)M中に第2液体(清水,温水等)Fの領域Cを形成する場合にも適用することが期待できる。   The present invention has been described with reference to the illustrated example in which the region C of the fresh water (second liquid) F is formed in the turbid water (first liquid) M. For example, the diving operation is performed in cold water (first liquid). In some cases, by forming the region C of the hot water (second liquid) F in the cold water (first liquid) M according to the present invention, it can also be expected to contribute to the efficiency of diving work and the improvement of the environment. The second liquid F, which is different from the first liquid M, may be a liquid to which a chemical substance (for example, a turbid component flocculant) that changes the properties of the first liquid (for example, turbid water) M is added. . For example, by using fresh water F to which a flocculant is added as the second liquid F, the second liquid (fresh water) that increases by mixing with the first liquid (turbid water) M after being discharged into the first liquid (turbid water) M. It can be expected that the precipitation of turbid components in F is promoted, the transparency of the second liquid (fresh water) F after discharge is increased, or the transparency is maintained for a long time. Further, by adding a flocculant to the second liquid (fresh water) F having a uniform flow rate discharged with a relatively large diameter X1 as in the present invention, a relatively wide range of turbidity is achieved by a relatively small amount of flocculant. The effect of effectively precipitating the components can also be expected. Note that the present invention can be widely applied when the first liquid (turbid water, cold water, etc.) M is stagnant, such as a dam lake, etc. However, if the flow is reduced to some extent, The present invention can also be applied to the case where the region C of the second liquid (clear water, hot water, etc.) F is formed in a certain first liquid (turbid water, cold water, etc.) M.

図9は,濁水(第1液体)M中に放流した清水(第2液体)Fを回収して再利用する本発明の他の実施例を示す。図1及び図3のように濁水M中に設置した中空箱体10から清水Fを継続的に放流して清水領域Cを形成する方法では,継続的に供給する清水Fを如何に確保するかが問題となりうる。図9(A)及び図9(B)に示す異質液体領域形成装置は,それぞれ図1及び図3(B)に示すような中空箱体10及び供給装置2に加えて,箱体10の頂面開口11から放流した清水F中に設置する液体回収装置20と,液体回収装置20で回収した清水Fを供給装置2へ戻す返戻管22a,22bとを有している。   FIG. 9 shows another embodiment of the present invention in which fresh water (second liquid) F discharged into muddy water (first liquid) M is recovered and reused. In the method in which the fresh water F is continuously discharged from the hollow box 10 installed in the muddy water M as shown in FIGS. 1 and 3 to form the fresh water region C, how to ensure the fresh water F to be continuously supplied is secured. Can be a problem. The heterogeneous liquid region forming apparatus shown in FIGS. 9 (A) and 9 (B) includes the top of the box 10 in addition to the hollow box 10 and the supply device 2 as shown in FIGS. 1 and 3 (B), respectively. The liquid recovery apparatus 20 installed in the fresh water F discharged from the surface opening 11 and return pipes 22a and 22b for returning the fresh water F recovered by the liquid recovery apparatus 20 to the supply apparatus 2 are provided.

図示例の液体回収装置20は,例えば中空箱体10と同程度の口径X1で頂面全体が開放された中空箱体21を含み,その箱体21の頂面開口を中空箱体10の頂面開口11及び整流板12と対向させて濁水M中に配置したものである。上述したように中空箱体10の整流板12から放流された清水Fの領域Cは安定的に維持されているので,その清水領域C内に回収装置20を配置することにより,濁水Mとの混合を避けながら清水Fのみを効率的に箱体21の頂面開口から液体回収装置20の内部に回収できる。また,液体回収装置20には返戻管21aの一端が接続されており,内部に回収した清水Fを返戻管21a,21b経由で供給装置2へ戻して循環させることができる。このように中空箱体10から濁水(第1液体)M中に放流された清水(第2液体)Fを回収して再利用することにより,清水Fの供給量を節約しながら,中空箱体10と液体回収装置20との間に安定的に維持された清水領域Cを形成することができる。   The liquid recovery apparatus 20 in the illustrated example includes a hollow box body 21 having an aperture X1 that is approximately the same as that of the hollow box body 10 and the entire top surface being opened. The top opening of the box body 21 is the top of the hollow box body 10. It is arranged in the turbid water M so as to face the surface opening 11 and the current plate 12. As described above, since the region C of the fresh water F discharged from the rectifying plate 12 of the hollow box 10 is stably maintained, by arranging the recovery device 20 in the fresh water region C, Only fresh water F can be efficiently recovered from the top surface opening of the box 21 into the liquid recovery apparatus 20 while avoiding mixing. Further, one end of a return pipe 21a is connected to the liquid recovery apparatus 20, and the fresh water F recovered inside can be returned to the supply apparatus 2 via the return pipes 21a and 21b and circulated. Thus, by recovering and reusing the fresh water (second liquid) F discharged from the hollow box 10 into the muddy water (first liquid) M, the hollow box body saves the supply amount of the fresh water F. 10 and the liquid recovery apparatus 20 can form a fresh water region C stably maintained.

好ましくは,返戻管22a,22b上に第2液体Fを浄化する浄化装置23を含め,液体回収装置20で回収した第2液体Fを供給装置2へ戻す前に浄化する。上述したように中空箱体10の整流板12から放流された清水領域C中に液体回収装置20を配置することで,濁水Mとの混合を避けながら清水Fを効率的に回収できるが,中空箱体10と液体回収装置20との離隔距離が大きくなると回収する清水F中に濁水Mが混合することは避けがたく,回収した清水Fの循環によって形成される清水領域Cの濁度が徐々に増大しうる。図示例のように,回収装置20で回収した清水Fを浄化装置23で浄化したうえで供給装置2へ戻して循環させることにより,中空箱体10と液体回収装置20との間に形成される清水領域Cの濁水Mの増大を防ぐことができる。   Preferably, a purification device 23 for purifying the second liquid F is included on the return pipes 22a and 22b, and the second liquid F recovered by the liquid recovery device 20 is purified before returning to the supply device 2. As described above, by arranging the liquid recovery device 20 in the fresh water region C discharged from the rectifying plate 12 of the hollow box 10, the fresh water F can be efficiently recovered while avoiding mixing with the turbid water M. When the separation distance between the box 10 and the liquid recovery device 20 increases, it is unavoidable that the turbid water M is mixed into the recovered fresh water F, and the turbidity of the fresh water region C formed by circulation of the recovered fresh water F gradually increases. Can be increased. As shown in the figure, the fresh water F recovered by the recovery device 20 is purified by the purification device 23 and then returned to the supply device 2 and circulated, thereby forming between the hollow box 10 and the liquid recovery device 20. An increase in muddy water M in the fresh water region C can be prevented.

図7(A)及び(B)は,例えば水中構造物1であるダム(堰堤)の接水面のリニューアル工事を潜水作業で行う場合に,ダム堤体の接水面に沿った濁水(第1液体)M中に溢流口26付き遮液膜25で囲まれた所要大きさの閉鎖エリアZを画成し,その閉鎖エリアZの内側に清水(第2液体F)の領域Cを形成する本発明の更に他の実施例を示す。図示例の異質液体領域形成装置は,図1に示すような中空箱体10及び供給装置2に加えて,所要大きさの閉鎖エリアZを画成する溢流口26付き遮液膜25を有している。上述した中空箱体10を閉鎖エリアZの内側に設置し,箱体頂面11から放流する第2液体Fによって閉鎖エリアZの内側を満たすことにより清水領域Cとする。この実施例では遮液膜25によって周囲の濁水Mと清水領域Cとの混合を防ぐことができ,この実施例の中空箱体10は主に清水Fを濁水Mとの混合が小さい均等な所要流速Sで供給する放流装置として機能する。   7A and 7B show, for example, when the renewal work of the water surface of a dam (dam) which is the underwater structure 1 is performed by diving work, muddy water (first liquid) along the water surface of the dam body A book that defines a closed area Z of a required size surrounded by a liquid shielding film 25 with an overflow port 26 in M, and forms a region C of fresh water (second liquid F) inside the closed area Z Yet another embodiment of the invention is shown. The heterogeneous liquid region forming apparatus of the illustrated example has a liquid shielding film 25 with an overflow port 26 that defines a closed area Z of a required size in addition to the hollow box 10 and the supply device 2 as shown in FIG. doing. The above-described hollow box 10 is installed inside the closed area Z, and the inside of the closed area Z is filled with the second liquid F discharged from the box top surface 11 to obtain a fresh water region C. In this embodiment, mixing of the surrounding turbid water M and the fresh water region C can be prevented by the liquid shielding film 25, and the hollow box 10 of this embodiment has an equal requirement that the mixing of the fresh water F with the turbid water M is small. It functions as a discharge device that supplies at a flow rate S.

図7(A)及び(B)の遮液膜25は,例えばダム堤体の接水面に沿って設けた潜水作業に必要十分な閉鎖エリアZを囲むように接水面に支持して組み立てた遮水板又は遮水膜であり,その一部分に内側から外側へ水を通過させる溢流口26が設けられている。必要に応じて溢流口26に逆止弁等を設けてもよい。その遮液膜25で囲まれた閉鎖エリアZの内側に中空箱体10を設置し,遮液膜25を水密に貫く送水管5を介して,遮液膜25の外側の供給装置2から箱体10に清水Fを注入する。供給装置2は遮液膜25の内側に設けることも可能であり,その場合は送水管5が遮液膜25を貫く必要がない。中空箱体10の頂面開口11の整流板12から均等な流速Sで清水Fを放流することにより,清水Fとの混合を小さく抑えながら閉鎖エリアZの内側を徐々に清水Fで満たし,閉鎖エリアZの内側の濁水Mを溢流口26から徐々に遮液膜25の外側へ押し出すことにより,閉鎖エリアZの内側を清水領域Cとすることができる。   7 (A) and 7 (B), for example, the liquid-impervious film 25 is constructed by supporting and assembling a water-impregnated surface so as to surround a closed area Z necessary and sufficient for diving work provided along the surface of the dam dam body. The overflow plate 26 which is a water plate or a water-impervious film and allows water to pass from the inside to the outside is provided in a part thereof. If necessary, a check valve or the like may be provided at the overflow port 26. The hollow box 10 is installed inside the closed area Z surrounded by the liquid shielding film 25, and the box is supplied from the supply device 2 outside the liquid shielding film 25 through the water supply pipe 5 penetrating the liquid shielding film 25 in a watertight manner. Fresh water F is injected into the body 10. The supply device 2 can also be provided inside the liquid shielding film 25, and in that case, the water supply pipe 5 does not need to penetrate the liquid shielding film 25. By flowing fresh water F from the rectifying plate 12 of the top surface opening 11 of the hollow box 10 at an equal flow rate S, the inside of the closed area Z is gradually filled with the fresh water F while keeping mixing with the fresh water F small. By gradually extruding the muddy water M inside the area Z from the overflow port 26 to the outside of the liquid shielding film 25, the inside of the closed area Z can be set as the fresh water region C.

図7(C)及び(D)は,上端に溢流口26を設けた遮液膜25を用いて,同図(A)及び(B)と同様にダム堤体の接水面に沿った閉鎖エリアZの内側を清水領域Cとする他の実施例を示す。図示例の遮液膜25は,閉鎖エリアZの3側面及び底面を遮水板又は遮水膜で塞ぎ,頂面を開放して蓋なしエリアZとするものである。そのエリアZの内側底部に中空箱体10を設置し,上端面の溢流口26から送水管5を挿入して箱体10に清水Fを注入し,中空箱体10の整流板12から均等な流速Sで放流される清水FによってエリアZの内側を徐々に清水Fで満たす。この実施例の中空箱体10も,主に清水Fを濁水Mとの混合が小さい均等な所要流速Sで供給する放流装置として機能する。好ましくは,注入する清水Fの密度(ないし比重)を濁水Mより大きくし,エリアZの底部に注入した清水Fによって密度の低い(温度の高い)濁水を上端の溢流口26から外側へ押し出することにより,エリアZの内側を底部から徐々に清水Fで満たす。例えば,清水Fを濁水Mよりも温度の低い冷水とし,又は清水Fを水Mよりも高濃度の塩水又は砂糖水とすることができる。   7 (C) and 7 (D) are closed along the water contact surface of the dam dam body using a liquid shielding film 25 provided with an overflow port 26 at the upper end as in FIGS. 7 (A) and (B). The other Example which uses the inner side of the area Z as the fresh water area | region C is shown. In the illustrated example, the liquid shielding film 25 is configured such that the three side surfaces and the bottom surface of the closed area Z are closed with a water shielding plate or a water shielding film, and the top surface is opened to form a lidless area Z. The hollow box body 10 is installed at the inner bottom of the area Z, the water supply pipe 5 is inserted from the overflow port 26 on the upper end surface, and fresh water F is injected into the box body 10, and evenly from the current plate 12 of the hollow box body 10. The inside of the area Z is gradually filled with the fresh water F by the fresh water F discharged at a high flow rate S. The hollow box 10 of this embodiment also functions as a discharge device that mainly supplies the fresh water F at a uniform required flow rate S in which mixing with the turbid water M is small. Preferably, the density (or specific gravity) of the fresh water F to be injected is made larger than that of the turbid water M, and the low density (high temperature) turbid water is pushed out from the overflow port 26 at the upper end by the fresh water F injected into the bottom of the area Z. As a result, the inside of the area Z is gradually filled with fresh water F from the bottom. For example, the fresh water F can be cold water having a lower temperature than the turbid water M, or the fresh water F can be salt water or sugar water having a higher concentration than the water M.

図7(A)及び(B)又は図7(C)及び(D)の何れの実施例においても,第2液体F(例えば清水)として,第1液体(例えば濁水)Mの性質を変化させる化学物質(例えば濁り成分の凝集剤)が添加された液体を用いることができる。閉鎖エリアZの内側に凝集剤が添加された清水Fを注入することにより,周囲の濁水Mとの混合が発生した場合でも,清水F中の濁り成分を凝集剤によって沈殿させ,閉鎖エリアZの内側の透明度を高め,或いは透明度を長い時間維持することが期待できる。また,比較的大口径X1で放流される均等な流速の清水F中に凝集剤を添加することにより,比較的少量の凝集剤によって比較的広い範囲の濁り成分を効果的に沈殿させる効果が期待できる。   7A and 7B or FIGS. 7C and 7D, the property of the first liquid (for example, turbid water) M is changed as the second liquid F (for example, fresh water). A liquid to which a chemical substance (for example, a turbid component flocculant) is added can be used. By injecting fresh water F to which the flocculant is added inside the closed area Z, even when mixing with the surrounding turbid water M occurs, the turbid component in the fresh water F is precipitated by the flocculant, It can be expected to increase the inner transparency or maintain the transparency for a long time. In addition, the addition of a flocculant to fresh water F with a uniform flow rate discharged at a relatively large diameter X1 is expected to effectively precipitate a relatively wide range of turbid components with a relatively small amount of flocculant. it can.

図8は,例えば立坑等の先端部の出来形等を水中カメラで確認する場合に,濁水M中で必要な視界を確保しながら撮影を可能とするため,図1に示すような中空箱体10と水中カメラ30とを組み合わせた本発明の更に他の実施例を示す。図示例の異質液体領域形成装置は,図1に示すような中空箱体10及び供給装置2に加えて,その箱体10の頂面開口11の整流板12の外面に接して取り付けた水中カメラ30を有している。箱体頂面11の整流板12の外面には均等な流速Sで放流される第2液体F(清水F)によって清水領域Cが形成されるので,図8(A)のようにその清水域C内に水中カメラ30を設置すると共に,清水域Cの外面が出来型等の確認対象(撮影対象)と接するように箱体10を位置決めすることにより,濁水M中でも必要な視界を確保しながら撮影することが可能となる。また,図8(B)のように,中空箱体10の頂面開口11を出来型等の確認対象(撮影対象)と対向させ,第2液体F(清水F)を整流板12から対象へ向けて放流することにより,整流板12の外面に取り付けた水中カメラ30の視界を確保しながら対象を撮影することもできる。   FIG. 8 shows a hollow box as shown in FIG. 1 in order to enable photographing while ensuring a necessary field of view in the muddy water M when confirming the shape of a tip of a shaft or the like with an underwater camera. 10 shows still another embodiment of the present invention in which 10 and an underwater camera 30 are combined. The heterogeneous liquid region forming apparatus of the illustrated example is an underwater camera attached in contact with the outer surface of the rectifying plate 12 of the top surface opening 11 of the box 10 in addition to the hollow box 10 and the supply device 2 as shown in FIG. 30. Since the fresh water region C is formed by the second liquid F (fresh water F) discharged at an equal flow rate S on the outer surface of the current plate 12 on the top surface 11 of the box body, the fresh water region as shown in FIG. While installing the underwater camera 30 in C, and positioning the box 10 so that the outer surface of the fresh water area C is in contact with the confirmation target (photographing target) such as the completed mold, while ensuring the necessary field of view even in the muddy water M It becomes possible to shoot. Further, as shown in FIG. 8B, the top surface opening 11 of the hollow box body 10 is opposed to a confirmation target (photographing target) such as a finished mold, and the second liquid F (fresh water F) is transferred from the rectifying plate 12 to the target. The target can be photographed while ensuring the field of view of the underwater camera 30 attached to the outer surface of the rectifying plate 12 by discharging toward the outside.

1…水中構造物 2…供給装置
3…給水船 4…取水管
5…送水管 6…浄化装置
10…中空箱体 11…頂面開口
12,12a〜12d…整流板 14…注入口
15a,15b…整流板上の所定流れ抵抗の範囲
16…底面
20…液体回収装置 21…中空箱体
22…返戻管 23…浄化装置
25…遮液膜 26…溢流口
30…水中カメラ 31…ケーブル
C…異質液体領域(第2液体領域) E…水底
F…異質液体(第2液体) Fr…所要流量
H1…中空部高さ M…特定液体(第1液体)
S…流速 X1…頂面開口径
Z…閉鎖エリア
DESCRIPTION OF SYMBOLS 1 ... Underwater structure 2 ... Supply apparatus 3 ... Water supply ship 4 ... Intake pipe 5 ... Water supply pipe 6 ... Purification apparatus 10 ... Hollow box 11 ... Top surface opening 12, 12a-12d ... Rectification plate 14 ... Inlet 15a, 15b ... A range 16 of the predetermined flow resistance on the current plate ... Bottom surface 20 ... Liquid recovery device 21 ... Hollow box 22 ... Return pipe 23 ... Purification device 25 ... Impermeable film 26 ... Overflow port 30 ... Underwater camera 31 ... Cable C ... Heterogeneous liquid region (second liquid region) E ... Water bottom F ... Heterogeneous liquid (second liquid) Fr ... Required flow rate H1 ... Hollow portion height M ... Specific liquid (first liquid)
S ... Flow velocity X1 ... Top opening diameter Z ... Closed area

Claims (14)

潜水作業を必要とする第1液体中に所定口径の頂面開口を整流板で覆った中空箱体を設置し,前記箱体の頂面又は側面に底面へ向けて設けた注入口から箱体内に第1液体と濁度,温度,色,又は密度が異なる第2液体を所要流量で継続的に注入して充溢させ,前記箱体頂面の整流板を注入口から離れた範囲の流れ抵抗が注入口周辺範囲の流れ抵抗よりも大きいものとし,前記箱体内の底面で流れの向きを変えた第2液体を箱体頂面の整流板全体から均等な流速で放流して第1液体中に箱体頂面から整流板の法線方向へ柱状に延びる第2液体領域を潜水作業域として形成してなる液体中の異質液体領域形成方法。 A hollow box body in which the top opening of a predetermined diameter is covered with a baffle plate is installed in the first liquid that requires diving work, and the inside of the box is opened from the inlet provided on the top surface or side surface of the box body toward the bottom surface. A second liquid having a turbidity, temperature, color, or density different from that of the first liquid is continuously injected at a required flow rate to overflow, and the flow resistance in the range away from the inlet is the rectifying plate on the top surface of the box. There was a greater than the flow resistance of the inlet peripheral range, the first liquid and discharged with equal flow rate of the second liquid having different flow direction at the bottom of the box body through the entire rectifying plate of the box top surface A method for forming a heterogeneous liquid region in a liquid, comprising forming a second liquid region extending in a columnar shape from the top surface of the box body in the normal direction of the current plate as a diving work area . 請求項の方法において,前記箱体頂面の整流板を,流れ抵抗の異なる複数の整流板を積層したものとしてなる液体中の異質液体領域形成方法。 The method of claim 1 , wherein the rectifying plate on the top surface of the box is formed by laminating a plurality of rectifying plates having different flow resistances. 請求項1又は2の方法において,前記箱体内に注入する第2液体の所要流量を,前記所定口径を代表長さとしたときの前記整流板からの放流のレイノルズ数(=流速×代表長さ/動粘性係数)が6000〜14000の範囲内となるように調整してなる液体中の異質液体領域形成方法。 3. The method according to claim 1 , wherein the required flow rate of the second liquid to be injected into the box is the Reynolds number of discharge from the flow straightening plate when the predetermined diameter is a representative length (= flow velocity × representative length / A method for forming a heterogeneous liquid region in a liquid that is adjusted so that the kinematic viscosity coefficient is in a range of 6000 to 14000. 請求項1から3の何れかの方法において,前記箱体頂面から整流板の法線方向へ柱状に放流される第2液体中に当該箱体頂面と対向する開口付きの液体回収装置を設置し,前記液体回収装置の開口から回収した第2液体を前記箱体の注入口へ戻してなる液体中の異質液体領域形成方法。 4. The method according to claim 1 , wherein a liquid recovery apparatus with an opening facing the top surface of the box body is provided in the second liquid discharged in a columnar shape from the top surface of the box body in the normal direction of the rectifying plate. A method for forming a heterogeneous liquid region in a liquid, wherein the second liquid recovered from the opening of the liquid recovery device is returned to the inlet of the box. 請求項の方法において,前記液体回収装置で回収した第2液体を前記箱体の注入口へ戻す前に浄化してなる液体中の異質液体領域形成方法。 5. The method according to claim 4 , wherein the second liquid recovered by the liquid recovery apparatus is purified before being returned to the inlet of the box. 請求項1から3の何れかの方法において,第1液体中に溢流口付き遮液膜により所要大きさの閉鎖エリアを画成し,その閉鎖エリアの内側に前記箱体を設置して前記箱体頂面から放流する第2液体により閉鎖エリアの内側を満たして第2液体領域としてなる液体中の異質液体領域形成方法。 The method according to any one of claims 1 to 3 , wherein a closed area of a required size is defined in the first liquid by a liquid shielding film with an overflow port, and the box is installed inside the closed area. A method for forming a heterogeneous liquid region in a liquid that fills the inside of a closed area with a second liquid discharged from the top surface of the box and forms a second liquid region. 請求項1から6の何れかの方法において,前記第1液体を濁水とし,前記第2液体を清水又は凝集剤が添加された清水としてなる液体中の異質液体領域形成方法。 In any of the methods of claims 1 6, wherein the first liquid and turbid water, heterogeneous liquid region forming method in the liquid comprising a Shimizu said second liquid Shimizu or flocculant is added. 潜水作業を必要とする第1液体中に所定口径の頂面開口を整流板で覆って設置する中空箱体,前記箱体の頂面又は側面に底面へ向けて設けた注入口,及び前記注入口から箱体内に第1液体と濁度,温度,色,又は密度が異なる第2液体を所要流量で継続的に注入して充溢させる供給装置を備え,前記箱体頂面の整流板を注入口から離れた範囲の流れ抵抗が注入口周辺範囲の流れ抵抗よりも大きいものとし,前記箱体内の底面で流れの向きを変えた第2液体を箱体頂面の整流板全体から均等な流速で放流して第1液体中に箱体頂面から整流板の法線方向へ柱状に延びる第2液体領域を潜水作業域として形成してなる液体中の異質液体領域形成装置。 A hollow box body in which a top opening having a predetermined diameter is covered with a baffle plate in a first liquid that requires diving work, an injection port provided on the top surface or side surface of the box body toward the bottom surface, and the note turbidity first liquid in the box body from the inlet, temperature, color, or the second liquid with different densities continuously injected to a required flow rate with a feed device for abundance, the current plate of the box body top surface Note It is assumed that the flow resistance in the range away from the inlet is greater than the flow resistance in the range around the inlet, and the second liquid whose direction of flow is changed at the bottom surface of the box body is supplied to the uniform flow velocity from the entire baffle plate on the top surface of the box body. The heterogeneous liquid region forming device in the liquid is formed by forming a second liquid region in the first liquid that extends in a columnar shape from the top surface of the box body in the normal direction of the current plate in the first liquid. 請求項の装置において,前記箱体頂面の整流板を,流れ抵抗の異なる複数の整流板を積層したものとしてなる液体中の異質液体領域形成装置。 9. The apparatus according to claim 8 , wherein the rectifying plate on the top surface of the box is formed by stacking a plurality of rectifying plates having different flow resistances. 請求項8又は9の装置において,前記箱体内に注入する第2液体の所要流量を,前記所定口径を代表長さとしたときの前記整流板からの放流のレイノルズ数(=流速×代表長さ/動粘性係数)が6000〜14000の範囲内となるように調整してなる液体中の異質液体領域形成装置。 The apparatus according to claim 8 or 9 , wherein a required flow rate of the second liquid to be injected into the box is a Reynolds number of discharge from the rectifying plate when the predetermined diameter is a representative length (= flow velocity x representative length / An apparatus for forming a heterogeneous liquid region in a liquid which is adjusted so that the kinematic viscosity coefficient is in a range of 6000 to 14000. 請求項8から10の何れかの装置において,前記箱体頂面から整流板の法線方向へ柱状に放流される第2液体中に設置する当該箱体頂面と対向する開口付きの液体回収装置と,前記液体回収装置の開口から回収した第2液体を前記供給装置へ戻す返戻管とを含めてなる液体中の異質液体領域形成装置。 11. The apparatus according to claim 8 , wherein the liquid is recovered with an opening facing the top surface of the box installed in the second liquid discharged in a columnar shape from the top surface of the box in the normal direction of the current plate. An apparatus for forming a foreign liquid region in a liquid, comprising: a device; and a return pipe for returning the second liquid recovered from the opening of the liquid recovery device to the supply device. 請求項11の装置において,前記返戻管上に第2液体を浄化する浄化装置を含めてなる液体中の異質液体領域形成装置。 12. The apparatus for forming a foreign liquid region in a liquid according to claim 11 , further comprising a purification device for purifying the second liquid on the return pipe. 請求項8から10の何れかの装置において,第1液体中に所要大きさの閉鎖エリアを画成する溢流口付き遮液膜を含め,その閉鎖エリアの内側に前記箱体を設置して前記箱体頂面から放流する第2液体により閉鎖エリアの内側を満たして第2液体領域としてなる液体中の異質液体領域形成装置。 The apparatus according to any one of claims 8 to 10 , wherein the first liquid includes a liquid shielding film with an overflow port that defines a closed area of a required size, and the box is installed inside the closed area. The heterogeneous liquid area | region formation apparatus in the liquid which fills the inner side of a closed area with the 2nd liquid discharged from the said box top surface, and becomes a 2nd liquid area | region. 請求項8から13の何れかの装置において,前記第1液体を濁水とし,前記第2液体を清水又は凝集剤が添加された清水としてなる液体中の異質液体領域形成装置。 The apparatus of any of claims 8 to 13, wherein the first liquid and turbid water, heterogeneous liquid region forming apparatus in a liquid comprising a Shimizu said second liquid Shimizu or flocculant is added.
JP2014154144A 2014-07-29 2014-07-29 Method and apparatus for forming heterogeneous liquid region in liquid Active JP6325385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154144A JP6325385B2 (en) 2014-07-29 2014-07-29 Method and apparatus for forming heterogeneous liquid region in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154144A JP6325385B2 (en) 2014-07-29 2014-07-29 Method and apparatus for forming heterogeneous liquid region in liquid

Publications (2)

Publication Number Publication Date
JP2016030963A JP2016030963A (en) 2016-03-07
JP6325385B2 true JP6325385B2 (en) 2018-05-16

Family

ID=55441507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154144A Active JP6325385B2 (en) 2014-07-29 2014-07-29 Method and apparatus for forming heterogeneous liquid region in liquid

Country Status (1)

Country Link
JP (1) JP6325385B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849431B2 (en) * 2016-12-27 2021-03-24 鹿島建設株式会社 Fresh water area forming device and fresh water area forming method
CN106920439A (en) * 2017-04-21 2017-07-04 三峡大学 A kind of reynolds test instrument and experimental technique
CN114868680A (en) * 2022-05-12 2022-08-09 中国三峡建工(集团)有限公司 Indoor test device for researching fish colony effect

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124598A (en) * 1979-03-19 1980-09-25 Gadelius Kk Aeration
US5071587A (en) * 1990-05-31 1991-12-10 Aquatechnica, Inc. Composition and method for purifying water
JP3549284B2 (en) * 1995-05-22 2004-08-04 佐伯建設工業株式会社 Underwater work machine
JP2004203409A (en) * 2002-12-24 2004-07-22 Morimatsu Research Institution Co Ltd Vertical water storage tank
JP4386263B2 (en) * 2004-02-12 2009-12-16 キヤノン株式会社 Article processing apparatus and processing method
JP5063103B2 (en) * 2006-12-21 2012-10-31 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, program, and recording medium
JP6356037B2 (en) * 2013-10-15 2018-07-11 鹿島建設株式会社 Diving work method

Also Published As

Publication number Publication date
JP2016030963A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6325385B2 (en) Method and apparatus for forming heterogeneous liquid region in liquid
EP3221655A1 (en) Method and device for inputting thermal energy into and removing thermal energy from a body of water
JP2021100761A (en) Transfer apparatus
EP2681362B1 (en) Floating barrier
US20020044835A1 (en) Selective reservoir withdrawal system
CN101337733B (en) Guide apparatus for inducing downward flow of surface water
US11014024B2 (en) Water skimming device and method
KR101562652B1 (en) the water turn over device for removing algae and the algae bloom control method using thereof
CN106546407A (en) Open type pressure-adjustable jet type cooking water hole and its method for forming flow field
Ibrahim Local bed morphological changes due to oriented groins in straight channels
JP2010265668A (en) Contamination preventing method and contamination prevention device
EP3647272A1 (en) Flotation installation for purification of a body of water
KR102578413B1 (en) System for purifying lake
RU2334047C2 (en) Device for dump and regulation of withdrawal depth from holding basin
DE102008044019B4 (en) Method and device for uniform incorporation of active substances into bodies of water
DE202009004668U1 (en) Climbing aid for fish and macrozoobenthos
CN105836832B (en) A kind of draining defoaming device of Coastal Power Plant recirculated water
Mustaffa et al. Dealing with Supercritical Flow in Culvert
CN210828507U (en) Novel non-boundary swimming pool
CN103711111A (en) Adaptive alga removing device
Klimchouk Hydrogeological approach to distinguishing hypogene speleogenesis settings
JP2006009241A (en) Fishway exit equipment
KR20230081014A (en) Water circulation device capable of decomposing oil film and sludge
KR101617833B1 (en) the water turn over device for removing algae and the algae bloom control method using thereof
CN212453030U (en) Movable ecological overflow structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6325385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250